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1 INTRODUCTION 

The context and goals of this PhD thesis are described in this chapter. 

1.1 Relevance and significance of the topic 

Air pollution is the primary cause of the decline in air and environmental quality in many places 

across the world nowadays, with negative consequences for people's health. According to the most 

recent World Health Organization (WHO) report, more than 91% of people in urban areas are 

exposed to air quality levels that exceed the emission limits for air pollution (World Health 

Organization, 2021). Carbon monoxide (CO), particulate matter (PM), nitrogen oxides (NOx), 

volatile organic compounds (VOCs), ozone (O3), and sulphur dioxide (SO2) are the primary 

atmospheric pollutants. The rapid industrialization and urbanization of developing countries have 

increased the number of pollutants emitted (Fu and Chen, 2017). Because of the strong relationship 

between air pollution exposure and increased harmful short- and long-term effects on human 

health, the scientific community, and public opinion are both concerned about the deterioration of 

air quality in urban environments (Masiol et al., 2014). Aside from the health dangers posed by 

gas and particle inhalation, urban air pollution causes other issues such as faster corrosion and 

deterioration of materials, damage to historical monuments and structures, and damage to plants 

in and around the city (Vlachokostas et al., 2011).  

Particulate matter (PM) is a broad word that refers to a mixture of solid particles and liquid droplets 

(aerosols) whose size and composition change depending on time and place. PM is composed of 

numerous constituents, including elemental or black carbon (BC) and organic carbon (OC) 

molecules, sulfate (SO4
-2), nitrate (NO3-), trace metals, soil particles, and sea salt. PM particles are 

defined based on their size variations. PM particles with a diameter that is less than or equal to 10 

µm are called coarse PMs (PM10), and PM with a diameter of less than or equal to 2.5 µm are fine 

PMs (PM2.5). PM can be directly emitted from anthropogenic or natural sources (i.e., primary 

PM), or formed in the atmosphere from chemical reactions of numerous gaseous (i.e., secondary 

PM) (Harrison, Hester and Querol, 2016). 

The research of PM pollution is crucial, in order to comprehend the causes and effects of this kind 

of air pollution and to create practical solutions for lowering exposure and enhancing public health. 

Researchers employ a range of techniques to evaluate PM pollution, including computer 

modelling, satellite data, and air quality monitoring stations. These techniques can offer details on 

the concentration and distribution of PM in various locations as well as the pollution's origins. 

Chemical analysis, for instance, may be used to determine the chemical composition of PM 

samples and link them to particular sources such industrial activities, wildfires, or vehicle 

emissions. 

This research, covers different aspects of the PM pollution, from the evaluation of low-cost PM 

sensors, the use of low-cost PM sensors in small scale experiments, the effect of dust storms on 

the PM concentrations in Hungary and how often they occur, and the estimation of the PM10 and 

PM2.5 concentrations based on Satellite, meteorological and in-situ measurements data.  

1.2 Objectives 

The primary goals of the present work are the following: 

1) Study the effects of a simple environment on PM concentration using PM low-cost sensors. 

2) Study the effects of the Saharan Dust storm on PM levels in Hungary and analyse the 

seasonality and frequency of recent Saharan dust events. 

3) Estimating PM concentrations using satellite, meteorological, and in-situ measurement 

data and machine learning methods over Hungary.  
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2 LITERATURE REVIEW  

2.1 Measurement of PM 

Many approaches have been employed to estimate, forecast, or measure PM concentrations. 

Ambient monitoring at stationary sites offers consistent concentration data that can frequently span 

decades. However, monitoring stations may be rare in regional regions due to cost and facility 

constraints. While Satellite remote sensing has been used successfully to estimate PM 

concentrations in many regions around the world to overcome the shortcoming of the geographical 

cover of fixed monitoring air quality stations. 

2.1.1 In Situ Measurements 

The determination of PM concentrations in ambient air is complicated and highly dependent on 

the approaches utilized. Mass concentration or particle number are two factors that may be 

determined as a function of particle size. In terms of measuring PM mass, filter-based devices can 

be employed to collect PM for later gravimetric or automatic determination. The first approach 

requires weighing the filters "offline," but the second method gives an indirect assessment of PM 

mass online. Automated analysers can be based on β-ray attenuation, a glass tapered tube's 

frequency of oscillation, or particle light scattering (nephelometer). The filter-based devices 

generate a sample that may be utilized for PM chemical analysis (Minguillón, Viana and Querol, 

2013). 

The filter-based gravimetric technique is the international technical standard for detecting particle 

mass concentrations. This approach is based on weighing the PM accumulated on a filter within a 

sampler. An analytical balance is used to weigh the filter before and after sampling. Weighing 

occurs after the filter has been kept under regulated humidity and temperature conditions for a 

certain amount of time. The difference between the two weighing represents the mass of PM 

collected, which is then divided by the volume of air passed through the filter to get the mass 

concentration of PM. Furthermore, field mass measurements can be performed using automated 

analysers. One of the most extensively used methods for assessing ambient PM concentrations is 

the analyser based on the β-ray attenuation concept. According to the Beer-Lambert relationship, 

β-radiation flowing through the filter sample is attenuated by the particle collected on the filter, 

and PM mass is proportional to the degree of attenuation. As a result, the difference in attenuation 

before and after the sample period offers an indirect estimate of PM mass concentration. These 

devices are intended to allow for a filter replacement every 24 hours, eliminating the need for daily 

service (Baron, Kulkarni and Willeke, 2011). 

In air quality monitoring stations, beta attenuation is commonly utilized (Liu et al., 2022). Cheng 

et al. (2016) studied the PM2.5 pollution status of 45 megacities throughout the world, and 28 of 

the 45 cities employ β-ray attenuation to assess particulate matter concentrations in the 

atmosphere. The β-ray attenuation technique offers a high measurement accuracy and a faster 

reaction time than the filter weighing method, often up to 1 hour, and it is widely employed in air 

quality monitoring stations in many countries (Liu et al., 2022). 

The European Union introduced ambient air quality directives to enhance air quality by evaluating 

the level of air pollutants in ambient air across Europe, as well as to safeguard the environment 

and human health. The PM10 limit values according to EU standards are as follows: a yearly 

average of 40 µg/m3, and a daily limit value of 50 µg/m3 may not be surpassed over than 35 days 

of the year. While for PM2.5 there is no daily limit concentration, and the yearly limit value is 25 

µg/m3 (Brunekreef and Maynard, 2008).  

In Europe, PM is still the most threatening air pollutant to human health, due to its serious effects 

on health (Guerreiro, Foltescu and de Leeuw, 2014). According to the latest report of Air quality 
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in Europe (European Environment Agency, 2022), Italy and numerous eastern European nations 

have exceeded the EU daily maximum threshold for PM10, and registering high PM2.5 

concentrations. Solid fuels like coal are commonly utilized for heating residences in most Central 

and Eastern European nations, as well as in certain industrial buildings and power plants. The Po 

Valley, located in northern Italy, is a heavily inhabited and industrialized area with unique climatic 

and geological circumstances that favour the buildup of air pollutants in the atmosphere. 

In Hungary, many cities suffer from high PM concentrations, and the most important factors 

influencing the PM concentrations in Hungary are local anthropogenic emissions like traffic and 

biomass burning, in addition to long range transport of particles from outside the country and the 

combination of the previous two factors with meteorological conditions (Ferenczi and Bozó, 2017; 

Perrone et al., 2018). The reports of air quality in Europe throughout the year show high 

concentrations of PM10 and PM2.5 especially in Northern and Central Hungary.  The latest report 

of Air quality in Europe (European Environment Agency, 2022), show high concentrations of 

PM10 in Northern Hungary (Miskolc, Nyíregyháza, Kazincbarcika and Sajószentpéter), in Central 

Hungary (Budapest and Dunaújváros), and in Southern Transdanubia region (Pécs), while for 

PM2.5 the report show that the concentrations are high in all Hungarian air quality stations that 

report measurements to the EU (Figure 2.1 and 2.2). Smog was observed in Hungary around the 

end of January 2017. Across the country, PM10 readings were over the limit. Extremely high 

concentrations were recorded in the eastern part of Hungary on January 31, 2017. During this time 

period, the peak one-hour average concentration was above 500 µg/m3 in the Sajó Valley, which 

is situated in northern Hungary (Ferenczi, Homolya and Bozó, 2020). 

 

Figure 2.1: Annual mean PM10 map concentrations in Hungary in 2021 (European Environment 

Agency., 2022) 
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Figure 2.2: Annual mean PM2.5 map concentrations in Hungary in 2021 (European Environment 

Agency., 2022) 

2.1.2 Low-cost PM sensors 

Low-cost sensors do have ability to significantly change how, where, and when air pollution is 

monitored. Until around 2010, routine measurements of particulate matter mass (PM) 

concentrations can only be undertaken by entities that could afford instruments in the tens of 

thousands of dollars, with entire station and staff expenses substantially an order of magnitude 

greater. Over the last decade, there have been significant changes in how air quality monitoring is 

conducted, who may undertake it, and the temporal and geographical dimensions on which we 

look regarding air quality in general. The advent of low-cost air quality sensors, notably low-cost 

PM monitors, has fuelled these shifts (Giordano et al., 2021). The major advantage of low-cost 

PM sensors is obvious from the name; these devices are affordable. Most PM low-cost sensor cost 

between $10 and $100 for a single sensor, while the accompanying electronics and packaging may 

raise the price to between $200 and $2000 - still a low fraction of the price of typical reference PM 

monitors (Giordano et al., 2021). Light-scattering is the operating principle of approximately all 

low-cost PM sensors available on the market.  Light scattering has a substantially lower form factor 

than most other particle counting/mass concentration measuring techniques. A low-cost PM sensor 

has only three essential components: a light emitting diode (usually infrared or red laser), a 

phototransistor, and a lens to concentrate the diode light. To pull air into the measuring cavity, a 

fan, pump, or convective heater might be utilized (Wang et al., 2015). The measuring concepts of 

low-cost PM sensors are straightforward: when particles pass through into the measuring cavity, 

the intensity of light of the infrared/red light entering the phototransistor is altered by the presence 

of particles. The strength of the fluctuation, i.e., the nephelometric response, is proportional to 

particle concentration (mass and number). The optics (diode, transistor, and lens) and shape of the 

measuring cell have a significant influence on the total nephelometric response of these devices. 

As a result, even if the measuring principles are the similar across low-cost PM sensors, different 
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types and models of low-cost sensors frequently behave fairly differently (Williams et al., 2015). 

One of the hallmarks of low-cost PM sensors is that they frequently assess scattering according to 

a particle population rather than individual particle scattering. This group measurement mitigates 

some of the disadvantages of monitoring individual particles via light scattering. The low-pulse 

occupancy approach is used in many low-cost sensors: the phototransistor outputs either a high 

voltage (when the light channel is clean) or a low voltage (when the light path includes particles) 

in a modulating pulse (Giordano et al., 2021). 

Some of the low-cost PM sensors have already been tested in the outdoors and in laboratories. 

These experiments demonstrated that these PM sensors have a lot of potential (Kelly et al., 2017). 

Wang et al. (2015) conducted controlled laboratory investigations on three low-cost sensors and 

discovered that their PM measures corresponded linearly (R2 = 0.89) with research-grade devices. 

Austin et al. (2015) conducted laboratory tests and discovered a linear correlation (R2 = 0.66-0.99) 

between the low-cost PM sensors used and a research-grade device. Aerosol particle sizer over a 

concentration range of 1-50 µg/m3, though the slope of the linear relationship varied by more than 

a factor of 10 depending on particle diameter. In a 4-day investigation, Gao, Cao and Seto, (2015) 

examined the responsiveness of low-cost PM sensor in a polluted region of China where 

concentration of PM2.5 in 24h period ranged between 330-413 µg/m3, and observed correlations 

to compile research-grade instruments (R2 = 0.86-0.89) and gravimetric measurements (R2 = 0.53).  

Holstius et al. (2014) examined the performance of low-cost PM sensors to 1h and 24h PM2.5 

data out of a class III US EPA Federal Equivalent Method, measured by PM2.5 β-attenuation 

monitor in continuous operation at an Oakland, California regulatory monitoring site. They 

discovered strong correlation that explained 60% of the variation in 1 hour reference PM2.5 data 

and 72% of the variance in 24-hour data. Liu et al. (2020) also investigated the influence of 

temperature and relative humidity on sensor performance, the responses of PM2.5 sensors to 

different kinds of aerosols, and long-term stability at four locations in Australia and China. For 

PM2.5 readings, the PM2.5 sensors had good inter-correlations (r > 0.91). The performance of the 

PM2.5 sensors varied depending on location, with moderate to strong correlations with reference 

equipment (R2 was between 0.44 and 0.91). With 75% relative humidity and high temperatures, 

sensors operated admirably. The PM2.5 sensor was more sensitive to mixed urban background 

pollutants, aged traffic emissions, and industrial emissions than to sea aerosols and fresh vehicle 

emissions. The PM2.5 sensors have decent long-term stability. Malings et al. (2020) tested two 

low-cost PM2.5 sensors over a lengthy period of time. In the short term, they discovered that both 

sensors produced relatively precise concentration measurements with a mean absolute error of 

approximately 4 µg/m3 in near-real time. The yearly average error was decreased to less than 1 

µg/m3 for the long-term scenario, which was evaluated through year-long collocations at one urban 

background and one near-source site. The conclusion was that low-cost PM2.5 sensors may be 

used to complement scarce networks of regulatory-grade devices, undertake high-density nearby 

monitoring, and help researchers better comprehend spatial variation and temporal air quality 

changes in urban areas. In addition, Báthory et al. (2019) evaluated a low-cost dust sensor 

(Plantower PMS7003) implemented in stationary and mobile PM measurements devices in 

Miskolc Hungary. The results were that the mobile device may tour a region and find the areas 

with the highest concentrations. Also, Báthory et al. (2022) tested the performance of a low-cost 

sensor (Plantower PMS7003) calibrated in a controlled climatic chamber against a conventional 

reference aerosol monitor. The study's findings showed remarkable unit-to-unit consistency; 

nevertheless, each sensor had to be calibrated separately because their features differed 

significantly. According to the findings of a 15-month field test, quantitative and indicative low-

cost sensor performance seemed promising: overall indicative accuracy was roughly 73-75% with 

comparable precision and recall, and it is recommended that the low-cost sensor be cleaned after 

6-8 months of operation. 
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While low-cost PM sensors are becoming more popular due to their price and accessibility, they 

have significant limitations that must be considered when interpreting their data and making 

informed judgments about air quality (Raysoni et al., 2023). One of the most noticeable drawbacks 

is their lower accuracy and precision than reference-grade devices, which frequently provide 

approximate results that can be altered by factors such as sensor calibration, sensor degradation, 

and cross-sensitivity to diverse environmental conditions (Raysoni et al., 2023). Regular sensor 

calibration is necessary, but it can be complicated and time-consuming, and the quality of 

calibration standards might vary, reducing the trustworthiness of the sensor's data. These sensors 

can also drift over time, resulting in less accurate results and the need for regular recalibration or 

maintenance (Karagulian et al., 2015). Furthermore, many low-cost sensors have a restricted 

measuring range, making them inappropriate for extraordinarily high or low particulate matter 

concentrations. They are susceptible to environmental conditions, including temperature, 

humidity, and altitude, which can affect their readings and require compensation or correction to 

maintain accuracy (Alfano et al., 2020). Furthermore, unlike reference devices that can measure 

numerous particle sizes and provide more precise information about air quality, many of these 

sensors report only a single PM value, often PM2.5 or PM10, without discriminating between 

different particle sizes (Giordano et al., 2021). They may also lack the ability to distinguish 

between different types of particles, reporting high PM readings when other particles in the air, 

such as dust or pollen, are present (Oluwadairo et al., 2022). Because low-cost sensors are not 

subject to the same stringent quality control and performance standards as regulatory-grade 

devices employed by government organisations, sensor quality and dependability can vary 

significantly between manufacturers and models (Liu et al., 2020). Proper data validation and 

comparison to reference instruments are required to ensure accuracy, but without these steps, 

questions about the measurement's dependability may develop (Alfano et al., 2020). Furthermore, 

low-cost sensors may have a shorter operating lifespan than reference instruments, necessitating 

frequent replacement or maintenance increasing overall costs (Karagulian et al., 2015). Integrating 

their data into current air quality monitoring networks might be difficult because of their non-

standardized nature, making it impossible to compile comprehensive, standardised information for 

a region (Giordano et al., 2021). Finally, analysing data from low-cost sensors can be complex for 

the general public because it frequently necessitates a grasp of the technology's limits and potential 

biases (Sayahi, Butterfield and Kelly, 2019). Despite these limitations, low-cost PM sensors can 

still be valuable tools for raising awareness about air quality, conducting community-based 

monitoring, and identifying air quality trends and pollution hotspots when used with caution, 

alongside reference-grade instruments, and with the understanding that their results should be 

regarded as indicative rather than definitive measurements of air quality. 

2.1.3 Ambient PM pollution 

Ambient PM, or outdoor PM pollution, can come from a variety of sources, including natural and 

anthropogenic sources. Some common sources of ambient PM particles include: 

• Transportation: Automobiles are a significant generator of ambient PM, particularly in 

cities. PM particles such as soot, carbon monoxide, and nitrogen oxides can be found in 

exhaust emissions from vehicles, trucks, and buses. 

• Residential Heating and Cooking: covers the use of wood, coal, and gas for cooking or 

heating. Central European region is typical example of household PM pollution due to the 

use of wood and coal for domestic heating. 

• Agricultural activities: Farming and livestock production can produce PM particles such 

as dust from plowing and harvesting, as well as ammonia from animal waste. 

• Natural sources of PM: include sea salt, wind-blown dust (Saharan dust), wildfires, and 

volcanic eruptions. 
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• Industries: Significant sources of PM emissions include manufacturing, mining, and 

construction as well as the burning of fossil fuels for energy generation. 

• Secondary PM particles: secondary PM particles are produced as a result of chemical 

reactions in the atmosphere. Secondary aerosols are created when major PM precursors 

(such as sulfur dioxide, nitrogen oxides, and volatile organic compounds) mix with other 

atmospheric components (such as water vapor, oxygen, and sunlight) to form secondary 

aerosols. 

Ammonium sulfate, ammonium nitrate, organic aerosols, and secondary organic aerosols are 

examples of secondary PM particles. The reactions of sulfur dioxide and nitrogen oxides with 

ammonia produce ammonium sulfate and ammonium nitrate, whereas organic aerosols and 

secondary organic aerosols are produced by the oxidation of organic molecules (Seinfeld and 

Pandis, 2016). 

In an extensive study Thunis et al. (2018) evaluated 150 urban regions in Europe to determine 

source allocation of PM2.5 using SHERPA modelling tool which is designed to investigate 

prospective air quality improvements as a result of national/regional/local emission reduction 

measures. The results were the followings: 

• The residential sector contributes 13% on average. All of the major contributions were 

found in Poland, with the maximal values in Warsaw (48%), Krakow (40%), Katowice 

(40%), Lodz (33%), and Poznan (33%). Generally, the impact of household heating is 

greater in eastern European countries (particularly Poland) and in some Italian cities. 

• Traffic contributes 14% on average. 39%, 30%, 29%, 27%, and 27%, were the highest 

contributions values found in Madrid, Luxembourg, Paris, Verona, and Bologna 

respectively. As predicted, transportation emissions play a significant role in several of the 

world's major cities (Paris, Madrid, London). They do, however, play an important role in 

heavily populated countries such as Belgium and the Netherlands. 

• Agriculture contributes an average of 23%. Dresden (40%), Braunschweig-Salzgitter-

Wolfsburg (39%), Usti nad Labem (38%), Plzen (37%), and Leipzig (36%), are the cities 

with the highest contributions. Agricultural activity and associated emissions are not often 

conducted within urban limits, while certain agricultural regions may exist within larger 

metropolitan areas. Yet, the sector contributes significantly to PM2.5 concentrations 

(secondary pollution) in several EU cities, particularly in central Europe. 

• Industry contributes 20% on average. Mannheim-Ludwigshafen (47%), Bilbao (46%), 

Linz (44%), Marseille (41%), and Brescia (37%) have the highest donations. Industry is 

important in several Eastern nations (Bulgaria, Romania, and Greece), as well as the west 

side of Germany. It is less important in southern Europe, despite being a major contributor 

in places such as Marseille and Turin. 

• Natural sources account for an average of 19%. PM2.5 concentration maxima in 

Mediterranean cities are linked to Saharan dust event occurrences. Valletta (46%), 

Limassol (43%), Palma de Mallorca (40%), Nicosia (39%), and Alicante (36%), have the 

highest contributions. 

Moreover, indoor PM pollution can also contribute to outdoor PM pollution, cooking and heating 

with biomass fuels also contribute significantly to outdoor air pollution, with an estimated 10% of 

ambient PM2.5 (Diette et al., 2012). Household sources can account for substantial amount of PM 

emission to ambient atmosphere. Small-scale wood burning, which occurs mostly throughout 

Europe, Africa, and Asia, is responsible for a significant amount of PM in the atmosphere (Butt et 

al., 2016). Almost 20% of the total mass of PM2.5 is produced worldwide as a result of residential 

fuel burning. For Central and Eastern Europe, North-western Europe, Western Europe, and South-
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western Europe, the corresponding percentage contributions are 32%, 22%, 15%, and 12%, 

respectively (Karagulian et al., 2015). 

Ambient PM pollution, has been related to a variety of acute and chronic health impacts. Because 

of its capacity to penetrate deep into the lungs and even reach the bloodstream, PM2.5 has been 

identified as a key contributor to these effects.  

Because of their high penetrability, PM particles can move through the respiratory system from 

the nose passages to the alveoli deep within the lungs. Particles with diameters of 5 to 10 µm are 

most often deposited in the tracheobronchial tree, whereas those with diameters of 1 to 5 µm 

typically deposited in the respiratory bronchioles and alveoli, where gas exchange occurs (Löndahl 

et al., 2006) (Figure 2.3). These particles can interfere with gas exchange in the lungs and possibly 

infiltrate the lung. These particles will eventually enter the bloodstream and create serious health 

concerns. Particles smaller than 1 µm act similarly to gas molecules and, as a result, will enter the 

alveoli and can translocate deeper into the cell tissue and/or circulatory system (Valavanidis, 

Fiotakis and Vlachogianni, 2008). 

 

Figure 2.3: Possibility of particle deposition in a variety of sizes (Kim, Kabir and Kabir, 2015) 

Furthermore, experts believe that exposure to high PM concentrations may cause a variety of 

symptoms, including low birth weight in newborns, pre-term births, and perhaps infant fatalities 

(Fong et al., 2019). Minor side effects of breathing PM2.5 include shortness of breath, chest 

discomfort and soreness, and coughing and wheezing (Guaita et al., 2011). When kids are 

subjected to excessive levels of PM2.5 (for instance 65 µg/m3 for a day), they are at a considerably 

increased danger for respiratory symptoms, the use of asthma medications, and impaired lung 

function (Guaita et al., 2011). According to Sofer et al. (2013), individuals exposed to high PM10 

levels (higher than 150 µg/m3) had a 3 to 6% deterioration in lung function as determined by 

maximal expiratory flow.  Tecer et al. (2008) observed an 18% increase in asthma patient 

admissions with a 10 µg/m3 increase in PM10 during the same day's admissions. Panel research in 

Los Angeles reported that a 10 µg/m3 rise in PM2.5 was related with an increase in carotid intima-

media thickness, an ultrasonic marker of atheroma, in 798 individuals in two clinical trials (Künzli 

et al., 2005) 

Exposure to PM2.5 for a few hours to a few weeks can cause cardiovascular disease-related 

mortality and nonfatal events; repeated exposure raises the risk for cardiovascular mortality to 
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even larger extent than exposure for a few days and reduces life expectancy in more highly exposed 

segments of the population by several months to a few years; and declines in PM levels are 

associated with reduces in cardiovascular mortality within as little as a few weeks. The overall 

evidence supports a causal connection among PM2.5 exposure and cardiovascular disease and 

death (Brook et al., 2010). PM is thought to be responsible for around 3% of cardiopulmonary and 

5% of lung cancer deaths worldwide (Fang et al., 2013). Exposure to PM2.5 is expected to lower 

the population's life expectancy by around 8.6 months on average (Krewski, 2009). Based on data 

sets gathered from 545 counties in the United States from 2000 to 2007, Correia et al. (2013) 

proposed a probable relationship between fine particulate matter decrease and enhanced life 

expectancy. According to study findings, a reduction of 10 µg/m3 of PM2.5 ought to have resulted 

in an improvement in life expectancy of 0.35 years in average. In a recent review study by Chen 

et al. (2022), they showed other aspects of the health effects of PM. They emphasise that Exposure 

to PM leads to disorders in multiple organ systems, including the lungs, heart, liver, and kidneys, 

as well as oxidative stress and inflammation, which are common mechanisms involved in the 

adverse health effects of PM exposure. Shi et al. (2023) concluded that exposure to PM 

concentrations, even at concentrations below the air quality threshold in the EU, was associated 

with the incidence and Mortality of pulmonary hypertension and that the probability of the 

transition from pulmonary hypertension to death increased due to exposure of various ambient air 

pollutants including PM10 and PM2.5. Also, being exposed to PM2.5 can have effects on the 

dietary intake. Sundram et al. (2022) showed that long hours of PM2.5 exposure affect personal 

dietary intake, potentially increasing the risk of metabolic syndromes and other undesired health 

conditions. The study conducted a 13-week follow-up involving two cohorts of outdoor and indoor 

workers. The results showed that outdoor workers exposed to high levels of PM2.5 had significant 

changes in appetite and increased calorie intake. Another aspect of the effects of PM pollutants on 

humans is the increased risk of obesity. In a meta-analysis of the global association between 

atmospheric PM and obesity, Lin et al. (2022) highlight that exposure to PM, particularly PM2.5, 

increases the risk of obesity, especially in Asian populations. Maternal exposure to PM2.5 is found 

to aggravate obesity in children. The study also indicates that minors are more susceptible to 

obesity with PM2.5 and PM10 exposure. Depending on the PM2.5 particle's chemical 

composition, it can trigger an inflammatory response in the body where this chronic inflammation 

has been linked to the development of obesity and insulin resistance. 

2.2 Saharan dust and PM 

Natural resource dust storms and wildfires may be significant sources of suspended dust. Globally, 

arid and semiarid regions are responsible for the majority of dust emissions. The dust belt (Figure 

2.4) consists of primary dust source regions that stretch from the west coast of North Africa, the 

Middle East, central and south Asia to China (Ashrafi et al., 2014). 

Sahara is the major and most active dust source in the world. The approximate emission ranges 

from 400 to 2200 Tg.yr−1, which represent 36% to 79% of world emissions (Huneeus et al., 2011). 

The Saharan dust contains natural mineral particles, that by interaction with anthropogenic 

pollutants can exacerbate secondary aerosol formation (Ashrafi et al., 2014). Mineral dust also 

contains elements like iron and phosphorous, which are important nutrients in both terrestrial and 

marine ecosystems. Mineral dust deposited in the ocean, for example, might impact primary 

productivity, which in turn can affect the atmosphere-ocean carbon cycle and, eventually, climate 

(Ravi et al., 2011; Jickells and Moore, 2015). There has long been an interest in the African dust. 

Darwin was on the Beagle when a violent dust storm hit the Cape Verde Islands in 1833, that he 

describes in is extensive measurements published in 1846 (Darwin, 1846), finishing with a 

comment that he has no doubt that the dust which fell in the Atlantic came from Africa.    
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Figure 2.4: Global Dust Potential source (Shepherd et al., 2016) 

Dust storms are atmospheric phenomena caused by the erosion and movement of mineral deposits 

from the earth. The process of erosion and transported dust from ground surface is divided into 

three stages: surface material entrainment or emission, atmospheric transport, and deposition. 

Particle entrainment occurs when the wind shear force applied on the surface (wind erosivity) 

surpasses the surface material's capacity to resist separation or transport (sediment or soil 

erodibility). Particle movement can be caused by wind transport via the processes of saltation, 

creep, and suspension (Figure 2.5). Particles with diameters greater than 500 microns will slide 

across the earth surface. Saltation occurs when wind moves particles ranging in size from 63 to 

500 microns at a height of less than 1.5 meters above ground level. Suspension is the longer-

distance movement of particles with diameters smaller than 63 microns. Sandblasting is the 

technique of bombarding soil aggregates with saltating particles, producing aggregate 

fragmentation and the release of tiny particles that are then entrained (European Commission. Joint 

Research Centre., 2018). 

 

Figure 2.5: Dust particle transport processes (European Commission. Joint Research Centre., 2018) 
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In the Saharan region multiple dynamical mechanisms from micro to synoptic scales drive dust 

emissions and transport. After sunrise, powerful near-surface winds associated with northeasterly 

dry harmattan flow carry large volumes of dust, which is aided by vertical mixing of the nocturnal 

low-level jet (LLJ) momentum down to the surface (Lothon et al., 2008). These winds meet the 

south-westerly moist West African Monsoon (WAM) flow near the surface at the intertropical 

discontinuity (ITD; Figure 2.6), which occurs over the Sahel from April to June (Lélé and Lamb, 

2010). Furthermore, during the summer, mesoscale convective systems (MCSs) traveling through 

the Sahel often produce cold pools that spread rapidly over long distances and lift massive 

quantities of dust (Roberts and Knippertz, 2012). Moreover, African easterly waves (AEWs) 

propagating along the African easterly jet (AEJ) within the 10–20˚N latitudinal band (with average 

intervals of 3–5 days, detected at 700–850 hPa) are also important dynamical actors in the Saharan 

area (Fink and Reiner, 2003). AEWs, in conjunction with extratropical disturbances, significantly 

lead to the formation of a global dust hotspot over eastern Mauritania and northern Mali, by both 

emission and transport organization. Dust is often uplifted over this region by cold pools formed 

by convection connected with southerly moisture advection within AEW troughs (Knippertz and 

Todd, 2010). Dust is transported across the hotspot in the upper sections of the deep Saharan 

boundary layer by northerlies instead of AEW troughs (Chaboureau et al., 2016). Over the 

summer, the ceiling of the boundary layer over the central Sahara can cross altitudes of up to 5–6 

km (Cuesta et al., 2020).  

 

Figure 2.6: Schematic of mechanisms (red arrows) that control the vertical distribution of dust near the 

intertropical discontinuity (ITD). Shading (yellow and light blue) indicates air mass origins (from the 

Saharan boundary layer or the Gulf of Guinea, respectively) and temperature (Cuesta et al., 2020) 

While atmospheric conditions help to initiate the Saharan dust storms, when large quantities of 

Saharan dust particles are suspended in the atmosphere, they can have a noticeable impact on the 

lower part of the troposphere, which is referred to as the Planetary Boundary Layer (PBL) (Figure 

2.7). The PBL is the layer of the Earth's atmosphere that is directly influenced by the Earth's 

surface, extending from the Earth's surface up to a few kilometres in altitude (Zhou et al., 2021). 

It plays a crucial role in meteorology and atmospheric science because it is where most of our 

weather occurs and where pollutants and particulate matter are dispersed and mixed. Dust particles 

in the atmosphere can alter the energy balance of the PBL. During the day, these particles can 

absorb solar radiation, leading to warming and potentially causing the PBL height (PBLH) to rise 

as warm air tends to be less dense and more buoyant. Conversely, dust can emit longwave radiation 
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at night, cooling the PBLH and potentially lowering its height (Fluck and Raveh-Rubin, 2023). 

Also, dust aerosols can alter the vertical temperature profile in the PBL, which, in turn, can affect 

atmospheric stability. Depending on the specific conditions and properties of the dust aerosols, 

this can lead to changes in the PBLH (Zhang et al., 2022). Moreover, Dust storms can influence 

the moisture content in the PBL by affecting local humidity levels. In some cases, moisture content 

changes can lead to shifts in the PBLH, especially in regions where moisture plays a significant 

role in atmospheric stability and convection (Francis et al., 2022). 

 

Figure 2.7: Planetary boundary layer illustration (Roland, 2018) 

Saharan dust is frequently transported from its source areas along three major transport paths: 

westward across the North Atlantic Ocean to North America and South America; northward across 

the Mediterranean to southern Europe and occasionally as far north as Scandinavia; and eastward 

across the eastern Mediterranean to the Middle East as shown in Figure 2.8 (Goudie and 

Middleton, 2001). 

 

Figure 2.8: Major transport routes of Saharan dust (Cruz et al., 2021) 
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2.2.1 Saharan dust transport to the Mediterranean, and European countries 

The hundreds of thousands of tons of Saharan dust moved north have an impact on a wide range 

of environmental systems around the Mediterranean Sea. Moreover, Saharan dust effect the air 

quality levels in European countries during dust storm event periods, often the heavy Saharan dust 

transport result in the exceedance of the European Union standards concentrations of PM10 and 

PM2.5 (Pey et al., 2013). Due to its geographical location, Spain suffers more from the Saharan 

Dust events. In his extensive study, Salvador et al. (2022) observed an increasing of the frequency 

and intensity of the Saharan dust events to the western Mediterranean in general. More in depth in 

other study, Salvador et al. (2019) analysed the pollution level in Madrid metropolitan area, and 

his results showed that intense Saharan dust occurrences raised the risk of daily death from PM10 

exposure, and reduced the mixing layer height over Madrid. 

The high PM concentrations during Saharan dust episodes was reported in many studies in the 

Mediterranean Basin and Western of Europe. Lyamani, Olmo and Alados-Arboledas (2005) 

highlighted that daily concentration of PM10 was 5 times higher during Saharan dust event days 

than in normal days in Spain. Concentrations of PM10 reached up to 250 µg/m3 in Spain (Querol 

et al., 2009), up to 470 µg/m3 in Cyprus (Achilleos et al., 2014), up to 156 µg/m3 in Athens, Greece 

(Remoundaki et al., 2011), up to 232 µg/m3 in Portugal (Gomes, Esteves and Rente, 2022), and 

up to 135 and 113 µg/m3 in Brixlegg Austria and Munich, Germany respectively (Bruckmann et 

al., 2008). 

In addition, The Moroccan Sahara and Atlas, as well as central Algeria, have been highlighted as 

key transit source areas for Western and southern Europe. These sources of transport have also 

been reported for the British Isles. A year of observation in Corsica, for instance, showed Twenty 

dust outbreaks from the following sources: Morocco/Western Algeria; eastern 

Algeria/Tunisia/Western Libya (Goudie and Middleton, 2001).  

Saharan dust was found also to be transported to the Central European region. In extensive research 

done by Varga, Kovács and Újvári (2013), showed that the Carpathian Basin was a subject of 130 

Saharan Dust episode from 1979 to 2011, with major period of dust transport occurred in the 

spring, with a subsequent maximum in the summer (in July and August), and dust events were also 

reasonably strong in February and October. Additionally, couple of source regions were identified 

such as Adrar and Tiris Zemmour region in Mauritania, Taoudénit in Mali, and Adrar and 

Tamanghasset in Algeria (Varga, Kovács and Újvári, 2013). 

2.2.2 Saharan dust transport across the Atlantic Ocean 

The transatlantic transport refers to the movement of Saharan dust westward over the Atlantic 

Ocean. This is the most extensive trajectory, accounting for 30-60% of total yearly Saharan dust, 

and it transports Saharan dust to the United States, South America, and Caribbean Islands (Touré, 

Konaré and Silué, 2012). The transport of the Saharan dust forms a layer of dry air and mineral 

dust that can have a thickness of about 3 km and its base starts from about 1.6 km above surface. 

This layer is referred as the Saharan Air Layer (SAL) (Luo and Han, 2021), and it can take place 

during early fall, late spring, and summer (Touré, Konaré and Silué, 2012).  

The discovery of Saharan dust in the Caribbean Sea was first revealed in two papers that 

demonstrated the presence of large quantity of Saharan dust in measurement field in Barbados that 

was in 1965-1966 (Delany et al., 1967; Parkin, Delany and Delany, 1967). After that, Prospero 

(1968), reported the first graph that describe the seasonal variability of the Saharan dust transport 

by combining data described in Delany et al. (1967) and data from Miami group, presenting 

evidence that would be later proof of the modulation impacts of climate on the dust transport after 

50 years, even that there is many elements of the relationship between climate and African Saharan 
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dust formation and transport that are unknown and still a topic of debate (Evan et al., 2016). Long-

term aerosol investigations undertaken in the eastern Caribbean during the last 20 years have 

supplemented Barbados research (Prospero et al., 2021). These investigations are being conducted 

in conjunction with research on aerosols, clouds, and precipitation in Puerto Rico (Valle-Di´az et 

al., 2016). Furthermore, air quality monitoring on Martinique, Guadeloupe, and French Guiana, 

all departments of France, show an increase in PM concentrations whenever Saharan dust is 

present in the region's atmosphere, highlighting that a significant amount of nutrients transported 

in Saharan dust, which include phosphorus, seem to be crucial for maintaining soil fertility with 

in Amazon Basin (Prospero et al., 2020). 

During high Saharan dust season in 2007, high values of PM10 concentrations were recorded in 

the Caribbean basin, it reached 149 µg/m3 in Martinique, 157 µg/m3 in Guadeloupe, and 197 µg/m3 

in Puerto-Rico (Plocoste et al., 2022). 

Thus, the Saharan dust transport to different regions around the world, affect the air quality by 

affecting the PM10 and PM2.5 concentrations. However, it also provides important nutrients for 

marine and soil ecosystems. 

2.2.3 Saharan dust transport across the eastern Mediterranean to the Middle East 

The transport of the Saharan dust eastward was estimated to be 70 million tons of Saharan dust 

per year (Ganor and Mamane, 1982), where one-third of this volume reaches the eastern 

Mediterranean regions, which is about 2000 km from the Saharan source. In his research Cao et 

al. (2015) specified different dominant paths of Saharan dust transport to the Middle-East.  There 

were three primary paths mentioned. The first path originates south of the Mediterranean Sea or 

the northern African coast and invariably strikes south of Syria or the Jordan-Saudi Arabia border. 

The second path is from north Africa, which normally goes via Egypt, north of the Red Sea, and 

blows southeast into Saudi Arabia. 

The third path is also seen in depressions in northern Africa. It does, however, generally move 

south of Saudi Arabia through Sudan or the Red Sea. When facing monsoon storms from the Indian 

subcontinent, this course will occasionally curve upward to the east of Saudi Arabia or possibly 

Iran over the Persian Gulf. In addition, PM10 and PM2.5 always skyrocketed during dust event. 

Hussein et al. (2020) reported high concentrations of PM10 during May 2018–March 2019 dust 

episodes in Amman, Jordan. The 24-hour PM10 concentrations during Dust outbreaks ranged from 

108 to 188 µg/m3, a level that was about 3-6 times greater than the mean levels during clean 

circumstances (approximately 33 µg/m3). In Kuwait also, in March – June 2021 dust event PM2.5 

increased by 26.62% (Meo et al., 2022). While in Ahvaz, Iran, for seven severe dust storms 

between 2009 and 2012, PM10 concentration was always high in a range between 137–553 µg/m3 

(Maleki et al., 2022). 

2.3 Estimating PM 

Estimating particulate matter concentration from satellite data is a complicated procedure that 

includes data pre-processing, atmospheric adjustment, and retrieval of particulate matter 

concentration. Throughout the last decade, several methods for estimating ground PM 

concentrations have been developed. Although the effectiveness of satellite-based PM estimation 

models has continued to improve, there are still some limitations, such as missing values in 

satellite-based variables and PM ground measurements, spatiotemporal scale issues, and an 

unbalanced distribution of PM concentrations (Shin et al., 2020). While satellite data gives vital 

information regarding particulate matter pollution, it does not provide a direct measurement of 

particulate matter concentration. Ground-based measurements are still required to confirm satellite 

data and offer more specific information regarding particulate matter pollution at the local level. 

Although, the density of current ground stations is restricted, and the majority of stations are 
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concentrated in metropolitan areas. Furthermore, regardless of how evenly or densely distributed 

they are, ground stations are point observations and hence fundamentally not continuous on the 

spatial domain. In contrary, satellite sensor systems have had the benefit of gathering data across 

wide areas on a frequent basis, thereby bypassing the spatial limits of ground measurements. 

2.3.1 Satellite Remote Sensing 

Remote sensing is the process of collecting information about objects or areas from a distance 

using sensors and other technologies. This technique allows scientists and researchers to gather 

data about the Earth's surface and atmosphere without physically being present. Remote sensing 

plays a crucial role in fields such as geography, geology, agriculture, meteorology, oceanography, 

and environmental management, as it provides a convenient and cost-effective way to acquire data 

about large areas in a short amount of time. By analysing this data, scientists can better understand 

patterns, trends, and changes in various parts of the world, and use this information to make 

informed decisions (Chapman and Gasparovic, 2022). 

The history of remote sensing dates back to the mid-19th century, when scientists first began using 

aerial photography to study the Earth's surface from above. This early form of remote sensing used 

balloons and kites to carry cameras and other equipment into the air to capture images of the 

ground. In the 1920s and 1930s, the development of aircrafts allowed for more extensive aerial 

surveys, and by the 1950s, the first satellite-based remote sensing systems were being developed 

(Laffly, 2020). One of the earliest examples of satellite-based remote sensing was the Soviet 

Union's Sputnik 1, which was launched into orbit in 1957. Although Sputnik 1 was not designed 

specifically for remote sensing, its data provided valuable information about the Earth's 

environment. In the following years, a number of other satellite missions were launched, including 

the United States' Landsat program, which was established in 1972 and is still active today (Laffly, 

2020). With the advent of digital technology, remote sensing has continued to evolve and improve. 

Today, remote sensing technology is used in a wide range of applications, including monitoring 

crop growth, detecting changes in land use and land cover, mapping natural disasters, and tracking 

the movements of wildlife, among others. The development of new sensors and advancements in 

computer processing power have also made it possible to process and analyse massive amounts of 

data in real-time, providing scientists with a wealth of information about the Earth's environment 

(Laffly, 2020). 

One of the unique aspects of remote sensing space is the placement of satellites or platforms in 

orbit around the Earth. These orbits obey complicated principles and are classified into three 

categories based on target application and whether the entire or a portion of the earth sphere is to 

be monitored: geostationary orbit, medium Earth orbit, and low Earth orbit (Figure 2.9). 



 

23 

 

 

Figure 2.9: Types of Satellite orbits (‘Types of Satellite Orbits - mjginfologs.com’, 2020) 

A geostationary orbit is one in which a satellite is located above the equator and seems to stay 

stationary in relation to a fixed point on the Earth's surface. This orbit is obtained by positioning a 

satellite at a height of roughly 36,000 kilometres above the Earth's surface and having an orbital 

period equal to the rotation period of the Earth. The satellite is always positioned above the same 

point on the Earth's surface in a geostationary orbit, allowing it to continuously monitor the same 

region. Geostationary orbits are therefore very valuable for applications like as weather 

forecasting, telecommunications, and remote sensing (Liang, Li and Wang, 2012). Geostationary 

satellites are launched into geostationary orbit by a rocket, which must launch the satellite with 

enough speed and direction to catch it into orbit. Once in geostationary orbit, the satellite is 

positioned with thrusters to stay stationary relative to the Earth's surface. Geostationary satellites 

have certain restrictions in addition to their stability and surveillance capabilities. Because they 

are so far away from the Earth's surface, their spatial resolution is weaker than that of satellites in 

lower orbits. Furthermore, because they are located above the equator, they have limited coverage 

of the Earth's poles, which limits their utility for some applications (Chapman and Gasparovic, 

2022). 

Satellites in the Medium Earth orbit are satellites that orbit at an intermediate height between Low 

Earth Orbit and Geostationary Orbit, between 10,000 to 20,000 kilometres above the Earth's 

surface. Medium Earth orbit satellites offer various benefits over low Earth orbit or geostationary 

orbit satellites. For example, because they are at a reasonable altitude, they provide a good mix of 

spatial resolution and global coverage, making them helpful for a variety of remote sensing 

applications (Lücking, Colombo and McInnes, 2012). Furthermore, because they are higher in 

altitude than low Earth orbit, they have a bigger field of vision and can cover larger regions of the 

Earth's surface in a single photograph. Navigation (e.g., GPS), earth observation, and 

telecommunications are some of the specialized applications of medium Earth orbit satellites. 

Medium Earth orbit satellites can also be used for environmental and climatic monitoring, as well 

as military surveillance and information collection (Löffler, Burgdorf and Klinkner, 2021). 

Nevertheless, medium Earth orbit spacecraft, have several drawbacks as compared to satellites in 

other orbits. For example, because they are higher in altitude than low Earth orbit, they have a 

longer orbital period, which means it takes them longer to return to the same location on the Earth's 

surface. Furthermore, because they are lower in altitude than geostationary orbit, they are exposed 
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to increased atmospheric drag, which can cause their orbits to degrade over time and necessitate 

more frequent orbit modifications (Kidder, 2015). 

Low Earth orbit refers to a range of altitudes between 160 and 2,000 kilometres above the Earth's 

surface. Low Earth orbit satellites are placed very close to the Earth's surface, allowing them to 

cover a small region of the Earth's surface in a single photograph with great spatial resolution. The 

great spatial resolution of Low Earth orbit satellites enables for comprehensive studies of the 

Earth's surface, which is one of their key advantages. As a result, they may be used for earth 

observation, remote sensing, and scientific study (Rossi, Petit and McKnight, 2020). Furthermore, 

because they operate at a lower height than higher-altitude satellites, they can see the Earth's 

surface more often, enabling for real-time monitoring of occurrences such as natural catastrophes 

and environmental changes. Earth observation, weather forecasting, and remote sensing are some 

of the specialized uses of low Earth orbit satellites. Low Earth orbit satellites may also be used for 

military reconnaissance and information collection, as well as tracking ship and aircraft 

whereabouts. However, compared to satellites in higher orbits, low Earth orbit spacecraft have 

several drawbacks. Because they are at a lower altitude, they have a restricted field of view and 

can only cover a tiny portion of the Earth's surface in a single photograph. Furthermore, because 

to their proximity to the Earth's surface, they are exposed to increased air drag, which might cause 

their orbits to deteriorate over time and necessitate more frequent orbit modifications 

(Montenbruck and Gill, 2000). 

The National Aeronautics and Space Administration (NASA) has launched several satellites for 

atmospheric observations, each with a unique set of instruments and capabilities (Figure 2.10). 

There are currently many satellites which products are committed to be accessible by NASA from 

public sites under a "free and open" data policy than ever before. NASA have a broad range of 

Earth observing data, with new information pertinent to understanding widespread changes in 

Earth conditions caused by warmer temperatures, global changes in precipitation patterns, 

continued conversion of earth resources to human uses, and invasive species and biodiversity loss, 

as well as a long list of natural disasters (hurricanes, wildfires, earthquakes, volcanic eruptions, 

tsunamis, floods, aerosols, etc.) (Ustin and Middleton, 2021). 

 

Figure 2.10: NASA’s active Earth science satellite missions in 2019 (Ustin and Middleton, 2021) 
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The amount of aerosol in the atmosphere, as measured by AOD, characterizes the degree to which 

solar radiation is dispersed and absorbed by particles (Shin et al., 2020). In other words, dust, 

smoke, and pollution in the atmosphere can block sunlight by absorbing or scattering light. AOD 

informs us of the amount of direct sunlight that these aerosol particles keep from reaching the 

ground. It is an arbitrary number with no dimensions that describes how much aerosol is present 

in the vertical column of atmosphere. A value of 0.01 indicates an environment that is 

exceptionally clean, while a value of 0.4 indicates an environment that is extremely hazy (Zhang 

et al., 2020). There are two basic methods for measuring the AOD of the atmosphere. One method 

is to employ ground sun photometers, while the other relies on sensors onboard satellite platforms. 

Ground-based AOD observations give real-time AOD data, which aids in the calibration of 

satellite-borne AOD devices and improves the prediction performance of remote sensing retrieval 

algorithms. The AERosol RObotic NETwork (AERONET) is a significant ground-based AOD 

monitoring network that has been operational for over 25 years and consists of over 500 locations 

throughout the world. This network effectively confirms satellite-based AOD retrievals, but its 

operation is costly and insufficient due to its limited spatial coverage, particularly in less populated 

regions (Wei et al., 2020). In contrast, satellite remote sensing can measure AOD with wide-area 

spatial coverage on a global or regional scale, including inaccessible areas. As a result, ground-

based AOD observations and satellite-derived AOD databases complement each other. Because 

of the availability of numerous Earth-observing satellite sensors, satellite-derived AOD products 

were accessible beginning in the 1980s (Wei et al., 2020). 

Technical improvements have enhanced AOD retrieval techniques for retrieving data from the 

many satellites and research equipment involved. Various papers (Mishchenko and Geogdzhayev, 

2007; Kim et al., 2014; de Leeuw et al., 2015; Luo et al., 2015) discuss the advantages and 

disadvantages of various retrieval algorithms. Satellite signals at the top of the atmosphere level 

are derived from reflected and scattered reflectance from the ground surface and atmospheric 

particles. The main difficulty in calculating AOD is distinguishing the contribution of surface 

scattering as well as atmospheric signals in the top of the atmosphere reflectance accurately (Wei 

et al., 2020). Because the reflectance of red and longer wavelengths is essentially negligible over 

open ocean, this problem is mostly restricted to retrieving AOD over the land surface. In these 

wavelengths, ignoring surface reflectance over the ocean may result in a decent approximation of 

AOD (Levy, Remer and Dubovik, 2007). 

Geostationary satellite sensor systems particularly, give data with high temporal precision 

(minutes), that is ideal for monitoring air quality. Estimation of ground PM concentrations via 

satellite data has received a lot of attention, especially when it comes to aerosol products like 

aerosol optical depth (AOD). Among a variety of satellite sensor data, AOD data from the 

Moderate Resolution Imaging Spectroradiometer (MODIS) have dominated utilization in the 

literature. Studies based on MODIS-based AOD data obtained by alternative AOD retrieval 

techniques, such as the Multi-Angle Implementation of Atmospheric Correction algorithm and the 

Simplified Aerosol Retrieval Algorithm, account big proportion of published papers in the domain. 

This is due to MODIS's lengthy operational term (MODIS Terra: 1999-present, MODIS Aqua: 

2002-present), as well as its geographical and temporal resolutions, which are suitable for regional, 

continental, and even global studies. However, MODIS's planned lifetime has gone, and additional 

satellite data, such as Visible Infrared Imaging Radiometer Suite (VIIRS), may be required as a 

replacement in the future (Shin et al., 2020). 

2.3.2 Machine Learning methods 

Machine learning techniques are a subset of algorithms that enable computers to recognize patterns 

in data and predict outcomes based on those patterns. These approaches are rapidly being used to 

solve a wide range of remote sensing challenges, including the estimate of particulate matter 
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concentrations using satellite data (Dobrea et al., 2020). The application of machine learning 

techniques in remote sensing implies training a model on a big database of satellite data and 

ground-based particulate matter measurements. The purpose of this training is to understand the 

association among satellite data and particulate matter concentration to ensure that the model can 

forecast particulate matter concentrations accurately based on newer satellite data (Géron, 2022). 

Machine learning algorithms have been widely used to forecast air quality, capturing the interest 

of scientists worldwide. A total of 2090 articles were published in the English language between 

1992 and 2021, with 658 articles published between 1992 and 2016 and 1432 articles published 

between 2017 and 2021, indicating a significant increase in publications that is 2.17 times higher 

between 2017 and 2021 than 1992-2016. This suggests that machine learning-based prediction 

tools are growing more popular as a result of the availability of a diverse set of machine learning 

packages. In terms of the number of publications, China and the United States emerged as the top 

two countries. China generated the most articles (687), then the United States (264 articles), India 

(162 articles), and Spain (162 articles) (Mehmood et al., 2022). 

In early research papers, they detailed various approaches for using satellite products to get surface 

PM2.5. Different satellite used in research articles (Gupta and Christopher, 2009b). In general, 

columnar satellite-derived AOD values at 0.55 µm are connected to surface PM2.5 mass 

observations. The satellite AOD data are then converted to PM2.5 mass concentration and 

ultimately to air quality indexes using a linear regression method. It is vital to emphasize that AOD 

is an optical measure of the column loading of atmospheric aerosols and it is unitless, whereas 

PM2.5 is the mass concentration of particles smaller than 2.5 µm in aerodynamic diameter 

measured at the surface in units of µg/m3. By understanding the aerosol microphysical and optical 

characteristics, as well as the height of the aerosol layer in the atmosphere, satellite-measured AOD 

may be empirically translated into PM2.5 mass (Gupta and Christopher, 2009b). Though, many 

studies, have found that the PM2.5-AOD connection cannot be used alone to determine surface 

level PM2.5 because the vertical distribution of aerosols and other meteorological characteristics 

such as humidity and temperature may also be essential (Liu et al., 2005).  

Van Donkelaar, Martin and Park, (2006) calculated the ground-level concentration of PM2.5 using 

space-based data from MODIS and the Multi-angle Imaging Spectroradiometer (MISR) satellite 

sensors, as well as supplementary information from a global chemical transport model (GEOS-

CHEM), from January 2001 to October 2002. Surface data from the National Air Pollution 

Surveillance (NAPS) network in Canada and the Air Quality System in the United States were 

compared to remote-sensed PM2.5 (AQS). Their results showed that when calculated from 

MODIS (r = 0.69), and MISR (r = 0.58), the geographic variance in annual mean PM2.5 showed 

significant agreement with surface data, where r is the linear correlation coefficient between 

estimated and observed PM2.5. For both MODIS and MISR, the daily variation in remote-sensed 

PM2.5 was more consistent with surface observations in eastern North America (r = 0.5-0.8) than 

in western North America (r = 0-0.35). The conclusion was that satellite observations of AOD 

have the ability to provide a distinct overview of worldwide ground PM2.5 concentrations when 

combined with additional information from a chemical transport model on the link of AOD and 

PM2.5, and that the quality of aerosol remote sensing and model modelling of aerosol 

characteristics will determine the development of this capacity (Van Donkelaar, Martin and Park, 

2006). 

Gupta and Christopher, (2009b), did an estimation of PM2.5 concentration over the southeastern 

United States using MODIS AOD data, and coupling it with meteorological factors such as wind 

speed, temperature, relative humidity and boundary layer heights by using multiple regression 

approach, with a goal to evaluate if the meteorological factors will improve the estimation of 

PM2.5 based on AOD data. The results show that incorporating meteorological data via multiple 



 

27 

 

regression methods improves correlation values up to thrice when comparing to two variant 

regression equations (AOD and PM2.5). When temperature and boundary layer heights are added 

to the AOD-PM2.5 connection, the root-mean-square error improves by 20-50%. Summer and 

well-mixed boundary layer conditions had the best agreement between AOD and PM2.5. even 

though, their technique demonstrates that simple statistical models, rather than complicated 

physical and numerical models, may be utilized to predict PM2.5 with an average error of 34% for 

hourly and 24% for average daily mass concentrations. In addition, as part two for their study 

Gupta and Christopher, (2009a) instead of using multiple regression approach, they used an 

artificial neural network (ANN) framework to minimize the uncertainties of surface PM2.5 

estimate using satellite data. Comparing the outcome of the study to regression coefficients 

acquired using simple correlation (R = 0.60) or multiple regression (R = 0.68) procedures, the 

ANN obtains hourly PM2.5 data with R = 0.74 when compared to observational data. The ANN 

approaches yield a correlation of R = 0.78 for calculating daily mean PM2.5. 

As machine learning continued to develop, more and more papers were published to estimate both 

PM10 and PM2.5 using different machine learning algorithms such as Multiple linear Regression 

(MLR), ANN, Random Forest (RF), and Support Vector Regression (SVR). 

In general, MLR accuracy was relatively poor in numerous studies, with value of R2 less than 0.25, 

whilst the best model in each research had R2 larger than 0.49 (Shin et al., 2020).  

In PM estimation research, SVR a representative technique based on the kernel method, has been 

compared to various methodologies. Li et al. (2018) compared four approaches (decision tree, 

orthogonal regression, SVR, and RF). The Correlation coefficients of the SVR models for MODIS 

Terra and Aqua AOD were 0.72 and 0.78, respectively, ranking them second among the four 

models behind RF (0.77 and 0.85 for MODIS Terra and Aqua AOD respectively). Yeganeh et al. 

(2017) utilized SVR and several types of ANN algorithms to predict monthly average PM2.5 in 

Australia's South-east Queensland area between 2006 to 2011, based on AOD and detailed 

meteorological and geographical data. The findings showed that the R2 of one of the ANN (0.81) 

was better than that of the SVR (0.67), and the conclusion was that employing ANN algorithms in 

association with satellite remote sensing data, geographical information, and meteorological data 

improved PM2.5 estimate. 

Numerous research has looked into using the Random Forest technique to estimate PM2.5 ground 

surface concentration. In terms of the accuracy and reliability of the RF model predictions, studies 

have shown encouraging findings. Hu et al. (2017) used the RF algorithm to predict daily PM2.5 

concentrations over the United States in 2011 by combining meteorological fields, land use factors, 

and AOD data. The study found that the RF model achieved good performance in terms of 

predicting PM2.5 concentrations, with an R2 of 0.8. An RF model was also employed in Chen et 

al. (2018) to estimate the PM2.5 concentration in China between 2005 and 2016. A mix of 

meteorological, AOD, and ground-level PM2.5 datasets were used to train the model, and the 

results demonstrated that the RF model was very accurate in forecasting PM2.5 concentration with 

an R2 of 0.83 for daily estimated PM2.5 and 0.86 for monthly and annual PM2.5 average 

concentrations. Ghahremanloo et al. (2021) compared estimations of daily 1 km PM2.5 

concentrations in Texas between 2014 and 2018 of RF model to others models like MLR and the 

mixed effect model. In the study the machine learning models were trained using MODIS AOD 

data coupled with meteorological data and MERRA-2 data such as dust, sea salt, OC, BC, and 

SO4. the findings demonstrated that RF had a strong capacity and high accuracy in estimating 

PM2.5 concentrations across the study region as compared to other models with a correlation 

coefficient in the range of 0.83–0.90 and a mean absolute bias between 1.47 and 1.77 µg/m3.  
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2.4 Summary of the literature review 

The study of the literature has revealed that PM particles originate from various sources depending 

on the region, and the study of PM can be done from multiple perspectives.  

The scientific literature on Saharan dust storms, particle matter (PM) concentration monitoring, 

and integrating satellite data with machine learning provides an in-depth look at air quality 

dynamics. Several studies have examined the strength of Saharan dust storms and their impact on 

PM concentrations, revealing a significant rise in coarse and fine PM levels during those events, 

affecting air quality and human health. Many conclusions go that the Saharan dust storms' intensity 

and timing are changing due to climate change effects, as do the effects of Saharan dust on the PM 

concentrations. Additionally, there is growing interest in using low-cost PM sensors to monitor 

PM concentrations to study PM in more depth, providing cost-effective alternatives for extensive 

monitoring. However, accuracy, calibration, and reliability remain challenges.  

Satellite remote sensing has developed as a significant technique for monitoring PM 

concentrations across vast geographical areas, applying algorithms and models to predict ground-

level PM concentrations based on satellite-derived data and other atmospheric characteristics. 

Furthermore, machine learning methods are increasingly being used to improve the precision of 

PM concentration estimation, particularly when satellite data is used. These methods entail training 

models on ground-based monitoring data and satellite observations to capture complicated 

interactions and increase the accuracy of PM level estimates. Despite progress, there are still issues 

in precisely estimating the impact of Saharan dust storms on PM concentrations, assuring the 

dependability of low-cost sensors, and refining machine learning algorithms. Also, numerous 

research papers have estimated ground surface PM concentrations using satellite data in many 

regions of the world, but no study has been found for Hungary.  

Ongoing research aims to address these issues by integrating multi-sensor data, improving sensor 

calibration, and developing sophisticated machine-learning models for robust PM concentration 

predictions. These all contribute to a better understanding of air quality dynamics and provide 

valuable tools for monitoring and managing particulate matter pollution. 
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3 MATERIALS AND METHODS 

In this chapter I describe the tools and datasets I used, as well as the methods and relationships 

used in data processing. 

This chapter is divided into four parts. First part contains experimental section, which is two 

subchapters, a small-scale experiment of PM10 dispersion around obstacles, and the effect of small 

hills on PM10 and PM2.5 concentrations in short range. Second is the part that deals with Saharan 

dust transport, divided into three subchapters, the Saharan dust event of June 2020, the 

identification and evaluation of the Saharan dust storm events to Hungary between 2018 and 2022, 

and the case study of the Saharan dust effects on PM10 and PM2.5 concentrations in Budapest in 

March 2022. The third section is the estimation of PM concentrations, and contains two 

subchapters, is the Evaluation of PM surface concentrations simulated by Version 5.12.4 of 

NASA's MERRA-2 Aerosol Reanalysis over Hungary in the period between 2019 and 2021 using 

two approaches to estimate PM ground-level concentrations using surface, satellite, and 

meteorological data based on machine learning algorithms, and, the calibration of CAMS PM2.5 

data over Hungary using machine learning. The fourth part is subchapter that describe the common 

data and statistics that are used throughout the study. 

3.1 PM dispersion experiments 

3.1.1 Small scale experiments of PM10 dispersion around obstacles 

Small scale experiments were conducted in order to investigate the effects of obstacles heights and 

distance from the source in the PM10 concentration. The goal was to understand the changing of 

the PM10 concentration around obstacles in simple environment. The experiments were done in 

isolated laboratory room on built table. The table had 3 PM10 sensors with 50 cm distance between 

each sensor. The room temperature was stable during the experiments (25 ±1˚C), the same was for 

the Relative Humidity (RH) (50% ±3). 

3.1.1.1 Experiment set up 

The experiments were done with two different wind speed (air flow speed of 2.9 and 1 m/s 

measured by Schiltknecht MiniAir64 vane anemometer) provided by two different ventilators. The 

use of the ventilators is to make sure that the PM plume will follow the wind direction toward the 

sensors and to avoid the spreading of plume around the room. As mentioned, three sensors were 

used, sensor A, B and C as shown in Figure 3.1, sensor C placed near the source, sensor B in the 

middle and sensor A is 1 meter away from the source. The obstacle was placed at three different 

distances between sensors A and B, with changing of the obstacle height (12, 24 and 36 

centimetres). The PM sensors used are NOVA PM sensors (SDS011) that use principle of laser 

scattering to get the particle concentration in the air, with a digital output and built-in fan that is 

stable and reliable. 

 The incense sticks were used as a source of PM10 plumes, due to the number of particles emitted 

from incense smoke in a short time. There were many research studies that investigated the effect 

of the use of incense sticks on PM10 concentrations. Numerous studies indicate that the smoke 

from burning incense contains particulate matter, gas products, and other organic compounds that 

can increase PM concentrations, CO, NOx, and SO2 in the air (Jetter et al., 2002; Ji et al., 2010). 

Also, incense burning was found to increase PM2.5 concentrations by up to 120% (Tran et al., 

2021). 

Each experiment took 15-20 minutes, by burning one incense stick with fixed wind speed, obstacle 

distance from the source and obstacle height. The total number of variations (experiments) was 

18. 
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Figure 3.1. Experimental set up 

3.1.1.2 Data analysis 

Measurements were registered continuously in a programmed excel sheet during each experiment 

for every 30 seconds. The results present the average PM10 concentration in each test and 

presented in graphs depending of the obstacle height and distance from the source for the three 

sensors. 

Also, we used the Multiple Linear Regression (MLR) method to calculate the PM10 concentration 

in sensor A (PM10A) depending on the obstacle height (OH) and distance from the source (OD), 

PM10 concentration measured near the source (Sensor C, PM10C), and wind speed (Ws). 

3.1.2 Effect of small hills on PM10 and PM2.5 concentrations in short range 

This part of my study aims to discover how small hills affect the PM10 and PM2.5 concentrations 

in short range with different wind speeds. 

Figure 3.2 shows the experimental setting environment, where the PM sensors are hung on steel 

infrastructure where sensor 1 (S1) is close to the source (smoke machine), and sensor 2 (S2) is a 

sensor placed in the middle of the slope. Sensor 3 (S3) is at the top of the hill. The sensors used 

are low-cost sensors that are calibrated and used in other cities in Hungary to monitor the PM 

concentrations. The sensors were developed for a project called HUNGAIRY, which is a project 

that aim to improve air quality at 8 Hungarian regions through the implementation of air quality 

plan measures, where until this moment PM sensor (LIFE IP HUNGAIRY project sensor) is used 

in 60 PM monitoring stations in Miskolc and 20 PM monitoring stations in Kaposvár, and the 

network of the PM monitoring stations will be expended to other Hungarian cities (LIFE IP 

HungAIRy, 2019). The sensor is based on low-cost, laser scattering PM sensor (Plantower 

PMS7003), and an auxiliary sensor (Bosch BME680) for measuring humidity, temperature and 

pressure coupled with a Raspberry Pi 3 single-board computer to collect and store measurements 

(Báthory et al., 2022). The smoke machine (Haze machine hs-600) is a machine used in concerts 

and festivals to generate smoke, and the wind machine is controlled via a variable frequency drive 

(VDF). In contrast, wind speed and directions were used to ensure that no wind was disturbing the 

experiments and that the wind was going in the right direction. In addition, the sensors register the 

PM2.5 and PM10 concentrations each minute. 

Three cases were adopted in this study. Case 1 is where the ground is almost flat, case 2 is where 

there is a small hill with an elevation of 0.8 m (shown in Figure 3.2), and case 3 is where a higher 

elevation is 1 m. The place where the experiments took place was the backyard of a laboratory. 

The experiments were done many times, and each time, the smoke machine was on for one hour 

because, after one hour, the performance of the smoke machine was not stable. The first 10 minutes 

are without any wind, and then every 10 minutes of wind, the frequency is increased via VDF until 
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we have the maximum frequency possible (here, five frequencies were used). Each wind frequency 

corresponds to wind speed measured by the wind speed sensor (presented in Table 1). 

Also, we used the Multiple Linear Regression (MLR) method to calculate the PM10 concentration 

in sensor 3 (PM10S3 in µg/m3) based on the PM10 concentration near source (concentration 

registered by Sensor 1, PM10S1), PM10 concentration at the bottom of the hill (concentration 

registered by Sensor 2, PM10S2), the wind speed (Ws in m/s), and the height of the hill (H in m). 

 

Figure 3.2. Experimental setting environment where dashed lines represent the placement of the metal 

structure in each of the three cases 

Table 1:  Wind speed depending on VDF output frequency 

VDF output frequency (Hz) wind speed (m/s) 

10 0.7 

20 2.4 

30 3.7 

40 5.1 

50 6.1 

 

3.2 Saharan Dust storm transport 

3.2.1 Dust Storm simulation over the Sahara Desert (Moroccan and Mauritanian regions) 

using HYSPLIT 

June 2020 was a month where a breaking record dust storm occurred over the Sahara and 

transported toward the Americas. According to Francis et al. (2020), the dust clouds that were 

generated in this event registered the highest record of Aerosol Optical Depth (AOD). The dust 

emission was continuous for 4 days, and uplifted to 5-6 km above the ground surface, and 

transported across the tropical Atlantic oceans by the powerful mid-atmospheric winds that had a 

speed higher than 20 m/s (Francis et al., 2020). 

For (Francis et al., 2020) the primary objective was to determine the processes responsible for the 

lifting and transport of dust during the dust event, as well as their relationship to large-scale 
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circulation, and focus on the characteristics of the atmospheric mechanisms that led to massive 

transport of the Saharan dust. While in this research the central goal is to locate the most active 

regions in Western Sahara during that event, and the contribution of those regions in increasing 

the level of PM10 concentration in some regions that are far away from the source place like the 

US coastal part of the Gulf Mexico and the Martinique islands. 

The dust clouds generated covered a huge space as shown in the true color images of MODIS-

Aqua satellite on the 14, 15, 16, 17, 18, and 19 June 2020 (Figure 3.3), where the dust in yellow 

color is spreading from the Western Saharan region to the Atlantic Ocean. 

3.2.1.1 HYSPLIT model description 

The Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT) is a software 

developed by the Air Resources Laboratory (ARL) of the National Oceanic and Atmospheric 

Administration (NOAA) of USA (Draxler and Hess, 1998). The model is a comprehensive system 

for simulating basic air parcel trajectories as well as complicated transport, dispersion, chemical 

transformation, and deposition scenarios. The model calculation method is a hybrid of the 

Lagrangian approach, which uses a moving frame of reference to calculate advection and diffusion 

as trajectories or air parcels move away from their initial location, and the Eulerian methodology, 

which uses a fixed three-dimensional grid as a frame of reference to compute pollutant air 

concentrations. Over more than 30 years, the HYSPLIT model has developed from predicting 

simplistic single trajectories based on radiosonde measurements to a system that accounts for 

numerous interacting pollutants carried, dispersed, and deposited on local to global scales. In 

addition, HYSPLIT was used to assess the consequences of the accidental release of nuclear 

material into the atmosphere from the Fukushima Daiichi nuclear power plant after an earthquake 

and tsunami in March 2011. NOAA's interest since the middle of the last century at the latest, and 

modelling the movement of smoke from large wildfires has been an ongoing development activity 

at ARL since 1998. Today, in addition to the United States, smoke forecasts for Alaska and Hawaii 

are conducted daily to provide to air quality forecasters and the public information on fine particles 

(PM2.5) in the air (http: //airquality.weather.gov/) (Stein et al., 2015). 
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Figure 3.3. MODIS-Aqua true color images on the (a) 14th, (b) 15th, (c) 16th, (d) 17th, (e) 18th, and (f) 

19th of June 2020 over western Africa and the northern tropical Atlantic Ocean. The white color 

represents the Clouds and the yellow the dust. 

Dust storm Model 

HYSPLIT dust storm model is a model for the emission of PM10 dust that has been built using the 

theory of a surface-roughness-dependent threshold friction velocity (Draxler et al., 2001). When 

the local wind velocity exceeds the threshold velocity for the soil properties of that emission cell, 

a dust emission rate is computed from that model grid cell. The predominant mechanism for PM10 

emission is "sandblasting," in which larger particles that cannot go airborne bounce along the 

surface (saltation), allowing additional smaller particles to become airborne (Draxler, Ginoux and 

Stein, 2010). This emission module makes use of HYSPLIT's 1° land-use file, assuming that a 

"desert" land-use grid cell corresponds to the roughness identification class "active sand sheet." 

Only on dry days and when the friction velocity exceeds the threshold value (0.28 m/s for an active 

sand sheet) do dust emissions occur. Once the emission strength is determined, the model emits 

Lagrangian particles with a mass calculated by multiplying the PM flow by the 1° area 

corresponding to a desert category in HYSPLIT's land-use file. These Lagrangian particles are 

distributed and moved forward in time in response to NOAA's GFS model's meteorological fields 

with a horizontal resolution of 1°. A more specific description of particle dispersion and transport 

can be found in (Draxler et al., 2001; Escudero et al., 2006).  

The meteorological data fields needed for the model can be accessed from the National Climatic 

Data Centre (NCDC) website which is NOAA’s National Centers for Environmental Information 

(NCEI) that provides public access to remarkable archives for environmental data on Earth. In this 

study, we used the GDAS (Global Data Assimilation System) meteorological data (GDAS1) with 



 

34 

 

a horizontal resolution of 1˚×1˚ corresponding to approximately 100 km x 100 km and 23 vertical 

layers. GDAS1 is chosen to match the resolution of the HYSPLIT land-use file resolution. GDAS 

is a system used by the Global Forecast System (GFS) model to insert observations into a gridded 

model space to begin or initialize, weather predictions using observed data. Surface observations, 

balloon data, wind profiler data, airplane reports, radar observations, and satellite observations are 

all added to a gridded, 3-D model space by GDAS. GDAS data are provided as both GDAS input 

observations and GDAS gridded output fields. The GFS model can be started using gridded GDAS 

output data. Input data are accessible in a number of data formats due to the varying nature of the 

assimilated data types, notably Binary Universal Form for the Representation of Meteorological 

Data (BUFR) and Institute of Electrical and Electronics Engineers (IEEE) binary. World 

Meteorological Organization (WMO) Gridded Binary is the GDAS output (GRIB) (Kleist et al., 

2009). The GDAS dataset covers the entire globe and is freely available. 

In the dust storm model, the study domain is defined from 15.0N -18.0E to 32.0N -05.0E (Domain 

covered with stars in Figure 3.4) which covers the Western Sahara of Morocco Mauritania, and a 

small part from Algeria. While the PM10 concentrations are averaged over every 12h. The dust 

simulation Started on the 14th of June 2020 at 00UTC until the 19th of June 2020 at 00UTC.  

HYSPLIT dust storm modelling was set for 0.5°x0.75° resolution for desert dust sources, with a 

total of 10 million particles or puffs released during one release cycle and a maximum of 5 million 

particles permitted to be carried at any time during the simulation. The release mode is sampled 

using three-dimensional particles in both horizontal and vertical orientations. 

 

Figure 3.4. Map of the study domain 

Trajectory cluster analysis 

Forward and Backward trajectory analysis are reliable methods to identify the long-range transport 

patterns with the use of archived meteorological data (Baker, 2010). However, considering the 

benefits of the trajectory model, individual trajectories are subject to errors due to the precision 

and quality of the meteorological data, as well as the simplifying assumptions employed in the 

trajectory model, which ultimately limits their utility. This problem was solved by computing a 
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large number of trajectories and then subjecting them to cluster analysis. The large number of 

trajectories computed in HYSPLIT trajectory cluster analysis refers to the number of individual 

trajectories generated and then subjected to cluster analysis. The benefits of computing a large 

number of trajectories include minimising the effects of individual trajectory errors, providing a 

more comprehensive picture of the atmospheric conditions, and identifying rare or unusual events 

that a smaller number of trajectories may not capture (Baker, 2010). The exact number of 

trajectories computed will depend on the specific analysis being conducted and the available 

computing resources. The differences among these trajectories are determined by calculating the 

distance between clusters, with smaller distances indicating higher similarity. The clustering 

computation minimises the differences between trajectories within a cluster while maximising the 

differences between clusters. Trajectories are combined until the total variance of the individual 

trajectories about their cluster mean starts to increase. This occurs when disparate clusters are 

combined. The clustering computation is described in more detail in the literature (Shaw and 

Gopalan, 2014). 

HYSPLIT forward trajectory cluster analysis was performed for the regions that are considered 

the most active sources of dusts and particles in the region of study as long as some surrounding 

regions. The list of the regions is presented in Table 2 with names, latitudes, longitudes, and time 

periods. 

Table 2. Cluster analysis location lists 

Location Latitude Longitude Simulation period 

Dakhla, Morocco 23.8 -15.6 10-30 June 2020 

Bir Anzarane, Morocco 23.88 -14.53 10-30 June 2020 

Oum Dreyga, Morocco 24.1 -13.25 10-30 June 2020 

Aousserd, Morocco 22.5 -14.3 10-30 June 2020 

Nouakchott, Mauritania 18.09 -15.95 10-30 June 2020 

Atar, Mauritania 20.5 -13.05 10-30 June 2020 

Tichit, Mauritania 18.45 -9.5 10-30 June 2020 

Toumbouctou cercle, 

Mali 

20.0 -3.0 10-30 June 2020 

Bordj Badji Mokhtar, 

Algeria 

22.62 0.12 10-30 June 2020 

Tamanrasset, Algeria 24.37 4.32 10-30 June 2020 

 

3.2.1.2 Satellite Observations 

Satellites are increasingly being utilized to collect data on aerosol features such as aerosol optical 

depth (AOD), the columnar concentration of particles, and particle sizes, taking advantage of 

technological and scientific advances over the previous years. There are various Earth Observing 

satellite instruments that developed many aerosols remote sensing algorithms for the retrieval of 

the AOD. One of those instruments is the Moderate Resolution Imaging Spectroradiometer 

(MODIS). The MODIS instrument, which is mounted on both the Terra and Aqua satellites, 

measures upwelling radiances in 36 bands with wavelengths ranging from 0.4 to 14.5µm. MODIS 

data, with spatial resolutions of 250, 500 m, or 1 km, have been used to construct the most detailed 

aerosol products, including AOD (Lee et al., 2009). The most recent MODIS collection 6 (C6) 
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aerosol products feature enhanced Dark-Target (10 km DT) and Deep-Blue (10 km DB) AOD. 

The MODIS science team has carried out a few worldwide validation tests to demonstrate the 

cumulative impact of these adjustments and the discrepancies between the various parameters 

(Belle and Liu, 2016). Dark-Target (DT) was created to provide coverage over dense, dark 

vegetation, whereas Deep Blue (DB) was created to fill in the gaps in DT by providing coverage 

over bright surfaces (such as deserts) (Sayer et al., 2014). In this study, the MODIS-Aqua Deep 

Blue AOD 550nm with a spatial resolution of 1˚ was retrieved as an average daily map from the 

https://giovanni.gsfc.nasa.gov, which is an online platform created by NASA for displaying and 

analysing geophysical parameters, with easy access to provenance.  

In addition to the MODIS-Aqua AOD product, another product from another instrument is used 

also in this study, which is the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite 

Observations). CALIPSO’s mission is an ongoing collaboration between NASA Langley Research 

Center (LaRC) and the Centre National D'Etudes Spatiales (CNES) to explore the global radiative 

effects of aerosols and clouds on climate. CALIPSO has been providing nearly continuous 

measurements of the vertical structure and optical properties of clouds and aerosols since its launch 

on April 28, 2006, to improve our understanding of their role in the Earth's climate system and the 

performance of a variety of models ranging from regional chemical transport to global circulation 

models used for climate prediction (Winker et al., 2010).  CALIPSO Lidar Level 1 532nm Total 

Attenuated Backscatter version 4.10 is the product used in this study, which describes the vertical 

aerosol profile and provides a clear vision about the altitude of the existing aerosols (including 

dust) in the troposphere and stratosphere level, more in-depth literature can be found in (Getzewich 

et al., 2018; Kar et al., 2018; Kim et al., 2018). The CALIPSO 532nm Total Attenuated 

Backscatter images were retrieved from the official website of CALIPSO (https://www-

calipso.larc.nasa.gov). 

MODIS-Aqua AOD average maps were used to compare them with the average PM10 

concentration maps between 0 and 100m from the HYSPLIT dust simulation results, due to the 

lack of PM10 ground measurements in the area of study. While CALIPSO Lidar Level 1 532nm 

Total Attenuated Backscatter was used to get the altitude top layer of the dust transported from the 

Saharan region as well as the thickness of the dust cloud over the Caribbean Sea and the South-

eastern region of the United States. Also, MERRA-2 AOD data (Description of MERRA-2 AOD 

data can be found in section 3.4) was used for specific places where the Saharan dust particles 

shown to be transported to the South-eastern region of the United States to identify the intensity 

of the Saharan dust storm at that time in those chosen regions. 

3.2.2 The identification and evaluation of the Saharan dust storm events in Budapest, 

Hungary between 2018 and 2022  

The dust aerosol loading within the whole atmospheric column is represented by the MERRA-2 

dust column mass concentration. We utilized data from the MERRA-2 Visualization tool's 

atmospheric composition (2D) maps (https://gmao.gsfc.nasa.gov/reanalysis/MERRA-

2/data_access), as well as, hourly data (MERRA-2 M2T1NXAER V5.12.4) Obtained from 

NASA’s Earth data website (https://disc.gsfc.nasa.gov/datasets/M2T1NXAER_5.12.4/summary). 

MERRA-2 dust column mass concentration is a good measure of the intensity of the Saharan dust 

storm alongside with PM concentrations (Wang, Gu and Wang, 2020). In our case, to identify and 

evaluate Saharan dust events transported to Hungary, we used MERRA-2 dust column mass 

concentration data, 2D maps of dust column mass concentration, and hourly-mean PM10 mass 

concentrations, retrieved from Budapest Gilice tér station. 

https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access
https://disc.gsfc.nasa.gov/datasets/M2T1NXAER_5.12.4/summary
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3.2.3 Case study of the Saharan dust effects on PM10 and PM2.5 concentrations in Budapest 

in March 2022 

In 2022, Europe suffered from two severe Saharan Dust Events (SDE) during March. Large storms 

in March 2022 sent clouds of Saharan dust to Europe. One of them also brought long-lasting, dusty, 

high-altitude cirrus clouds, which caused widespread cloud cover for more than a week, from 

Iberia to the Arctic. It was a rare kind of storm that researchers have only recently learned to 

comprehend. Its characteristics include icy clouds that are infused with dust, hence the name dust-

infused baroclinic storm (DIBS). A DIBS entrained and lifted an atmospheric river of Saharan dust 

into the troposphere in the middle of March, attaining an altitude of 10 kilometres. Dust-infused, 

high-altitude cirrus clouds formed as a result of the dust acting as ice nucleation particles. They 

continued for almost a week, covering a sizable portion of Europe. On March 15, 2022 (SDE1), 

the first storm developed over north-central Europe and moved south through Poland, the Czech 

Republic, and Austria to the eastern Mediterranean (Figure 3.5). 13 days (28th March 2022-SDE2) 

after the first Saharan dust storm, another wave of Saharan dust hit the south of Europe a spread 

to reach the Eastern European countries. 

To evaluate the effect of the Saharan dust load transported to Budapest Hungary, measurements 

of PM10 and PM2.5 from the Hungarian Air Quality Network platform for Budapest Gilice tér air 

quality station. 

 

Figure 3.5. Suomi NPP / VIIRS true color image on the 15th of March 2022. Clouds appear in white and 

Saharan dust in pale yellow/brown 

PM10 and PM2.5 concentrations are always higher in winter and fall seasons due to the alternating 

variability of the weather conditions and the emission source. 

Figure 3.6 shows the PM10 and PM2.5 in Gilice tér air quality station during March, the first 10 

days of April 2022. During March, the PM10 and PM2.5 concentrations are usually high, however, 

in March 2022 the PM10 concentration was below the daily EU limit value of 50 µg/m3, alternating 

between 14 and 47 µg/m3, and registering lower values in April and May. 
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Figure 3.6. PM10, and PM2.5 concentrations (µg/m3) in Gilice tér air quality station during March and 

the first 10 days of April 2022 

3.3 Estimation and evaluation of PM concentrations 

3.3.1 Evaluation of PM surface concentrations simulated by Version 5.12.4 of NASA's 

MERRA-2 Aerosol Reanalysis over Hungary in the period between 2019 and 2021 

In the following sections, I describe the different methods used in Evaluation of estimated PM 

surface concentrations using NASA's MERRA-2 Aerosol Reanalysis over Hungary in the period 

between 2019 and 2021. 

3.3.1.1 Description of the study 

In this of the study I used two approaches. The 1st approach is estimating the PM10 and PM2.5 

based on equations 1 and 2 that will be presented later and based on concentrations of components 

from MERRAero and compare the results with results of equations 1 and 2 with results of machine 

learning algorithms that will be used also to estimate PM10 and PM2.5, but based on the same 

concentrations of components used in equations 1 and 2 coupled with meteorological data. The 

second approach is estimating PM2.5 using machine learning algorithms but this time based on 

AOD coupled with NO2, O3, SO2 and meteorological data.  

The following sections will describe the data and machine learning algorithms chosen for the two 

approaches described before. 

3.3.1.2 The MERRA-2 Aerosol Reanalysis (MERRAero) 

A detailed description of the MERRA-2 Aerosol Reanalysis (MERRAero) data is provided in 

section 3.4. 

The five PM species simulated by the MERRAero data collection every hour (SO4, OC, BC, DS, 

and SS) allow for an estimation of the total PM10 concentration (Buchard et al., 2016) as follows:  

[𝑃𝑀10] = 1.375 ∗ [𝑆𝑂4] + 1.8 [𝑂𝐶] + [𝐵𝐶] + [𝐷𝑆] +  [𝑆𝑆] (1) 

Concentration is shown by brackets. [SO4] is multiplied by 1.375 because it is assumed that SO4 

is completely neutralized by ammonium (NH4) in the form of ammonium sulphate ((NH4)2SO4). 

The particulate organic matter (POM) is estimated from modelled OC multiplied by a factor that 
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takes into account contribution from other elements associated with the organic matter. This factor 

has values ranging from 1.2 to 2.6 and is spatially and temporally variable (Malm et al., 1994). In 

our simulation, a constant value of 1.8 is utilized. 

Moreover, since [PM2.5], can be estimated as follows using MERRA-2 Aerosol Reanalysis data 

collection (Buchard et al., 2016), which separates PM sizes of DS and SS: 

[𝑃𝑀2.5] = 1.375 ∗ [𝑆𝑂4] + 1.8 [𝑂𝐶] +  [𝐵𝐶] +  [𝐷𝑆2.5] +  [𝑆𝑆2.5] (2) 

Equations 1 and 2 assume that SO4, OC, and BC are all in the form of PM2.5 and do not contain 

nitrate particles, which can account for a sizable portion of the total [PM2.5] (Provençal et al., 

2017). 

In our case we used AOD retrieved from MERRA-2 global atmospheric reanalysis platform for 

Budapest, Kecskemét and Kazincbarcika as well as in-situ measurements of PM10 and PM2.5 for 

the period of 2019 and 2021. 

3.3.1.3 Meteorological datasets 

Meteorological data were retrieved from NASA Power (Prediction of Worldwide Energy 

Resources) platform. The platform's list of POWER meteorological characteristics is based on the 

MERRA-2 assimilation model developed by NASA Goddard's Global Modeling and Assimilation 

Office (GMAO). Each of the parameters is either estimated using meteorological parameters 

acquired from NASA's MERRA-2 assimilation model, or it is directly retrieved from those values. 

The period from January 1, 1981, through a few months in near-real time is covered by the 

MERRA-2 meteorological data that is accessible through POWER. A time series of hourly (or 

longer time scale) values is supplied for each parameter of the POWER MERRA-2 model. The 

average value over the whole geographic grid is represented by each MERRA-2 parameter. The 

wind speed is at 10 meters, and 50 meters above the grid's average elevation and its averaged 

precipitation surface value. The following parameters are derived from the model at a height of 2 

m above the grid box's typical elevation. The MERRA-2 parameters are computed in hourly 

increments and transformed to local time by the POWER project. The 24-hourly temperature 

measurements, not an average of those values, are used to determine the daily maximum and 

minimum temperatures. 

In estimating PM concentrations, we used hourly temperature at 2 m (T in ˚C), wind speed at 10 

m and 50 m (Ws10, and Ws50 in m/s), Relative Humidity (RH), surface pressure (P in kPa) from 

NASA Power, and Planetary Boundary Layer Height (PBLH in m) from MERRA-2 global 

atmospheric reanalysis platform. 

3.3.1.4 Machine learning algorithms 

One of the finest approaches to address the complicated interaction between AOD, PM, and 

associated factors, such as the meteorological parameters, and typically obtain amazing predicted 

outcomes, is machine learning, a branch of artificial intelligence. The machine learning models 

were created using Python 3 and the scikit-learn library in JupyterNotebook 6.4.12. 

Data preprocessing 

Before applying the machine learning algorithm to the data, all data were integrated and matched 

by time using Microsoft Excel, and cleaned from non-values, in order to generate clean CSV file 

that will be loaded to the algorithm (Figure 3.7).  
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Figure 3.7. Algorithm flowchart 

Multiple Linear Regression 

The multiple linear regression (MLR) model is the most often used statistical tool for determining 

the relationship between two or more variables. MLR is an extended model of simple linear 

regression, where instead of using one variable to predict one outcome, multiple variables are used 

to predict one outcome.   

MLR can be described using the following equation: 

𝑦 = 𝛽0 + ∑ 𝛽𝑖
𝑛
𝑖=1 𝑥𝑖 +  𝜀                             (3)                        

Where: y is the outcome value, xi are the different variables, β0 is the intercept term, βi are 

regression coefficients, and ε is the error term. 

Ordinary least squares regression 

Ordinary least squares (OLS) models assume that the researcher is fitting a model of a relationship 

between one or more independent variable and a continuous or at least increment outcome variable 

that reduces the sum of square errors, in which an error is the difference between the real and 

predicted value of the outcome. Linear regression (with a single or many predictor variables) is 

the most frequent analytical approach that employs OLS models (Michalos, 2014). 

OLS regression is increasingly employed in many scientific disciplines, including physics, 

economics, and psychology, and a variety of textbooks have been created to teach this approach 

and its applications in many fields of inquiry (Cohen, 2013; Kleinbaum et al., 2013; Montgomery, 

Peck and Vining, 2020). 

Random Forest regression 

One of the most well-liked ensembles learning strategies based on decision tree predictors is 

Random Forest (RF), which is a straightforward, effective, and understandable strategy. The trees 

are bagged in the first stage, and then the tree is divided in the second step using the random 

subspace technique or the random split selection, applied at each node of the algorithm, and 
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utilizing just a subset of the characteristics to split the node. The benefits of RF included 

completing regression and classification tasks as well as generating accurate predictions and 

outcomes that can be simply explained (Breiman, 2001). 

Extra Tree regression 

The Extra-Trees approach (XT) employs the traditional top-down construction method to construct 

an ensemble of unpruned decision or regression trees. It separates nodes by selecting cut-points 

completely at random, which sets it apart from previous tree-based ensemble approaches. It also 

grows the trees using the entire learning sample rather than a bootstrap replica. In the worst 

situation, XT creates completely random trees, whose architectures are independent of the learning 

sample's output values. By selecting the right parameter, the power of the randomization may be 

adjusted to the particulars of the situation. The algorithm's biggest advantage, aside from accuracy, 

is computational speed (Geurts, Ernst and Wehenkel, 2006). 

In the first approach, we estimated the PM10 and PM2.5 using MLR, OLS, RF and XT machine 

learning algorithms, based on BC, OC, DS, SS, SO4, AOD, and PBLH from MERRAero data, and 

T, RH, Ws10, Ws50 and P from NASA Power platform. While in the second approach, we estimated 

the PM2.5 using MLR, OLS, RF and XT machine learning algorithms, based on AOD, and PBLH 

from MERRAero data, and T, RH, Ws10, Ws50 and P from NASA Power platform, and 

measurements from Hungarian air quality network of NO2, SO2 and O3. In addition, both 

approaches were done for Budapest, Kecskemét and Kazincbarcika for the period of 2019 and 

2021. 

3.3.2 Calibration of CAMS PM2.5 data over Hungary using machine learning 

The purpose of this study is to calibrate CAMS PM2.5 data using the LightGBM algorithm and 

evaluate its impact on improving the accuracy and correlations with in-situ measurements in 

Hungary. The study aimed to address the limitations of raw CAMS data and provide more reliable 

information for air quality assessments. 

3.3.2.1 CAMS global reanalysis (EAC4) 

The Copernicus Atmosphere Monitoring Service (CAMS) reanalysis is the most recent global 

reanalysis dataset of atmospheric composition produced by the European Centre for Medium-

Range Weather Forecasts (ECMWF), and it consists of three-dimensional time-consistent 

atmospheric composition fields, which include aerosols and chemical species (Inness et al., 2019). 

The CAMS reanalysis expands on the knowledge gathered during the previous Monitoring 

Atmospheric Composition and Climate (MACC) reanalysis and interim CAMS reanalysis. Total 

column CO, tropospheric column NO2, aerosol optical depth (AOD), and total column, partial 

column, and profile ozone retrievals from satellites were used in the CAMS reanalysis with the 

ECMWF's Integrated Forecasting System. The CAMS forecasts air pollution levels throughout the 

world over the following few days. The CAMS, in particular, generates a forecast of global 

atmospheric composition with time horizons as long as the next 120 hours, consisting of 56 

reactive trace gases in the troposphere, stratospheric ozone, and five different types of aerosols 

(i.e., desert dust, sea salt, organic matter, black carbon, and sulphate) (Wagner et al., 2021).  

EAC4 (ECMWF Atmospheric Composition Reanalysis 4) is the fourth generation of ECMWF 

global atmospheric reanalysis. Reanalysis integrates model data with observations from 

throughout the world to create a globally complete and consistent dataset using an atmosphere 

model based on physical and chemical rules. This data assimilation principle is based on the 

method employed by numerical weather prediction centers and air quality forecasting centers 

(Peuch et al., 2018). The assimilation system can estimate biases between observations and 

separate high-quality data from low-quality data. Estimates can be made using the atmosphere 
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model in areas with limited data coverage or for atmospheric contaminants for which no direct 

observations are available. Reanalysis is a very convenient and popular dataset to work with since 

it provides estimates for each grid point around the world for each regular output time over a long 

period of time, always in the same format. The observing system has evolved significantly over 

time, and while the assimilation system can fill data gaps, the initially more sparser networks result 

in less accurate estimations. As a result, EAC4 is only available since 2003 (Copernicus, 2020). 

CAMS gives global estimates every 3 h, with a horizontal resolution of 0.75°x 0.75° and a vertical 

structure of 60 hybrid model levels, with a top-level at 0.1 hPa. 

In the current study we used a single-level PM2.5 data downloaded from CAMS website 

(https://ads.atmosphere.copernicus.eu) for the years 2019 and 2020. 

3.3.2.2 ERA5 Meteorological datasets 

ECMWF prepared the ERA5 reanalysis as part of the Copernicus Climate Change Service (C3S), 

which will contain a full record of the global atmosphere, land surface, and ocean waves from 

1950 onwards. This new reanalysis will take the place of the ERA-Interim reanalysis, which began 

in 2006 (Hersbach et al., 2020). ERA5 produces hourly estimates for a wide range of atmospheric, 

oceanographic, and land-surface variables. An underlying 10-member ensemble samples an 

uncertainty estimate at three-hourly intervals. For your convenience, the ensemble mean and 

spread have been pre-calculated. Such uncertainty estimations are intimately tied to the available 

observing system's information content, which has developed significantly over time. They also 

show flow-dependent sensitivity zones. Monthly-mean averages have also been pre-calculated to 

help with many climatic applications, while monthly means for the ensemble mean and spread are 

not available. For the reanalysis, data was regridded to a standard lat-lon grid of 0.25 degrees and 

0.5 degrees for the uncertainty estimate (0.5 and 1 degree for ocean waves, respectively). There 

are four major subsets: hourly and monthly products on pressure levels (upper air fields) as well 

as single levels (atmospheric, ocean-wave, and land surface values). ERA5 hourly data on single 

levels starts from 1940 to the present (Hersbach et al., 2020). 

Data was downloaded from Copernicus climate data platform website 

(https://cds.climate.copernicus.eu). In this study we used the temperature of air at 2 m above the 

surface (T in ˚C), relative humidity (RH), Planetary boundary layer height (PBLH in m), 10 m u 

and v components of wind (u10 and v10 in m/s), surface pressure (P in Pa) and total could cover 

(tcc). 

3.3.2.3 LightGBM algorithms 

LightGBM is a highly effective and scalable gradient boosting decision tree technique that benefits 

from its histogram-based approach, leaf-wise tree development strategy, and proprietary feature 

bundling (Ke et al., 2017). LightGBM algorithms are a type of gradient boosting framework that 

have received a lot of attention due to their remarkable performance and efficiency when dealing 

with large-scale datasets (Sheridan, Liaw and Tudor, 2021). LightGBM algorithms help to advance 

cutting-edge technology by boosting our understanding of complicated data patterns and, 

eventually, decision-making processes across numerous industries. Overall, LightGBM algorithms 

offer extraordinary societal benefit by expanding the field of machine learning and enabling more 

accurate and efficient data processing (Xia et al., 2021). 

LightGBM can process massive amounts of high-dimensional big data with greater efficiency and 

performance than traditional machine learning approaches.  In our study, LightGBM is an 

appropriate choice. The mathematical equations for PM2.5 calibration schemes are as follows: 

𝑃𝑀2.5,𝐶 = 𝑓𝑚𝑜𝑑𝑒𝑙( 𝐶𝐴𝑀𝑆𝑃𝑀2.5, 𝑇, 𝑅𝐻, 𝑏𝑙ℎ, 𝑢10, 𝑣10, 𝑃, 𝑡𝑐𝑐, ℎ𝑜𝑢𝑟, 𝑑𝑎𝑦, 𝑚𝑜𝑛𝑡ℎ) (4)  
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The data preprocessing and data matching phase involved preparing and aligning the CAMS and 

ERA5 datasets for further analysis. The resolution of the CAMS dataset is 0.75x0.75, while the 

resolution of the ERA5 dataset is 0.25x0.25. A geographic matching procedure was used to match 

the air quality stations with the relevant grid points in each dataset. The purpose was to find the 

CAMS and ERA5 grid point that was nearest to each air quality station. The geographic 

coordinates of the air quality stations were matched with the grid points in both the CAMS and 

ERA5 datasets during the data matching process. The closest grid point to each station was 

obtained by computing the distances between the station coordinates and the grid point 

coordinates. 

After the data preprocessing and matching phase, the datasets were further divided into training 

and test sets (80 x 20% split) with 5-fold cross validation. The Pearson correlation R is calculated 

between the raw CAMS and in-situ PM2.5 before the training of the model for the test data, and 

after of the training of the model between calibrated and in-situ PM2.5. 

3.4 Data and statistics 

3.4.1 The MERRA-2 Aerosol Reanalysis (MERRAero) 

The Goddard Earth Observing System Model, Version 5 (GEOS-5) is the foundation of the 

MERRA-2 assimilation system (Molod et al., 2015). MEERA-2 incorporates spaceborne aerosol 

products from Moderate Resolution Imaging Spectroradiometer (MODIS), Multi-angle Imaging 

Spectro Radiometer (MISR), and the ground-based remote sensing network AErosol RObotic 

NETwork (AERONET) as data for its aerosol dataset. The optical characteristics, emissions, 

deposition, and aerosol mixing ratios of the five different types of aerosols are all included in the 

MERRA-2 aerosol dataset vertically (Buchard et al., 2017; Randles et al., 2017). The data from 

MERRA-2 comprise 21 different types of products, such as atmospheric aerosols, radiation, 

temperature, water vapor, precipitation, etc. The data span the years 1980 to the present, and are 

saved in a standard grid of 0.5° × 0.625° (Randles et al., 2017). 

The GOCART (the Goddard Chemistry Aerosol Radiation and Transport model) chemistry 

module, which simulates five different forms of aerosols, is integrated with the MEERA-2 model 

(sulfate (SO4), organic carbon (OC), black carbon (BC), sand dust (DS), and sea salt (SS)). These 

aerosols are considered as external mixes that do not interact with one another. While the surface 

wind speed affects the emissions of dust and sea salt, other aerosol types are predicted from 

potential natural and anthropogenic sources. Convective large-scale wet removal, dry deposition, 

sedimentation, and chemical processes to generate sulphate aerosol from Sulphur dioxide (SO2) 

oxidation are all included within the GOCART model (Randles et al., 2017). 

The parameterizations of natural and anthropogenic emissions in MERRAero have got numerous 

significant modifications from the previous edition of the GEOS-4 modelling system (Colarco et 

al., 2010). The Edgar-4.1 inventory was used to calculate SO2 emissions from anthropogenic 

sources, and the injection scheme was changed to account for changes in the injection profiles of 

emission sources from the energy and non-energy sectors (Buchard et al., 2014). The emissions 

from biomass burning are from the NASA Quick Fire Emission Dataset (QFED) Version 2.1. 

QFED is a worldwide fire radiative power-based inventory of daily aerosol precursor and trace gas 

emissions (Koster, Darmenov and da Silva, 2015). According to the study of Jaeglé et al. (2011) 

a novel independently obtained sea surface temperature (SST) adjustment term was used to modify 

the intensity of sea-salt emissions. Dust emission is predicated on the correlation of reported dust 

source sites with large-scale topographic depressions, as proposed by Ginoux et al. (2001). 

MERRA-2 coupled AOD at 550 nm, from a variety of ground- and space-based remote sensing 

platforms, including (i) bias-corrected AOD from Moderate Resolution Imaging 
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Spectroradiometer (MODIS) Terra and Aqua, (ii) the Advanced Very High Resolution Radiometer 

(AVHRR) instruments, (iii) AOD retrievals from the Multiangle Imaging SpectroRadiometer 

(MISR) over bright surfaces, and (iv) ground-based Aerosol Robotic Network (AERONET) direct 

measurements of AOD (Level 2) (Randles et al., 2017). 

3.4.2 Air quality stations 

The Hungarian Air Quality Monitoring Network provides real-time and historical air quality 

monitoring data throughout Hungary. The network is divided into two main parts: automatic 

monitoring stations that continuously measure a wide range of air pollutants in the ambient air, 

and a manual system with sample points and subsequent laboratory examination. The existing 

network in Hungary comprises 37 fully automatic monitoring stations. The National Air Quality 

Reference Centre and Laboratory's primary responsibilities are as follows: Oversight of the 

operation of the Hungarian Air Quality Monitoring Network (HAQM) in accordance with Ministry 

of Agriculture standards, coordination and regulation of HAQM methods and procedures in 

accordance with EU regulations, maintain measurement traceability by running an approved 

Calibration Laboratory, and participation in national and worldwide standards development. A CO 

analyser, PM10 / PM2.5 monitors, a calibration tower, and a mass flow meter calibration system 

were added to the calibration laboratory instrument fleet (Weidinger et al., 2010). 

Among the monitoring sites in Budapest, the Gilice tér urban background station (located in the 

SE part of the city) was chosen for our analysis because it is a standard meteorological and air 

quality monitoring station that provides PM10 and PM2.5 concentrations and detailed 

meteorological observations with good data coverage.  

Kecskemét is located 86 kilometers from both the capital Budapest and the country's third-largest 

city, Szeged, and is almost equal distance from the country's two major rivers, the Danube and the 

Tisza. Kecskemét is the city most vulnerable to climate change, with a slew of environmental 

issues in the Danube-Tisza Interfluve. The most significant changes include the degradation of air 

quality, the influence of urban heat islands, and water management (Hoyk, Kanalas and Farkas, 

2020). The air quality station in Kecskemét is an urban background station. 

Kazincbarcika is a town in the county of Borsod-Abaj-Zemplén in Northern Hungary. It is located 

in the valley of the Sajó River, 20 km away from Miskolc, the county capital. The air quality 

station in Kazincbarcika is an international urban background station. Table 3 presents the list of 

air quality stations used throughout the different studies as well as their geographical coordinates. 

All PM10 and PM2.5 data were retrieved from the Hungarian Air Quality Network platform 

(Országos Légszennyezettségi Mérőhálózat (OLM), https://legszennyezettseg.met.hu), which is a 

platform that provides actual and historical air quality monitoring data throughout Hungary. 
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Table 3: List of air quality stations with latitudes and longitudes 

Station latitude longitude 

Ajka 47.10 17.55 

Budapest Gilice 47.43 19.18 

Kazincbarcika 48.24 20.61 

Kecskemet 46.90 19.68 

Miskolc_Alfoldi 48.09 20.81 

Nyiregyhaza 47.96 21.71 

Pecs Nevelesi Kozpont 46.04 18.22 

Szazhalombatta_Buzavirag_ter 47.31 18.92 

Szeged_Rozsa 46.27 20.15 

Szolnok 47.18 20.2 

Veszprem 47.09 17.9 

 

3.4.3 Performance statistics 

The performance of the air quality forecast models (in sections 3.3.1 and 3.3.2) using the testing 

dataset was assessed using model performance metrics, such as R2 computed by Equation (5), 

RMSE calculated by Equation (6), MAE calculated by Equation (7), and Pearson correlation R 

calculated by Equation (8) 

𝑅2 =
[∫ (𝑝𝑖− �̅�)

𝑛
𝑖=1 −(𝑜𝑖−�̅�)]

2

[∫ (𝑝𝑖− �̅�)
𝑛

𝑖=1

2
][∫ (𝑜𝑖− �̅�)

𝑛
𝑖=1

2
]
 ,            (5) 

𝑅𝑀𝑆𝐸 = √∑
(𝑝𝑖−𝑜𝑖)2

𝑛
𝑛
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𝑀𝐴𝐸 =
1

𝑛
 ∑ |𝑝𝑖 − 𝑜𝑖|𝑛

𝑖=1  ,            (7) 

𝑅 =
∑(𝑝𝑖− �̅�)−(𝑜𝑖−�̅�)

√∑(𝑝𝑖− �̅�)2  ∑(𝑜𝑖− �̅�)2
      (8)  

 

Where: 

𝑝𝑖 the predicted value of the sample, and �̅� is the predicted average. 

𝑜𝑖  the observation value, and �̅�  is the observation average. 

𝑛 the number of the samples. 
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4 RESULTS  

In this chapter, I present the results of all the 3 main chapters presented in Material and Method 

section. 

4.1 PM dispersion experiments 

4.1.1 Small scale experiments of PM10 dispersion around obstacles 

The results of the experiments showed some interesting aspects for the understanding of the PM10 

dispersion around simple obstacle (Wall). 

4.1.1.1 Sensor A 

The sensor A is the sensor behind obstacle. Figure 4.1 shows the average concentration of PM10 

during each experiment in function of Obstacle heights (OH) and distance from the source (OD). 

The average PM10 concentration increase with increasing of the obstacle distance from the source 

at higher wind speed while in low wind speed it is almost stable. At wind speed of 2.9 m/s the 

average PM10 concentration was the same for obstacle height 240 and 360 mm while it was at its 

peak when obstacle height was 120 mm. while, for wind speed of 1m/s the peak average PM10 

concentration was at obstacle height of 360 mm and almost the same in the other two heights. 

 

Figure 4.1. graphs of Average PM10 concentration registered by Sensor A in function of Obstacle heights 

and distance from the source in case of a) wind speed 2.9 m/s and b) wind speed 1 m/s 

4.1.1.2 Sensor B 

For the sensor B (Figure 4.2), which is the sensor placed before the wall, the PM10 average 

concentration was higher in case of wall height of 240 and 360 mm, and wall distance of 750 mm 
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at wind speed of 1 m/s. While it reaches the maximum when obstacle distance from the source is 

834mm, obstacle height is 120 mm and wind speed of 2.9 m/s. 

 

Figure 4.2. Graphs of Average PM10 concentration registered by Sensor B in function of Obstacle heights 

and distance from the source in case of a) wind speed 2.9 m/s and b) wind speed 1 m/s 

4.1.1.3 Sensor C 

The sensor C placed near the source registered almost same average concentration of PM10 at 

wind speed of 1m/s with decrease in concentration in case of obstacle height 360 mm and distance 

from source 834 mm (Figure 4.3). In the other hand it was changing at wind speed of 2.9 m/s. The 

peak average PM10 concentration was as the same as sensor B, when obstacle distance from the 

source is 834 mm and obstacle height is 120 mm. 
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Figure 4.3. Graphs of Average PM10 concentration registered by Sensor C in function of Obstacle heights 

and distance from the source in case of a) wind speed 2.9 m/s and b) wind speed 1 m/s 

The result of a multiple regression analysis aims to predict PM10A concentration using four 

independent variables: "OH", "OD", "PM10C," and "Ws". The resulting the equation of the 

regression model (Eq.9) can be written as follows: 

𝑃𝑀10𝐴  =  143.07 − 71.86 ∗ 𝑂𝐻 −  171.42 ∗ 𝑂𝐷 +  1.23 ∗  𝑃𝑀10𝐶  +  12.34 ∗ 𝑊𝑠         (9) 

The correlation coefficient (R) was 0.89, suggesting that the dependent variable and the set of 

independent factors had a moderately significant positive connection. Furthermore, the coefficient 

of determination (R2) was 0.79, indicating that the independent variables in the model explain 

roughly 79% of the variation in the dependent variable. 

The results of this research concluded that there is a positive significant effect of Obstacle heights, 

distance of the obstacle from the source, and the wind speed. The PM10 average concentration 

decrease significantly in the sensor A (behind the wall) when the obstacle height increases and 

also when the obstacle distance from the source increase also in case of the two-wind speed (1 m/s 

and 2.9 m/s) with higher concentrations registered in case of wind speed is 1 m/s. while, changes 

in the PM10 average concentration was also seen in case of Sensor B (in the middle) and sensor C 

(near the source) especially in case of high wind speed (2.9 m/s) and that is due to the turbulence 

created before and after the walls when the wind hits it, in addition to the reflexing of PM plumes 

by the obstacle. Also, maximum PM10 concentration sensor A (after wall) and sensor B (before 

wall) at obstacle distance 834 mm, and obstacle height 120 mm, while at low wind speed (1 m/s) 

the PM10 concentrations does not change with effects of obstacle height and distance from source. 
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In contrast, at higher wind speed (2.9 m/s), the obstacle height and distance affect the PM10 

concentration before and after the obstacles in the same way, meaning that the concentrations tend 

to decrease with obstacle height increases, and as close as the obstacle to the sensor the 

concentration increases with low obstacle height, due to the turbulence created near the obstacle 

which trap the PM10 particles near the obstacle. Thus, the experiments results prove the same 

effects of simple obstacle presence as larger scale study where complex urban landscape and 

structure are involved. The experiments proved that also in small scale experiments the 

transportation of the PM particles are the same as in real scale transportation of PM. 

Generally, the PM10 average concentration tends to decrease when obstacle heights increase but 

also combined with position of the obstacle far from the source. In our case, the experiment is a 

simplification of the dispersion of PM concentration (PM10 specifically) in an austere 

environment. It represents the basis for understanding the PM pollutant source interaction with the 

barrier and how it affects PM10 concentrations. The results may change in a complex urban setting, 

where many parameters can intervene to change the dispersion of air pollutants. Our case study's 

results are valid but subject to investigation in other experimental settings. 

Moreover, using Incense sticks as source of PM pollution showed that while the stick is burning it 

continues to spike the PM10 concentration, as before the experiments the background 

concentration of PM10 was 7±3 µg/m3 and during the experiments it can reach 700 µg/m3, which 

manifest the short-term effect of burning the incense stick and its risk of affecting the indoor air 

quality if used in excess. Finally, the experiment is representation of trying to find simple obstacle 

placement that can reduce significantly PM plume coming from source that could be industrial or 

traffic source. The results show that the higher the obstacle is better but also closer is better also, 

but in real situation simple obstacle can be put in the way of PM plumes and as closer as possible 

to the area that is subject to be defended from high PM concentrations. And one of the best options 

is to combine simple obstacle (solid barrier) with vegetated/tree barrier as the last was proven to 

improve air exchange, and The tree planting and trunk height have a considerable impact on the 

air flow and pollution dispersion (Buccolieri et al., 2022). 

4.1.2 Effect of small hills on PM10 and PM2.5 concentrations in short range 

The average concentrations registered by sensor 3 (S3) of PM10 and PM2.5 are higher in the case 

of the 1m height and 0.8m height compared to the concentrations recorded during flat case Figure 

4.4. 

At low wind speeds (0 and 0.7 m/s), the average concentrations of PM10 and PM2.5 registered by 

S3 are almost the same in all the 3 cases. At wind speeds of 2.4, 3.7, and 5.1 m/s, the average 

concentration of PM10 and PM2.5 are higher in the case of the two different heights compared to 

flat areas. The peak concentration of PM10 and PM2.5 in case of 1m height registered when the 

wind speed was 3.7 m/s, while in case of 0.8 m height was at a wind speed of 5.1 m/s, while in a 

flat area, average concentrations registered were almost the same when wind speed was higher 

than 2.4 m/s. In addition, the same in the case of 0.8 height, but the average concentration was 2.5 

to 3 times higher than in the flat case with a slight decrease at high speed (6.1 m/s). While in the 

case of 1m height, the average PM concentration was 2 to 3 times with wind speeds of 3.7 and 

5.1m/s, and almost the same at wind speeds of 2.4 and 6.1 m/s. 

The difference in the ground surface elevation between case 2 and case 3 is just 0.2 m, but the 

effect on the dispersion of the PM plumes can be seen from the average PM concentrations. In the 

case of a flat ground surface, the spread of PM pollutants is parallel to the wind direction. In 

contrast, high ground (in our case, in the form of a hill) at different elevations changes the 

dispersion pathway of the PM particles. The different slopes of the hills create other flows of the 
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PM dispersion; in case two, the approximate same PM concentrations registered in different ranges 

of wind speed means the PM particles are trapped in the same way regardless of the wind speed. 

 

Figure 4.4. Average S3 concentrations in all cases of A) PM10 and B) PM2.5 

Comparing the three PM10 concentrations registered by the 3 sensor (Figure 4.5), it’s seen that S1 

registered higher concentrations in case 2 and 3 than in case 1, especially at wind speeds less than 

3 m/s, and that is due to reflective effect of the hill and also low wind speed. While for S2 the PM 

particles are trapped before the hill which promote higher PM concentrations. 

In this study also, multiple linear regression method was used to estimate PM10 concentration at 

the top of the hill (PM10S3 in µg/m3) based on the PM10 concentration near source (concentration 

registered by Sensor 1, PM10S1), PM10 concentration at the bottom of the hill (concentration 

registered by Sensor 2, PM10S2), the wind speed (Ws in m/s), and the height of the hill (H in m). 

The result of the multiple linear regression is the following equation: 

𝑃𝑀10𝑆3  =  5.92 − 0.173 ∗ 𝑃𝑀10𝑆1 + 0.580 ∗ 𝑃𝑀10𝑆2 + 4.29 ∗ 𝑊𝑠 − 11.29 ∗ 𝐻 (10) 

The correlation coefficient (R) was 0.9, indicating a relatively strong positive correlation between 

the dependent variable and the combination of independent variables. In addition, the coefficient 

of determination (R2) was 0.82, which means that approximately 82% of the variance in the 

dependent variable is explained by the independent variables in the model. 
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Figure 4.5. PM10 concentrations of the 3 sensors in I) case 1, II) case 2, and III) case 3 

Analysing the correlations between PM10 concentrations of sensors S1, S2 and S3 (Figure 4.6), it 

shows that for S1 correlation was low and positive in case 1 (0.2), but it changes to negative in 

cases 2 and 3 (-0.18 and -0.5 respectively), which show the effects of the height of the hills. For 

S2, the correlation between PM10 concentration and wind speed decrease as the height of the hill 

increase, while for S3, a strong correlation is observed in case 1 and 2 (0.8 and 0.84, respectively), 

and it decreases in case 3. Thus, the decrease in the correlation due to the higher elevation of the 

hill could be because of the changes in the wind flow created by different elevations of the hill. 

The results underscore the significant influence of hill elevation on the correlation between PM10 

and wind speed at various sensor locations, emphasizing the role of local topography in shaping 

air pollution patterns during the experiments. 
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Figure 4.6. Correlations between PM10 concentrations and wind speed in all cases for 1) Sensor 1, 2) 

Sensor 2, and 3) Sensor 3 

4.2 Saharan Dust storm transport 

4.2.1 Dust Storm simulation over the Sahara Desert (Moroccan and Mauritanian regions) 

using HYSPLIT 

In this chapter I describe the results Saharan Dust simulation study using HYSPLIT model. 

4.2.1.1 Dust Simulation and cluster analysis results 

Hysplit PM10 emission modelling results (Figures 4.7 and 4.8) show that the PM10 emission on 

the 14th of June 2020 started from the region of Tinduf, Algeria (Close to the Moroccan borders), 

Adrar, Tiris Zemmour, and Tagant in Mauritania. While the dust storm was continuous for 4 days 

and the dust was transported to the North Atlantic Ocean, the average PM10 concentration between 

0 and 100m was between 100 µg/m3 and 10000 µg/m3 in some critical regions like Tinduf, Algeria 

on the 14th and 17th of June 2020, Adrar, Mauritania on the 15th, Bir Anzarane, Morocco on the 

16th, Tiris Zemmour, Mauritania on the 17th, Goundam Cercle, Mali on the 18th of June 2020. 

Comparing the average PM10 concentration maps between 0 and 100m from the HYSPLIT 

modelling results and the MODIS Aqua Deep Blue AOD maps (Figure 4.9), it can be seen that in 

most of the regions where the PM10 concentration are high, the AOD index is also at a high level, 

which indicates a positive correlation between the PM10 concentration and the AOD index of 

MODIS Aqua. Regions like Tiris Zemmour in Mauritania, Western Sahara of Morocco, Western 
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and Southern regions of Algeria, are also characterized as source regions that influence the level 

of the PM10 concentration over the western Mediterranean Basin (Salvador et al. 2014; Russo et 

al. 2020). Moreover, all the areas that had a high concentration of PM10 in the HYSPLIT dust 

simulation results and high AOD values (between 0.7 and 1) according to time-averaged maps of 

MODIS-Aqua are considered as primary dust natural source regions (Ginoux et al. 2012), and they 

are active throughout the year, although their peak activity is between April and September 

(Prospero et al. 2002). 

 

Figure 4.7. Modelling results for the concentration of PM10 averaged across the 0-100m altitude 

range in June a) 14th from 00 UTC to 12 UTC, b) 14th from 12 UTC to 15th 00 UTC c) 15th from 

00 UTC to 12 UTC 
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Figure 4.8. Modeling results for the concentration of PM10 averaged across the 0-100m altitude range in 

June a) 17th from 00 UTC to 12 UTC, b) 17th from 12 UTC to 18th 00 UTC c) 18th from 00 UTC to 12 

UTC d) 18th from 12 UTC to 19th 00
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Figure 4.9. MODIS Aqua time Averaged Map of Aerosol Optical Depth 550 nm (Deep Blue, Land-only) 

daily 1 deg in the region of western Sahara on the a) 14, June 2020 b) 15, June 2020 c) 16, June 2020 d) 

17, June 2020 e) 18, June 2020 f) 19, June 2020 
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The analysis of the trajectories of the PM10 particles emitted from numerous locations in the 

western Sahara during the June dust storm event using the HYSPLT cluster analysis method is 

shown in Figures 4.10 and 4.11. A large percentage of the PM10 trajectories analysed in the period 

between 10th and 30th of June 2020, reached the middle-upper troposphere of the Caribbean Sea 

and the Gulf of Mexico. 80%, 51%, 76%, and 70% of the PM10 particle trajectories from Bir 

Anzarane Morocco, Nouakchott, and Tichit Mauritania, and Bordj Badji Mokhtar Algeria arrived 

to the Gulf of Mexico respectively. 

 

Figure 4.10. Forward trajectory cluster analysis results, each picture shows Cluster mean trajectories with 

the percentage of trajectories in each cluster from a) Dakhla, b) Bir Anzarane, c) Oum Dreyga, d) 

Aousserd, e) Nouakchott, and f) Tichit. 

Many studies state that during summer, and especially during Saharan dust events, the level of 

PM10 and PM2.5 concentration increased dramatically. (Bozlaker et al., 2013) state that during 

the Saharan episode in 2008, the total dust contribution for PM10 increased by 85% in Houston, 

Texas, which shows a dominance of the transported PM10 particles from Sahara during dust 



Results 

 

57 

 

episodes. Also, (Bozlaker et al., 2019) found dust contributions of 19% to 48% of PM2.5 during 

the 9‐day dust episode in 2014 to African dust. Additionally, the results of the cluster analysis 

point out a number of source regions in the western Sahara that contribute to the rise in PM10 

concentrations in the Southern Coast of the United States, such as Bir Anzarane Morocco, 

Nouakchott, and Tichit Mauritania, and Bordj Badji Mokhtar Algeria. 

 

Figure 4.11. Forward trajectory cluster analysis results, each picture shows Cluster mean trajectories with 

the percentage of trajectories in each cluster from a) Atar, b) Toumbouctou cercle, c) Bordj Badji 

Mokhtar and d) Tamanrasset 

4.2.1.2 PM concentration levels and AOD 

In addition, the backscatter vertical profile as measured by CALIPSO on June 21 and 23, 2020 

(Figure 4.12) shows evidence of the high altitude of the dust particles transported from the Saharan 

region. The top layer altitude of the dust on June 21 and 23 were between 4 and 4.5 km, forming 

a massive dust cloud (more than 2 km of  thickness) over the Windward and Leeward islands in 

the Caribbean Sea, and the effect was seen in the hourly measurements of the PM10 concentrations 

of the Fort de France station in Martinique Island where the PM10 daily average concentration 

was 181, 264, and 183 µg/m3 on the 21, 22 and 23 of June consecutively with an hourly 

concentration that reached 372 µg/m3, comparing to 42 µg/m3 that was registered at the beginning 

of that month. Furthermore, and after 11days of the starting of the Saharan dust storm, the effect 

of the transported particles was clear in the US coastal cities of the Gulf of Mexico. Texas and 

Florida states were the most affected by having an Unhealthy level of PM10 and PM2.5 

concentrations, followed by Georgia, Alabama, Mississippi, and Louisiana states that reached the 

level of Unhealthy for sensitive groups during the 26 and 27 June 2020, which is in correlation 
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with the backscatter vertical profile measured by CALIPSO on June 27, 2020, showing dust cloud 

over Florida state with dust top layer altitude at 4 km. 

 

Figure 4.12. CALIPSO 532nm Total Attenuated Backscatter Version 4.10 images, the dust appears in 

yellow and red in the images. a) Orbit map on 23, June 2020 with area covered in d image colored in pink 

b) 532nm Total Attenuated Backscatter on 23, June 2020 with white arrows pointing at the dust top layer 

over the Caribbean Sea c) Orbit map on 27, June 2020 with area covered in image colored in pink d) 

532nm Total Attenuated Backscatter on 27, June 2020 with white arrows pointing at the dust top layer 

over Florida state 

In order to quantify the dust event, Figure 4.13 and 4.14 show AOD values retrieved from 

MERRA-2 re-analysis data for Bir Anzarane, Morocco and Nouakchott, Mauritania, for the month 

of June 2020. According to both, the June 2020 dust event was historical by June standards. For 

Bir Anzarane, Morocco, the highest AOD value was 3.522 in June 2020, a 188% increase from 

the highest value registered from 2010 to 2019 (1.87 in June 2017). For Nouakchott, Mauritania, 

the highest AOD value recorded in June between 2010 and 2019 was 2.78 in June 2010, while in 

June 2020, the highest AOD was 5.87, 211% higher. Even though such high AOD levels are 
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exceptional, but not uncommon; during the record-breaking March 2018 dust outbreak, Solomos 

et al. (2018) and Kaskaoutis et al. (2019) observed AOD values over 6. 

 

Figure 4.13. Bir Anzarane Morocco AOD values in June 2020 

 

Figure 4.14. Nouakchott, Mauritania AOD values in June 2020 
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4.2.2 The identification and evaluation of the Saharan dust storm events in Budapest, 

Hungary between 2018 and 2022 

Based on the daily 700 hPa geopotential height, wind maps, and SDE-specific dust transport paths, 

SDEs were divided into three primary synoptic meteorological groups by Varga, (2020). The 

various categories were distinguished by certain deterministic atmospheric patterns: Type-1 SDEs 

were linked to deep atmospheric depressions over Western Europe and north-western Africa. 

While, dust transport during Type-2 episodes was brought on by Central Mediterranean cyclones, 

while Type-3 events were defined based on the infrequent dust transport that occurred when dust-

loaded air masses approached the Carpathian Basin from the north-western directions (Figure 

4.15). From 2018 to 2022, 11 Saharan Dust events (SDEs) were identified in Hungary (Focus on 

the capital Budapest). 

 

 

Figure 4.15. Wind flow patterns (mean meridional (a) and zonal (b) wind components at 700 hPa) and (c) 

specific dust transport routes at 3000 m above surface level by different Saharan dust event types (Varga, 

2020). 

SDE1: January 7–9, 2018 

SDE1 was a type 2 event, Figure 4.16.A show the transport of the dust mass to Hungary at its peak 

form. The maximum Dust mass was 675.5 mg/m2, and PM10 daily concentration increased by 

factor of 2.5, (from 22µg/m3 in the 4th of January to 55 µg/m3 in the 7th of January). 

SDE2: February 7–8, 2018 
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SDE2 was also a type 2 as seen in Figure 4.16.B. The maximum Dust mass was 834.7 mg/m2, and 

PM10 daily concentration increased by factor of 2, (from 31 µg/m3 in the 4th of February to 66 

µg/m3 in the 9th of February). 

SDE3: October 28–31/01–02 November, 2018 

SDE3 was also a type 2 as seen in Figure 4.16.C, it was a two wave SDE, the first wave started to 

hit on the 28th of October and the second wave on the 1st of November. The maximum Dust mass 

was 505.5 mg/m2 on the first wave and 367.4 mg/m2 on the second wave, and PM10 daily 

concentration increased by factor of 3, (from 20 µg/m3 in the 26th of October to 61 µg/m3 in the 

02nd of November). 

SDE4: April 23-27, 2019 

Even SDE4 was a type 2 as shown in Figure 4.16.D. This event was also a 2 waves SDE, the first 

wave started to hit on the 23rd of April and the second wave on the 26th of April. The maximum 

Dust mass was 993.8 mg/m2 on the first wave and 952.9 mg/m2 on the second wave, and PM10 

daily concentration increased by factor of 1.7, (from 28 µg/m3 in the 20th of April to 48 µg/m3 in 

the 26th of April). 

 

Figure 4.16. Dust Column Mass representation at its peak for A) SDE1, B) SDE2, C) SDE3, and D) 

SDE4. 

SDE5: May 13-20, 2020 
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SDE5 was a type 1 as illustrated in Figure 4.17.A. This event was also a 2 waves SDE, the first 

wave started to hit on the 14th of April and the second wave on the 16th of April. The maximum 

Dust mass was 654.5 mg/m2 on the first wave and 612.1 mg/m2 on the second wave, and PM10 

daily concentration increased by factor of 1.5, (from 18 µg/m3 in the 12th of May to 28 µg/m3 in 

the 20th of May). 

SDE6: February 06-08, 2021 

SDE6 is a type 1 (Figure 4.17.B). The maximum Dust mass was 989.9 mg/m2, and PM10 daily 

concentration increased by factor of 2, (from 14 µg/m3 in the 4th of February to 31 µg/m3 in the 6th 

of February). 

SDE7: February 23-26, 2021 

SDE7 was a type 3 (Figure 4.17.C). The maximum Dust mass was 691.9 mg/m2, and PM10 daily 

concentration increased by factor of 3, (from 29 µg/m3 in the 21st of February to 92 µg/m3 in the 

26th of February). 

SDE8: June 22-25, 2021 

SDE8 was a type 1 (Figure 4.17.D). The maximum Dust mass was 719.8 mg/m2, and PM10 daily 

concentration increased by factor of 2, (from 10 µg/m3 in the 20th of February to 23 µg/m3 in the 

25th of February). 

 

Figure 4.17. Dust Column Mass representation at its peak for A) SDE5, B) SDE6, C) SDE7, and D) 

SDE8. 
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SDE9: March 17-20, 2022 

SDE9 was a type 3 (Figure 4.18.A). The maximum Dust mass was 719.8 mg/m2, and PM10 daily 

concentration increased by factor of 2, (from 10 µg/m3 in the 20th of February to 23 µg/m3 in the 

25th of February). 

SDE10: March 29-31, 2022 

SDE10 was a type 3 (Figure 4.18.B). The maximum Dust mass was 679.9 mg/m2, and PM10 daily 

concentration increased by factor of 1.4, (from 29 µg/m3 in the 26th of March to 43 µg/m3 in the 

30th of March). 

SDE11: April 22-24, 2022 

SDE11 was a type 2 (Figure 4.18.C). The maximum Dust mass was 699.7 mg/m2, and PM10 daily 

concentration increased by factor of 2.4, (from 12 µg/m3 in the 19th of April to 29 µg/m3 in the 21st 

of April). 

 

Figure 4.18. Dust Column Mass representation at its peak for A) SDE9, B) SDE10, C) SDE11 

During the period of 2018 to 2022, type 2 SDEs were dominant (5 times – Figure 4.19.I), while 

type 1 and 3 both occurred 3 times each. In addition, February, March and April months are the 

months where the most of SDEs happened (7 times – Figure 4.19.II), and SDEs occurring in those 

months are more likely to be severe events, since the maximum dust mass registered is in that 

period (SDE4), and also associated with an increase of PM10 daily average concentration by a 

factor of 2 or more. 
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With increasing distance from the source, dust's grain size decreases. When transported over long 

distances, coarse particles typically do not exceed 20μm because of their higher settling velocity 

(Does et al., 2016). Mahowald et al. (2014) hypothesized that because coarser particles tend to 

settle out more readily, dust in the high atmosphere is finer grained than dust that has been 

deposited. Moreover, a high Saharan Dust Mass during SDE could lead to high increase in PM10 

concentrations, but that depends on the dust particles size and deposition velocity, which mean 

that a relationship between dust mass during SDE and PM10 concentration is not always a direct 

positive relationship. Varga, (2020), highlight contravention of the numerical simulations that 

estimate the mineral grains sizes during SDE, and that the bulk of global and regional dust models 

only use a few size-bins with a rather restricted size range, hence mineral grains larger than 20 μm 

are typically not taken into consideration in the numerical simulations, and the direct 

measurements of individual particles illustrate that the mineral grain size during a SDE in the 

Carpathian region is about 40 μm. 

 

Figure 4.19. Frequency distribution of SDEs by number of events and I) Types, and II) Months of 

occurrence 

 

4.2.3 Case study of the Saharan dust effects on PM10 and PM2.5 concentrations in Budapest 

in March 2022 

4.2.3.1 PM10 and PM2.5 concentrations during the Saharan dust events 

March 2022 dust storm events were type 3 events as described in previous chapter (4.4). The daily 

PM10 and PM2.5 concentrations increased in each Saharan dust event at a different percentage 
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rate. During the first SDE (SDE9) in March 2022 (17th -20th), the daily PM10 and PM2.5 

concentration jumped from 34 µg/m3 and 18 µg/m3 in 16th to 46 µg/m3 and 28 µg/m3 in the 18th 

and then start to decrease to reach 25 µg/m3 and 15 µg/m3 in the 20th. For the second SDE (SDE10) 

in March 2022 (28th – 31st), the daily PM10 and PM2.5 concentration changed from 29 µg/m3 and 

13 µg/m3 on the 27th to 43 µg/m3 and 18 µg/m3 on the 30th after which begin to decline to attain 

16 µg/m3 and 14 µg/m3 in the 1st of April 2022.  Hourly PM10 and PM2.5 concentrations (Figure 

4.20) provide details on how the hourly concentration changed with the SDE.  

SDE9 was more intense than SDE10, as the effects were seen on the level of PM10 and PM2.5. 

The peak hourly concentration for PM10 was 86 µg/m3 and 57 µg/m3 for SDE9 and SDE10 

respectively, while for PM2.5 it reached 51 µg/m3 and 27 µg/m3 as hourly concentration for SDE9 

and SDE10 respectively. 

 

Figure 4.20. Hourly concentration of a) PM10 during SDE9, b) PM2.5 during SDE9, c) PM10 during 

SDE10, and d) PM2.5 during SDE10 

About weather conditions, from 8 to 12 March 2022, the daily maximum temperature was between 

7 and 10˚C, the wind direction from the North and Northeast direction, and the maximum wind 

speed was between 3.5 and 5 m/s, and no precipitations were registered. There was a slight increase 

in the maximum temperature (between 8 and 15˚C) in the following days, while from the 15th of 

March wind pattern full of Saharan dust arrived by western winds and in-ground surface the wind 

speed didn’t exceed 3.5 m/s with no precipitations during SDE9.  

The temperature continued to increase after SDE9, ranging from 16 and 21˚C as the daily 

maximum temperature, and start to decrease from the 31st of march and returns to the same levels 

that were at the beginning of March 2022, from the 2nd of April 2022 (between 5 and 9˚C). On the 

other hand, Saharan dust clouds were transported by West-Southwest, Southwest, and South-

Southwestern winds, and maximum wind speed on the ground surface ranged from 3 and 5 m/s 

during the SDE10, and start to increase from the 1st of April 2022 to exceed 6 m/s as maximum 

wind speed, and no precipitations occurred on those days. 
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With increasing distance from the source, dust's grain size decreases. When transported over long 

distances, coarse particles typically do not exceed 20 µm because of their higher settling velocity. 

(Mahowald et al., 2014; Does et al., 2016) thought that dust in the upper atmosphere is finer 

grained than dust that has been deposited because coarser particles drop off more rapidly. 

Seasonally, summertime is when Saharan dust is coarser than wintertime. The high dust load in 

both SDEs triggered the increase of hourly PM10 and PM2.5 concentration. 

The Sahara is the main source of dust in the Northern Hemisphere, and it is obvious that it has an 

impact on many different continents, from the fertilization of South America to the air quality in 

Europe. The Saharan dust storms affects the PM concentrations depending on the intensity of the 

storm. During March 2022 SDEs, PM10 and PM2.5 concentrations in an urban background air 

quality station in Budapest increased by 12 µg/m3 and 10 µg/m3 respectively during SDE9, and 14 

µg/m3 and 5 µg/m3 during SDE10 as daily average concentrations. in Both SDEs the effect on 

PM10 was almost the same, while SDE9 raised the PM2.5 concentrations more than SDE10.  

The effects of March 2022 Saharan dust events were similar to the one that was identified in 2016, 

on October 15th, which washed out a large amount of Saharan dust in the central European region, 

where it has several impacts, from flight security to air quality and impacts on solar radiation 

(Rostási et al., 2022). However, March 2022 Saharan dust events had a more significant impact 

on air quality all over Europe, affecting a wider geographical area of western, central, and northern 

Europe, from Spain up to Scandinavia that led to an increase in PM concentrations (Liaskoni et 

al., 2023; Uzunpinar et al., 2023), and was associated with dust-infused cirrus clouds that persisted 

for nearly a week, affecting weather patterns and cloud cover over the region. 

With the changing of the world climate, the intensity and the number of the Saharan dust storms 

episodes increase, and many models are still improving to provide more accurate forecast and to 

analyse the dust effects on different meteorological and air quality parameters. 

4.3 Estimation and evaluation of PM concentrations 

4.3.1 Evaluation of PM surface concentrations simulated by Version 5.12.4 of NASA's 

MERRA-2 Aerosol Reanalysis over Hungary in the period between 2019 and 2021 

4.3.1.1 First Approach 

In the machine learning algorithm, we used a split of 0.8x0.2. 80% of the data were used to train 

the model and 20% for the validation of the predicted values given by the trained model. To arrive 

to the results presented, we tried the model for many times, and each time the parameters of the 

machine learning algorithms (mainly the number of trees) were changed until arriving to the 

maximum results that can be achieved, where beyond that point the results whether they stopped 

improving or the performances start to decline. 

For all the location chosen for this study, the use of equations 1 and 2 to estimate PM10 and PM2.5 

result in an R2 less than 0.1, and R2 improved when coupling 5 species concentration used in 

equations 1 and 2 with meteorological data and AOD (Figure 4.21).  

For Budapest Gilice tér station, in case of estimating PM10, MLR and OLS had low and a similar 

R2 (0.22 and 0.21), RMSE (15.4 and 15.5 µg/m3) and MAE (11.4 and 11.5 µg/m3) values. For RF, 

R2 of 0.75 achieved when N (the number of trees) was equal to 300, and RMSE and MAE were 

9.1 µg/m3 and 6.4 µg/m3 respectively. While, for XT R2 was equal to 0.78 when N=300, and RMSE 

and MAE were 8.1 µg/m3 and 5.7 µg/m3 respectively. Additionally, in case of estimating PM2.5, 

MLR and OLS also had low and a similar R2 (0.27), RMSE (9.1 µg/m3) and MAE (6.7 µg/m3) 

values. For RF maximum value of R2 (0.75) obtained when N was equal to 300, RMSE and MAE 

were 5.3 µg/m3 and 3.5 µg/m3 respectively. While, for XT, R2 was equal to 0.8 when N=300, 

RMSE and MAE were 4.7 µg/m3 and 3.1 µg/m3 respectively. 
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The same was for Kecskemét, for PM10, low R2 of 0.17 and 0.16 were obtained in MLR and OLS 

model respectively, and RMSE were 15.5 µg/m3 and 15.6 µg/m3, and MAE was identical for both 

models (11.5 µg/m3). For RF, value of 0.66 for R2 when N=270, and RMSE and MAE were 9.8 

µg/m3 and 6.8 µg/m3 respectively. While, for XT R2 was equal to 0.75 when N=300, and RMSE 

and MAE were 8.5 µg/m3 and 6 µg/m3 respectively. Moreover, in case of estimating PM2.5, MLR 

and OLS again had low R2 (0.23 and 0.22 respectively), RMSE (11.3 µg/m3 for both models) and 

MAE (7.5 µg/m3 for both models). For RF maximum value of R2 (0.69) obtained when N was 

equal to 300, RMSE and MAE were 7.1 µg/m3 and 4.7 µg/m3 respectively. While, for XT, R2 was 

equal to 0.76 when N=300, RMSE and MAE were 6.2 µg/m3 and 3.9 µg/m3 respectively. 

Furthermore, for Kazincbarcika in case of PM10, R2 of 0.24 was obtained in MLR and OLS 

models, and RMSE was 18.4 µg/m3 and 18.5 µg/m3, and MAE 13.3 µg/m3 and13.4 µg/m3 

respectively. For RF, value of 0.7 for R2 when N=300, and RMSE and MAE were 11.4 µg/m3 and 

7.6 µg/m3 respectively. While, for XT, R2 was equal to 0.77 when N=300, and RMSE and MAE 

were 10 µg/m3 and 6.6 µg/m3 respectively. Additionally, in case of PM2.5, MLR and OLS again 

had low R2 (0.34 and 0.33 respectively), RMSE (15.3 µg/m3 for both models) and MAE (11.2 

µg/m3 for both models). For RF maximum value of R2 (0.75) obtained when N was equal to 265, 

RMSE and MAE were 9.4 µg/m3 and 6.3 µg/m3 respectively. While, for XT, R2 was equal to 0.8 

when N=300, RMSE and MAE were 8.3 µg/m3 and 5.5 µg/m3 respectively. 

 

Figure 4.21. Tables of performance statistic parameters for Budapest Gilice tér a) PM10, b) PM2.5, and 

Kecskemét c) PM10, d) PM2.5, and Kazincbarcika e) PM10 and f) PM2.5 



Results 

 

68 

 

The MERRAero dataset is useful tool to estimate PM10 and PM2.5 concentrations. The results 

show that the congruence in hourly PM10 and PM2.5 values between the observation and the 

calculated values based on equations 1 and 2 was inconsequential in all locations of the study. 

However, estimated PM10 and PM2.5 got better when coupling the estimations with 

meteorological data and component concentrations used in equations 1 and 2. In the three locations 

chosen for this study, MLR and OLS had poor R2 (between 0.16 and 0.34), while the best R2 was 

always achieved in case of XT model. The high RMSE and MAE results in case of Kazincbarcika 

compared to Budapest and Kecskemét, is due to the fact that concentrations of PM10 and PM2.5 

registered in Kazincbarcika are higher than in Budapest and Kecskemét. 

The use of sophisticated machine learning algorithms like RF and XT, gave better estimations of 

PM10 and PM2.5, in comparison to linear regression machine learning (MLR and OLS), and that 

is because of the complicated non-linear relationship between PM10 and PM2.5 to other variables 

like meteorological data.  

4.3.1.2 Second Approach 

Figure 3.7, describe the method used in this section. The estimation in this approach was done only 

using 4 machine learning algorithms (MLR, OLS, RF, and XT) to estimate PM2.5 concentrations 

based on 10 variables (AOD, O3, NO2, SO2, T, Ws10, Ws50, RH, P, and PBLH). Figure 4.22 

summarize the results of the MLR, OLS, RF, and XT models. 

Multiple linear regression and Ordinary least square regression:  

Except for Kazincbarcika where R2 was in good range (0.65 and 0.64) for MLR and OLS, the 

value obtained in case of Budapest Gilice tér and Kecskemét were low values (between 0.29 and 

0.32).  

Random Forest: 

For RF, the peak performance was achieved when N=1700 for the three locations. The results 

show that R2 value using the RF regression machine learning algorithm was 0.69, 0.71, 0.83 for 

Budapest Gilice tér, Kecskemét, and Kazincbarcika respectively, overall RMSE was 5.9, 6.9 and 

7.9 µg/m3 and MAE was 4, 4.5 and 5.1 µg/m3 respectively. 

Extra Tree regression: 

For XT, the peak performance was achieved when N =1000 for Kecskemét, and Kazincbarcika 

and 1100 for Budapest Gilice tér. The results show that R2 value between the estimated and 

observed PM2.5 using the XT regression machine learning algorithm was 0.73, 0.75, and 0.84 for 

Budapest Gilice tér, Kecskemét, and Kazincbarcika respectively, overall RMSE was 5.5, 6.4, and 

7.6 µg/m3, and MAE was 3.7, 4.2, and 4.8 µg/m3. 
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Figure 4.22. Tables of performance statistic parameters for I) Budapest Gilice tér, II) Kecskemét, and III) 

Kazincbarcika 

In RF algorithm, each tree in the ensemble is constructed from a sample selected with substitute 

from the training set. Additionally, while partitioning each node throughout tree construction, the 

optimum split is determined by selecting either all input features or a random subset of size. The 

goal of these two randomness sources is to reduce the variance of the forest estimator. Individual 

decision trees, in fact, have a large variation and tend to overfit. Forests with injected randomness 

provide decision trees with partially dissociated prediction errors. Some inaccuracies can be 

eliminated by taking an average of such projections. RFs minimize variance by merging various 

trees, sometimes at the expense of a modest bias increase. In reality, the variance decrease is 

frequently large, resulting in a superior overall model. The way splits are produced in XT algorithm 

goes even further. A random subset of candidate features is employed, much as in RF, but instead 

of looking for the most discriminative thresholds, thresholds are produced at random for each 

candidate feature, and the best of these randomly-generated thresholds is chosen as the splitting 

criterion. This generally allows for a little reduction in model variance at the price of a slight 

increase in bias. 

The MERRAero dataset is a valuable tool for estimating PM10 and PM2.5 concentrations. The 

results show that the congruence in hourly PM10 and PM2.5 values between the observation and 

the calculated values based on equations 1 and 2 was inconsequential in all study locations. 

However, estimated PM10 and PM2.5 improved when coupling the estimations with 
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meteorological data and component concentrations used in equations 1 and 2. In the three sites 

chosen for this study, MLR and OLS had poor R2 (between 0.16 and 0.34), while the best R2 was 

always achieved in the case of the XT model. The high RMSE and MAE results in the case of 

Kazincbarcika compared to Budapest and Kecskemét can be noticed due to the concentrations of 

PM10 and PM2.5 registered in Kazincbarcika, which are higher than in Budapest and Kecskemét. 

In addition to the absence of nitrate particle concentrations, Provençal et al. (2017) explains the 

incongruence between observed and simulated PM2.5, which is probably due to a combination of 

[SO4], [OC] and [BC] differences. Additionally, Buchard et al. (2016) noticed a disparity in 

carbonaceous particle concentrations in suburban areas of the United States. Many additional 

research has proposed adding nitrate concentrations to improve MERRA-2 PM2.5 estimates (He 

et al., 2019; Ma, Xu and Qu, 2020), while poor MERRA-2 PM estimations were claimed to be 

caused mostly by the use of the Goddard Earth Observing System, version-5 (GEOS-5) model's 

bottom-up emission database and meteorological issues in GOES-5 simulations (Song et al., 

2018). According to Ali et al. (2022), multiple statistical models can be used to estimate PM2.5 

using MERRA-2 aerosol reanalysis data, with the random forest model having the highest 

accuracy. Their results indicate that the random forest model is an appropriate choice for 

calculating PM2.5 concentrations in China. 

It was demonstrated that machine learning is a valuable method for predicting PM2.5 by using 

algorithms to estimate PM2.5 based on MERRA-2 AOD, Meteorological, NO2, O3, and SO2 data 

in 3 years (2019 to 2021) for Budapest. A comparison between 4 machine learning approaches 

revealed that the Extra-Tree regression model outperformed other models like RF, MLR and OLS. 

For Budapest the results of XT model for estimation of PM2.5 give an R2 of 0.73, RMSE of 5.5 

µg/m3, and MAE of 3.7 µg/m3. For Kecskemét an R2 of 0.75, RMSE of 6.4 µg/m3, and MAE of 

4.2 µg/m3.  And for Kazincbarcika an R2 of 0.84, RMSE of 7.6 µg/m3, and MAE of 4.8 µg/m3. 

The use of sophisticated machine learning algorithms like RF and XT gave better estimations of 

PM10 and PM2.5, compared to linear regression machine learning (MLR and OLS); that is 

because of the complicated non-linear relationship between PM10 and PM2.5 to other variables 

like meteorological data. 

4.3.2 Calibration of CAMS PM2.5 data over Hungary using machine learning 

Python 3.9.17 was used to write a code that performs data preprocessing, model training, 

prediction, evaluation, and visualization, for the data using the LightGBM regression model. 

Promising results were obtained from the calibration of CAMS PM2.5 data using the LightGBM 

algorithm. The correlations before and after training the model were analysed, revealing noticeable 

improvements in prediction accuracy (Figures 4.23 and 4.24). Before training, the correlations 

between the observed and CAMS PM2.5 data varied across the stations, ranging from 0.07 to 0.20. 

However, after training, the correlations significantly increased, ranging from 0.78 to 0.88. These 

enhanced correlations demonstrate the efficacy of the LightGBM algorithm in capturing the 

relationships between the input features and PM2.5 levels, leading to improved accuracy in 

predicting air quality. 

The evaluation metrics, such as the R2 scores and root mean squared error (RMSE), were utilized 

to assess the model's performance. The R2 scores, which measure the model's ability to explain the 

variance in observed PM2.5 values, ranged from 0.61 to 0.77. This indicates that the model 

accounted for 61% to 77.4% of the variance, indicating a good fit to the data. Furthermore, the 

RMSE values, representing the average magnitude of the differences between predicted and 

observed values, ranged from 5.31 to 9.92 µg/m3. Lower RMSE values indicate higher precision 

and accuracy in the model's predictions. 
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Figure 4.23. Correlation map between CAMS and In-situ PM2.5 before calibration 

 

Figure 4.24. Correlation map between the predicted and In-situ PM2.5 after calibration 

Furthermore, the scatter plots (Figures 4.25 and 4.26) also shed light on the model's predictive 

power by showcasing the proximity of the predicted PM2.5 values to the observed values. The 

Figures 4.25 and 4.26 show scatter plots of four stations and the rest of the stations can be found 

in appendices section.  The close alignment between the predicted and in situ PM2.5 data points 

in the scatter plots signifies the model's ability to capture the underlying patterns and relationships. 

The proximity between these points reinforces the improved correlations observed after training, 

substantiating the effectiveness of the LightGBM algorithm in calibrating CAMS PM2.5 data. The 

plots demonstrate enhanced correlations and close alignment between predicted and in situ PM2.5 

data points, highlighting the algorithm's ability to accurately predict PM2.5 levels. 
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Figure 4.25. Scatter plots of raw CAMS PM2.5 data for A) Ajka station, B) Budapest Gilice ter station, 

C) Kazincbarcika station, D) Kecskemet station 
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Figure 4.26. Scatter plots of predicted and In-situ PM2.5 for A) Ajka station, B) Budapest Gilice ter 

station, C) Kazincbarcika station, D) Kecskemet station 

The results of this study calibration of CAMS PM2.5 data using the LightGBM algorithm align 

with other studies' conclusions, emphasizing the necessity of increasing the accuracy and 

dependability of CAMS datasets. In agreement with Ali et al. (2022), who reported CAMS 

overestimation in several places, our findings suggest that CAMS PM2.5 data had greater 

correlation values after calibration. Before training, the correlation values ranged from 0.0719 to 

0.2072, demonstrating a moderate relationship between CAMS PM2.5 and in-situ PM2.5 readings. 

However, following training, the correlation values improved significantly, ranging from 0.7869 

to 0.8820, indicating a greater link between the calibrated PM2.5 levels and in-situ observations. 

(Gueymard and Yang, 2020) also emphasized the limits of raw CAMS PM2.5 estimates, such as 

coarse spatial resolution and modelling biases. Our findings back with their conclusions, as results 

of the current paper showed low correlation values between raw CAMS and measurements PM2.5 

concentrations. However, after applying the LightGBM calibration technique, the correlations 
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increased significantly, and RMSE values were low, indicating that the calibrated PM2.5 estimates 

were more accurate. 

Furthermore, the present results are compatible with the findings of (Jin et al., 2022), who stressed 

the possibility of distinct calibration schemes to improve CAMS products. After calibration, the 

rise in coefficient of determination (R2) values demonstrates the reduction in modelling biases and 

the improved performance of the calibrated PM2.5 data. 

Overall, the calibration results using LightGBM algorithm are consistent with prior studies, 

suggesting that calibration approaches can significantly increase the accuracy and reliability of 

CAMS PM2.5 estimates. The calibrated PM2.5 data better matches with ground-based 

observations by correcting overestimation and lowering modelling biases, giving more reliable 

information for air quality assessments and decision-making processes. These findings emphasize 

the importance of calibration in increasing the utility and reliability of CAMS PM2.5 data for 

environmental monitoring and public health activities. 
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5 Conclusions and recommendations 

The study of PM pollutants is a broad field with many branches, from studying the chemical 

composition of the PM particles to improving measurements and developing computer-based 

models to forecast PM pollution of any kind. The research conducted in this PhD thesis has 

contributed valuable insights into the impact of obstacles, hills, and Saharan dust storms on PM 

concentrations and the use of satellite-based models and machine learning algorithms to estimate 

PM concentrations and calibrate CAMS PM2.5 data. Based on the findings of this research, the 

following conclusions and recommendations can be made: 

The study of the effects of simple obstacles on the PM10 concentration provides valuable insights 

into the effects of obstacle height, distance from the source, and wind speed on PM10 

concentration in different sensor locations. The study's results indicate that obstacles can 

significantly impact PM10 concentration levels, with higher obstacle heights and greater distances 

from the source leading to decreased PM10 concentration levels. Additionally, the study found 

that wind speed plays a crucial role in PM10 concentration levels, with higher wind speeds leading 

to higher PM10 concentration levels. The study's findings are consistent with previous research on 

the effects of urban architecture and wind speed on PM concentrations. For example, a study on 

the influence of wind speed on airflow and fine particle transport within different building layouts 

of an industrial city found that height variation and layout of urban architecture affect the local 

concentration distribution of PM (Mei et al., 2018). Similarly, another study on the effects of 

windbreaks on particle concentrations from agricultural fields under various wind conditions 

showed that vegetation barriers can alter particle transport by affecting airflow (Chang et al., 

2019). In conclusion, the results of the research paragraph provide valuable insights into the effects 

of obstacle height, distance from the source, and wind speed on PM10 concentration levels. By 

considering the impact of obstacles and wind speed on PM10 concentration levels, policymakers 

and urban planners can develop effective strategies to minimise the impact of PM10 on public 

health in urban environments. 

The study the impact of hill elevation on the dispersion of PM plumes showed that the correlation 

between PM10 concentration and wind speed at different sensor locations was affected. The results 

show that hills can significantly affect the dispersion pathway of PM particles, with different slopes 

creating other flows of PM dispersion. The study found that the correlation between PM10 

concentration and wind speed decreases as the height of the hill increases, indicating changes in 

the wind flow created by different elevations of the hill and that, in general, topography can 

significantly impact the level of PM concentrations. In a study done by Wen et al. (2022), they 

discuss the quantitative disentanglement of topography's geographical impacts on PM2.5 pollution 

in China. They emphasise that mountains significantly impact the spatial heterogeneity of PM2.5 

pollution levels. The study found that high-altitude mountains and plateaus experience lower levels 

of PM2.5 pollution, while plains and surrounding platforms and hills suffer from severe pollution. 

Also, the mountain’s blocking effects begin to play an efficient role when their altitudes reach a 

specific value; however, the exact altitude values vary by different mountains, with a value of 163 

m for all typical mountains with absolute PM2.5 concentration differences between their two sides 

greater than 10 μg/m3. Even though the experiments included relatively low height, it showed that 

height can alter the PM concentrations, even in short range. In conclusion, the research results 

provide valuable insights into the effects of hill elevation on the dispersion of PM plumes and the 

correlation between PM10 concentration and wind speed at different sensor locations. 

The study of Saharan dust storms in Hungary revealed that they increased PM10 and PM2.5 

concentration levels, and the seasonality and frequency are changing. Varga (2020) indicates 

numerous intense events happened after 2014 when an unusually significant amount of mineral 

dust was washed out. All occurred between the end of October and February, and the increase in 
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frequency and intensity of wintertime dust depositional events in the Carpathian Basin (Hungary 

mainly) is attributed to climatic conditions. Our study for the period between 2018 and 2022 

showed changes in the frequency of the intense Saharan dust storms in Hungary (more likely to 

happen between February and April) and also the intensity (Recent March 2022 as an example), 

and dominant Type-2 events that are connected to Central Mediterranean cyclones which is 

responsible for dust transport. 

Machine learning is a powerful tool that can be used to estimate PM concentrations from MERRA-

2 data. In the study, we estimate PM concentrations using two approaches, mainly coupling 

MERRA-2 AOD and five PM components with meteorological data and MERRA-2 AOD and in-

situ measurements of primary air pollutants (SO2, NO2, O3) with meteorological data. The best 

results were given using the Extra-tree machine learning algorithm in the two approaches for the 

three stations chosen for Hungary (Budapest, Kazincbarcika, and Kecskemet) with an R2 between 

0.73 and 0.84. Our models performed well for the selected stations compared to other studies that 

used MERRA-2 data to estimate PM concentrations using machine learning.  Dhandapani, Iqbal 

and Kumar (2023) Apply machine learning models on MERRA2 data to predict surface PM2.5 

concentrations over India. Overall, the study evaluates the utility of Machine Learning (ML) 

models, focusing on XGBoost (XGB), Random Forest (RF), and LightGBM (LGBM) individual 

models, as well as a stacking technique. The authors compared the performance of these models 

and found that the stacking technique (R2= 0.77) outperformed unique models (R2=0.73), showing 

the best hourly prediction in the eastern (R2 = 0.80) and northern regions (R2 = 0.63). In another 

study by Sayeed et al. (2022), they evaluated the performance of the machine learning model in 

estimating PM2.5 concentration, which outperformed the MERRA-2 empirical estimation of 

PM2.5 and exhibited a small and uniform bias throughout the day and in all seasons and proved to 

be better at estimating PM2.5 than the MERRA-2 practical calculations. In conclusion, Coupling 

MERRA-2 and meteorological data with other meaningful parameters and employing machine 

learning to predict PM concentrations can yield promising results, as demonstrated in our case for 

the three stations in Hungary. 

For the calibration of CAMS PM2.5 data using machine learning in Hungary, our model improved 

the degree of accuracy of CAMS PM2.5 data from low R (>0.25) to higher R (<0.79), 

demonstrating the effectiveness of calibration schemes using LightGBM machine learning model 

in reducing modelling biases and enhancing the performance of CAMS PM2.5 data in Hungary. 

Jin et al. (2022) proposes a calibration method to improve the accuracy of CAMS PM2.5 data, 

using the Extremely Tree machine learning model, resulting in significant accuracy improvement, 

with R reaching up to 0.81 and RMSE decreasing by about 60% for the original CAMS PM2.5 

For China, US and Africa. Overall, CAMS reanalysis datasets require significant improvement for 

use in local and regional air quality monitoring, and our study showed a significantly better 

correlation between the Calibrated PM2.5 and in-situ measurements of PM2.5 over Hungary, 

suggesting an improved accuracy of Calibrated CAMS PM2.5. 

Concerning the recommendations, further research on the impact of obstacles on PM 

concentrations: It is recommended that the impact of different types of obstacles on PM 

concentrations be understood and that more accurate models to predict PM concentrations in the 

presence of obstacles be developed. 

Use of satellite-based models to estimate PM pollutants: It is recommended to use satellite-based 

models to estimate PM pollutants in Hungary and to compare the results with in situ measurements 

to validate the accuracy of the models. 
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Further research on the impact of Saharan dust storms on PM concentrations: It is recommended 

that the impact of different types of dust storms on PM concentrations be understood and that more 

accurate models to predict PM concentrations during dust storms be developed. 

Use of machine learning algorithms to estimate PM concentrations: It is recommended to use 

machine learning algorithms to estimate PM concentrations in other locations in Hungary and to 

expand the study by using more extensive data. 

In conclusion, the research conducted in this PhD thesis has contributed valuable insights into the 

impact of various factors on PM concentrations. It has provided recommendations for further 

research to improve the accuracy of PM concentration predictions. This research's findings can 

help protect public health and the environment by providing accurate and reliable PM 

concentration data. 
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6 New scientific results 

 

1. As a result of small-scale experiments, I have shown that the PM10 concentration from a 

point source depends on the wind speed (Ws=0-2.9 m/s) and the height and position of a 

simple "obstacle" placed between the source and the measurement point - with a critical 

ratio of obstacle distance from the source over obstacle height ranging (OD/OH) from 0 

to 2.3. A linear equation established the relationship between the mentioned parameters to 

calculate PM10 concentration, reaching an R2 of 0.79. I declare that, the obstacle's 

position emerges as an essential determinant shaping the estimated PM10 concentration, 

underscoring its profound significance in our findings.  

 

Research conducted a multiple regression analysis to predict PM10A concentration using "OH" 

(Obstacle height), "OD" (Distance of the obstacle from the source), "PM10C" (PM10 

concentration), and "Ws" (Wind speed) as independent variables. The regression model 

equation was: 

 

𝑃𝑀10𝐴  =  143.07 − 71.86 ∗ 𝑂𝐻 −  171.42 ∗ 𝑂𝐷 +  1.23 ∗  𝑃𝑀10𝐶  +  12.34 ∗ 𝑊𝑠 
 

Results showed a moderately significant positive connection between PM10A and the 

independent variables (R=0.89). The model explained 79% of PM10A variation (R2=0.79). 

Obstacle height, distance from the source, and wind speed had significant positive effects on 

PM10A. 

The experiment elicits know how a simple obstacle in the form of a solid barrier can reduce 

the PM concentrations. And using the equation, it is possible to strategically position the 

obstacle to obstruct the PM particle movements and opt for the optimal possible height to 

effectively isolate the area from direct PM transportation to minimize the PM concentration 

levels to acceptable levels. 

 

2. I conclude that hill height influences PM10-wind speed correlations negatively as a result 

of a series of outdoor trials investigating the effects of different ground surface elevations 

(H=0-1 m) on the dispersion of PM10 and PM2.5 pollutants at various wind speeds 

(Ws=0-6 m/s) in short range, revealing the complicated interplay between topography and 

air pollution patterns. 

 

The study examines the correlations between PM10 concentrations recorded by three 

different sensors (S1, S2, and S3) over three different experimental situations with varied 

wind speeds on a hill with varying heights. Correlations between PM10 concentrations and 

wind speed differ between sensors (S1, S2, S3) and experimental cases on a hill with 

variable elevation. 

Sensor 1 (S1), which is near to the source, has a negative correlation of -0.5 in Case 3, but 

weaker and inverted correlations to -0.18 and 0.2 in Cases 2 and 1 respectively. Sensor 2 

(S2) positioned at the edge of the hill's slope, has continuous positive correlations in all 

cases, however they are weaker in case 2 (0.27) and 3 (0.18), probably due to changes in 

nearby terrain. Sensor 3 (S3), located atop the hill, retains positive associations, although 

they decline as elevation increases, yielding values of 0.65 (Case 3), 0.84 (Case 2), and 0.8 

(Case 1), suggesting that shifting wind patterns impact PM10 transport. 
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3. HYSPLIT dust simulations offer compelling insights into the origin and trajectory of 

Saharan dust particles. Our analysis reveals that these particles observed in the Gulf of 

Mexico during the June 2020 Saharan storm unmistakably trace back to the Moroccan and 

Mauritanian Saharan regions. Dust storms emerged from specific hotspots, such as Tinduf 

near the Moroccan border and Adrar, Tiris Zemmour, and Tagant in Mauritania. 

Markedly, the June 2020 Saharan dust storm was associated with the highest June aerosol 

optical depths recorded, exceeding AOD=3.5 in Bir Anzarane, Morocco, and an 

astonishing AOD=5.5 in Nouakchott, Mauritania, affecting the PM concentrations to 

unhealthy levels in several US Gulf States, further substantiating that due to climate 

change, the Saharan dust storms are getting more intense, especially in the Moroccan and 

Mauritanian Sahara. 

 

Based on HYSPLIT dust simulation and also comparing the simulation results maps with 

MODIS AOD average maps, the dust storm in the region of Morocco and Mauritania 

started on the 14th of June 2020, from the region of Tinduf close to the borders of Morocco 

with Algeria, Adrar Tiris Zemmour and Tagant in Mauritania. Due to the wind field 

heading towards the Atlantic oceans, the dust was transported across the ocean to the 

American continents. In addition, HYSPLIT cluster analysis from many places in Morocco 

and Mauritania showed a significant percentage of PM10 particles that negatively affected 

the PM10 and PM2.5 concentrations in the Caribbean Sea and US coastal in the Gulf of 

Mexico, originated from places like Bir Anzarane, Morocco, Nouakchott, and Tichit 

Mauritania, and Bordj Badji Mokhtar Algeria. In addition, there was an increase in Bir 

Anzarane, Morocco, in AOD with a value of 3.522. This marks a surge of 188% compared 

to the highest recorded value between 2010 and 2019, 1.87 in June 2017. Similarly, in 

Nouakchott, Mauritania, the peak AOD value from 2010 to 2019 was 2.78 in June 2010. 

However, there was a rise in June 2020, with an AOD value reaching 5.87, representing an 

increase of around 211%. 

 

 

4. I conclude that events where the Saharan dust transport was brought on by Central 

Mediterranean cyclones to Hungary, - called type 2 Saharan dust storm events - were 

dominant in 2018 and 2022 and usually happen in February, March, or April, with a 

maximum hourly dust mass between 450 and 1000 mg/m2. The 2 Saharan Dust storms in 

March 2022 raised the concentrations of PM10 and PM2.5 in Budapest by 12 µg/m3 and 

10 µg/m3, respectively, during the first Saharan Dust event and by 14 µg/m3 and 5 µg/m3 

during the Second Saharan Dust event. 

 

Based on my evaluation of the Saharan dust storm events in Hungary, between 2018 and 

2022, 11 SDEs were identified in Hungary. Type 2 SDEs were dominated in that period 

and characterised by high Dust mass, negatively affecting the PM concentrations. And 

most of the time, the SDEs were likely to occur between February and April. Moreover, 

March 2022 was a unique month due to two extreme outbreaks of Saharan Dust events (14-

19 and 28-31), which were unusual throughout the study period. In general, the Saharan 

dust events between 2018 and 2022 were associated with an increase of PM10 daily 

average concentration by a factor of 2 or more, according to PM10 concentration 

measurements from an urban background air quality station in Budapest. 
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5. I find that PM10 and PM2.5 concentrations simulated from MERRAero data, 

encompassing five PM species (SO4, OC, BC, DS and SS), AOD, and meteorological 

parameters (T, Ws10, Ws50, RH, P and PBLH), between 2019 and 2021 accurately 

estimated using the Extra-Tree regression model for three cities in Hungary (Budapest, 

Kecskemét and Kazincbarcika), achieving R2 values between 0.75 and 0.8 for PM10 and 

PM2.5.  

 

Based on my evaluation of the estimated PM10 and PM2.5 based on the five PM species 

simulated by the MERRAero hourly data collection of (SO4, OC, BC, DS, and SS), in 

conjunction with aerosol optical depth (AOD) and meteorological parameters (T, Ws10, Ws50, 

RH, P, and PBLH) for the period spanning 2019 to 2021, using a variety of machine learning 

algorithms, it is discerned that the Extra-Tree regression model consistently produced the most 

favourable outcomes. The quantitative results, disaggregated by location, are as follows:  

➢ In Budapest, the determination coefficient (R2) reached 0.78 and 0.8 for the 

estimation of PM10 and PM2.5, respectively. 

➢ In Kecskemét, the R2 values achieved were 0.75 and 0.76 for PM10 and PM2.5 

estimation, respectively. 

➢ For Kazincbarcika, the R2 values obtained for PM10 and PM2.5 were 0.77 and 0.8, 

respectively. 

The significance of these results lies in their potential to enhance air quality monitoring and 

forecasting in urban areas such as Budapest, Kecskemét, and Kazincbarcika. The Extra-Tree 

regression model demonstrates robust predictive capabilities, with R2 values consistently 

approaching or exceeding 0.75. 

 

6. Utilizing Machine learning algorithm (Extra-Tree regression model) to estimate PM2.5 

concentrations based on MERRA-2 AOD, meteorological data (T, Ws10, Ws50, RH, P and 

PBLH), and in-situ measurements of NO2, O3, and SO2 over three years (2019 to 2021) in 

3 locations in Hungary (Budapest, Kecskemét and Kazincbarcika) underscores the 

importance of machine learning in PM2.5 prediction attaining an R2 ranging from 0.73 to 

0.83, and RMSE between 5.5 and 7.6 µg/m3. 

 

The utilisation of machine learning algorithms to estimate PM2.5 concentrations based on 

a comprehensive dataset comprising MERRA-2 AOD, meteorological data, and in-situ 

measurements of NO2, O3, and SO2 over three years (2019 to 2021) for 3 locations in 

Hungary underscored the effectiveness of machine learning as a valuable predictive tool 

but also revealed the superiority of the Extra-Tree regression model over alternative 

approaches. Specific results for each location are as follows: 

➢ In case of Budapest, I had an R2 of 0.73, RMSE of 5.5 µg/m3, and MAE of 3.7 

µg/m3  

➢ In case of Kecskemét, I had an R2 of 0.75, RMSE of 6.4 µg/m3, and MAE of 4.2 

µg/m3. 

➢ In case of Kazincbarcika, I had an R2 of 0.84, RMSE of 7.6 µg/m3, and MAE of 4.8 

µg/m3.  

These findings hold paramount importance as they affirm the applicability of machine 

learning for precise PM2.5 predictions, offering a robust and versatile methodology for air 

quality assessment and prediction in these specific geographical areas. Such accurate 
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predictive models are instrumental for public health, urban planning, and environmental 

management 

 

7. Using the LightGBM algorithm in calibrating CAMS PM2.5 data for 11 air quality stations 

in Hungary reveals a remarkable improvement in data accuracy and alignment with in-

situ measurements with post-calibration, correlations substantially increased, with values 

ranging from 0.78 to 0.88, underscoring a solid association between calibrated CAMS data 

and actual PM2.5 measurements, and a coefficient of determination values ranging from 

0.61 to 0.77. 

 

➢ Correlation analysis shows initial alignment between raw CAMS data and in-situ 

measurements, with correlations before training ranging from 0.071 to 0.207. After 

training, correlations significantly improve, ranging from 0.787 to 0.882, 

demonstrating a strong association between calibrated CAMS data and in-situ 

PM2.5 measurements. 

➢ The coefficient of determination values ranges from 0.618 to 0.774, indicating a 

substantial portion of the variance in in-situ PM2.5 measurements is explained by 

the calibrated CAMS PM2.5. 

➢ Lower root mean square error values reflect reduced discrepancies between the 

calibrated CAMS PM2.5 and actual measurements, indicating improved accuracy 

and precision. 

The findings underscore the critical role of calibration in improving the accuracy of air 

quality data (such as CAMS PM raw data). Enhanced correlations, higher coefficient 

of determination values, and reduced root mean square error values following machine 

learning calibration are scientifically significant and have direct practical implications. 
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7 SUMMARY 

Studying the PM pollutants is broad field that have many branches, from studying the chemical 

composition of the PM particles to improving measurements and developing computer-based 

models to forecast PM pollutions of any kind. In the initial phase of my research, I looked over the 

literature in a few relevant subfields, which led to Saharan dust storm study both the June 2020 

event and to know the effect of climate change on the triggering and transport of Saharan dust to 

Hungary. In addition to understand the dispersion of PM particles around simple obstacle and in 

small range elevated hills, as well as understanding the relationship between inside and outside 

PM concentrations. Moreover, deep search in the literature lights the fact that no one has done an 

estimation of the PM pollutants in Hungary using the Satellite based models, despite the fact of 

the increasing interest in this subfield of research and the rise of the number of papers published 

in order to improve the use of the Satellite datasets to estimate one of the major and dangerous air 

pollutants. 

The study of small-scale PM dispersion around simple obstacle demonstrated that Obstacle height, 

Distance of the obstacle from the source, and Wind speed had significant positive effects on PM10 

concentration after the obstacle. The analysis revealed a moderately significant positive connection 

between the dependent variable (PM10 concentration after the obstacle) and the set of independent 

factors, as indicated by the correlation coefficient (R) of 0.89. Moreover, the independent variables 

in the model collectively explained approximately 79% of the variation in the dependent variable, 

as reflected by the coefficient of determination (R2) of 0.79. Overall, the research provides valuable 

insights into the impact of obstacle height, distance from the source, and wind speed on PM10 

concentration and confirms the transport behaviour of PM particles in both small-scale 

experiments and larger-scale urban settings. 

For the study of the effects of small hills on PM concentrations, the results revealed that at low 

wind speeds (0 and 0.7 m/s), the average concentrations of PM10 and PM2.5 were similar for all 

three cases. However, at higher wind speeds (2.4, 3.7, and 5.1 m/s), the average concentrations of 

PM10 and PM2.5 were significantly higher in the 1m height and 0.8 m height cases compared to 

the flat ground surface. Furthermore, the study showed that the difference in ground surface 

elevation between the 1m height and 0.8 m height cases had a notable impact on PM dispersion. 

The elevated ground surface (hill) altered the dispersion pathways of PM particles, resulting in 

higher concentrations in certain areas. Sensor 1 recorded higher PM concentrations in cases 2 and 

3 compared to case 1, especially at wind speeds below 3 m/s, primarily due to the reflective effect 

of the hill and low wind speeds. Sensor 2 registered higher PM concentrations before the hill, 

indicating particle trapping in that area. The study also employed multiple linear regression to 

estimate PM10 concentration at the top of the hill based on measurements from sensor near the 

source, and sensor at the bottom of the hill, wind speed, and hill height. The regression analysis 

showed a strong positive correlation (R=0.9) between the dependent variable (PM10 concentration 

at the top of the hill) and the combination of independent variables (mentioned above). 

Approximately 82% of the variance in PM10 concentration at the top of the hill was explained by 

the independent variables (R2=0.82). Also, the correlation coefficient between measured PM10 by 

all three sensors and wind speed demonstrates that hill height is important in shaping correlations 

between PM10 and wind speed, revealing intricate connections between topography and air 

pollution pattern. 

For the dust storm simulation over the Sahara Desert (Moroccan and Mauritanian regions) using 

HYSPLIT, the average PM10 concentration between 0 and 100m reached severe levels according 

to the HYSPLIT dust simulation results. Regions like Dakhla-Oued Ed-Dahab in Morocco, Adrar 

and Tiris Zemmour in Mauritania had higher PM10 concentrations (higher than 100 µg/m3) and 

AOD values (between 0.7 and 1) during the 4 days of the dust storm. Moreover, PM10 particles 
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were transported over the Atlantic Ocean to the Caribbean Sea and the Gulf of Mexico, causing 

raise in the level of concentrations in those regions. The tropospheric level of the Caribbean Sea 

and the Gulf of Mexico was loaded by dust particles transported from the study area. Bir Anzarane 

Morocco, Nouakchott and Tichit Mauritania, and Bordj Badji Mokhtar Algeria all contributed to 

the high PM10 concentrations observed in the Martinique islands and the southern United States, 

while the top altitude of the dust layer was between 4 and 4.5 km, according to the backscatter 

vertical profile measured by CALIPSO. Therefore, PM10 concentration and AOD revealed their 

peak values during June 2020 dust storm, and this is evidenced by AOD values recorded at Bir 

Anzarane, Morocco, and Nouakchott, Mauritania, both of which are historical by June norms. 

There was a rise in AOD, with a value of 3.52 in Bir Anzarane, Morocco. This represents an 

increase of 188% above the highest recorded figure between 2010 and 2019, which was 1.87 in 

June 2017. Similarly, from 2010 to 2019, the AOD value in Nouakchott, Mauritania, was 2.78 in 

June 2010. However, there was a spike in June 2020, with an AOD value reaching as high as 5.87, 

reflecting a 211% increase. 

For the identification and evaluation of the Saharan dust storm events in Budapest, Hungary 

between 2018 and 2022, type 2 SDEs predominated in that period with 5 occurrences, whereas 

types 1 and 3 appeared three times each. In addition, February, March, and April have seen the 

most SDEs (7 times), and SDEs occurring in those months are more likely to be severe events 

because that period had the highest dust mass recorded (SDE4 - April 23-27, 2019) and an increase 

in PM10 daily average concentration of at least a factor of 2. 

For the case study of the Saharan dust effects on PM10 and PM2.5 concentrations in Budapest in 

March 2022, the two type 3 dust storms contributed to an increase in PM10 and PM2.5 

concentration levels. The PM10 concentrations increased by 12 and 14 µg/m3, during first and 

second Saharan dust events, while for PM2.5 the concentration rise by 10 and 5 µg/m3, in first and 

second Saharan dust events respectively, highlighting the fact that first Saharan dust event had 

bigger impact on PM2.5 that the second Saharan dust events, in contrast for PM10, the impact of 

the two Saharan dust events were nearly similar. 

For the evaluation of PM surface concentrations simulated by Version 5.12.4 of NASA's MERRA-

2 Aerosol Reanalysis over Hungary in the period between 2019 and 2021, the estimation of the 

PM10 and PM2.5 concentrations done in two approaches. The first approach involved estimating 

PM10 and PM2.5 using equations 1 and 2, that calculate the PM10 and PM2.5 in function of BC, 

OC, DS, SO4 and SS concentrations given by MERRA-2 Aerosol analysis dataset and compare it 

with real measurements of PM10 and PM2.5, in addition to estimations using machine learning 

algorithms such as MLR, OLS, RF, and XT, and the data used in machine learning algorithm is 

coupled with meteorological data (T, P, RH, Ws10, Ws50 and PBLH) and AOD. The second 

approach used the machine learning techniques used in the first approach to estimate PM2.5 and 

this time based on AOD in conjunction with observations of NO2, O3, SO2, and meteorological 

data (T, P, RH, Ws10, Ws50 and PBLH). And, both first and second approaches were applicated in 

3 cities in Hungary, Budapest, Kecskemét, and Kazincbarcika. In case of the first approaches, 

results showed that using XT model gave the best results for all the three locations of the study, 

for Budapest I got an R2 of 0.78 and 0.8 for PM10 and PM2.5 estimations respectively, and for 

Kecskemét an R2 of 0.75 and 0.76, in addition for an R2 of 0.77 and 0.8 for PM10 and PM2.5 

estimations respectively for Kazincbarcika, proving the effectiveness of the XT machine learning 

model in estimating the PM concentrations. Moreover, for the second approach, Estimating the 

PM2.5 using XT model also gave the best results. The best R2 achieved was for Kazincbarcika 

with value of 0.84, followed by Kecskemét with value of 0.75 and Budapest with value of 0.73. 

The use of Satellite based data, coupled with meteorological data can give accurate estimations of 

PM concentrations, especially PM2.5, where it is highlighted in many research studies that PM2.5 
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have a complex relationship with AOD and can be used to predict it’s concentrations. Furthermore, 

the use of machine learning or deep learning methods prove to be useful tool in PM estimations in 

the study that I’ve done in this thesis, and my study can be expended by using bigger data and to 

other locations that could cover all the Hungarian territory. 

Finally for the calibration of CAMS PM2.5 data, results reveal significant improvements in various 

metrics. The correlation coefficients before (ranged from 0.07 to 0.20) and after (ranging from 

0.78 to 0.88) of the calibration method demonstrate noteworthy enhancements, indicating a 

stronger alignment between the CAMS PM2.5 data and in situ measurements. Additionally, the 

coefficient of determination (R2) (ranged from 0.61 to 0.77) exhibits substantial increases, 

highlighting the improved predictive power of the calibrated data. The calibration process also 

leads to reductions root mean squared error (RMSE), indicating decreased variability between 

predicted and observed PM2.5 values. 

These calibration outcomes have implications not only for Hungary but also for other countries 

grappling with air quality issues. Accurate and reliable CAMS PM2.5 data serves as a vital 

resource for governments, environmental agencies, and health organizations worldwide. By 

leveraging calibration techniques like LightGBM, countries can enhance the quality of their air 

quality datasets, leading to more accurate assessments of pollution levels and better-informed 

decision-making.
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8.2 Supplementary figures 

 

 

Figure 8.1: Scatter plots of raw CAMS PM2.5 data for I) Miskolc Alfoldi station, II) 

Nyiregyhaza, III) Pecs Nevelesi Kozpont station, IV) Szazhalombatta Buzavirag ter station 
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Figure 8.2: Scatter plots of raw CAMS PM2.5 data for I) Szeged 2 Rozsa station, II) Szolnok 

station, and III) Veszprem station 
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Figure 8.3: Scatter plots of predicted and In-situ PM2.5 for I) Miskolc Alfoldi station, II) 

Nyiregyhaza, III) Pecs Nevelesi Kozpont station, IV) Szazhalombatta Buzavirag ter station 
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Figure 8.4: Scatter plots of predicted and In-situ PM2.5 I) Szeged 2 Rozsa station, II) Szolnok 

station, and III) Veszprem station 

 


