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1. INTRODUCTION 

1.1 Background 

Water management for agricultural purposes is a complex task because it depends on several 

factors: social, environmental, and political factors such as population growth rate, change in 

water use patterns, climate changes, change in hydraulic systems of rivers and the development 

of water resources in riparian countries. Its performance can be far below its potential, 

especially in drought-prone areas, making agricultural production and irrigation economically 

inefficient (K. Raju, 1999). Effective irrigation systems are inevitable in providing adequate 

food to the world. Agriculture consumes about 60 to 70 % of the world’s freshwater resources 

in the irrigation process, and the irrigation systems have efficiency ranging from 30 to 60 %. 

Although the available resources are mostly renewable, they have a limit for regeneration that 

cannot be exceeded (Darshana, Pandey, Ostrowski, & Pandey, 2012). 

Monitoring soil and crops during the growing season is essential for agricultural production. 

Plant characteristics change according to the plant’s phenological stage from the seedling until 

it reaches full maturity. As a function of this process, there is also a dynamic of the optimal 

crop transpiration, i.e., the crop water requirements. In the primary stages of growth, most of 

the evaporation occurs from the soil's surface. However, as plants grow, the contribution of 

transpiration as one of the components of evapotranspiration increases until maturity and 

gradually decreases afterwards. The collection of information about crop evapotranspiration is 

very important in the irrigation scheduling process to raise the efficiency of water use (Allen, 

Pereira, Raes, Smith, & Ab, 1998). 

Methods for assessing the performance of irrigation using data from satellites have been 

developed since the second half of the 1980s. There is a consensus that it is difficult to gather 

reliable and continuous terrestrial information on it. Initially, the focus was on the relationship 

between quantifying water use and cultivated area, but later attention was given to other aspects 

such as the crop water requirements, water productivity, water stress and salinity of water 

(Akdim et al., 2014). 

Irrigation performance indicators were first introduced in the 1970s and described the hydraulic 

behaviour of irrigation systems (Bastiaanssen et al., 2001). Later, crop-oriented indicators were 

also developed. For example, the overall consumed ratio quantifies the degree to which crop 

irrigation requirements are met by irrigation water in the irrigated area (Bos & Nugteren, 1990). 



Crop water deficit over a period is defined as the difference between ETp and ETa of the 

cropping pattern within an area (Bastiaanssen et al., 2001). 

Remote sensing images captured by sensors on satellites or airplanes can be considered, among 

others, as tools to give spatial information about evapotranspiration. However, the lack of 

availability of these images with sufficiently high temporal resolution and accuracy is one of 

the obstacles to using this technique. However, with the evolution of communication and 

computing technology, together with the policy changes of the national aeronautics 

administrations, like the NASA of the United States of America’s government (i.e., they 

provided free access to satellite data), an increase was observed in the development of this 

technology (Calera, Campos, Osann, D’Urso, & Menenti, 2017).  

In the past decade, many models have been developed that simulate plant growth and water 

balance. These models help us understand the process of plant development and are solutions 

to control the use and distribution of water (Wang, Zhang, Dawes, & Liu, 2001). 

Evapotranspiration is the main component of the water balance that consumes the largest 

amount of irrigation water and rainfall in cultivated areas. Several models  have been developed 

for the quantification of actual ET, which are based on the surface energy balance, such as the 

Surface Energy Balance System (SEBS) (Su, 2002), the Simplified Surface Energy Balance 

Index (S-SEBI) (Roerink, Su, & Menenti, 2000), the Operational Simplified Surface Energy 

Balance (SSEBop) (Senay et al., 2013), satellite-based energy balance for Mapping 

Evapotranspiration with Internalized Calibration (METRIC) (Allen, Tasumi, & Trezza, 2007),  

the Surface Energy Balance Algorithm for Land (SEBAL) (Bastiaanssen et al., 1998). 

Estimating evapotranspiration (ET) on a field scale has been accomplished using high spatial 

resolution but low temporal resolution satellite data from the Landsat TM and ASTER. 

However, due to the long repeat cycle of these satellites, these data sets are unsuitable for 

routine ET estimation. Others have attempted to use daily or more frequent satellite data from 

the AVHRR and GOES, which have coarser pixel resolutions of 1 to 5 km, resulting in ET 

estimates that represent averages over areas of 1 to 25 km2. Unfortunately, this method cannot 

distinguish the ET of individual fields. The MODIS proposed pixel resolutions ranging from 

250 m to 4 km have been used to assess land cover changes accurately, showing that a pixel 

resolution of 500 m or less is necessary. Even at the 1-km pixel resolution, detecting the areal 

extent of such changes is often unreliable. Land Surface Temperature LST can monitor 

significant changes in surface energy balance and ET with land use and land cover changes. 



However, higher temporal frequency-coarser resolution thermal-infrared data is required to 

monitor such changes routinely, which should be at the 250- to 500-m pixel size (Kustas, 

Norman, Anderson, & French, 2003).   

It is known that water shortage leads to the reduction of crop productivity, and the purpose of 

irrigation is to reduce plant stress. There are several factors to consider in planning irrigation, 

such as crop water requirement, costs, water availability and other factors, especially in the arid 

zones. The response of crop yield to irrigation has been studied extensively. Through proper 

irrigation management, it should be possible to provide only the water that matches the crop 

ET (Wang et al., 2001). 

1.2 Objectives 

1.2.1 Main objective 

Develop a remote sensing-based method that supports improving water use efficiency for 

irrigation. 

1.2.2 Specific objectives 

To achieve the main objective, the following specific objectives are set: 

1. Improve the DisTrad method of downscaling LST for large areas with complex land 

cover. 

2. Create high spatial and temporal resolution time series of actual evapotranspiration 

maps using remote sensing to define the spatial distribution of the actual ET. 

3. Propose an optimal integration method of the optical data to overcome the cloud cover 

problem. 

4. Analyse the irrigation efficiency for the New Halfa irrigation scheme: 

a. Evaluate the irrigation performance in the New Halfa scheme to define the spatial 

and temporal distribution of the water applied and demanded. 

b. Analyse the current irrigation schedule of wheat in the New Halfa scheme to 

identify the spatial distribution of the water stress. 

c. Estimate the crop water productivity for wheat crop. 

5. Propose a method to optimize the irrigation schedule for wheat. 

 



2. RESEARCH METHOD 

2.1 Study area 

The construction of the Aswan High Dam caused the inundation of the old town of Wadi Halfa 

by Lake Nasser. The New Halfa Agricultural Scheme was initiated in response as Sudan's 

largest resettlement project at the time. The New Halfa Agricultural Scheme is a 185,000 ha 

agricultural settlement scheme on the western side of Kassala State, roughly 400 km east of 

Khartoum (Laxén, 2007). The project is located on the Butana Plain, along the Atbara River. 

At the time of its construction, the New Halfa Scheme was Sudan's second-largest irrigation 

project after the Gezira Scheme, which is still the world's largest irrigation scheme. Sudan's 

irrigation agency manages the water through the Khasm el Girba dam on the Atbara River 

(Wallin, 2014). Climatology: the area lies in the dry climatic zone, with annual rainfall varying 

from 200- 300 mm, concentrated mainly in July and August. The highest mean daily maximum 

temperature is 42°C in May, and the lowest mean daily minimum temperature is 14°C in 

January. Humidity is low most of the year, and solar radiation is very high (Adam, 2002). The 

irrigation system is gravity-fed, with the main canal transporting water to the project area via 

a network of subsidiary canals and motorized pumps in the small scheme areas. The irrigation 

system includes main canals, branch canals, minor canals, quaternary canals, and tertiary farm 

ditches. Field irrigation is done using the traditional flooding (Angaya) approach. There are 

significant water losses in the system, reducing the available freshwater supplies, like 

evaporation, conveyance losses due to infiltration, etc. (Wallin, 2014). The dam was initially 

intended to store 1.3 billion cubic meters of water. However, by 1976, the reservoir's storage 

capacity decreased to 0.8 billion cubic meters due to significant siltation originating from the 

upstream catchment of the river Atbara in Ethiopia's highlands (Laxén, 2007). The reservoir's 

capacity is now about 0.6 billion m3. During the growing season, water in the smaller canals 

typically flows permanently. Farmers, however, have complained that some regions receive 

less water than others. Since the reservoir's capacity is dwindling, the irrigated area is shrinking 

too. Each agricultural settler was given a 15-feddan hawasha (6.3 ha tenancy) to cultivate 

cotton, wheat, or sorghum, as well as groundnuts. Cotton was mostly chosen since it was the 

most important cash crop for the government to provide hard currency and profit for the tenants. 

Groundnuts are the scheme's second most significant cash crop, and wheat and sorghum were 

grown as food security crops (Wallin, 2014). 



 

Figure 1. Location map of the study area. 

 

2.2 The framework of the research 

This study comprises crop water productivity calculation, irrigation performance assessment 

and scheduling irrigation for the wheat crop in the New Halfa project. It is based on several 

types of data and analyses, such as evapotranspiration, water balance of soil, water requirement 

for wheat crop and methods of irrigation performance assessment, as shown in Figure 2. 



 

Figure 2. Flow chart of the research 

 

2.3 Land surface temperature downscaling 

2.3.1 The DisTrad downscaling procedure for radiometric surface temperature 

To find a mathematical relationship between the radiometric surface temperature and the 

normalized difference vegetation index, Kustas et al. (Kustas et al., 2003) suggested 

aggregating the fine-resolution NDVI map to the same coarse-resolution as of the LST map 

and then to defining regression coefficients of Equation (1) with a least square fitting using a 

second order polynomial. 

 

 𝐿𝑆𝑇𝐶𝑅
∗ = 𝑎 + 𝑏 𝑁𝐷𝑉𝐼𝐶𝑅 + 𝑐 𝑁𝐷𝑉𝐼𝐶𝑅

2  (1) 

Where 𝐿𝑆𝑇𝐶𝑅
∗  is the land surface temperature at the coarser resolution (°C) and 𝑁𝐷𝑉𝐼𝐶𝑅 is the 

aggregated normalized difference vegetation index at the coarser resolution (-). 



In practice, for defining the NDVI-LST relationship, the coarse-resolution NDVI map was 

divided into three NDVI classes and the coefficient of variation of the fine-resolution NDVI 

values within each coarse-resolution pixel was calculated. To avoid the influence of 

heterogeneity, this map was divided into three classes: NDVI < 0.2 for the bare soil, 

0.2 < NDVI < 0.5 for the partial vegetation, and NDVI > 0.5 for the full vegetation. Finally, 

25% of the pixels with the lowest coefficient of variation were selected from each group to 

obtain the correlation (Kustas et al., 2003). 

2.3.2 DisTrad modification 

The study area may be classified as a mixed landscape with various distinct land cover types 

(dense vegetation, medium-dense vegetation, low-density vegetation, bare soil, urban areas, 

and water). The DisTrad approach is based on the correlation between the LST and NDVI. The 

original approach uses a second-order polynomial regression, assuming a non-linear 

relationship between the two variables. However, in certain cases, outliers at the edges of the 

value range may strongly affect the second-order polynomial. To circumvent this issue, we 

tested whether a linear regression would improve the robustness of the regression equation. 

Furthermore, the original DisTrad technique recommends using 25% of the aggregated pixels 

with the lowest coefficients of variation for parameterising the regression equation. 

Nonetheless, in the case of a heterogonous area (e.g., due to small agricultural fields relative to 

the coarse pixel size), where the CV of the original NDVI values within most of the coarse-

resolution pixels is relatively high, we tested the effect of using only 10% of the aggregated 

pixels with the lowest coefficients of variation in defining the parameters of the regression 

equation. 

2.4 Evapotranspiration estimation 

Evapotranspiration (ETa) is a significant water loss process in arid and semi-arid regions. 

Measuring ETa through earth observation requires high spatial resolution input data, which is 

unavailable for Land Surface Temperature (LST). This necessitates downscaling low-

resolution data like MODIS. A dataset of 67 MODIS and 7 Landsat images from December to 

March 2017/2018 was collected, registered, and projected. The Surface Energy Balance System 

(SEBS) model, using Landsat-8 and Sentinel-2 remote sensing data, was employed to map 

wheat ETa. Meteorological data like wind speed and air temperature were sourced from the 

Meteorological Bureau of New Halfa. SEBS combines remote sensing and meteorological data 

to calculate net radiation, soil heat flux, and sensible heat flux. Applying the energy balance 



equation, instantaneous ET is computed during satellite passes. Daily ETa is derived assuming 

a constant evaporation fraction. When satellite images are unavailable, the Penman-Monteith 

method is used for ET calculation. Calculation details are available in Su (2002). 

2.6 Irrigation performance 

In this study, two irrigation performance indicators were used to assess the irrigation 

performance in the New Halfa scheme. 

2.6.1 Classical irrigation efficiency 

This concept was used to assess the irrigation system performance, as shown in Equation (2). 

 
𝐸𝑖 =

𝐸𝑇𝑖

𝑊𝑔 − 𝑃𝑒
 

 

(2) 

 

Where 𝐸𝑇𝑖 is the water that was used by E and T, 𝑊𝑔 is the gross supply which represents the 

water delivered by the canals, and 𝑃𝑒 is the effective precipitation or precipitation that decreases 

the quantity of irrigation water required. Since the value of the effective precipitation during 

the winter season is approximately zero, that means the equation will be as Equation (3). 

 
𝐸𝑖 =

𝐸𝑇𝑖

𝑊𝑔
 

 

(3) 

 

3.6.2 Water productivity 

Water productivity has been proposed as a metric for analysing water consumption and 

evaluating irrigation efficacy. WP (grain yield per unit of actual ET) was calculated in this 

study using Molden's indicator (Molden, 1997), Equation (4). 

 
WP =

𝑌

𝐸𝑇𝑐𝑠
 

 

(4) 

 

Where WP is water productivity, Y is the wheat seasonal crop yield in 𝑘𝑔 ℎ𝑎−1 and 𝐸𝑇𝑐𝑠 is 

actual seasonal evapotranspiration for wheat crop in  𝑚3 ℎ𝑎−1. 



2.7 Scheduling irrigation for wheat crop 

2.7.1 Crop water stress 

For scheduling irrigation, the crop water stress index has been used as an indicator for the crop 

water status, which has a key role in applying the irrigation events. The evapotranspiration has 

been used to estimate the Crop Water Stress Index (CWSI), where we can define the CWSI as 

the ratio between actual and potential evapotranspiration. A crop with adequate water supply 

will transpire at the same rate as the potential evapotranspiration. When the water becomes 

limited, the actual evapotranspiration will fall below the potential evapotranspiration. This ratio 

ranges from 0 to 1, where 0 means no stress, and 1 is a high rate of water stress. 

Several writers have hypothesized that stomatal closure is caused by a lack of soil water and a 

high evaporative demand. This is based on the idea that high evaporative demand necessitates 

a high rate of water intake and transport, resulting in a larger energy loss between the water in 

the soil and the stomates. Because evaporative demand varies diurnally and from day to day, 

methods for estimating evapotranspiration on a daily basis with high accuracy are required. 

The SEBS model was used to calculate the daily actual evapotranspiration. The potential 

evapotranspiration was calculated by multiplying 𝐸𝑇0 and the crop coefficient 𝑘𝑐 

                                                     

 

𝐸𝑇𝑐 = 𝑘𝑐 × 𝐸𝑇0                                                         (5) 

 

Finally, the CWSI can be calculated as equation (6). 

 
CWSI = 1 −

𝐸𝑇𝑎

𝐸𝑇𝑐
 

                                       (6) 

The CWSI of the wheat crop for the growing season 2017-2018 was calculated in three 

different sites of the scheme for all the available days. 

 

 

 

 

 



3. RESULTS AND DISCUSSION 

3.1.1 Relationship between land surface temperature and the vegetation cover  

The DisTrad method recommended the use of 25% of the aggregated pixels with the lowest coefficient 

of variation for defining the regression equation. However, for heterogeneous areas like small fields, 

this can yield a low coefficient of determination due to mixed pixels. To address this, 10% of the lowest 

coefficient of variation pixels were used for correlation. To test this approach, NDVI-LST correlation 

was analysed at 1 km resolution with 10% and 25% of the data. Results indicate a higher correlation 

(R2) using 10% (0.80) compared to 25% (0.75) of the lowest coefficient of variation data, as shown in 

(Figure 3). 

 

(a)                                                                     (b) 

Figure 3. (a), (b) correlation between the NDVI and LST for 25% and 10% methods, respectively. 

2.1.2 Effects of LST downscaling on the Landsat 8 image  

Figure 4. shows the correlation between the LSTnative (x axis) and LST 10% and LST 25% (y 

axis) of the linear regression. The coefficient of determination (R2) is 0.72 and 0.74, 

respectively, while it was 0.61 for the polynomial regression.  This result indicates that using 

linear regression for the downscaling process gives better results than the polynomial 

regression since the polynomial regression with 25% of the pixels results in several extreme 

values. The same result was observed by Agam, Kustas, Anderson, Li, & Neale (2007). This 

is due to the increasing degree of subpixel variability. Based on this statistical analysis, the 

proposed modification yields superior results. 



 

Figure 4. (a), (b), (c) scatter plots between native LST compared to LST10% (linear), LST 25% 

(linear) and LST 25% (polynomial), respectively 

 

3.1.3 Effects of LST downscaling on ETa estimation 

The Surface Energy Balance System utilized the downscaled land surface temperature to 

estimate the actual evapotranspiration with high spatial resolution, as described in (section 3.4). 

Concerning the effect of downscaling the land surface temperature on the evapotranspiration 

estimation, we found that the downscaling using only 10% of the pixels results in a good 

correlation between the ETa calculated from the LSTnative and ETa calculated from LST10% 

and LST25%, due to the high degree of convergence between the results from these two 

methods and the native Land Surface Temperature. The coefficients of determination for the 

linear regression with 10% and 25% of the pixels were 84.5 and 84.1, respectively (Figure 15). 

This yielded a RMSE of 0.3 and 0.28 mm/day, respectively. The evapotranspiration maps 

produced using downscaled land surface temperature had a higher spatial resolution than those 

produced using native land surface temperature, as the details and boundaries of small fields 

are more accurate on these maps than on the maps produced using native land surface 

temperature, as shown in Figures 5. Bindhu, Narasimhan and Sudheer (2013) got RMSE in the 

similar range of 0.16 with TsHARP = 0.55 mm/day using the non-linear disaggregation 

approach (NL-DisTrad). 



 

Figure 1. (a) and (b) scatter plots for the correlation between ETa (LST native) and ETa (LST10%), 

(LST25%), respectively. 

 

3.2 A combination of different optical data for downscaling 

The poor temporal resolution of the Landsat 8 images limits their use in estimating daily 

evapotranspiration for water management. This poor temporal resolution prevents the use of 

the Normalized Difference Vegetation Index produced by Landsat 8 for the daily LST 

downscaling process. Cloud distortion can be another limiting factor that affects the Landsat 

images' usability for evapotranspiration estimation.  

To fill the gap left by the Landsat images, images of Sentinel-2 with a higher spatial and 

temporal resolution were used (spatial resolution is 10-20 m, and the temporal resolution is at 

least 5 days). In this study, 6 images from Sentinel-2 were processed. We tested the correlation 

between the NDVI generated by the two sensors, as shown in Figures 18 and 19. The goal of 

this test was to check whether the Landsat 8 and Sentinel-2 images could be integrated into a 

consistent time series of NDVI maps with 30 m field resolution for the LST downscaling 

procedure. 



 

Figure 2. Scatter plot for the correlation between Landsat-8 (17.12.2018) NDVI and Sentinel-2A 

(21.12.2018). 

3.3 Evapotranspiration time series estimation and validation 

Fifty-five downscaled land surface temperature maps were used to estimate the actual 

evapotranspiration of the wheat crops from December 2, 2017, to March 9, 2018. Eight pixels 

from eight fields were chosen, and the mean calculated for these pixels was compared to 

potential evapotranspiration. Figure 7 shows the daily evapotranspiration (mm day-1) 

calculated using SEBS, ranging from 1.5 mm d-1 at the start of the season to 5.8 mm d-1 in the 

mid-season and 1.3 mm day-1 at the end of the season. 

The result was compared to the potential evapotranspiration ETp estimated from the reference 

evapotranspiration based on meteorological parameters and the crop coefficient, as illustrated 

in Figure 7. However, as shown in Figure 7, there was a strong correlation between the two 



products, with R2 = 76. Figure 7, on the other hand, depicts realistic trends in the accuracy of 

ETa generated from SEBS. Figure 7.  

 

Figure 3. ETa and ETp curves for the winter season 2017-2018 ARC site.  

During the wheat growing season, the study shows continuously changing patterns in ETa. ETa 

gradually increases from the beginning of the season, peaking in the middle, and then decreases 

as the season progresses until crop maturity. The seasonal ETa for wheat in the New Halfa 

scheme was calculated by integrating daily ETa images from December 1st to March 9th, 

amounting to around 350 mm. 

Limitations of point measurement methods for regional ETa calculations are highlighted, 

including their inability to account for dynamic vegetation changes, crop density, and crop 

stress due to water scarcity. The absence of field data in the New Halfa Scheme prevented 

qualitative validation of the results. However, a quantitative analysis was performed by 

comparing SEBS-calculated ETa with ETp (potential evapotranspiration) obtained from 

meteorological data. Figure 7 shows good agreement between SEBS and measured ETp 

patterns, even considering the influence of water stress. Additionally, the study's results were 

compared with those of other researchers in similar areas, showing agreement between the 

findings. 

4.6 Water application efficiency 

Water Application Efficiency (WAE) is a metric that quantifies the effectiveness of irrigation 

by measuring the ratio of delivered water to the farm compared to the water actually utilized 

through transpiration, evaporation, or a combination of both within the soil's root zone. In the 

context of the study, WAE was calculated using SEBS-estimated ETa (evapotranspiration) data 
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that was converted to volume. The water delivered to canals was measured in the field, marking 

the first attempt to spatially analyze water application efficiency in Sudan's New Halfa Scheme. 

The study period was from December 2nd to February 11th, 2018, with calculations made every 

ten days to represent the interval between irrigation events, which were scheduled according 

to Table 1. 

Table 1. Water application efficiency (WAE) 01.12.2017- 11-02-2018. 

Irrigation events ETa volume m3 Water delivered m3 WAE 

10-12-2017 37548.8 63850 

 
59% 

20-12-2017 36962.12 
 

63900 
 

58% 

30-12-2017 24713.86 
 

61975 
 

40% 

10-01-2018 40631.37 

 

66675 

 
60% 

20-01-2018 31610.862 
 

51400 
 

61% 

31-01-2018 54217.62 
 

68505 
 

79% 

11-02-2018 36483.72 59800 
 

61% 

 

Table 1 presents the average values of WAE. Notably, the study found that the calculated WAE 

was significantly lower than the recommended surface irrigation standard of 75%. Several 

factors were identified as contributing to this low WAE: 

Parasitic Weeds: The prevalence of parasitic weeds in the irrigation system of the New Halfa 

Scheme negatively impacted water distribution within the branch channels and fields. 

Uncontrolled Silting Removal: The removal of sediment (silting) in the channels was carried 

out in an unregulated manner. This led to increased channel depths, hindering efficient water 

distribution. The gravity-driven flow of water in these channels resulted in surface runoff at the 

scheme's end. 



Inadequate Water Management: The water management approach in the scheme relied on 

estimating evapotranspiration from a single point measurement, which was then used to 

represent the entire project. Additionally, irrigation operations followed a fixed schedule 

without considering plant conditions or prevailing climatic factors. 

In summary, the study revealed that the New Halfa Scheme's WAE was much lower than the 

desired standard due to issues such as parasitic weeds affecting water flow, uncontrolled silting 

removal altering channel depths, and an inadequate water management strategy that 

disregarded plant status and climate variations. 

4.8 Crop water stress  

In arid and semi-arid conditions, accurately quantifying crop evapotranspiration is crucial for 

effective irrigation scheduling. This helps in managing crop water stress and optimizing water 

productivity. A stress coefficient is commonly employed to evaluate the impact of soil water 

shortage on crop evapotranspiration. Estimating actual evapotranspiration (ETa) is pivotal in 

achieving desired crop water use targets and maintaining soil water levels that prevent stress 

and support satisfactory yields. 

While certain plant-based indicators like leaf water potential, stomatal resistance, or canopy 

temperature can be used to monitor the existing levels of plant stress, approximating ETa 

remains essential. This approximation allows irrigation regulation to stay within optimal ranges 

that minimize water consumption without subjecting the plants to excessive stress and 

subsequent yield losses. The Crop Water Stress Index (CWSI) is a tool to assess the reduction 

in ETa resulting from water stress. 

The CWSI is estimated as the ratio between the actual and potential evapotranspiration. The 

actual ET was calculated using the SEBS model, which means it is under the normal condition 

of the field, while the potential ET was estimated using the Penman-Monteith equation 

multiplied by the crop coefficient with the assumption that the plant is under standard 

conditions where there is no water stress. The value of the CWSI ranges from 0 to 1, where 0 

means that there is no stress and 1 means that the stress reaches the highest value. The growing 

season has been divided into three phases: initial and development stage, mid-season, and late 

season, as shown in Figures 8, 9, and 10. 



 

Figure 4. Crop water stress maps for the available dates December 2017 site (A). 



 

Figure 9. Crop water stress maps for the available dates February 2018 site (A). 

 



 

 

Figure 10. Crop water stress maps for the available dates March 2018 site (A). 

Based on the results of monitoring crop water stress, we can indicate that CWS maps can 

provide valuable information about the health and productivity of crops. The results show that 

crop water stress maps can estimate the difference between fields; this suggests that the maps 

can be a useful tool for farmers and agronomists to manage their crops more effectively. 

By identifying areas of high and low water stress, farmers can adjust irrigation schedules or 

other management practices to optimize crop growth and yield. They can irrigate more 

frequently in areas with high water stress and reduce irrigation in areas with low water stress 

to avoid overwatering and wasting resources. 

In conclusion, the ability to estimate differences in crop water stress between fields through 

maps is a valuable tool for improving crop management and productivity. By monitoring water 

stress, farmers and agronomists can make informed decisions regarding irrigation and other 

management practices, leading to more efficient resource utilization and improved crop yields. 

 

 

 



5. CONCLUSIONS AND RECOMMENDATIONS 

In this research, a remote sensing-based method was developed to support improving irrigation 

efficiency under in situ data scarcity conditions. To reach this goal, the following steps were 

developed:  

1. For creating a time series of land surface temperature data with high spatial (30 m) and 

high temporal (1 day) resolution, the LST downscaling process DisTrad was re-

parameterised. The study area has a variety of land cover types. These types include 

dense vegetation, medium vegetation, low vegetation, bare soil, urban areas, and water. 

They are in a strongly mosaicked pattern. All the fields are off a small area; therefore, 

it is difficult to find areas corresponding to the original LST pixels of 1 km resolution 

with a homogeneous land cover. This loads the definition of the regression parameters 

between the NDVI and the LST with relatively high uncertainty. To decrease the 

number of course-resolution pixels with a strongly mixed land cover pattern, we 

suggested using a smaller number of pixels for the downscaling process in DisTrad. 

We also recommended to use of linear regression instead of a second-order polynomial 

since the linear regression is more robust at the edges of the value range. This method 

helps avoid the extreme values resulting from the second-order polynomial. The results 

proved that the proposed parameterisation improves the downscaling process in 

regions with complex land cover, similar to the study area. The coefficient of 

determination of the linear regression for the downscaled LST was R² = 0.74 using 

25% of the pixels and R2 = 0.72 and using 10% of the pixels in comparison to the R² 

= 0.61 of the polynomial regression. This demonstrates that the use of the modified 

parameters of the DisTrad method resulted in an improvement of the downscaling. 

2. The downscaled land surface temperature (LST) with reductions of 10% and 25%, 

characterized by the lowest coefficient of variation (CV), was employed within the 

Surface Energy Balance System to estimate actual evapotranspiration at a high spatial 

resolution. Utilizing downscaled LST resulted in root mean square errors (RMSE) of 

0.3 mm day-1 and 0.28 mm day-1 for the downscaling with 10% and 25% reductions 

in coarse resolution pixels, respectively. In comparison with previous studies ((Bindhu 

et al., 2013) and (Tan, Wu, & Yan, 2019)), it is evident that our methodology has 

significantly improved both the temporal and spatial resolution of evapotranspiration 

estimation. Notably, the coefficient of determination for both downscaling methods 

(10% and 25%) was nearly identical, registering at 84.5 and 84.1, respectively. 



3. The next step was to create a daily ETa map time series by combining data from 

different optical sensors. We can conclude that combining data from Landsat 8 and 

Sentinel 2 is possible due to the strong correlation. This way, a consistent daily ETa 

map time series can be created with high spatial and temporal resolution. Even if 

distortion occurs in the images of one of the sensors, the data of the other sensor can 

be used as an alternative data source. 

4. The crop water productivity in the New Halfa scheme was very low (0.69 kg.m-3) 

compared to the average world crop water productivity of 1.7 kg.m-3. This needs to be 

improved. The efficiency of the irrigation system performance was very low, 60%, 

compared to the average world irrigation efficiency of the surface irrigation systems 

(75%). 

5. The last step was to evaluate the wheat crop water status using the crop water stress 

index. Based on the results, we can conclude that the spatial distribution map of the 

crop water stress helps to plan the spatial and temporal distribution of irrigation, 

contributing to improved water management.   

     Finally, we may extrapolate from the indicated findings that these changes enhanced and 

provided dependable ETa maps for irrigation scheduling and agricultural planning. 

The final recommendation is that earth observation is an optimal method for analysing 

irrigation performance under data scarcity if the information about the water distribution is 

available, where it provides information about the water status in the field, which is considered 

a key point in water management. 

In conclusion, this thesis has sought to address critical questions within the scope of its defined 

parameters. However, it is imperative to acknowledge that our findings represent a snapshot of 

the ongoing pursuit of knowledge in this field. The complexity and multifaceted nature of the 

subject matter demand a sustained and rigorous commitment to further investigation. To this 

end, I recommend that future research endeavours focus on expanding the scope, employing 

larger sample sizes, employing more varied methodologies, and considering longitudinal 

approaches where applicable. Moreover, subsequent studies need to explore the nuanced 

intricacies that this thesis may have left unexamined due to its limitations, such as incorporating 

the management practices specific to the crops being cultivated. 



6. NEW SCIENTIFIC RESULTS 

1. I have improved the downscaling of coarse spatial resolution LST by modifying the 

DisTrad method to make it more robust and reliable for areas with complex land cover. 

The modifications include the application of linear regression combined with the 

reduction of the number of sampled pixels. 

2. I created a high spatial and temporal resolution daily actual evapotranspiration time 

series of the New Halfa irrigation scheme from the data of a single satellite to cover 

the cropping season. 

3. I demonstrated that the integration of data from different optical sensors for calculating 

actual evapotranspiration can result in a homogeneous dataset, which helps to fill gaps 

in the time series, most frequently caused by cloud cover. 

4. Based on the potential and the actual evapotranspiration data I defined the spatial and 

temporal distribution of water stress and calculated water efficiency in the New Halfa 

scheme for the 2017/2018 season. 

5. I proposed a new approach for optimizing the irrigation schedule in New halfa region 

by using the crop water stress as indicator for the water status in the field under 

condition of in situ data scarcity. 
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