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I. BACKGROUND AND OBJECTIVES 

With the development of remote sensing sensors, spectral and spatial 

resolution are gradually improving with decreasing sensor size, allowing for the 

versatile development of remote sensing methods in the field. The results can be 

directly used in crop protection and nutrient supply research areas related to precision 

farming and can be linked to the developments of Agriculture 5.0, such as 

technologies supporting self-driving and autonomous operations, decision support 

interventions, or embedded systems for automation.  

Research into technical solutions based on spectral data can help horticultural 

field and greenhouse practice. New technical devices such as controllable LED 

systems have raised awareness of the importance of light-related plant biology 

research. The possibility of spectral control of light requires a consistent methodology 

and approach to describing light, while practical approaches use many different 

systems and metrics, and do not focus on the light requirements of the plant. 

The most frequently used tool for field remote sensing is the 

spectroradiometer. During the development of measurement methods, integration 

into automated systems gradually comes to the fore. In addition to 

spectroradiometers, the increasing data collection demand of these systems is 

supported by new remote sensing device carriers, including drones. As a result, it is 

possible to collect continuous monitoring data even on a daily basis from an 

increasingly large area. 

The inclusion of spectral data in decision support systems is a gradually 

increasing global demand. To this end, the primary task is to achieve near-real-time 

data processing. The increasing sensor resolution, fast data recording, and multi-

sensor detection generate an ever-increasing amount of data, which opens up new 

areas of development in relation to data processing. 

In my dissertation, I deal with the investigation of technical developments 

based on the data collection methods of the spectroradiometer, comparing the 

accuracy of spectral data collection with the solutions of different sensors, as well as 

the more frequently used algorithms of spectral data processing during near-real-time 

interventions. 
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My scientific objectives are: 

1. My goal is to develop prototypes of devices that supplement the measurement 

methodology with a spectroradiometer, and to evaluate the accuracy of two 

commercially available spectroradiometers in addition to their application. 

2. My aim is to examine whether spectral data can replace field SPAD measurements of 

chlorophyll content in lettuce (Lactuca sativa L.) with sufficient accuracy. 

3. My goal is to explore the discrepancies between currently used global irradiance 

measurement, lux metering and PAR measurement to support the control of new LED 

lighting systems, and to create a plant-sensing-centric control panel for optimizing 

light parameters that supports data-driven programming.  

4. My aim is to compare correlations and indices between spectral data and water and 

nitrogen content parameters, and to create a control board to support the automation 

of this. 

5. My goal is to compare the spectral accuracy and intra-day variation of multispectral 

camera results from drones with the spectral accuracy and intra-day variation of 

results from a spectroradiometer.  

6. My aim is to compare the spectral accuracy of multispectral camera results from 

drones with the spectral accuracy of satellite remote sensing.  

7. My goal is to determine the accuracy and run-time of spectral image processing 

algorithms for near real-time data processing. 

II. MATERIAL AND METHODS 

2.1. Support for field measurement methodology for passive field 

spectroradiometers 

2.1.1. Design and construction of prototype clip-on measuring head and stand 

I designed an adjustable tripod system based on the dimensions of the Qmini 

spectroradiometer to help keep the sensor at fixed distances and angles in the field. 

The tripod consists of a sensor holder design that holds the sensor at a 45 degree 

angle. The sensor holder is capable of 360 degrees of rotation and can be slidably 

mounted at different heights on two sizes of rod attached to a base for stability. 

I designed a hemispherical gauge head in AUTOCAD 2021 software, and then 

fabricated it with Creality Ender 3D printer using ABS filament material. I coated the 
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measuring field of the measuring head with barium sulphate paint. I used a 

microscope lamp with G4 socket as light source, the socket of which can be fixed on 

the outside of the measuring head. As power source I connected a Parrot drone 

lithium-polymer battery and a circuit breaker switch. To connect the sensor, I 

designed 2 inputs, one for transmittance measurements facing the light source at 180 

degrees and the other on the side of the light source at 45 degrees.  

2.1.2. Comparative measurements of spectroradiometers 

The measurements were carried out in the summer of 2017 in the wine region 

of Hajós-Baja, in Borota, in the Koch Winery. 100 samples at the same point, taken 

consecutively with two spectroradiometer systems (ASD Fieldspec2 

spectroradiometer with Plant Probe; Qmini spectroradiometer with prototype probe). 

Statistical evaluation was performed by one-factor analysis of variance (Excel) after 

condition testing, comparing the accuracy of the two systems. In addition, I examined 

the REP (Red Edge Point) values that were typical during the measurements, since 

this point is the basis of several spectral indices. I characterized the evaluations by 

the mean and the percentage variation of the deviations of the values for easier 

comparison.  

2.2. Studies in different lighting environments 

2.2.1. Comparative measurements with Konica Minolta SPAD 502 measuring 

system 

For the chlorophyll study, I set up three growing tents with 20-20-20 lettuce 

plants (Lactuca sativa L.) per tent. The experimental environment was set up by 

growing in artificial rockwool cubes, providing the same nutrient solution 

concentration, keeping climatic parameters constant, and setting the same lighting 

length. The only difference was in the illumination, so in two tents I used high power 

LED systems (a KIND LED K5 panel and a Tungsram Research Module at 50% 

power), while in the third case I used a HPS system (Sylvania SHP-T Growpress 

600W). 

For the SPAD measurements I used the Konica Minolta 502 SPAD device of 

the Hungarian University of Agricultural and Life Sciences, Institute of Horticulture, 

Department of Vegetable and Mushroom Production. I measured 3-3 leaves per 
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lettuce plant, with both sensor systems in three replicates. The final result was 58 

measurements per tent. A total of 174 averaged data were obtained for the three tents, 

of which 165 were analysed in further analysis). The total chlorophyll content of the 

leaves analysed was quantified spectrophotometrically at specific wavelengths after 

acetone extraction. After extraction, the filtrate was loaded into glass cuvettes and 

absorbance was measured against the acetone blank sample at λ=661.6; λ=644.8; 

λ=470nm using a Helios-alpha spectrophotometer. Calculation: Cla (µg/mg) = 

11,24*A661.6 - 2,04*A644.8, Cl b (µg/mg) = 20,13* A644.8 - 4,19*A661.6, C(x+c) 

(µg/mg) = (1000*A470-1,90*Ca-63,14*Cb)/214. The chlorophyll content determined 

by analytical measurements was compared with the SPAD values and the results of 

the spectral indices calculated from the measured data, using a paired t-test. 

2.2.2. Creation of a control panel for the control of lighting systems and the input 

of light parameters from spectral data 

In my work, I have presented the technical approaches of global irradiance 

pyranometers, quantum sensors measuring the PAR range, and luminometers 

measuring the illuminance of light, the sensitivity of the measurement systems used 

in practice, and the characteristics of the photometric parameters that can be 

associated with a given solution.  

Starting from the solar irradiance data described in Gueymard's 2004 paper, I 

combined the physical equations in a model, which extended from Planck's law to the 

photometric equations. Since my particular measurement system uses the photopic 

vision (V(λ)) curve as recorded in CIE S010/E:2004, I have corrected the 

corresponding values in the model. I also processed the measurement sensitivity 

characteristics of the different measurement systems. Based on these, I have presented 

the differences.  

The model equations have been improved so that the table automatically 

recalculates and plots the actual photometric parameters based on any spectral 

measurement. Also, as a new element, it weights the spectral results based on the 

absorption curves a and b of chlorophyll. In addition, the photon flux is given for the 

PAR range 380-700 nm and 380-750 nm. In its final table, it compares the measured 

results with a reference spectrum, showing the differences by wavelength. 



7 
 

I demonstrated the operation of the control panel by measuring several 

lighting systems. At the same time, the evolution of the photometric parameters of 

two high-power LED systems (KIND LED K5 panel and Tungsram Research 

Module), a lighting system in a phytotron (SANYO), an HPS system (Sylvania) and 

the spectral data of the Sun were measured. 

2.2.3. Analysis of content parameters based on spectral values  

2.2.3.1. Spectroradiometric detection of plant water stress 

To evaluate the water stress detection of remote sensing indices and spectral 

data, two plant growing tents were set up, and unlike before, the light source 

(Tungsram Research Module) was of the same design. In the tents, I grew pepper 

(Capsicum annum L.) plants on rockwool cubes with 25-25 plants per tent. I applied 

the same amount of irrigation for the first month in both tents and nutrient solution 

application starting from the second week. From the second month onwards, I halved 

the watering of the plants in the second tent. 

After one month, I performed the spectral measurements in triplicate using 

the prototype measuring head. Then, in an analytical laboratory, I measured the 

relative water content of the leaves examined and compared these values with the 

spectral data. The correlation of several spectral water indices with the analytical test 

results was investigated. 

2.2.3.2. Detection of plant nitrogen supply by spectroradiometer 

Similar to the previous approach, I set up two separate growing tents using 

the same LED light source. I grew basil (Ocimum basilicum L.) and lettuce (Lactuca 

sativa L.), 25-25 seedlings of each species, on rockwool cubes.  

I used 5 treatments to test nitrogen application. I pre-determined the 

appropriate amount of nutrient solution for each species, and then developed a 

"dilution series" with a 5 mg rate so that the plants in sample number 3 received the 

optimum amount, samples 1 and 2 received 10 and 5 mg less, while samples 4 and 5 

received 5 and 10 mg more from week 2 onwards. In this way, I investigated the 

correlation of the spectral indices with nitrogen by establishing different nitrogen 

dosages. 
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Spectral measurements were taken in the first month after the start of 

treatment, with three replicates of three sample leaves on each plant. The nitrogen 

content as a percentage of dry matter was measured in an analytical laboratory and 

compared with the spectral indices. 

2.2.3.3. Developing solutions for spectral index data processing 

Since spectral indices help many remote sensing data processing, simplifying 

large data sets from an automation point of view, but can be time-consuming to 

calculate, I created two auxiliary files to speed up the process of defining spectral 

indices for later analysis. 

In one direction, for field spectroradiometer measurements, I created a 

spreadsheet that automatically gives the major water indices, the major nitrogen 

indices, the chlorophyll indices seen earlier, and produces the first-order derivatives 

of the spectral data, calculating the minimum and maximum values of the RedEdge 

range, inflection point and slope from the readings in subsequent worksheets. Where 

analytical measurements are available, I have also developed a worksheet for 

inputting these data, using each pair of worksheets to examine the correlation of the 

indices and to provide the values for the underlying statistics. It calculates and, where 

appropriate, correlates over 50 spectral indices simultaneously.  

As a solution to help processing the image data, I created a JavaScript code 

to use the open source system of QGIS, which is copied to the appropriate local library 

and incorporated into the program's 'Raster calculator' algorithm. When used, it 

displays all the indexes in a drop-down menu for the user, then gets the required 

channels and generates the layer according to the requested index without any other 

operation. I have included a total of 40 spectral indices, so that others can speed up 

this processing step. 

2.3. Comparison and data processing assessment of multispectral sensors on new 

UAVs 

I have conducted a comparative analysis of the remote sensing accuracy of 

multispectral cameras carried on new launch vehicles (UAVs), comparing both the 

accuracy of satellite remote sensing and the results of spectroradiometer 

measurements. 
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2.3.1. Comparison of multispectral camera measurements on drones with 

spectroradiometer measurements 

For comparison with spectroradiometer measurements, I used raw data from 

the Harvard Dataverse Wageningen University measurement database. From this 

database, I compared the Sequoia camera files with the reflectance measurement 

results of two commercially available spectroradiometers (Cropscan, Tec5 

Handyspec). Measurements were taken at the same time of day between 7:25 am and 

8:00 pm at 9 different times, recording two potato fields, two wheat fields, one barley 

field, the open soil surface, and calibration plates of different sizes at several 

locations. All measurements were taken simultaneously with both 

spectroradiometers, and the Sequoia multispectral camera carried on the drone. 

Since, from a remote sensing point of view, multispectral cameras used on 

drones perform less calibration in practice, it is particularly important to compare the 

two methodologies in terms of accuracy.  

The raw data was pre-processed, reflectance values were extracted from the 

image file for each measurement point, and then variance analysis was performed on 

a channel-by-channel basis to investigate the differences, comparing the possible 

effects of time of day on accuracy. 

2.3.2. Comparison of multispectral camera measurements from drones with 

satellite remote sensing measurements  

For the study, I used measurements from a Micasense Altum six-channel 

multispectral camera. The measurement was carried out on 08.09.2021 with a DJI 

Matrice 210 RTK drone in the sportfishing area of Lake Tisza. The total surveyed 

area was 25.5 ha, the measurement was performed at an altitude of 70 m and the 

resulting images had a spatial resolution of 1.6 cm (GSD = 1.6 cm). 

For comparison with satellite remote sensing, Sentinel-2 MSI2A satellite 

images of the same area at the same time were processed. Alternatively, since 

Micasense Altum also records a thermal channel, I included a Landsat-8 satellite 

thermal image for the purpose of this analysis. Both satellite images and Micasense 

Altum images were pre-processed, and after loading the same areas and running the 
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supervised image classification algorithms, the results were examined and compared 

using accuracy assessment. 

For the purpose of analysing spectral data, I have assigned 150 points in the 

field, with 25-25 points within each class. For the matched channels, I collected the 

measured reflectance values for these, averaged them by class and analysed the 

variance.  

2.3.3. Evaluation of image processing algorithms for near real-time data 

processing 

The characteristics of the data set acquired with Micasense Altum presented 

in the previous section are: 6 x 940 images, 6 x 1.56 GB single-channel orthomosaic 

images after pre-processing, 10 GB as 6-channel stacked images, 8 GB for the 5-

channel stacked version, the resulting file size containing more than 620 million 

pixels of data points per channel.  

After pre-processing this data file, I tested the following image classification 

methods by running them on the 5-channel image. The unsupervised clustering (using 

ISODATA method), the minimum distance (MD), maximum likelihood (ML) and 

spectral angle mapper (SAM) algorithms among the supervised image classification, 

the Random Forest (RF), Artificial Neural Network (ANN) and Support Vector 

Machine (SVM) models among the machine learning solutions, and the 

Convolutional Neural Network (CNN) model for deep learning.  

For the near real-time automation solution, I have developed two machine 

configurations with a 4 GB and an 8 GB DRAM capacity, as these are the closest to 

the microcomputer units used in the automation. I have run the algorithms in parallel, 

testing their runtimes. For accuracy assessment, I created a reference layer based on 

the field survey, comparing the overall accuracy in percentage, the Kappa index 

value, and the area ratio of correct and incorrect pixels by cross-classification. 

In addition to the algorithms listed above, I investigated the possibility of PCA 

analysis, its running characteristics and accuracy. Also, a Python-based decision tree 

design was used to run the classification. 

The examined classes of vegetation cover were: class 1.- water chestnut 

(Trapa natans), class 2.- common reed (Phragmites australis), class 3.- cattail (Typha 
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angustifolia), class 4.- water surface, class 5.- fairy rose (Nymphaea alba) and class 

6.- sedge (Carex acutiformis). For training I used 60% of the reference layer for 

validation. For the analysis I used the SCP and ORFEO plug-ins of the QGIS 

software. 

 

III. RESULTS 

3.1. Field application development results and comparative results 

3.1.1. The final version of the prototype 

The prototype probe head converts our instrument into an active sensor to 

speed up field measurements. The hemispherical design of the probe combines 

approaches from diffuse spectroscopy. No similar design is currently available on the 

market. 

 

Figure 1. – Picture of designed prototypes, left the measuring stand, middle the model of the measuring 

head, right the improved model 
 

With the stand, we can measure at a fixed angle of 45°, with 360° adjustable 

rotation, at a registerable and adjustable height. In the final prototype version, the 

measuring head has been fitted with a support to make it easier to fix the light source. 

By making the measuring head interchangeable, it can be further developed in a 

variety of other configurations (for example, for testing berry crops). Once the 

technical model is available, it can be reproduced and further developed by anyone. 

3.1.2. Comparative measurements with ASD Fieldspec 2 Plant Probe measuring 

system 

The difference in the REP (Red Edge Point) values for the measurements is 

summarised in Table 1. 
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Table 1. - Summary comparison of ASD Fieldspec 2 and Qmini measurements for REP 

The results show that the two instrumental solutions are a good substitute for 

each other. Accordingly, the clip designed and manufactured by us has sufficient 

accuracy for field testing.  

3.2. Results of tests in different lighting environments 

3.2.1. Results of comparative measurements with the Konica Minolta SPAD 502 

measuring system 

Table 2. - Statistical comparison of chlorophyll index values measured with a measuring head and SPAD meter 

data with laboratory results using a two-sample t-test (extract for correlation and standard deviation results) 

 Expected 

value 

Standard 

deviation 

Number of 

samples 

Pearson's 

correlation 
R2 

Chlorophyll 

a+b 33,85 495,88 165   
CIgreen 2,39 1,06 165 0,94 0,88 

MTCI 0,17 0,02 165 0,99 0,97 

MCARI 0,36 0,05 165 -0,83 0,69 

NDVI 0,78 0,004 165 0,58 0,33 

MCARI  0,63 0,28 165 0,98 0,97 

CCI  12,84 165,64 165 0,92 0,85 

CIrededge 0,15 0,014 165 0,99 0,97 

SPAD 32,52 164,59 165 0,96 0,93 
 

Statistical analysis showed a significant (α=0.05) and strong correlation 

between analytical total chlorophyll content and chlorophyll predictive indices. The 

best chlorophyll predictor index was found to be the CIrededge index (R=0.99), 

followed closely by the MTCI (R=0.98) and MCARI (R=0.98). These three indices 

achieved higher correlations than the values detected by the SPAD meter, i.e. they 

are more accurate predictors of total chlorophyll. This also demonstrates that 

spectroradiometer measurements can replace SPAD meters. 

 

 

 

REP average - 

prototype (nm) 

Average standard 

deviation 

Deviations as a percentage of the 

REP average (%): 

718,005 1,118 0,156 

REP average - ASD 

(nm)   
718,156   
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3.2.2. Determination of photometric parameters from spectral data 

To illustrate the sensitivity of the different systems and their respective 

weighting solutions, I show the basic differences in the Sun measurement in Figure 2

 

Figure 2. - Different sensor sensitivities modelled on solar measurements 

The user can select the measurement resolution. The model gives the 

maximum wavelength calculated from spectral data, the total irradiance (W/m2), the 

PAR PPF photon flux (µmol/m2/s), the calculated lux (lm/m2). Since the photon flux 

density can only be calculated in situ at a given distance, I used a logarithm approach 

to replace the calculation of these values, and then weighted by chlorophyll 

absorption to display the same values. Each calculation is first calculated for an 

extended range (380-780 nm) and then narrowed down. A picture of the control panel 

results area is shown in Figure 3. 

 

Figure 3. – Image of a scoreboard of photometric parameters calculated from spectral measurements 

of the KIND K5 high-power LED system 
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The control panel can help you compare different luminaires. An illustration 

of this is shown in the following Figure, which shows the chlorophyll absorption-

weighted values of four different artificial light sources and the Sun. 

 

Figure 4. – Presentation of results calculated from 4 artificial lighting systems and the Sun (09.08.2019) 

 

I have shown with Figure 4 that in some cases a high illumination value 

(Sylvania), but not even a high PAR PPF value, does not necessarily mean a useful 

photon composition for the chlorophylls of plants. However, new LED systems can 

be designed with a choice of the spectral range emitted by the diode, thus creating 

light sources optimised for plant photoreceptors, in contrast to previous practice. 

Currently, I have used data from an August solar survey as a reference for the control 

design. The development of an accurate reference will be very important in the future 

towards spectrally controlled supplementary lighting controls, where a greenhouse 

lighting system is used to make up for the missing amounts of natural radiation. 

3.2.3. Correlation of water stress with spectral data 

A total of 26 different water indices were formed by processing our spectral 

data using the auxiliary table presented in section 2.2.3.3. The correlation of these 

indices was compared with the analytical results. The strongest correlations are 

summarized in the following Table 3. 
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Table 3. – Summary table of water index values and laboratory moisture correlation results 

Indices R 

NDMI 0,91 

NDWI 0,91 

WI (900/970) 0,79 

WI (970/900) -0,79 

MSI  -0,91 

LVI2  0,94 

1200/850 -0,77 

1450/850 -0,92 

1650/850 -0,89 

(970-900)/(970+900) -0,79 

(970-850)/(970+850) -0,57 

970-880 -0,8 

SRWI(860/1240) 0,68 

970-920 -0,87 

NDWI(960-1240) 0,69 
 

PLS-R analysis was used to investigate further more sensitive ranges. I also 

performed this analysis on the values of the first-order derivative (Table 4). I also 

examined the simple, simple ratio and normalized versions of the most sensitive 

wavelengths for correlation. 

Table 4. – The top 5 indices in a table summarising the correlation of the indices formed by the first-order 

derivatives of the measured spectral values 

Indices Pearson’ correlation (R) 

MSI -0,91 

LVI2 0,94 

1450/850 -0,92 

1650/850 -0,89 

970-920 -0,87 

3.2.4. Correlation of nitrogen treatments with spectral data 

The results of the PLS-R analysis show that the "more sensitive" wavelengths 

in the spectrum are at 800, 710, 675, 560 nm. From these ranges, I formed new indices 

and examined the RedEdge range with a higher focus.  

Unfortunately, for none of the indices did the indices show a high significant 

correlation, only a medium result. The highest correlation value was obtained for the 
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S800/675 index (R=0.52), followed by the CRI (R=0.49) and the minimum value for 

the 650-800 nm range (R=-0.48). 

3.2 Results of a comparison of multispectral sensors on new Unmanned Aerial 

Vehicle (UAV) systems 

3.2.1. Comparative results of a drone Sequoia multispectral camera and two 

spectroradiometers 

The data show that the two systems can replace each other with reasonable 

accuracy, with the standard deviation squared differing minimally for most channels, 

so less calibration of the drone cameras does not necessarily mean a disadvantage in 

terms of accuracy. 

Higher variance was observed in the NIR channel, which showed higher 

values (~3 and 1.5) both between the two systems and between the multispectral 

camera intra-day values. This was examined in more detail (Figure 5) 

 

Figure 5. - Reflectance values in the NIR channel measured by Sequoia camera at different times for different 

surface coverages 

 

It can be seen that the main differences are in the 9:00 a.m. - 10:00 a.m. period 

and in the afternoon (between 16:30 p.m. - 18:30 p.m.).  

3.2.2. Results of the comparison of Micasense Altum images with satellite 

systems 

The optical channels were compared with the Sentinel-2 MSI2A satellite 

image, while the thermal channel was compared with the Landsat8 thermal image.  
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Due to the greatly increased spatial resolution of the drone imagery, we can 

achieve much more detailed imaging and analysis compared to a satellite image. 

However, the vegetation boundaries are highly coincident. 

In terms of accuracy, for 6 classes, Sentinel-2 swapped the smaller class of 

sedge for the dominant species using the maximum similarity algorithm, while fairy 

rose became the dominant species using the minimum distance method. The main 

reason for this is that on the one hand, the eagle owl could be trained with a small 

area, which is not a difficulty for a detailed (drone) image, but on the other hand, for 

a less detailed image, it is amplified by the fact that the spectral data for the two 

classes became too similar, as indicated by the Bray-Curtis similarity analysis (value 

92.58% for the two classes). In addition, satellite analysis of the fairy rose is not 

possible because it was mostly scattered, which cannot be trained with a lower spatial 

resolution. 

With 4 classes, both methods showed good accuracy. Among the algorithms, 

the spectral angle method achieved the highest accuracy in both cases and for both 

methods.  

The results of the standard deviation squared of the data extracted to test the 

spectral accuracy against each other showed that the highest value was 0.05, while 

the average was 0.02. 

With the above, I have demonstrated that, in terms of spectral accuracy, the 

drone-borne remote sensing method can adequately replace satellite imagery analysis, 

and in addition, for some research areas, satellite remote sensing is no longer an 

appropriate methodology. Satellite-based systems can be used to monitor changes in 

land cover over large areas, while drone-borne instruments can be used to monitor 

changes at the scale of smaller spatial units, and thus for near real-time interventions. 

A similar result was obtained when analysing the thermal channel, where the 

spatial differences became even more pronounced, as the spatial resolution of the 

Landsat8 satellite image is lower than that of Sentinel-2. 

3.1.3. Results of running time and accuracy assessment of different classification 

algorithms 

The results for the two configurations are summarised in Table 6. 

Table 6. – Results of image classification algorithm runtimes and Kappa index values for the full model 
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Image processing algorithms 
8GB DRAM 

4GB 

DRAM Kappa 

index 
running time (h) 

unsupervised Clustering (ISODATA) 9.7 >24h 0.4 

deep learning 
Convolutional neural 

network (CNN) 
>24h - 0.68 

machine 

learning 

Random Forest 7.4 >24h 0.65 

Support Vector Machine 

(SVM) 
10.6 >24h 0.64 

Artificial Neural 

Network (ANN) 
10.2 >24h 0.64 

supervised  

Minimum Distance (MD) 1.2 6.5 0.52 

Maximum Likelihood 

(ML) 
1.2 6.5 0.6 

Spectral Angle Mapper 

(SAM) 
1.2 6.5 0.65 

 Principal Component 

Analysis (PCA) 
3.5 8.5 0.56 

 Python based Decision 

Tree Rules 
0.5 2 0.56 

 

The results show that although the deep learning model, followed by machine 

learning methods, achieved the best results in terms of accuracy, their high running 

times do not allow for near real-time data processing. In contrast, the spectral angle 

algorithm has been characterized by an adequate overall model accuracy even at 

significantly faster run times. At class level accuracy, each algorithm showed results 

of 80-90%. 

The decision rules were designed with 5 unique features for each class using 

the simple reflectance layers, the PCA results, the NDVI layer and the thermal 

channel. This method can be easily integrated with any Python environment and can 

help near real-time development due to its significantly lower runtime. It can also 

help more complex analyses (e.g. changes in plant density). On the automation side, 
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the definition of specific rules is not yet solved, as these properties do not necessarily 

coincide with the basic statistical values (minimum, maximum, average). 

IV. DISCUSSION AND CONCLUSIONS 

4.1. Development results of spectroradiometer’s methodology 

In my comparative measurements, I have shown that a spectroradiometer that 

performs spectral measurements can replace the SPAD meter, the lux and PAR 

measuring systems used for light measurement, with sufficient accuracy.  

The accuracy of the designed measuring head is in line with the solution 

developed by the most common manufacturer, it also better implements the principle 

of the measuring system used in the diffuse spectroscopy laboratory and it facilitates 

further development by means of its interchangeable head. In the future, it is advisable 

to further investigate the possibility of changing the internal surface coating and using 

different washers. 

The control panels can be easily integrated into data-driven programming 

using the widely used Visual Basic. 

In my comparative measurements, I have shown that by measuring spectral A 

light parameters with spectral data, we can express all other characteristics. In 

addition, a change of approach that takes the absorption of plant light receptors more 

into account than the PAR approach would be important. A light control focusing on 

the absorption of the photoreceptors and adapting it to the natural illumination can 

only be achieved with spectral control, so the use of spectroradiometers is proposed 

from the automation side. It will be important to further research appropriate 

references, which may vary according to the needs of a particular crop species beyond 

local conditions. 

Another objective of my results on the content (chlorophyll, water content) 

was to demonstrate that specific spectral indices can adequately replace laboratory 

destructive measurements. In the future, it will be recommended to reduce the number 

of these indices, in particular for automation purposes. For example, if, in further 

measurements, CIrededge predicts chlorophyll with a similarly high value under 

different plant species and different environmental parameters or stress, this index 

could be incorporated into technical developments. 
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The model of the measuring adapter and the two control boards are available 

to anyone at the link below: 

https://drive.google.com/drive/folders/1DuYy_X1CSGoT0tMv85gKHQ9iH0XRmjI

w?usp=share_link/ 

4.2. Investigating new equipment carriers 

I have shown that, although multispectral cameras on drones are less 

calibrated, they can replace spectroradiometer measurements with reasonable 

accuracy. It will be important to verify this with further studies, involving a larger 

number of sensors. 

Further investigation of the NIR channel will also be important, as many 

spectral indices are based on this measurement. For the time being, because of the 

variance observed here, I would recommend that any data collection solution using a 

drone-carried multispectral camera should be performed during midday. 

I have shown that while both satellite and drone systems are accurate when 

analysing larger spatial units (with fewer classes), satellite systems will not be able 

to provide accurate analyses when focusing on smaller spatial units. This means that 

the development of near real-time solutions can also be achieved by including drone-

based multispectral sensors. 

In terms of near real-time interventions, current data processing directions 

cannot deliver the required speed for this amount of data. The future solution could 

be multi-directional:  

- A characteristic of deep learning solutions is that the larger the background database 

of the model being trained, the more training runs we have done, the faster the speed 

of the runs becomes. For this purpose, the recordings of remote sensing sensors used 

on drones should be collected in a database (no such database exists yet, only some 

measurements are available). 

- Efforts should be made to use simpler data structures. For example, by using a 

Python-based decision tree, we can simultaneously include several different layers 

and thus different data in the analysis. At the same time, it is recommended not to 

include a multichannel data array, but simpler spectral indices, reflectance values for 
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a given range, or temperature data. This approach implies the linking of individual 

properties, so that a future database of these individual properties has to be developed. 

- The optimal data size analysis approach: analysis of the image data set in smaller 

units. The definition of these parameters is something I would like to explore further 

in the future, which could be aided by, for example, the collection and analysis of 

ORFEO 'log' data. When running the algorithms, ORFEO estimates the computing 

capacity required for the entire task (in this research, the three machine learning 

models on such a large dataset required 23800 GB of DRAM), then decomposes the 

task according to the available memory and executes the task step by step. Thus, a 

longer-term study of this data can help to design the optimal data set for near real-

time improvements. 

V. NEW SCIENTIFIC RESULTS 

1. I have designed, developed and tested an optical leaf measurement adaptor (clip) 

with comparative measurements, which has been shown to have good field utility and 

significantly improves the performance of contact plant spectroradiometric 

measurements. 

2. Developed a standardized data collection and data conversion methodology 

adapted to spectroradiometers that significantly improves interoperability, 

transparency and comparability between spectral measurements, especially for SPAD 

meters, CIrededge indices, Lux and PAR measurement systems, and for chemical 

laboratory measurements of chlorophyll and water content. 

3. I have demonstrated that a drone multispectral camera system can replace field 

spectroradiometer calibration measurements with satisfactory accuracy when data are 

collected at or near the maximum solar zenith. 

4. I have demonstrated that the drone multispectral camera system can replace the 

measurements available from satellite remote sensing with greater accuracy, It will 

be useful to integrate this methodology into the development of more detailed field 

analyses, and thus near real-time interventions. 

5. Developed a near real-time drone image processing technique using traditional and 

artificial intelligence image classification methods for decision-supporting rapid 

assessment and anomaly detection. 



22 
 

VI. PUBLICATIONS RELATED TO THE TOPIC OF THE THESIS 

1. Journal articles with Impact Factor: 

NAGY Á.Z., JUNG A, VARGA ZS., KÁTAY GY., ÁDÁM L.A. (2017): Effect of 

Artificial Light Conditions on Local and Systemic Resistance Response of Tobacco 

to TMV Infection; Notulae botanicae horti agrobotanici Cluj-Napoca, 45:(1) pp. 

270-275. IF=0.575 (2017), https://doi.org/10.15835/nbha45110751 

VARGA ZS., VÖRÖS F., PÁL M., KOVÁCS B., JUNG A., ELEK I. (2022): 

Performance and Accuracy Comparisons of Classification Methods and Perspective 

Solutions for UAV-Based Near-Real-Time “Out of the Lab” Data Processing; 

Sensors - Feature Papers in the Remote Sensors Section, 22(22), 8629; IF= 5.349 

(2021), https://doi.org/10.3390/s22228629 

2. Peer-reviewed journal (MTA list) publications: 

CSIMA GY., VARGA ZS., FICZEK G., GYÖKÖS G., LÁNG Z. (2015): 

Comparison of Fresh Apple Quality grown on Different Tree Trellises, Hungarian 

Agricultural Engineering (27) pp. 51-55., http://doi.org/10.17676/HAE.2015.27.51 

VARGA ZS., FELFÖLDI J., STEINER M., LÁNG Z. (2015): Study of inlet light 

spectrum’s effect on plants growth - the light transmittance decreased with increasing 

glass thicknesses, Hungarian Agricultural Engineering, (30), pp. 17-22, 

http://doi.org/10.17676/HAE.2016.30.17 

SIPOS L., BOROS I., PURCZEL Á., VARGA ZS., SZŐKE A., SZÉKELY G. 

(2017): LED-ek hasznosítási lehetőségei a növénytermesztésben (review). 

Kertgazdaság 49(3). pp.11-22 

3. Conference full papers: 

LÁNG Z., CSORBA L., VARGA ZS. (2013): Achieving Constant Amplitude and 

Acceleration of Shaken Fruit Trees Using An Extended Inertia Shaker Machine, 

Synergy International Conference, Gödöllő, Paper no. 193.  

VARGA ZS., JUNG A. (2019): Különböző LED rendszerek üvegházi 

alkalmazásának hazai tapasztalatai; X. LED konferencia (2019.02.05.), pp. 23-24. 



23 
 

VARGA ZS., VÖRÖS F., PÁL M., KOVÁCS B., JUNG A., ELEK I. (2022): 

Osztályozási módszerek és új megoldások teljesítményének és pontosságának 

összehasonlítása UAV-alapú, közel valós idejű adatfeldolgozás céljából; XIII. 

Térinformatikai Konferencia és Szakkiállítás (2022. 11. 3-4.), pp. 325-337. 

VARGA ZS., JUNG A. (2016): A spectroscopic set-up development for efficiency 

analysis of HPS and LED lighting in horticulture; Biosysfoodeng (2016.12.08.), Paper 

no. 136. 

4. Conference proceedings (abstracts): 

VARGA ZS. (2020): Különböző LED-rendszerek kertészeti alkalmazásainak 

lehetőségei; PREGA SCIENCE’20, Precíziós Gazdálkodási Konferencia (2020. 

február 18.) 

VARGA ZS. (2022): Flood susceptibility mapping in Hungary based on remote 

sensed images and machine learning methods, GeoMATES ’22; International 

Congress on Geomathematics in Earth- & Environmental Sciences (2022.05.19-21.) 


