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1 INTRODUCTION 

The context and goals of this PhD thesis are described in this chapter. 

1.1 Relevance and significance of the topic 

Air pollution is the primary cause of the decline in air and environmental 

quality in many places across the world nowadays, with negative 

consequences for people's health. According to the most recent World Health 

Organization (WHO) report, more than 91% of people in urban areas are 

exposed to air quality levels that exceed the emission limits for air pollution 

(World Health Organization, 2021). Carbon monoxide (CO), particulate 

matter (PM), nitrogen oxides (NOx), volatile organic compounds (VOCs), 

ozone (O3), and sulphur dioxide (SO2) are the primary atmospheric pollutants. 

The rapid industrialization and urbanization of developing countries have 

increased the number of pollutants emitted (Fu and Chen, 2017). Because of 

the strong relationship between air pollution exposure and increased harmful 

short- and long-term effects on human health, the scientific community, and 

public opinion are both concerned about the deterioration of air quality in 

urban environments (Masiol et al., 2014). Aside from the health dangers posed 

by gas and particle inhalation, urban air pollution causes other issues such as 

faster corrosion and deterioration of materials, damage to historical 

monuments and structures, and damage to plants in and around the city 

(Vlachokostas et al., 2011).  

Particulate matter (PM) is a broad word that refers to a mixture of solid 

particles and liquid droplets (aerosols) whose size and composition change 

depending on time and place. PM is composed of numerous constituents, 

including elemental or black carbon (BC) and organic carbon (OC) molecules, 

sulfate (SO4
-2), nitrate (NO3-), trace metals, soil particles, and sea salt. PM 

particles are defined based on their size variations. PM particles with a 

diameter that is less than or equal to 10 µm are called coarse PMs (PM10), 

and PM with a diameter of less than or equal to 2.5 µm are fine PMs (PM2.5). 

PM can be directly emitted from anthropogenic or natural sources (i.e., 

primary PM), or formed in the atmosphere from chemical reactions of 

numerous gaseous (i.e., secondary PM) (Harrison, Hester and Querol, 2016). 

The research of PM pollution is crucial, in order to comprehend the causes 

and effects of this kind of air pollution and to create practical solutions for 

lowering exposure and enhancing public health. Researchers employ a range 

of techniques to evaluate PM pollution, including computer modelling, 

satellite data, and air quality monitoring stations. These techniques can offer 

details on the concentration and distribution of PM in various locations as well 
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as the pollution's origins. Chemical analysis, for instance, may be used to 

determine the chemical composition of PM samples and link them to particular 

sources such industrial activities, wildfires, or vehicle emissions. 

This research, covers different aspects of the PM pollution, from the 

evaluation of low-cost PM sensors, the use of low-cost PM sensors in small 

scale experiments, the effect of dust storms on the PM concentrations in 

Hungary and how often they occur, and the estimation of the PM10 and PM2.5 

concentrations based on Satellite, meteorological and in-situ measurements 

data.  

1.2 Objectives 

The primary goals of the present work are the following: 

1) Study the effects of a simple environment on PM concentration using 

PM low-cost sensors. 

2) Study the effects of the Saharan Dust storm on PM levels in Hungary 

and analyse the seasonality and frequency of recent Saharan dust 

events. 

3) Estimating PM concentrations using satellite, meteorological, and in-

situ measurement data and machine learning methods over Hungary.  
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2 MATERIALS AND METHODS 

In this chapter I describe the tools and datasets I used, as well as the methods 

and relationships used in data processing. 

This chapter is divided into four parts. First part contains experimental section, 

which is two subchapters, a small-scale experiment of PM10 dispersion 

around obstacles, and the effect of small hills on PM10 and PM2.5 

concentrations in short range. Second is the part that deals with Saharan dust 

transport, divided into three subchapters, the Saharan dust event of June 2020, 

the identification and evaluation of the Saharan dust storm events to Hungary 

between 2018 and 2022, and the case study of the Saharan dust effects on 

PM10 and PM2.5 concentrations in Budapest in March 2022. The third section 

is the estimation of PM concentrations, and contains two subchapters, is the 

Evaluation of PM surface concentrations simulated by Version 5.12.4 of 

NASA's MERRA-2 Aerosol Reanalysis over Hungary in the period between 

2019 and 2021 using two approaches to estimate PM ground-level 

concentrations using surface, satellite, and meteorological data based on 

machine learning algorithms, and, the calibration of CAMS PM2.5 data over 

Hungary using machine learning. The fourth part is subchapter that describe 

the common data and statistics that are used throughout the study. 

2.1 PM dispersion experiments 

2.1.1 Small scale experiments of PM10 dispersion around obstacles 

Small scale experiments were conducted in order to investigate the effects of 

obstacles heights and distance from the source in the PM10 concentration. The 

goal was to understand the changing of the PM10 concentration around 

obstacles in simple environment. The experiments were done in isolated 

laboratory room on built table. The table had 3 PM10 sensors with 50 cm 

distance between each sensor. The room temperature was stable during the 

experiments (25 ±1˚C), the same was for the Relative Humidity (RH) (50% 

±3). 

2.1.1.1 Experiment set up 

The experiments were done with two different wind speed (air flow speed of 

2.9 and 1 m/s measured by Schiltknecht MiniAir64 vane anemometer) 

provided by two different ventilators. The use of the ventilators is to make 

sure that the PM plume will follow the wind direction toward the sensors and 

to avoid the spreading of plume around the room. As mentioned, three sensors 

were used, sensor A, B and C as shown in Figure 2.1, sensor C placed near the 

source, sensor B in the middle and sensor A is 1 meter away from the source. 
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The obstacle was placed at three different distances between sensors A and B, 

with changing of the obstacle height (12, 24 and 36 centimetres). The PM 

sensors used are NOVA PM sensors (SDS011) that use principle of laser 

scattering to get the particle concentration in the air, with a digital output and 

built-in fan that is stable and reliable. 

 The incense sticks were used as a source of PM10 plumes, due to the number 

of particles emitted from incense smoke in a short time. There were many 

research studies that investigated the effect of the use of incense sticks on 

PM10 concentrations. Numerous studies indicate that the smoke from burning 

incense contains particulate matter, gas products, and other organic 

compounds that can increase PM concentrations, CO, NOx, and SO2 in the air 

(Jetter et al., 2002; Ji et al., 2010). Also, incense burning was found to increase 

PM2.5 concentrations by up to 120% (Tran et al., 2021). 

Each experiment took 15-20 minutes, by burning one incense stick with fixed 

wind speed, obstacle distance from the source and obstacle height. The total 

number of variations (experiments) was 18. 

 

Figure 2.1. Experimental set up 

2.1.1.2 Data analysis 

Measurements were registered continuously in a programmed excel sheet 

during each experiment for every 30 seconds. The results present the average 

PM10 concentration in each test and presented in graphs depending of the 

obstacle height and distance from the source for the three sensors. 

Also, we used the Multiple Linear Regression (MLR) method to calculate the 

PM10 concentration in sensor A (PM10A) depending on the obstacle height 

(OH) and distance from the source (OD), PM10 concentration measured near 

the source (Sensor C, PM10C), and wind speed (Ws). 
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2.1.2 Effect of small hills on PM10 and PM2.5 concentrations in short 

range 

This part of my study aims to discover how small hills affect the PM10 and 

PM2.5 concentrations in short range with different wind speeds. 

Figure 3.2 shows the experimental setting environment, where the PM sensors 

are hung on steel infrastructure where sensor 1 (S1) is close to the source 

(smoke machine), and sensor 2 (S2) is a sensor placed in the middle of the 

slope. Sensor 3 (S3) is at the top of the hill. The sensors used are low-cost 

sensors that are calibrated and used in other cities in Hungary to monitor the 

PM concentrations. The sensors were developed for a project called 

HUNGAIRY, which is a project that aim to improve air quality at 8 Hungarian 

regions through the implementation of air quality plan measures, where until 

this moment PM sensor (LIFE IP HUNGAIRY project sensor) is used in 60 

PM monitoring stations in Miskolc and 20 PM monitoring stations in 

Kaposvár, and the network of the PM monitoring stations will be expended to 

other Hungarian cities (LIFE IP HungAIRy, 2019). The sensor is based on 

low-cost, laser scattering PM sensor (Plantower PMS7003), and an auxiliary 

sensor (Bosch BME680) for measuring humidity, temperature and pressure 

coupled with a Raspberry Pi 3 single-board computer to collect and store 

measurements (Báthory et al., 2022). The smoke machine (Haze machine hs-

600) is a machine used in concerts and festivals to generate smoke, and the 

wind machine is controlled via a variable frequency drive (VDF). In contrast, 

wind speed and directions were used to ensure that no wind was disturbing the 

experiments and that the wind was going in the right direction. In addition, the 

sensors register the PM2.5 and PM10 concentrations each minute. 

Three cases were adopted in this study. Case 1 is where the ground is almost 

flat, case 2 is where there is a small hill with an elevation of 0.8 m (shown in 

Figure 2.2), and case 3 is where a higher elevation is 1 m. The place where the 

experiments took place was the backyard of a laboratory. 

The experiments were done many times, and each time, the smoke machine 

was on for one hour because, after one hour, the performance of the smoke 

machine was not stable. The first 10 minutes are without any wind, and then 

every 10 minutes of wind, the frequency is increased via VDF until we have 

the maximum frequency possible (here, five frequencies were used). Each 

wind frequency corresponds to wind speed measured by the wind speed sensor 

(presented in Table 1). 

Also, we used the Multiple Linear Regression (MLR) method to calculate the 

PM10 concentration in sensor 3 (PM10S3 in µg/m3) based on the PM10 
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concentration near source (concentration registered by Sensor 1, PM10S1), 

PM10 concentration at the bottom of the hill (concentration registered by 

Sensor 2, PM10S2), the wind speed (Ws in m/s), and the height of the hill (H 

in m). 

 

Figure 2.2. Experimental setting environment where dashed lines represent the 

placement of the metal structure in each of the three cases 

Table 1:  Wind speed depending on VDF output frequency 

VDF output frequency (Hz) wind speed (m/s) 

10 0.7 

20 2.4 

30 3.7 

40 5.1 

50 6.1 

 

2.2 Saharan Dust storm transport 

2.2.1 Dust Storm simulation over the Sahara Desert (Moroccan and 

Mauritanian regions) using HYSPLIT 

June 2020 was a month where a breaking record dust storm occurred over the 

Sahara and transported toward the Americas. According to Francis et al. 

(2020), the dust clouds that were generated in this event registered the highest 
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record of Aerosol Optical Depth (AOD). The dust emission was continuous 

for 4 days, and uplifted to 5-6 km above the ground surface, and transported 

across the tropical Atlantic oceans by the powerful mid-atmospheric winds 

that had a speed higher than 20 m/s (Francis et al., 2020). 

For (Francis et al., 2020) the primary objective was to determine the processes 

responsible for the lifting and transport of dust during the dust event, as well 

as their relationship to large-scale circulation, and focus on the characteristics 

of the atmospheric mechanisms that led to massive transport of the Saharan 

dust. While in this research the central goal is to locate the most active regions 

in Western Sahara during that event, and the contribution of those regions in 

increasing the level of PM10 concentration in some regions that are far away 

from the source place like the US coastal part of the Gulf Mexico and the 

Martinique islands. 

The dust clouds generated covered a huge space as shown in the true colour 

images of MODIS-Aqua satellite on the 14, 15, 16, 17, 18, and 19 June 2020 

(Figure 2.3), where the dust in yellow colour is spreading from the Western 

Saharan region to the Atlantic Ocean. 

2.2.1.1 HYSPLIT model description 

The Hybrid Single-Particle Lagrangian Integrated Trajectory model 

(HYSPLIT) is a software developed by the Air Resources Laboratory (ARL) 

of the National Oceanic and Atmospheric Administration (NOAA) of USA 

(Draxler and Hess, 1998). The model is a comprehensive system for 

simulating basic air parcel trajectories as well as complicated transport, 

dispersion, chemical transformation, and deposition scenarios. The model 

calculation method is a hybrid of the Lagrangian approach, which uses a 

moving frame of reference to calculate advection and diffusion as trajectories 

or air parcels move away from their initial location, and the Eulerian 

methodology, which uses a fixed three-dimensional grid as a frame of 

reference to compute pollutant air concentrations. Over more than 30 years, 

the HYSPLIT model has developed from predicting simplistic single 

trajectories based on radiosonde measurements to a system that accounts for 

numerous interacting pollutants carried, dispersed, and deposited on local to 

global scales. In addition, HYSPLIT was used to assess the consequences of 

the accidental release of nuclear material into the atmosphere from the 

Fukushima Daiichi nuclear power plant after an earthquake and tsunami in 

March 2011. NOAA's interest since the middle of the last century at the latest, 

and modelling the movement of smoke from large wildfires has been an 

ongoing development activity at ARL since 1998. Today, in addition to the 

United States, smoke forecasts for Alaska and Hawaii are conducted daily to 
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provide to air quality forecasters and the public information on fine particles 

(PM2.5) in the air (http: //airquality.weather.gov/) (Stein et al., 2015). 

 

Figure 2.3. MODIS-Aqua true colour images on the (a) 14th, (b) 15th, (c) 16th, (d) 

17th, (e) 18th, and (f) 19th of June 2020 over western Africa and the northern 

tropical Atlantic Ocean. The white colour represents the Clouds and the yellow the 

dust. 

Dust storm Model 

HYSPLIT dust storm model is a model for the emission of PM10 dust that has 

been built using the theory of a surface-roughness-dependent threshold 

friction velocity (Draxler et al., 2001). When the local wind velocity exceeds 

the threshold velocity for the soil properties of that emission cell, a dust 

emission rate is computed from that model grid cell. The predominant 

mechanism for PM10 emission is "sandblasting," in which larger particles that 

cannot go airborne bounce along the surface (saltation), allowing additional 

smaller particles to become airborne (Draxler, Ginoux and Stein, 2010). This 

emission module makes use of HYSPLIT's 1° land-use file, assuming that a 

"desert" land-use grid cell corresponds to the roughness identification class 
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"active sand sheet." Only on dry days and when the friction velocity exceeds 

the threshold value (0.28 m/s for an active sand sheet) do dust emissions occur. 

Once the emission strength is determined, the model emits Lagrangian 

particles with a mass calculated by multiplying the PM flow by the 1° area 

corresponding to a desert category in HYSPLIT's land-use file. These 

Lagrangian particles are distributed and moved forward in time in response to 

NOAA's GFS model's meteorological fields with a horizontal resolution of 1°. 

A more specific description of particle dispersion and transport can be found 

in (Draxler et al., 2001; Escudero et al., 2006).  

The meteorological data fields needed for the model can be accessed from the 

National Climatic Data Centre (NCDC) website which is NOAA’s National 

Centers for Environmental Information (NCEI) that provides public access to 

remarkable archives for environmental data on Earth. In this study, we used 

the GDAS (Global Data Assimilation System) meteorological data (GDAS1) 

with a horizontal resolution of 1˚×1˚ corresponding to approximately 100 km 

x 100 km and 23 vertical layers. GDAS1 is chosen to match the resolution of 

the HYSPLIT land-use file resolution. GDAS is a system used by the Global 

Forecast System (GFS) model to insert observations into a gridded model 

space to begin or initialize, weather predictions using observed data. Surface 

observations, balloon data, wind profiler data, airplane reports, radar 

observations, and satellite observations are all added to a gridded, 3-D model 

space by GDAS. GDAS data are provided as both GDAS input observations 

and GDAS gridded output fields. The GFS model can be started using gridded 

GDAS output data. Input data are accessible in a number of data formats due 

to the varying nature of the assimilated data types, notably Binary Universal 

Form for the Representation of Meteorological Data (BUFR) and Institute of 

Electrical and Electronics Engineers (IEEE) binary. World Meteorological 

Organization (WMO) Gridded Binary is the GDAS output (GRIB) (Kleist et 

al., 2009). The GDAS dataset covers the entire globe and is freely available. 

In the dust storm model, the study domain is defined from 15.0N -18.0E to 

32.0N -05.0E (Domain covered with stars in Figure 2.4) which covers the 

Western Sahara of Morocco Mauritania, and a small part from Algeria. While 

the PM10 concentrations are averaged over every 12h. The dust simulation 

Started on the 14th of June 2020 at 00UTC until the 19th of June 2020 at 

00UTC.  HYSPLIT dust storm modelling was set for 0.5°x0.75° resolution for 

desert dust sources, with a total of 10 million particles or puffs released during 

one release cycle and a maximum of 5 million particles permitted to be carried 

at any time during the simulation. The release mode is sampled using three-

dimensional particles in both horizontal and vertical orientations. 
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Figure 2.4. Map of the study domain 

Trajectory cluster analysis 

Forward and Backward trajectory analysis are reliable methods to identify the 

long-range transport patterns with the use of archived meteorological data 

(Baker, 2010). However, considering the benefits of the trajectory model, 

individual trajectories are subject to errors due to the precision and quality of 

the meteorological data, as well as the simplifying assumptions employed in 

the trajectory model, which ultimately limits their utility. This problem was 

solved by computing a large number of trajectories and then subjecting them 

to cluster analysis. The large number of trajectories computed in HYSPLIT 

trajectory cluster analysis refers to the number of individual trajectories 

generated and then subjected to cluster analysis. The benefits of computing a 

large number of trajectories include minimising the effects of individual 

trajectory errors, providing a more comprehensive picture of the atmospheric 

conditions, and identifying rare or unusual events that a smaller number of 

trajectories may not capture (Baker, 2010). The exact number of trajectories 

computed will depend on the specific analysis being conducted and the 

available computing resources. The differences among these trajectories are 

determined by calculating the distance between clusters, with smaller 

distances indicating higher similarity. The clustering computation minimises 

the differences between trajectories within a cluster while maximising the 

differences between clusters. Trajectories are combined until the total variance 

of the individual trajectories about their cluster mean starts to increase. This 
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occurs when disparate clusters are combined. The clustering computation is 

described in more detail in the literature (Shaw and Gopalan, 2014). 

HYSPLIT forward trajectory cluster analysis was performed for the regions 

that are considered the most active sources of dusts and particles in the region 

of study as long as some surrounding regions. The list of the regions is 

presented in Table 2 with names, latitudes, longitudes, and time periods. 

Table 2. Cluster analysis location lists 

Location Latitude Longitude Simulation period 

Dakhla, Morocco 23.8 -15.6 10-30 June 2020 

Bir Anzarane, 

Morocco 

23.88 -14.53 10-30 June 2020 

Oum Dreyga, 

Morocco 

24.1 -13.25 10-30 June 2020 

Aousserd, Morocco 22.5 -14.3 10-30 June 2020 

Nouakchott, 

Mauritania 

18.09 -15.95 10-30 June 2020 

Atar, Mauritania 20.5 -13.05 10-30 June 2020 

Tichit, Mauritania 18.45 -9.5 10-30 June 2020 

Toumbouctou 

cercle, Mali 

20.0 -3.0 10-30 June 2020 

Bordj Badji 

Mokhtar, Algeria 

22.62 0.12 10-30 June 2020 

Tamanrasset, 

Algeria 

24.37 4.32 10-30 June 2020 

 

2.2.1.2 Satellite Observations 

Satellites are increasingly being utilized to collect data on aerosol features 

such as aerosol optical depth (AOD), the columnar concentration of particles, 

and particle sizes, taking advantage of technological and scientific advances 

over the previous years. There are various Earth Observing satellite 

instruments that developed many aerosols remote sensing algorithms for the 

retrieval of the AOD. One of those instruments is the Moderate Resolution 

Imaging Spectroradiometer (MODIS). The MODIS instrument, which is 

mounted on both the Terra and Aqua satellites, measures upwelling radiances 

in 36 bands with wavelengths ranging from 0.4 to 14.5µm. MODIS data, with 



 

16 

 

spatial resolutions of 250, 500 m, or 1 km, have been used to construct the 

most detailed aerosol products, including AOD (Lee et al., 2009). The most 

recent MODIS collection 6 (C6) aerosol products feature enhanced Dark-

Target (10 km DT) and Deep-Blue (10 km DB) AOD. The MODIS science 

team has carried out a few worldwide validation tests to demonstrate the 

cumulative impact of these adjustments and the discrepancies between the 

various parameters (Belle and Liu, 2016). Dark-Target (DT) was created to 

provide coverage over dense, dark vegetation, whereas Deep Blue (DB) was 

created to fill in the gaps in DT by providing coverage over bright surfaces 

(such as deserts) (Sayer et al., 2014). In this study, the MODIS-Aqua Deep 

Blue AOD 550nm with a spatial resolution of 1˚ was retrieved as an average 

daily map from the https://giovanni.gsfc.nasa.gov, which is an online platform 

created by NASA for displaying and analysing geophysical parameters, with 

easy access to provenance.  

In addition to the MODIS-Aqua AOD product, another product from another 

instrument is used also in this study, which is the CALIPSO (Cloud-Aerosol 

Lidar and Infrared Pathfinder Satellite Observations). CALIPSO’s mission is 

an ongoing collaboration between NASA Langley Research Center (LaRC) 

and the Centre National D'Etudes Spatiales (CNES) to explore the global 

radiative effects of aerosols and clouds on climate. CALIPSO has been 

providing nearly continuous measurements of the vertical structure and optical 

properties of clouds and aerosols since its launch on April 28, 2006, to 

improve our understanding of their role in the Earth's climate system and the 

performance of a variety of models ranging from regional chemical transport 

to global circulation models used for climate prediction (Winker et al., 2010).  

CALIPSO Lidar Level 1 532nm Total Attenuated Backscatter version 4.10 is 

the product used in this study, which describes the vertical aerosol profile and 

provides a clear vision about the altitude of the existing aerosols (including 

dust) in the troposphere and stratosphere level, more in-depth literature can be 

found in (Getzewich et al., 2018; Kar et al., 2018; Kim et al., 2018). The 

CALIPSO 532nm Total Attenuated Backscatter images were retrieved from 

the official website of CALIPSO (https://www-calipso.larc.nasa.gov). 

MODIS-Aqua AOD average maps were used to compare them with the 

average PM10 concentration maps between 0 and 100m from the HYSPLIT 

dust simulation results, due to the lack of PM10 ground measurements in the 

area of study. While CALIPSO Lidar Level 1 532nm Total Attenuated 

Backscatter was used to get the altitude top layer of the dust transported from 

the Saharan region as well as the thickness of the dust cloud over the 

Caribbean Sea and the South-eastern region of the United States. Also, 
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MERRA-2 AOD data (Description of MERRA-2 AOD data can be found in 

section 3.4) was used for specific places where the Saharan dust particles 

shown to be transported to the South-eastern region of the United States to 

identify the intensity of the Saharan dust storm at that time in those chosen 

regions. 

2.2.2 The identification and evaluation of the Saharan dust storm events 

in Budapest, Hungary between 2018 and 2022  

The dust aerosol loading within the whole atmospheric column is represented 

by the MERRA-2 dust column mass concentration. We utilized data from the 

MERRA-2 Visualization tool's atmospheric composition (2D) maps 

(https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access), as well as, 

hourly data (MERRA-2 M2T1NXAER V5.12.4) Obtained from NASA’s 

Earth data website 

(https://disc.gsfc.nasa.gov/datasets/M2T1NXAER_5.12.4/summary). 

MERRA-2 dust column mass concentration is a good measure of the intensity 

of the Saharan dust storm alongside with PM concentrations (Wang, Gu and 

Wang, 2020). In our case, to identify and evaluate Saharan dust events 

transported to Hungary, we used MERRA-2 dust column mass concentration 

data, 2D maps of dust column mass concentration, and hourly-mean PM10 

mass concentrations, retrieved from Budapest Gilice tér station. 

2.2.3 Case study of the Saharan dust effects on PM10 and PM2.5 

concentrations in Budapest in March 2022 

In 2022, Europe suffered from two severe Saharan Dust Events (SDE) during 

March. Large storms in March 2022 sent clouds of Saharan dust to Europe. 

One of them also brought long-lasting, dusty, high-altitude cirrus clouds, 

which caused widespread cloud cover for more than a week, from Iberia to the 

Arctic. It was a rare kind of storm that researchers have only recently learned 

to comprehend. Its characteristics include icy clouds that are infused with dust, 

hence the name dust-infused baroclinic storm (DIBS). A DIBS entrained and 

lifted an atmospheric river of Saharan dust into the troposphere in the middle 

of March, attaining an altitude of 10 kilometres. Dust-infused, high-altitude 

cirrus clouds formed as a result of the dust acting as ice nucleation particles. 

They continued for almost a week, covering a sizable portion of Europe. On 

March 15, 2022 (SDE1), the first storm developed over north-central Europe 

and moved south through Poland, the Czech Republic, and Austria to the 

eastern Mediterranean (Figure 2.5). 13 days (28th March 2022-SDE2) after 

the first Saharan dust storm, another wave of Saharan dust hit the south of 

Europe a spread to reach the Eastern European countries. 

https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access
https://disc.gsfc.nasa.gov/datasets/M2T1NXAER_5.12.4/summary
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To evaluate the effect of the Saharan dust load transported to Budapest 

Hungary, measurements of PM10 and PM2.5 from the Hungarian Air Quality 

Network platform for Budapest Gilice tér air quality station. 

 

Figure 2.5. Suomi NPP / VIIRS true color image on the 15th of March 2022. 

Clouds appear in white and Saharan dust in pale yellow/brown 

PM10 and PM2.5 concentrations are always higher in winter and fall seasons 

due to the alternating variability of the weather conditions and the emission 

source. 

Figure 2.6 shows the PM10 and PM2.5 in Gilice tér air quality station during 

March, the first 10 days of April 2022. During March, the PM10 and PM2.5 

concentrations are usually high, however, in March 2022 the PM10 

concentration was below the daily EU limit value of 50 µg/m3, alternating 

between 14 and 47 µg/m3, and registering lower values in April and May. 
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Figure 2.6. PM10, and PM2.5 concentrations (µg/m3) in Gilice tér air quality station 

during March and the first 10 days of April 2022 

2.3 Estimation and evaluation of PM concentrations 

2.3.1 Evaluation of PM surface concentrations simulated by Version 

5.12.4 of NASA's MERRA-2 Aerosol Reanalysis over Hungary in the 

period between 2019 and 2021 

In the following sections, I describe the different methods used in Evaluation 

of estimated PM surface concentrations using NASA's MERRA-2 Aerosol 

Reanalysis over Hungary in the period between 2019 and 2021. 

2.3.1.1 Description of the study 

In this of the study I used two approaches. The 1st approach is estimating the 

PM10 and PM2.5 based on equations 1 and 2 that will be presented later and 

based on concentrations of components from MERRAero and compare the 

results with results of equations 1 and 2 with results of machine learning 

algorithms that will be used also to estimate PM10 and PM2.5, but based on 

the same concentrations of components used in equations 1 and 2 coupled with 

meteorological data. The second approach is estimating PM2.5 using machine 

learning algorithms but this time based on AOD coupled with NO2, O3, SO2 

and meteorological data.  

The following sections will describe the data and machine learning algorithms 

chosen for the two approaches described before. 

2.3.1.2 The MERRA-2 Aerosol Reanalysis (MERRAero) 

A detailed description of the MERRA-2 Aerosol Reanalysis (MERRAero) 

data is provided in section 3.4. 
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The five PM species simulated by the MERRAero data collection every hour 

(SO4, OC, BC, DS, and SS) allow for an estimation of the total PM10 

concentration (Buchard et al., 2016) as follows:  

[𝑃𝑀10] = 1.375 ∗ [𝑆𝑂4] + 1.8 [𝑂𝐶] + [𝐵𝐶] + [𝐷𝑆] +  [𝑆𝑆] (1) 

Concentration is shown by brackets. [SO4] is multiplied by 1.375 because it is 

assumed that SO4 is completely neutralized by ammonium (NH4) in the form 

of ammonium sulphate ((NH4)2SO4). The particulate organic matter (POM) is 

estimated from modelled OC multiplied by a factor that takes into account 

contribution from other elements associated with the organic matter. This 

factor has values ranging from 1.2 to 2.6 and is spatially and temporally 

variable (Malm et al., 1994). In our simulation, a constant value of 1.8 is 

utilized. 

Moreover, since [PM2.5], can be estimated as follows using MERRA-2 

Aerosol Reanalysis data collection (Buchard et al., 2016), which separates PM 

sizes of DS and SS: 

[𝑃𝑀2.5] = 1.375 ∗ [𝑆𝑂4] + 1.8 [𝑂𝐶] +  [𝐵𝐶] +  [𝐷𝑆2.5] +  [𝑆𝑆2.5] (2) 

Equations 1 and 2 assume that SO4, OC, and BC are all in the form of PM2.5 

and do not contain nitrate particles, which can account for a sizable portion of 

the total [PM2.5] (Provençal et al., 2017). 

In our case we used AOD retrieved from MERRA-2 global atmospheric 

reanalysis platform for Budapest, Kecskemét and Kazincbarcika as well as in-

situ measurements of PM10 and PM2.5 for the period of 2019 and 2021. 

2.3.1.3 Meteorological datasets 

Meteorological data were retrieved from NASA Power (Prediction of 

Worldwide Energy Resources) platform. The platform's list of POWER 

meteorological characteristics is based on the MERRA-2 assimilation model 

developed by NASA Goddard's Global Modeling and Assimilation Office 

(GMAO). Each of the parameters is either estimated using meteorological 

parameters acquired from NASA's MERRA-2 assimilation model, or it is 

directly retrieved from those values. The period from January 1, 1981, through 

a few months in near-real time is covered by the MERRA-2 meteorological 

data that is accessible through POWER. A time series of hourly (or longer 

time scale) values is supplied for each parameter of the POWER MERRA-2 

model. The average value over the whole geographic grid is represented by 

each MERRA-2 parameter. The wind speed is at 10 meters, and 50 meters 
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above the grid's average elevation and its averaged precipitation surface value. 

The following parameters are derived from the model at a height of 2 m above 

the grid box's typical elevation. The MERRA-2 parameters are computed in 

hourly increments and transformed to local time by the POWER project. The 

24-hourly temperature measurements, not an average of those values, are used 

to determine the daily maximum and minimum temperatures. 

In estimating PM concentrations, we used hourly temperature at 2 m (T in ̊ C), 

wind speed at 10 m and 50 m (Ws10, and Ws50 in m/s), Relative Humidity 

(RH), surface pressure (P in kPa) from NASA Power, and Planetary Boundary 

Layer Height (PBLH in m) from MERRA-2 global atmospheric reanalysis 

platform. 

2.3.1.4 Machine learning algorithms 

One of the finest approaches to address the complicated interaction between 

AOD, PM, and associated factors, such as the meteorological parameters, and 

typically obtain amazing predicted outcomes, is machine learning, a branch of 

artificial intelligence. The machine learning models were created using Python 

3 and the scikit-learn library in JupyterNotebook 6.4.12. 

Data preprocessing 

Before applying the machine learning algorithm to the data, all data were 

integrated and matched by time using Microsoft Excel, and cleaned from non-

values, in order to generate clean CSV file that will be loaded to the algorithm 

(Figure 2.7).  

 

Figure 2.7. Algorithm flowchart 
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Multiple Linear Regression 

The multiple linear regression (MLR) model is the most often used statistical 

tool for determining the relationship between two or more variables. MLR is 

an extended model of simple linear regression, where instead of using one 

variable to predict one outcome, multiple variables are used to predict one 

outcome.   

MLR can be described using the following equation: 

𝑦 = 𝛽0 + ∑ 𝛽𝑖
𝑛
𝑖=1 𝑥𝑖 +  𝜀                             (3)                        

Where: y is the outcome value, xi are the different variables, β0 is the intercept 

term, βi are regression coefficients, and ε is the error term. 

Ordinary least squares regression 

Ordinary least squares (OLS) models assume that the researcher is fitting a 

model of a relationship between one or more independent variable and a 

continuous or at least increment outcome variable that reduces the sum of 

square errors, in which an error is the difference between the real and predicted 

value of the outcome. Linear regression (with a single or many predictor 

variables) is the most frequent analytical approach that employs OLS models 

(Michalos, 2014). 

OLS regression is increasingly employed in many scientific disciplines, 

including physics, economics, and psychology, and a variety of textbooks 

have been created to teach this approach and its applications in many fields of 

inquiry (Cohen, 2013; Kleinbaum et al., 2013; Montgomery, Peck and Vining, 

2020). 

Random Forest regression 

One of the most well-liked ensembles learning strategies based on decision 

tree predictors is Random Forest (RF), which is a straightforward, effective, 

and understandable strategy. The trees are bagged in the first stage, and then 

the tree is divided in the second step using the random subspace technique or 

the random split selection, applied at each node of the algorithm, and utilizing 

just a subset of the characteristics to split the node. The benefits of RF included 

completing regression and classification tasks as well as generating accurate 

predictions and outcomes that can be simply explained (Breiman, 2001). 

Extra Tree regression 
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The Extra-Trees approach (XT) employs the traditional top-down construction 

method to construct an ensemble of unpruned decision or regression trees. It 

separates nodes by selecting cut-points completely at random, which sets it 

apart from previous tree-based ensemble approaches. It also grows the trees 

using the entire learning sample rather than a bootstrap replica. In the worst 

situation, XT creates completely random trees, whose architectures are 

independent of the learning sample's output values. By selecting the right 

parameter, the power of the randomization may be adjusted to the particulars 

of the situation. The algorithm's biggest advantage, aside from accuracy, is 

computational speed (Geurts, Ernst and Wehenkel, 2006). 

In the first approach, we estimated the PM10 and PM2.5 using MLR, OLS, 

RF and XT machine learning algorithms, based on BC, OC, DS, SS, SO4, 

AOD, and PBLH from MERRAero data, and T, RH, Ws10, Ws50 and P from 

NASA Power platform. While in the second approach, we estimated the 

PM2.5 using MLR, OLS, RF and XT machine learning algorithms, based on 

AOD, and PBLH from MERRAero data, and T, RH, Ws10, Ws50 and P from 

NASA Power platform, and measurements from Hungarian air quality 

network of NO2, SO2 and O3. In addition, both approaches were done for 

Budapest, Kecskemét and Kazincbarcika for the period of 2019 and 2021. 

2.3.2 Calibration of CAMS PM2.5 data over Hungary using machine 

learning 

The purpose of this study is to calibrate CAMS PM2.5 data using the 

LightGBM algorithm and evaluate its impact on improving the accuracy and 

correlations with in-situ measurements in Hungary. The study aimed to 

address the limitations of raw CAMS data and provide more reliable 

information for air quality assessments. 

2.3.2.1 CAMS global reanalysis (EAC4) 

The Copernicus Atmosphere Monitoring Service (CAMS) reanalysis is the 

most recent global reanalysis dataset of atmospheric composition produced by 

the European Centre for Medium-Range Weather Forecasts (ECMWF), and it 

consists of three-dimensional time-consistent atmospheric composition fields, 

which include aerosols and chemical species (Inness et al., 2019). The CAMS 

reanalysis expands on the knowledge gathered during the previous Monitoring 

Atmospheric Composition and Climate (MACC) reanalysis and interim 

CAMS reanalysis. Total column CO, tropospheric column NO2, aerosol 

optical depth (AOD), and total column, partial column, and profile ozone 

retrievals from satellites were used in the CAMS reanalysis with the 

ECMWF's Integrated Forecasting System. The CAMS forecasts air pollution 
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levels throughout the world over the following few days. The CAMS, in 

particular, generates a forecast of global atmospheric composition with time 

horizons as long as the next 120 hours, consisting of 56 reactive trace gases in 

the troposphere, stratospheric ozone, and five different types of aerosols (i.e., 

desert dust, sea salt, organic matter, black carbon, and sulphate) (Wagner et 

al., 2021).  

EAC4 (ECMWF Atmospheric Composition Reanalysis 4) is the fourth 

generation of ECMWF global atmospheric reanalysis. Reanalysis integrates 

model data with observations from throughout the world to create a globally 

complete and consistent dataset using an atmosphere model based on physical 

and chemical rules. This data assimilation principle is based on the method 

employed by numerical weather prediction centers and air quality forecasting 

centers (Peuch et al., 2018). The assimilation system can estimate biases 

between observations and separate high-quality data from low-quality data. 

Estimates can be made using the atmosphere model in areas with limited data 

coverage or for atmospheric contaminants for which no direct observations 

are available. Reanalysis is a very convenient and popular dataset to work with 

since it provides estimates for each grid point around the world for each 

regular output time over a long period of time, always in the same format. The 

observing system has evolved significantly over time, and while the 

assimilation system can fill data gaps, the initially more sparser networks 

result in less accurate estimations. As a result, EAC4 is only available since 

2003 (Copernicus, 2020). CAMS gives global estimates every 3 h, with a 

horizontal resolution of 0.75°x 0.75° and a vertical structure of 60 hybrid 

model levels, with a top-level at 0.1 hPa. 

In the current study we used a single-level PM2.5 data downloaded from 

CAMS website (https://ads.atmosphere.copernicus.eu) for the years 2019 and 

2020. 

2.3.2.2 ERA5 Meteorological datasets 

ECMWF prepared the ERA5 reanalysis as part of the Copernicus Climate 

Change Service (C3S), which will contain a full record of the global 

atmosphere, land surface, and ocean waves from 1950 onwards. This new 

reanalysis will take the place of the ERA-Interim reanalysis, which began in 

2006 (Hersbach et al., 2020). ERA5 produces hourly estimates for a wide 

range of atmospheric, oceanographic, and land-surface variables. An 

underlying 10-member ensemble samples an uncertainty estimate at three-

hourly intervals. For your convenience, the ensemble mean and spread have 

been pre-calculated. Such uncertainty estimations are intimately tied to the 

available observing system's information content, which has developed 



 

25 

 

significantly over time. They also show flow-dependent sensitivity zones. 

Monthly-mean averages have also been pre-calculated to help with many 

climatic applications, while monthly means for the ensemble mean and spread 

are not available. For the reanalysis, data was regridded to a standard lat-lon 

grid of 0.25 degrees and 0.5 degrees for the uncertainty estimate (0.5 and 1 

degree for ocean waves, respectively). There are four major subsets: hourly 

and monthly products on pressure levels (upper air fields) as well as single 

levels (atmospheric, ocean-wave, and land surface values). ERA5 hourly data 

on single levels starts from 1940 to the present (Hersbach et al., 2020). 

Data was downloaded from Copernicus climate data platform website 

(https://cds.climate.copernicus.eu). In this study we used the temperature of 

air at 2 m above the surface (T in ˚C), relative humidity (RH), Planetary 

boundary layer height (PBLH in m), 10 m u and v components of wind (u10 

and v10 in m/s), surface pressure (P in Pa) and total could cover (tcc). 

2.3.2.3 LightGBM algorithms 

LightGBM is a highly effective and scalable gradient boosting decision tree 

technique that benefits from its histogram-based approach, leaf-wise tree 

development strategy, and proprietary feature bundling (Ke et al., 2017). 

LightGBM algorithms are a type of gradient boosting framework that have 

received a lot of attention due to their remarkable performance and efficiency 

when dealing with large-scale datasets (Sheridan, Liaw and Tudor, 2021). 

LightGBM algorithms help to advance cutting-edge technology by boosting 

our understanding of complicated data patterns and, eventually, decision-

making processes across numerous industries. Overall, LightGBM algorithms 

offer extraordinary societal benefit by expanding the field of machine learning 

and enabling more accurate and efficient data processing (Xia et al., 2021). 

LightGBM can process massive amounts of high-dimensional big data with 

greater efficiency and performance than traditional machine learning 

approaches.  In our study, LightGBM is an appropriate choice. The 

mathematical equations for PM2.5 calibration schemes are as follows: 

𝑃𝑀2.5,𝐶 = 𝑓𝑚𝑜𝑑𝑒𝑙( 𝐶𝐴𝑀𝑆𝑃𝑀2.5, 𝑇, 𝑅𝐻, 𝑏𝑙ℎ, 𝑢10, 𝑣10, 𝑃, 𝑡𝑐𝑐, ℎ𝑜𝑢𝑟, 𝑑𝑎𝑦, 𝑚𝑜𝑛𝑡ℎ) (4)

  

The data preprocessing and data matching phase involved preparing and 

aligning the CAMS and ERA5 datasets for further analysis. The resolution of 

the CAMS dataset is 0.75x0.75, while the resolution of the ERA5 dataset is 

0.25x0.25. A geographic matching procedure was used to match the air quality 

stations with the relevant grid points in each dataset. The purpose was to find 

the CAMS and ERA5 grid point that was nearest to each air quality station. 
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The geographic coordinates of the air quality stations were matched with the 

grid points in both the CAMS and ERA5 datasets during the data matching 

process. The closest grid point to each station was obtained by computing the 

distances between the station coordinates and the grid point coordinates. 

After the data preprocessing and matching phase, the datasets were further 

divided into training and test sets (80 x 20% split) with 5-fold cross validation. 

The Pearson correlation R is calculated between the raw CAMS and in-situ 

PM2.5 before the training of the model for the test data, and after of the 

training of the model between calibrated and in-situ PM2.5. 

2.4 Data and statistics 

2.4.1 The MERRA-2 Aerosol Reanalysis (MERRAero) 

The Goddard Earth Observing System Model, Version 5 (GEOS-5) is the 

foundation of the MERRA-2 assimilation system (Molod et al., 2015). 

MEERA-2 incorporates spaceborne aerosol products from Moderate 

Resolution Imaging Spectroradiometer (MODIS), Multi-angle Imaging 

Spectro Radiometer (MISR), and the ground-based remote sensing network 

AErosol RObotic NETwork (AERONET) as data for its aerosol dataset. The 

optical characteristics, emissions, deposition, and aerosol mixing ratios of the 

five different types of aerosols are all included in the MERRA-2 aerosol 

dataset vertically (Buchard et al., 2017; Randles et al., 2017). The data from 

MERRA-2 comprise 21 different types of products, such as atmospheric 

aerosols, radiation, temperature, water vapor, precipitation, etc. The data span 

the years 1980 to the present, and are saved in a standard grid of 0.5° × 0.625° 

(Randles et al., 2017). 

The GOCART (the Goddard Chemistry Aerosol Radiation and Transport 

model) chemistry module, which simulates five different forms of aerosols, is 

integrated with the MEERA-2 model (sulfate (SO4), organic carbon (OC), 

black carbon (BC), sand dust (DS), and sea salt (SS)). These aerosols are 

considered as external mixes that do not interact with one another. While the 

surface wind speed affects the emissions of dust and sea salt, other aerosol 

types are predicted from potential natural and anthropogenic sources. 

Convective large-scale wet removal, dry deposition, sedimentation, and 

chemical processes to generate sulphate aerosol from Sulphur dioxide (SO2) 

oxidation are all included within the GOCART model (Randles et al., 2017). 

The parameterizations of natural and anthropogenic emissions in MERRAero 

have got numerous significant modifications from the previous edition of the 

GEOS-4 modelling system (Colarco et al., 2010). The Edgar-4.1 inventory 
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was used to calculate SO2 emissions from anthropogenic sources, and the 

injection scheme was changed to account for changes in the injection profiles 

of emission sources from the energy and non-energy sectors (Buchard et al., 

2014). The emissions from biomass burning are from the NASA Quick Fire 

Emission Dataset (QFED) Version 2.1. QFED is a worldwide fire radiative 

power-based inventory of daily aerosol precursor and trace gas emissions 

(Koster, Darmenov and da Silva, 2015). According to the study of Jaeglé et 

al. (2011) a novel independently obtained sea surface temperature (SST) 

adjustment term was used to modify the intensity of sea-salt emissions. Dust 

emission is predicated on the correlation of reported dust source sites with 

large-scale topographic depressions, as proposed by Ginoux et al. (2001). 

MERRA-2 coupled AOD at 550 nm, from a variety of ground- and space-

based remote sensing platforms, including (i) bias-corrected AOD from 

Moderate Resolution Imaging Spectroradiometer (MODIS) Terra and Aqua, 

(ii) the Advanced Very High Resolution Radiometer (AVHRR) instruments, 

(iii) AOD retrievals from the Multiangle Imaging SpectroRadiometer (MISR) 

over bright surfaces, and (iv) ground-based Aerosol Robotic Network 

(AERONET) direct measurements of AOD (Level 2) (Randles et al., 2017). 

2.4.2 Air quality stations 

The Hungarian Air Quality Monitoring Network provides real-time and 

historical air quality monitoring data throughout Hungary. The network is 

divided into two main parts: automatic monitoring stations that continuously 

measure a wide range of air pollutants in the ambient air, and a manual system 

with sample points and subsequent laboratory examination. The existing 

network in Hungary comprises 37 fully automatic monitoring stations. The 

National Air Quality Reference Centre and Laboratory's primary 

responsibilities are as follows: Oversight of the operation of the Hungarian 

Air Quality Monitoring Network (HAQM) in accordance with Ministry of 

Agriculture standards, coordination and regulation of HAQM methods and 

procedures in accordance with EU regulations, maintain measurement 

traceability by running an approved Calibration Laboratory, and participation 

in national and worldwide standards development. A CO analyser, PM10 / 

PM2.5 monitors, a calibration tower, and a mass flow meter calibration system 

were added to the calibration laboratory instrument fleet (Weidinger et al., 

2010). 

Among the monitoring sites in Budapest, the Gilice tér urban background 

station (located in the SE part of the city) was chosen for our analysis because 

it is a standard meteorological and air quality monitoring station that provides 
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PM10 and PM2.5 concentrations and detailed meteorological observations 

with good data coverage.  

Kecskemét is located 86 kilometers from both the capital Budapest and the 

country's third-largest city, Szeged, and is almost equal distance from the 

country's two major rivers, the Danube and the Tisza. Kecskemét is the city 

most vulnerable to climate change, with a slew of environmental issues in the 

Danube-Tisza Interfluve. The most significant changes include the 

degradation of air quality, the influence of urban heat islands, and water 

management (Hoyk, Kanalas and Farkas, 2020). The air quality station in 

Kecskemét is an urban background station. 

Kazincbarcika is a town in the county of Borsod-Abaj-Zemplén in Northern 

Hungary. It is located in the valley of the Sajó River, 20 km away from 

Miskolc, the county capital. The air quality station in Kazincbarcika is an 

international urban background station. Table 3 presents the list of air quality 

stations used throughout the different studies as well as their geographical 

coordinates. 

All PM10 and PM2.5 data were retrieved from the Hungarian Air Quality 

Network platform (Országos Légszennyezettségi Mérőhálózat (OLM), 

https://legszennyezettseg.met.hu), which is a platform that provides actual and 

historical air quality monitoring data throughout Hungary. 

Table 3: List of air quality stations with latitudes and longitudes 

Station latitude longitude 

Ajka 47.10 17.55 

Budapest Gilice 47.43 19.18 

Kazincbarcika 48.24 20.61 

Kecskemet 46.90 19.68 

Miskolc_Alfoldi 48.09 20.81 

Nyiregyhaza 47.96 21.71 

Pecs Nevelesi Kozpont 46.04 18.22 

Szazhalombatta_Buzavirag_ter 47.31 18.92 

Szeged_Rozsa 46.27 20.15 

Szolnok 47.18 20.2 

Veszprem 47.09 17.9 
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2.4.3 Performance statistics 

The performance of the air quality forecast models (in sections 3.3.1 and 3.3.2) 

using the testing dataset was assessed using model performance metrics, such 

as R2 computed by Equation (5), RMSE calculated by Equation (6), MAE 

calculated by Equation (7), and Pearson correlation R calculated by Equation 

(8) 

𝑅2 =
[∫ (𝑝𝑖− 𝑝̅)

𝑛
𝑖=1 −(𝑜𝑖−𝑜̅)]

2

[∫ (𝑝𝑖− 𝑝̅)
𝑛

𝑖=1

2
][∫ (𝑜𝑖− 𝑜̅)

𝑛
𝑖=1

2
]
 ,            

(5) 

𝑅𝑀𝑆𝐸 = √∑
(𝑝𝑖−𝑜𝑖)2

𝑛
𝑛
𝑖=1  ,            

(6) 

𝑀𝐴𝐸 =
1

𝑛
 ∑ |𝑝𝑖 − 𝑜𝑖|𝑛

𝑖=1  ,            

(7) 

𝑅 =
∑(𝑝𝑖− 𝑝̅)−(𝑜𝑖−𝑜̅)

√∑(𝑝𝑖− 𝑝̅)2  ∑(𝑜𝑖− 𝑜̅)2
      

(8)  

 

Where: 

𝑝𝑖 the predicted value of the sample, and 𝑝̅ is the predicted average. 

𝑜𝑖  the observation value, and 𝑜̅  is the observation average. 

𝑛 the number of the samples. 
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3 RESULTS  

In this chapter, I present the results of all the 3 main chapters presented in 

Material and Method section. 

3.1 PM dispersion experiments 

3.1.1 Small scale experiments of PM10 dispersion around obstacles 

The results of the experiments showed some interesting aspects for the 

understanding of the PM10 dispersion around simple obstacle (Wall). 

3.1.1.1 Sensor A 

The sensor A is the sensor behind obstacle. Figure 3.1 shows the average 

concentration of PM10 during each experiment in function of Obstacle heights 

(OH) and distance from the source (OD). The average PM10 concentration 

increase with increasing of the obstacle distance from the source at higher 

wind speed while in low wind speed it is almost stable. At wind speed of 2.9 

m/s the average PM10 concentration was the same for obstacle height 240 and 

360 mm while it was at its peak when obstacle height was 120 mm. while, for 

wind speed of 1m/s the peak average PM10 concentration was at obstacle 

height of 360 mm and almost the same in the other two heights. 

 

Figure 3.1. graphs of Average PM10 concentration registered by Sensor A in 

function of Obstacle heights and distance from the source in case of a) wind speed 

2.9 m/s and b) wind speed 1 m/s 
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3.1.1.2 Sensor B 

For the sensor B (Figure 3.2), which is the sensor placed before the wall, the 

PM10 average concentration was higher in case of wall height of 240 and 360 

mm, and wall distance of 750 mm at wind speed of 1 m/s. While it reaches the 

maximum when obstacle distance from the source is 834mm, obstacle height 

is 120 mm and wind speed of 2.9 m/s. 

 

Figure 3.2. Graphs of Average PM10 concentration registered by Sensor B in 

function of Obstacle heights and distance from the source in case of a) wind speed 

2.9 m/s and b) wind speed 1 m/s 

3.1.1.3 Sensor C 

The sensor C placed near the source registered almost same average 

concentration of PM10 at wind speed of 1m/s with decrease in concentration 

in case of obstacle height 360 mm and distance from source 834 mm (Figure 

3.3). In the other hand it was changing at wind speed of 2.9 m/s. The peak 

average PM10 concentration was as the same as sensor B, when obstacle 

distance from the source is 834 mm and obstacle height is 120 mm. 
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Figure 3.3. Graphs of Average PM10 concentration registered by Sensor C in 

function of Obstacle heights and distance from the source in case of a) wind speed 

2.9 m/s and b) wind speed 1 m/s 

The result of a multiple regression analysis aims to predict PM10A 

concentration using four independent variables: "OH", "OD", "PM10C," and 

"Ws". The resulting the equation of the regression model (Eq.9) can be written 

as follows: 

𝑃𝑀10𝐴  =  143.07 − 71.86 ∗ 𝑂𝐻 −  171.42 ∗ 𝑂𝐷 +  1.23 ∗  𝑃𝑀10𝐶  +
 12.34 ∗ 𝑊𝑠         (9) 

The correlation coefficient (R) was 0.89, suggesting that the dependent 

variable and the set of independent factors had a moderately significant 

positive connection. Furthermore, the coefficient of determination (R2) was 

0.79, indicating that the independent variables in the model explain roughly 

79% of the variation in the dependent variable. 

The results of this research concluded that there is a positive significant effect 

of Obstacle heights, distance of the obstacle from the source, and the wind 

speed. The PM10 average concentration decrease significantly in the sensor 

A (behind the wall) when the obstacle height increases and also when the 

obstacle distance from the source increase also in case of the two-wind speed 

(1 m/s and 2.9 m/s) with higher concentrations registered in case of wind speed 

is 1 m/s. while, changes in the PM10 average concentration was also seen in 
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case of Sensor B (in the middle) and sensor C (near the source) especially in 

case of high wind speed (2.9 m/s) and that is due to the turbulence created 

before and after the walls when the wind hits it, in addition to the reflexing of 

PM plumes by the obstacle. Also, maximum PM10 concentration sensor A 

(after wall) and sensor B (before wall) at obstacle distance 834 mm, and 

obstacle height 120 mm, while at low wind speed (1 m/s) the PM10 

concentrations does not change with effects of obstacle height and distance 

from source. In contrast, at higher wind speed (2.9 m/s), the obstacle height 

and distance affect the PM10 concentration before and after the obstacles in 

the same way, meaning that the concentrations tend to decrease with obstacle 

height increases, and as close as the obstacle to the sensor the concentration 

increases with low obstacle height, due to the turbulence created near the 

obstacle which trap the PM10 particles near the obstacle. Thus, the 

experiments results prove the same effects of simple obstacle presence as 

larger scale study where complex urban landscape and structure are involved. 

The experiments proved that also in small scale experiments the transportation 

of the PM particles are the same as in real scale transportation of PM. 

Generally, the PM10 average concentration tends to decrease when obstacle 

heights increase but also combined with position of the obstacle far from the 

source. In our case, the experiment is a simplification of the dispersion of PM 

concentration (PM10 specifically) in an austere environment. It represents the 

basis for understanding the PM pollutant source interaction with the barrier 

and how it affects PM10 concentrations. The results may change in a complex 

urban setting, where many parameters can intervene to change the dispersion 

of air pollutants. Our case study's results are valid but subject to investigation 

in other experimental settings. 

Moreover, using Incense sticks as source of PM pollution showed that while 

the stick is burning it continues to spike the PM10 concentration, as before the 

experiments the background concentration of PM10 was 7±3 µg/m3 and 

during the experiments it can reach 700 µg/m3, which manifest the short-term 

effect of burning the incense stick and its risk of affecting the indoor air quality 

if used in excess. Finally, the experiment is representation of trying to find 

simple obstacle placement that can reduce significantly PM plume coming 

from source that could be industrial or traffic source. The results show that the 

higher the obstacle is better but also closer is better also, but in real situation 

simple obstacle can be put in the way of PM plumes and as closer as possible 

to the area that is subject to be defended from high PM concentrations. And 

one of the best options is to combine simple obstacle (solid barrier) with 

vegetated/tree barrier as the last was proven to improve air exchange, and The 
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tree planting and trunk height have a considerable impact on the air flow and 

pollution dispersion (Buccolieri et al., 2022). 

3.1.2 Effect of small hills on PM10 and PM2.5 concentrations in short 

range 

The average concentrations registered by sensor 3 (S3) of PM10 and PM2.5 

are higher in the case of the 1m height and 0.8m height compared to the 

concentrations recorded during flat case Figure 3.4. 

At low wind speeds (0 and 0.7 m/s), the average concentrations of PM10 and 

PM2.5 registered by S3 are almost the same in all the 3 cases. At wind speeds 

of 2.4, 3.7, and 5.1 m/s, the average concentration of PM10 and PM2.5 are 

higher in the case of the two different heights compared to flat areas. The peak 

concentration of PM10 and PM2.5 in case of 1m height registered when the 

wind speed was 3.7 m/s, while in case of 0.8 m height was at a wind speed of 

5.1 m/s, while in a flat area, average concentrations registered were almost the 

same when wind speed was higher than 2.4 m/s. In addition, the same in the 

case of 0.8 height, but the average concentration was 2.5 to 3 times higher than 

in the flat case with a slight decrease at high speed (6.1 m/s). While in the case 

of 1m height, the average PM concentration was 2 to 3 times with wind speeds 

of 3.7 and 5.1m/s, and almost the same at wind speeds of 2.4 and 6.1 m/s. 

The difference in the ground surface elevation between case 2 and case 3 is 

just 0.2 m, but the effect on the dispersion of the PM plumes can be seen from 

the average PM concentrations. In the case of a flat ground surface, the spread 

of PM pollutants is parallel to the wind direction. In contrast, high ground (in 

our case, in the form of a hill) at different elevations changes the dispersion 

pathway of the PM particles. The different slopes of the hills create other flows 

of the PM dispersion; in case two, the approximate same PM concentrations 

registered in different ranges of wind speed means the PM particles are 

trapped in the same way regardless of the wind speed. 
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Figure 3.4. Average S3 concentrations in all cases of A) PM10 and B) PM2.5 

Comparing the three PM10 concentrations registered by the 3 sensor (Figure 

3.5), it’s seen that S1 registered higher concentrations in case 2 and 3 than in 

case 1, especially at wind speeds less than 3 m/s, and that is due to reflective 

effect of the hill and also low wind speed. While for S2 the PM particles are 

trapped before the hill which promote higher PM concentrations. 

In this study also, multiple linear regression method was used to estimate 

PM10 concentration at the top of the hill (PM10S3 in µg/m3) based on the 

PM10 concentration near source (concentration registered by Sensor 1, 

PM10S1), PM10 concentration at the bottom of the hill (concentration 

registered by Sensor 2, PM10S2), the wind speed (Ws in m/s), and the height 

of the hill (H in m). 

The result of the multiple linear regression is the following equation: 

𝑃𝑀10𝑆3  =  5.92 − 0.173 ∗ 𝑃𝑀10𝑆1 + 0.580 ∗ 𝑃𝑀10𝑆2 + 4.29 ∗ 𝑊𝑠 − 11.29 ∗ 𝐻

 (10) 

The correlation coefficient (R) was 0.9, indicating a relatively strong positive 

correlation between the dependent variable and the combination of 

independent variables. In addition, the coefficient of determination (R2) was 

0.82, which means that approximately 82% of the variance in the dependent 

variable is explained by the independent variables in the model. 
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Figure 3.5. PM10 concentrations of the 3 sensors in I) case 1, II) case 2, and III) 

case 3 

Analysing the correlations between PM10 concentrations of sensors S1, S2 

and S3 (Figure 3.6), it shows that for S1 correlation was low and positive in 

case 1 (0.2), but it changes to negative in cases 2 and 3 (-0.18 and -0.5 

respectively), which show the effects of the height of the hills. For S2, the 

correlation between PM10 concentration and wind speed decrease as the 

height of the hill increase, while for S3, a strong correlation is observed in 

case 1 and 2 (0.8 and 0.84, respectively), and it decreases in case 3. Thus, the 

decrease in the correlation due to the higher elevation of the hill could be 

because of the changes in the wind flow created by different elevations of the 

hill. The results underscore the significant influence of hill elevation on the 

correlation between PM10 and wind speed at various sensor locations, 

emphasizing the role of local topography in shaping air pollution patterns 

during the experiments. 
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Figure 3.6. Correlations between PM10 concentrations and wind speed in all cases 

for 1) Sensor 1, 2) Sensor 2, and 3) Sensor 3 

3.2 Saharan Dust storm transport 

3.2.1 Dust Storm simulation over the Sahara Desert (Moroccan and 

Mauritanian regions) using HYSPLIT 

In this chapter I describe the results Saharan Dust simulation study using 

HYSPLIT model. 

3.2.1.1 Dust Simulation and cluster analysis results 

Hysplit PM10 emission modelling results (Figures 3.7 and 3.8) show that the 

PM10 emission on the 14th of June 2020 started from the region of Tinduf, 

Algeria (Close to the Moroccan borders), Adrar, Tiris Zemmour, and Tagant 

in Mauritania. While the dust storm was continuous for 4 days and the dust 

was transported to the North Atlantic Ocean, the average PM10 concentration 

between 0 and 100m was between 100 µg/m3 and 10000 µg/m3 in some critical 

regions like Tinduf, Algeria on the 14th and 17th of June 2020, Adrar, 

Mauritania on the 15th, Bir Anzarane, Morocco on the 16th, Tiris Zemmour, 

Mauritania on the 17th, Goundam Cercle, Mali on the 18th of June 2020. 

Comparing the average PM10 concentration maps between 0 and 100m from 

the HYSPLIT modelling results and the MODIS Aqua Deep Blue AOD maps 
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(Figure 3.9), it can be seen that in most of the regions where the PM10 

concentration are high, the AOD index is also at a high level, which indicates 

a positive correlation between the PM10 concentration and the AOD index of 

MODIS Aqua. Regions like Tiris Zemmour in Mauritania, Western Sahara of 

Morocco, Western and Southern regions of Algeria, are also characterized as 

source regions that influence the level of the PM10 concentration over the 

western Mediterranean Basin (Salvador et al. 2014; Russo et al. 2020). 

Moreover, all the areas that had a high concentration of PM10 in the HYSPLIT 

dust simulation results and high AOD values (between 0.7 and 1) according 

to time-averaged maps of MODIS-Aqua are considered as primary dust 

natural source regions (Ginoux et al. 2012), and they are active throughout the 

year, although their peak activity is between April and September (Prospero 

et al. 2002). 
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Figure 3.7. Modelling results for the concentration of PM10 averaged across the 0-

100m altitude range in June a) 14th from 00 UTC to 12 UTC, b) 14th from 12 UTC 

to 15th 00 UTC c) 15th from 00 UTC to 12 UTC 
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Figure 3.8. Modeling results for the concentration of PM10 averaged across the 0-

100m altitude range in June a) 17th from 00 UTC to 12 UTC, b) 17th from 12 UTC 

to 18th 00 UTC c) 18th from 00 UTC to 12 UTC d) 18th from 12 UTC to 19th 00
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Figure 3.9. MODIS Aqua time Averaged Map of Aerosol Optical Depth 550 nm 

(Deep Blue, Land-only) daily 1 deg in the region of western Sahara on the a) 14, 

June 2020 b) 15, June 2020 c) 16, June 2020 d) 17, June 2020 e) 18, June 2020 f) 

19, June 2020 

 

The analysis of the trajectories of the PM10 particles emitted from numerous 

locations in the western Sahara during the June dust storm event using the 

HYSPLT cluster analysis method is shown in Figures 4.10 and 4.11. A large 

percentage of the PM10 trajectories analysed in the period between 10th and 

30th of June 2020, reached the middle-upper troposphere of the Caribbean Sea 

and the Gulf of Mexico. 80%, 51%, 76%, and 70% of the PM10 particle 
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trajectories from Bir Anzarane Morocco, Nouakchott, and Tichit Mauritania, 

and Bordj Badji Mokhtar Algeria arrived to the Gulf of Mexico respectively. 

 

Figure 3.10. Forward trajectory cluster analysis results, each picture shows Cluster 

mean trajectories with the percentage of trajectories in each cluster from a) Dakhla, 

b) Bir Anzarane, c) Oum Dreyga, d) Aousserd, e) Nouakchott, and f) Tichit. 

Many studies state that during summer, and especially during Saharan dust 

events, the level of PM10 and PM2.5 concentration increased dramatically. 

(Bozlaker et al., 2013) state that during the Saharan episode in 2008, the total 

dust contribution for PM10 increased by 85% in Houston, Texas, which shows 

a dominance of the transported PM10 particles from Sahara during dust 

episodes. Also, (Bozlaker et al., 2019) found dust contributions of 19% to 48% 

of PM2.5 during the 9‐day dust episode in 2014 to African dust. Additionally, 

the results of the cluster analysis point out a number of source regions in the 

western Sahara that contribute to the rise in PM10 concentrations in the 
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Southern Coast of the United States, such as Bir Anzarane Morocco, 

Nouakchott, and Tichit Mauritania, and Bordj Badji Mokhtar Algeria. 

 

Figure 3.11. Forward trajectory cluster analysis results, each picture shows Cluster 

mean trajectories with the percentage of trajectories in each cluster from a) Atar, b) 

Toumbouctou cercle, c) Bordj Badji Mokhtar and d) Tamanrasset 

3.2.1.2 PM concentration levels and AOD 

In addition, the backscatter vertical profile as measured by CALIPSO on June 

21 and 23, 2020 (Figure 3.12) shows evidence of the high altitude of the dust 

particles transported from the Saharan region. The top layer altitude of the 

dust on June 21 and 23 were between 4 and 4.5 km, forming a massive dust 

cloud (more than 2 km of  thickness) over the Windward and Leeward islands 

in the Caribbean Sea, and the effect was seen in the hourly measurements of 

the PM10 concentrations of the Fort de France station in Martinique Island 

where the PM10 daily average concentration was 181, 264, and 183 µg/m3 on 

the 21, 22 and 23 of June consecutively with an hourly concentration that 

reached 372 µg/m3, comparing to 42 µg/m3 that was registered at the 

beginning of that month. Furthermore, and after 11days of the starting of the 

Saharan dust storm, the effect of the transported particles was clear in the US 

coastal cities of the Gulf of Mexico. Texas and Florida states were the most 

affected by having an Unhealthy level of PM10 and PM2.5 concentrations, 

followed by Georgia, Alabama, Mississippi, and Louisiana states that reached 

the level of Unhealthy for sensitive groups during the 26 and 27 June 2020, 

which is in correlation with the backscatter vertical profile measured by 
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CALIPSO on June 27, 2020, showing dust cloud over Florida state with dust 

top layer altitude at 4 km. 

 

Figure 3.12. CALIPSO 532nm Total Attenuated Backscatter Version 4.10 images, 

the dust appears in yellow and red in the images. a) Orbit map on 23, June 2020 

with area covered in d image coloured in pink b) 532nm Total Attenuated 

Backscatter on 23, June 2020 with white arrows pointing at the dust top layer over 

the Caribbean Sea c) Orbit map on 27, June 2020 with area covered in image 

coloured in pink d) 532nm Total Attenuated Backscatter on 27, June 2020 with 

white arrows pointing at the dust top layer over Florida state 

In order to quantify the dust event, Figure 3.13 and 3.14 show AOD values 

retrieved from MERRA-2 re-analysis data for Bir Anzarane, Morocco and 

Nouakchott, Mauritania, for the month of June 2020. According to both, the 

June 2020 dust event was historical by June standards. For Bir Anzarane, 

Morocco, the highest AOD value was 3.522 in June 2020, a 188% increase 

from the highest value registered from 2010 to 2019 (1.87 in June 2017). For 

Nouakchott, Mauritania, the highest AOD value recorded in June between 

2010 and 2019 was 2.78 in June 2010, while in June 2020, the highest AOD 
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was 5.87, 211% higher. Even though such high AOD levels are exceptional, 

but not uncommon; during 

the record-breaking March 2018 dust outbreak, Solomos et al. (2018) and 

Kaskaoutis et al. (2019) observed AOD values over 6. 

 

Figure 3.13. Bir Anzarane Morocco AOD values in June 2020 

 

Figure 3.14. Nouakchott, Mauritania AOD values in June 2020 

3.2.2 The identification and evaluation of the Saharan dust storm events 

in Budapest, Hungary between 2018 and 2022 
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Based on the daily 700 hPa geopotential height, wind maps, and SDE-specific 

dust transport paths, SDEs were divided into three primary synoptic 

meteorological groups by Varga, (2020). The various categories were 

distinguished by certain deterministic atmospheric patterns: Type-1 SDEs 

were linked to deep atmospheric depressions over Western Europe and north-

western Africa. While, dust transport during Type-2 episodes was brought on 

by Central Mediterranean cyclones, while Type-3 events were defined based 

on the infrequent dust transport that occurred when dust-loaded air masses 

approached the Carpathian Basin from the north-western directions (Figure 

3.15). From 2018 to 2022, 11 Saharan Dust events (SDEs) were identified in 

Hungary (Focus on the capital Budapest). 

 

Figure 3.15. Wind flow patterns (mean meridional (a) and zonal (b) wind 

components at 700 hPa) and (c) specific dust transport routes at 3000 m above 

surface level by different Saharan dust event types (Varga, 2020). 

SDE1: January 7–9, 2018 

SDE1 was a type 2 event, Figure 3.16.A show the transport of the dust mass 

to Hungary at its peak form. The maximum Dust mass was 675.5 mg/m2, and 

PM10 daily concentration increased by factor of 2.5, (from 22µg/m3 in the 4th 

of January to 55 µg/m3 in the 7th of January). 

SDE2: February 7–8, 2018 
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SDE2 was also a type 2 as seen in Figure 3.16.B. The maximum Dust mass 

was 834.7 mg/m2, and PM10 daily concentration increased by factor of 2, 

(from 31 µg/m3 in the 4th of February to 66 µg/m3 in the 9th of February). 

SDE3: October 28–31/01–02 November, 2018 

SDE3 was also a type 2 as seen in Figure 3.16.C, it was a two wave SDE, the 

first wave started to hit on the 28th of October and the second wave on the 1st 

of November. The maximum Dust mass was 505.5 mg/m2 on the first wave 

and 367.4 mg/m2 on the second wave, and PM10 daily concentration increased 

by factor of 3, (from 20 µg/m3 in the 26th of October to 61 µg/m3 in the 02nd 

of November). 

SDE4: April 23-27, 2019 

Even SDE4 was a type 2 as shown in Figure 3.16.D. This event was also a 2 

waves SDE, the first wave started to hit on the 23rd of April and the second 

wave on the 26th of April. The maximum Dust mass was 993.8 mg/m2 on the 

first wave and 952.9 mg/m2 on the second wave, and PM10 daily 

concentration increased by factor of 1.7, (from 28 µg/m3 in the 20th of April 

to 48 µg/m3 in the 26th of April). 

 

Figure 3.16. Dust Column Mass representation at its peak for A) SDE1, B) SDE2, 

C) SDE3, and D) SDE4. 

SDE5: May 13-20, 2020 
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SDE5 was a type 1 as illustrated in Figure 3.17.A. This event was also a 2 

waves SDE, the first wave started to hit on the 14th of April and the second 

wave on the 16th of April. The maximum Dust mass was 654.5 mg/m2 on the 

first wave and 612.1 mg/m2 on the second wave, and PM10 daily 

concentration increased by factor of 1.5, (from 18 µg/m3 in the 12th of May to 

28 µg/m3 in the 20th of May). 

SDE6: February 06-08, 2021 

SDE6 is a type 1 (Figure 3.17.B). The maximum Dust mass was 989.9 mg/m2, 

and PM10 daily concentration increased by factor of 2, (from 14 µg/m3 in the 

4th of February to 31 µg/m3 in the 6th of February). 

SDE7: February 23-26, 2021 

SDE7 was a type 3 (Figure 3.17.C). The maximum Dust mass was 691.9 

mg/m2, and PM10 daily concentration increased by factor of 3, (from 29 µg/m3 

in the 21st of February to 92 µg/m3 in the 26th of February). 

SDE8: June 22-25, 2021 

SDE8 was a type 1 (Figure 3.17.D). The maximum Dust mass was 719.8 

mg/m2, and PM10 daily concentration increased by factor of 2, (from 10 µg/m3 

in the 20th of February to 23 µg/m3 in the 25th of February). 

 

Figure 3.17. Dust Column Mass representation at its peak for A) SDE5, B) SDE6, 

C) SDE7, and D) SDE8. 
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SDE9: March 17-20, 2022 

SDE9 was a type 3 (Figure 3.18.A). The maximum Dust mass was 719.8 

mg/m2, and PM10 daily concentration increased by factor of 2, (from 10 µg/m3 

in the 20th of February to 23 µg/m3 in the 25th of February). 

SDE10: March 29-31, 2022 

SDE10 was a type 3 (Figure 3.18.B). The maximum Dust mass was 679.9 

mg/m2, and PM10 daily concentration increased by factor of 1.4, (from 29 

µg/m3 in the 26th of March to 43 µg/m3 in the 30th of March). 

SDE11: April 22-24, 2022 

SDE11 was a type 2 (Figure 3.18.C). The maximum Dust mass was 699.7 

mg/m2, and PM10 daily concentration increased by factor of 2.4, (from 12 

µg/m3 in the 19th of April to 29 µg/m3 in the 21st of April). 

 

Figure 3.18. Dust Column Mass representation at its peak for A) SDE9, B) SDE10, 

C) SDE11 

During the period of 2018 to 2022, type 2 SDEs were dominant (5 times – 

Figure 3.19.I), while type 1 and 3 both occurred 3 times each. In addition, 

February, March and April months are the months where the most of SDEs 

happened (7 times – Figure 3.19.II), and SDEs occurring in those months are 

more likely to be severe events, since the maximum dust mass registered is in 
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that period (SDE4), and also associated with an increase of PM10 daily 

average concentration by a factor of 2 or more. 

With increasing distance from the source, dust's grain size decreases. When 

transported over long distances, coarse particles typically do not exceed 20μm 

because of their higher settling velocity (Does et al., 2016). Mahowald et al. 

(2014) hypothesized that because coarser particles tend to settle out more 

readily, dust in the high atmosphere is finer grained than dust that has been 

deposited. Moreover, a high Saharan Dust Mass during SDE could lead to high 

increase in PM10 concentrations, but that depends on the dust particles size 

and deposition velocity, which mean that a relationship between dust mass 

during SDE and PM10 concentration is not always a direct positive 

relationship. Varga, (2020), highlight contravention of the numerical 

simulations that estimate the mineral grains sizes during SDE, and that the 

bulk of global and regional dust models only use a few size-bins with a rather 

restricted size range, hence mineral grains larger than 20 μm are typically not 

taken into consideration in the numerical simulations, and the direct 

measurements of individual particles illustrate that the mineral grain size 

during a SDE in the Carpathian region is about 40 μm. 

 

Figure 3.19. Frequency distribution of SDEs by number of events and I) Types, and 

II) Months of occurrence 
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3.2.3 Case study of the Saharan dust effects on PM10 and PM2.5 

concentrations in Budapest in March 2022 

3.2.3.1 PM10 and PM2.5 concentrations during the Saharan dust events 

March 2022 dust storm events were type 3 events as described in previous 

chapter (3.4). The daily PM10 and PM2.5 concentrations increased in each 

Saharan dust event at a different percentage rate. During the first SDE (SDE9) 

in March 2022 (17th -20th), the daily PM10 and PM2.5 concentration jumped 

from 34 µg/m3 and 18 µg/m3 in 16th to 46 µg/m3 and 28 µg/m3 in the 18th and 

then start to decrease to reach 25 µg/m3 and 15 µg/m3 in the 20th. For the 

second SDE (SDE10) in March 2022 (28th – 31st), the daily PM10 and PM2.5 

concentration changed from 29 µg/m3 and 13 µg/m3 on the 27th to 43 µg/m3 

and 18 µg/m3 on the 30th after which begin to decline to attain 16 µg/m3 and 

14 µg/m3 in the 1st of April 2022.  Hourly PM10 and PM2.5 concentrations 

(Figure 3.20) provide details on how the hourly concentration changed with 

the SDE.  

SDE9 was more intense than SDE10, as the effects were seen on the level of 

PM10 and PM2.5. The peak hourly concentration for PM10 was 86 µg/m3 and 

57 µg/m3 for SDE9 and SDE10 respectively, while for PM2.5 it reached 51 

µg/m3 and 27 µg/m3 as hourly concentration for SDE9 and SDE10 

respectively. 

 

Figure 3.20. Hourly concentration of a) PM10 during SDE9, b) PM2.5 during 

SDE9, c) PM10 during SDE10, and d) PM2.5 during SDE10 
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About weather conditions, from 8 to 12 March 2022, the daily maximum 

temperature was between 7 and 10˚C, the wind direction from the North and 

Northeast direction, and the maximum wind speed was between 3.5 and 5 m/s, 

and no precipitations were registered. There was a slight increase in the 

maximum temperature (between 8 and 15˚C) in the following days, while 

from the 15th of March wind pattern full of Saharan dust arrived by western 

winds and in-ground surface the wind speed didn’t exceed 3.5 m/s with no 

precipitations during SDE9.  

The temperature continued to increase after SDE9, ranging from 16 and 21˚C 

as the daily maximum temperature, and start to decrease from the 31st of march 

and returns to the same levels that were at the beginning of March 2022, from 

the 2nd of April 2022 (between 5 and 9˚C). On the other hand, Saharan dust 

clouds were transported by West-Southwest, Southwest, and South-

Southwestern winds, and maximum wind speed on the ground surface ranged 

from 3 and 5 m/s during the SDE10, and start to increase from the 1st of April 

2022 to exceed 6 m/s as maximum wind speed, and no precipitations occurred 

on those days. 

With increasing distance from the source, dust's grain size decreases. When 

transported over long distances, coarse particles typically do not exceed 20 

µm because of their higher settling velocity. (Mahowald et al., 2014; Does et 

al., 2016) thought that dust in the upper atmosphere is finer grained than dust 

that has been deposited because coarser particles drop off more rapidly. 

Seasonally, summertime is when Saharan dust is coarser than wintertime. The 

high dust load in both SDEs triggered the increase of hourly PM10 and PM2.5 

concentration. 

The Sahara is the main source of dust in the Northern Hemisphere, and it is 

obvious that it has an impact on many different continents, from the 

fertilization of South America to the air quality in Europe. The Saharan dust 

storms affects the PM concentrations depending on the intensity of the storm. 

During March 2022 SDEs, PM10 and PM2.5 concentrations in an urban 

background air quality station in Budapest increased by 12 µg/m3 and 10 

µg/m3 respectively during SDE9, and 14 µg/m3 and 5 µg/m3 during SDE10 as 

daily average concentrations. in Both SDEs the effect on PM10 was almost 

the same, while SDE9 raised the PM2.5 concentrations more than SDE10.  

The effects of March 2022 Saharan dust events were similar to the one that 

was identified in 2016, on October 15th, which washed out a large amount of 

Saharan dust in the central European region, where it has several impacts, 

from flight security to air quality and impacts on solar radiation (Rostási et al., 
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2022). However, March 2022 Saharan dust events had a more significant 

impact on air quality all over Europe, affecting a wider geographical area of 

western, central, and northern Europe, from Spain up to Scandinavia that led 

to an increase in PM concentrations (Liaskoni et al., 2023; Uzunpinar et al., 

2023), and was associated with dust-infused cirrus clouds that persisted for 

nearly a week, affecting weather patterns and cloud cover over the region. 

With the changing of the world climate, the intensity and the number of the 

Saharan dust storms episodes increase, and many models are still improving 

to provide more accurate forecast and to analyse the dust effects on different 

meteorological and air quality parameters. 

3.3 Estimation and evaluation of PM concentrations 

3.3.1 Evaluation of PM surface concentrations simulated by Version 

5.12.4 of NASA's MERRA-2 Aerosol Reanalysis over Hungary in the 

period between 2019 and 2021 

3.3.1.1 First Approach 

In the machine learning algorithm, we used a split of 0.8x0.2. 80% of the data 

were used to train the model and 20% for the validation of the predicted values 

given by the trained model. To arrive to the results presented, we tried the 

model for many times, and each time the parameters of the machine learning 

algorithms (mainly the number of trees) were changed until arriving to the 

maximum results that can be achieved, where beyond that point the results 

whether they stopped improving or the performances start to decline. 

For all the location chosen for this study, the use of equations 1 and 2 to 

estimate PM10 and PM2.5 result in an R2 less than 0.1, and R2 improved when 

coupling 5 species concentration used in equations 1 and 2 with 

meteorological data and AOD (Figure 3.21).  

For Budapest Gilice tér station, in case of estimating PM10, MLR and OLS 

had low and a similar R2 (0.22 and 0.21), RMSE (15.4 and 15.5 µg/m3) and 

MAE (11.4 and 11.5 µg/m3) values. For RF, R2 of 0.75 achieved when N (the 

number of trees) was equal to 300, and RMSE and MAE were 9.1 µg/m3 and 

6.4 µg/m3 respectively. While, for XT R2 was equal to 0.78 when N=300, and 

RMSE and MAE were 8.1 µg/m3 and 5.7 µg/m3 respectively. Additionally, in 

case of estimating PM2.5, MLR and OLS also had low and a similar R2 (0.27), 

RMSE (9.1 µg/m3) and MAE (6.7 µg/m3) values. For RF maximum value of 

R2 (0.75) obtained when N was equal to 300, RMSE and MAE were 5.3 µg/m3 

and 3.5 µg/m3 respectively. While, for XT, R2 was equal to 0.8 when N=300, 

RMSE and MAE were 4.7 µg/m3 and 3.1 µg/m3 respectively. 
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The same was for Kecskemét, for PM10, low R2 of 0.17 and 0.16 were 

obtained in MLR and OLS model respectively, and RMSE were 15.5 µg/m3 

and 15.6 µg/m3, and MAE was identical for both models (11.5 µg/m3). For 

RF, value of 0.66 for R2 when N=270, and RMSE and MAE were 9.8 µg/m3 

and 6.8 µg/m3 respectively. While, for XT R2 was equal to 0.75 when N=300, 

and RMSE and MAE were 8.5 µg/m3 and 6 µg/m3 respectively. Moreover, in 

case of estimating PM2.5, MLR and OLS again had low R2 (0.23 and 0.22 

respectively), RMSE (11.3 µg/m3 for both models) and MAE (7.5 µg/m3 for 

both models). For RF maximum value of R2 (0.69) obtained when N was equal 

to 300, RMSE and MAE were 7.1 µg/m3 and 4.7 µg/m3 respectively. While, 

for XT, R2 was equal to 0.76 when N=300, RMSE and MAE were 6.2 µg/m3 

and 3.9 µg/m3 respectively. 

Furthermore, for Kazincbarcika in case of PM10, R2 of 0.24 was obtained in 

MLR and OLS models, and RMSE was 18.4 µg/m3 and 18.5 µg/m3, and MAE 

13.3 µg/m3 and13.4 µg/m3 respectively. For RF, value of 0.7 for R2 when 

N=300, and RMSE and MAE were 11.4 µg/m3 and 7.6 µg/m3 respectively. 

While, for XT, R2 was equal to 0.77 when N=300, and RMSE and MAE were 

10 µg/m3 and 6.6 µg/m3 respectively. Additionally, in case of PM2.5, MLR 

and OLS again had low R2 (0.34 and 0.33 respectively), RMSE (15.3 µg/m3 

for both models) and MAE (11.2 µg/m3 for both models). For RF maximum 

value of R2 (0.75) obtained when N was equal to 265, RMSE and MAE were 

9.4 µg/m3 and 6.3 µg/m3 respectively. While, for XT, R2 was equal to 0.8 

when N=300, RMSE and MAE were 8.3 µg/m3 and 5.5 µg/m3 respectively. 
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Figure 3.21. Tables of performance statistic parameters for Budapest Gilice tér a) 

PM10, b) PM2.5, and Kecskemét c) PM10, d) PM2.5, and Kazincbarcika e) PM10 

and f) PM2.5 

The MERRAero dataset is useful tool to estimate PM10 and PM2.5 

concentrations. The results show that the congruence in hourly PM10 and 

PM2.5 values between the observation and the calculated values based on 

equations 1 and 2 was inconsequential in all locations of the study. However, 

estimated PM10 and PM2.5 got better when coupling the estimations with 

meteorological data and component concentrations used in equations 1 and 2. 

In the three locations chosen for this study, MLR and OLS had poor R2 

(between 0.16 and 0.34), while the best R2 was always achieved in case of XT 

model. The high RMSE and MAE results in case of Kazincbarcika compared 

to Budapest and Kecskemét, is due to the fact that concentrations of PM10 
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and PM2.5 registered in Kazincbarcika are higher than in Budapest and 

Kecskemét. 

The use of sophisticated machine learning algorithms like RF and XT, gave 

better estimations of PM10 and PM2.5, in comparison to linear regression 

machine learning (MLR and OLS), and that is because of the complicated non-

linear relationship between PM10 and PM2.5 to other variables like 

meteorological data.  

3.3.1.2 Second Approach 

Figure 2.7, describe the method used in this section. The estimation in this 

approach was done only using 4 machine learning algorithms (MLR, OLS, 

RF, and XT) to estimate PM2.5 concentrations based on 10 variables (AOD, 

O3, NO2, SO2, T, Ws10, Ws50, RH, P, and PBLH). Figure 3.22 summarize the 

results of the MLR, OLS, RF, and XT models. 

Multiple linear regression and Ordinary least square regression:  

Except for Kazincbarcika where R2 was in good range (0.65 and 0.64) for 

MLR and OLS, the value obtained in case of Budapest Gilice tér and 

Kecskemét were low values (between 0.29 and 0.32).  

Random Forest: 

For RF, the peak performance was achieved when N=1700 for the three 

locations. The results show that R2 value using the RF regression machine 

learning algorithm was 0.69, 0.71, 0.83 for Budapest Gilice tér, Kecskemét, 

and Kazincbarcika respectively, overall RMSE was 5.9, 6.9 and 7.9 µg/m3 and 

MAE was 4, 4.5 and 5.1 µg/m3 respectively. 

Extra Tree regression: 

For XT, the peak performance was achieved when N =1000 for Kecskemét, 

and Kazincbarcika and 1100 for Budapest Gilice tér. The results show that R2 

value between the estimated and observed PM2.5 using the XT regression 

machine learning algorithm was 0.73, 0.75, and 0.84 for Budapest Gilice tér, 

Kecskemét, and Kazincbarcika respectively, overall RMSE was 5.5, 6.4, and 

7.6 µg/m3, and MAE was 3.7, 4.2, and 4.8 µg/m3. 
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Figure 3.22. Tables of performance statistic parameters for I) Budapest Gilice tér, 

II) Kecskemét, and III) Kazincbarcika 

In RF algorithm, each tree in the ensemble is constructed from a sample 

selected with substitute from the training set. Additionally, while partitioning 

each node throughout tree construction, the optimum split is determined by 

selecting either all input features or a random subset of size. The goal of these 

two randomness sources is to reduce the variance of the forest estimator. 

Individual decision trees, in fact, have a large variation and tend to overfit. 

Forests with injected randomness provide decision trees with partially 

dissociated prediction errors. Some inaccuracies can be eliminated by taking 

an average of such projections. RFs minimize variance by merging various 

trees, sometimes at the expense of a modest bias increase. In reality, the 

variance decrease is frequently large, resulting in a superior overall model. 

The way splits are produced in XT algorithm goes even further. A random 

subset of candidate features is employed, much as in RF, but instead of looking 

for the most discriminative thresholds, thresholds are produced at random for 

each candidate feature, and the best of these randomly-generated thresholds is 

chosen as the splitting criterion. This generally allows for a little reduction in 

model variance at the price of a slight increase in bias. 
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The MERRAero dataset is a valuable tool for estimating PM10 and PM2.5 

concentrations. The results show that the congruence in hourly PM10 and 

PM2.5 values between the observation and the calculated values based on 

equations 1 and 2 was inconsequential in all study locations. However, 

estimated PM10 and PM2.5 improved when coupling the estimations with 

meteorological data and component concentrations used in equations 1 and 2. 

In the three sites chosen for this study, MLR and OLS had poor R2 (between 

0.16 and 0.34), while the best R2 was always achieved in the case of the XT 

model. The high RMSE and MAE results in the case of Kazincbarcika 

compared to Budapest and Kecskemét can be noticed due to the concentrations 

of PM10 and PM2.5 registered in Kazincbarcika, which are higher than in 

Budapest and Kecskemét. 

In addition to the absence of nitrate particle concentrations, Provençal et al. 

(2017) explains the incongruence between observed and simulated PM2.5, 

which is probably due to a combination of [SO4], [OC] and [BC] differences. 

Additionally, Buchard et al. (2016) noticed a disparity in carbonaceous 

particle concentrations in suburban areas of the United States. Many 

additional research has proposed adding nitrate concentrations to improve 

MERRA-2 PM2.5 estimates (He et al., 2019; Ma, Xu and Qu, 2020), while 

poor MERRA-2 PM estimations were claimed to be caused mostly by the use 

of the Goddard Earth Observing System, version-5 (GEOS-5) model's bottom-

up emission database and meteorological issues in GOES-5 simulations (Song 

et al., 2018). According to Ali et al. (2022), multiple statistical models can be 

used to estimate PM2.5 using MERRA-2 aerosol reanalysis data, with the 

random forest model having the highest accuracy. Their results indicate that 

the random forest model is an appropriate choice for calculating PM2.5 

concentrations in China. 

It was demonstrated that machine learning is a valuable method for predicting 

PM2.5 by using algorithms to estimate PM2.5 based on MERRA-2 AOD, 

Meteorological, NO2, O3, and SO2 data in 3 years (2019 to 2021) for Budapest. 

A comparison between 4 machine learning approaches revealed that the Extra-

Tree regression model outperformed other models like RF, MLR and OLS. 

For Budapest the results of XT model for estimation of PM2.5 give an R2 of 

0.73, RMSE of 5.5 µg/m3, and MAE of 3.7 µg/m3. For Kecskemét an R2 of 

0.75, RMSE of 6.4 µg/m3, and MAE of 4.2 µg/m3.  And for Kazincbarcika an 

R2 of 0.84, RMSE of 7.6 µg/m3, and MAE of 4.8 µg/m3. The use of 

sophisticated machine learning algorithms like RF and XT gave better 

estimations of PM10 and PM2.5, compared to linear regression machine 

learning (MLR and OLS); that is because of the complicated non-linear 
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relationship between PM10 and PM2.5 to other variables like meteorological 

data. 

3.3.2 Calibration of CAMS PM2.5 data over Hungary using machine 

learning 

Python 3.9.17 was used to write a code that performs data preprocessing, 

model training, prediction, evaluation, and visualization, for the data using the 

LightGBM regression model. 

Promising results were obtained from the calibration of CAMS PM2.5 data 

using the LightGBM algorithm. The correlations before and after training the 

model were analysed, revealing noticeable improvements in prediction 

accuracy (Figures 3.23 and 3.24). Before training, the correlations between 

the observed and CAMS PM2.5 data varied across the stations, ranging from 

0.07 to 0.20. However, after training, the correlations significantly increased, 

ranging from 0.78 to 0.88. These enhanced correlations demonstrate the 

efficacy of the LightGBM algorithm in capturing the relationships between 

the input features and PM2.5 levels, leading to improved accuracy in 

predicting air quality. 

The evaluation metrics, such as the R2 scores and root mean squared error 

(RMSE), were utilized to assess the model's performance. The R2 scores, 

which measure the model's ability to explain the variance in observed PM2.5 

values, ranged from 0.61 to 0.77. This indicates that the model accounted for 

61% to 77.4% of the variance, indicating a good fit to the data. Furthermore, 

the RMSE values, representing the average magnitude of the differences 

between predicted and observed values, ranged from 5.31 to 9.92 µg/m3. 

Lower RMSE values indicate higher precision and accuracy in the model's 

predictions. 
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Figure 3.23. Correlation map between CAMS and In-situ PM2.5 before calibration 

 

Figure 3.24. Correlation map between the predicted and In-situ PM2.5 after 

calibration 

Furthermore, the scatter plots (Figures 3.25 and 3.26) also shed light on the 

model's predictive power by showcasing the proximity of the predicted PM2.5 

values to the observed values.  The close alignment between the predicted and 

in situ PM2.5 data points in the scatter plots signifies the model's ability to 

capture the underlying patterns and relationships. The proximity between 

these points reinforces the improved correlations observed after training, 

substantiating the effectiveness of the LightGBM algorithm in calibrating 

CAMS PM2.5 data. The plots demonstrate enhanced correlations and close 

alignment between predicted and in situ PM2.5 data points, highlighting the 

algorithm's ability to accurately predict PM2.5 levels. 
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Figure 3.25. Scatter plots of raw CAMS PM2.5 data for A) Ajka station, B) 

Budapest Gilice ter station, C) Kazincbarcika station, D) Kecskemet station 
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Figure 3.26. Scatter plots of predicted and In-situ PM2.5 for A) Ajka station, B) 

Budapest Gilice ter station, C) Kazincbarcika station, D) Kecskemet station 

The results of this study calibration of CAMS PM2.5 data using the 

LightGBM algorithm align with other studies' conclusions, emphasizing the 

necessity of increasing the accuracy and dependability of CAMS datasets. In 

agreement with Ali et al. (2022), who reported CAMS overestimation in 

several places, our findings suggest that CAMS PM2.5 data had greater 

correlation values after calibration. Before training, the correlation values 

ranged from 0.0719 to 0.2072, demonstrating a moderate relationship between 

CAMS PM2.5 and in-situ PM2.5 readings. However, following training, the 

correlation values improved significantly, ranging from 0.7869 to 0.8820, 

indicating a greater link between the calibrated PM2.5 levels and in-situ 

observations. (Gueymard and Yang, 2020) also emphasized the limits of raw 

CAMS PM2.5 estimates, such as coarse spatial resolution and modelling 

biases. Our findings back with their conclusions, as results of the current paper 
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showed low correlation values between raw CAMS and measurements PM2.5 

concentrations. However, after applying the LightGBM calibration technique, 

the correlations increased significantly, and RMSE values were low, 

indicating that the calibrated PM2.5 estimates were more accurate. 

Furthermore, the present results are compatible with the findings of (Jin et al., 

2022), who stressed the possibility of distinct calibration schemes to improve 

CAMS products. After calibration, the rise in coefficient of determination (R2) 

values demonstrates the reduction in modelling biases and the improved 

performance of the calibrated PM2.5 data. 

Overall, the calibration results using LightGBM algorithm are consistent with 

prior studies, suggesting that calibration approaches can significantly increase 

the accuracy and reliability of CAMS PM2.5 estimates. The calibrated PM2.5 

data better matches with ground-based observations by correcting 

overestimation and lowering modelling biases, giving more reliable 

information for air quality assessments and decision-making processes. These 

findings emphasize the importance of calibration in increasing the utility and 

reliability of CAMS PM2.5 data for environmental monitoring and public 

health activities. 
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4 Conclusions and recommendations 

The study of PM pollutants is a broad field with many branches, from studying 

the chemical composition of the PM particles to improving measurements and 

developing computer-based models to forecast PM pollution of any kind. The 

research conducted in this PhD thesis has contributed valuable insights into 

the impact of obstacles, hills, and Saharan dust storms on PM concentrations 

and the use of satellite-based models and machine learning algorithms to 

estimate PM concentrations and calibrate CAMS PM2.5 data. Based on the 

findings of this research, the following conclusions and recommendations can 

be made: 

The study of the effects of simple obstacles on the PM10 concentration 

provides valuable insights into the effects of obstacle height, distance from the 

source, and wind speed on PM10 concentration in different sensor locations. 

The study's results indicate that obstacles can significantly impact PM10 

concentration levels, with higher obstacle heights and greater distances from 

the source leading to decreased PM10 concentration levels. Additionally, the 

study found that wind speed plays a crucial role in PM10 concentration levels, 

with higher wind speeds leading to higher PM10 concentration levels. The 

study's findings are consistent with previous research on the effects of urban 

architecture and wind speed on PM concentrations. For example, a study on 

the influence of wind speed on airflow and fine particle transport within 

different building layouts of an industrial city found that height variation and 

layout of urban architecture affect the local concentration distribution of PM 

(Mei et al., 2018). Similarly, another study on the effects of windbreaks on 

particle concentrations from agricultural fields under various wind conditions 

showed that vegetation barriers can alter particle transport by affecting airflow 

(Chang et al., 2019). In conclusion, the results of the research paragraph 

provide valuable insights into the effects of obstacle height, distance from the 

source, and wind speed on PM10 concentration levels. By considering the 

impact of obstacles and wind speed on PM10 concentration levels, 

policymakers and urban planners can develop effective strategies to minimise 

the impact of PM10 on public health in urban environments. 

The study the impact of hill elevation on the dispersion of PM plumes showed 

that the correlation between PM10 concentration and wind speed at different 

sensor locations was affected. The results show that hills can significantly 

affect the dispersion pathway of PM particles, with different slopes creating 

other flows of PM dispersion. The study found that the correlation between 

PM10 concentration and wind speed decreases as the height of the hill 

increases, indicating changes in the wind flow created by different elevations 
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of the hill and that, in general, topography can significantly impact the level 

of PM concentrations. In a study done by Wen et al. (2022), they discuss the 

quantitative disentanglement of topography's geographical impacts on PM2.5 

pollution in China. They emphasise that mountains significantly impact the 

spatial heterogeneity of PM2.5 pollution levels. The study found that high-

altitude mountains and plateaus experience lower levels of PM2.5 pollution, 

while plains and surrounding platforms and hills suffer from severe pollution. 

Also, the mountain’s blocking effects begin to play an efficient role when their 

altitudes reach a specific value; however, the exact altitude values vary by 

different mountains, with a value of 163 m for all typical mountains with 

absolute PM2.5 concentration differences between their two sides greater than 

10 μg/m3. Even though the experiments included relatively low height, it 

showed that height can alter the PM concentrations, even in short range. In 

conclusion, the research results provide valuable insights into the effects of 

hill elevation on the dispersion of PM plumes and the correlation between 

PM10 concentration and wind speed at different sensor locations. 

The study of Saharan dust storms in Hungary revealed that they increased 

PM10 and PM2.5 concentration levels, and the seasonality and frequency are 

changing. Varga (2020) indicates numerous intense events happened after 

2014 when an unusually significant amount of mineral dust was washed out. 

All occurred between the end of October and February, and the increase in 

frequency and intensity of wintertime dust depositional events in the 

Carpathian Basin (Hungary mainly) is attributed to climatic conditions. Our 

study for the period between 2018 and 2022 showed changes in the frequency 

of the intense Saharan dust storms in Hungary (more likely to happen between 

February and April) and also the intensity (Recent March 2022 as an example), 

and dominant Type-2 events that are connected to Central Mediterranean 

cyclones which is responsible for dust transport. 

Machine learning is a powerful tool that can be used to estimate PM 

concentrations from MERRA-2 data. In the study, we estimate PM 

concentrations using two approaches, mainly coupling MERRA-2 AOD and 

five PM components with meteorological data and MERRA-2 AOD and in-

situ measurements of primary air pollutants (SO2, NO2, O3) with 

meteorological data. The best results were given using the Extra-tree machine 

learning algorithm in the two approaches for the three stations chosen for 

Hungary (Budapest, Kazincbarcika, and Kecskemet) with an R2 between 0.73 

and 0.84. Our models performed well for the selected stations compared to 

other studies that used MERRA-2 data to estimate PM concentrations using 

machine learning.  Dhandapani, Iqbal and Kumar (2023) Apply machine 
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learning models on MERRA2 data to predict surface PM2.5 concentrations 

over India. Overall, the study evaluates the utility of Machine Learning (ML) 

models, focusing on XGBoost (XGB), Random Forest (RF), and LightGBM 

(LGBM) individual models, as well as a stacking technique. The authors 

compared the performance of these models and found that the stacking 

technique (R2= 0.77) outperformed unique models (R2=0.73), showing the 

best hourly prediction in the eastern (R2 = 0.80) and northern regions (R2 = 

0.63). In another study by Sayeed et al. (2022), they evaluated the 

performance of the machine learning model in estimating PM2.5 

concentration, which outperformed the MERRA-2 empirical estimation of 

PM2.5 and exhibited a small and uniform bias throughout the day and in all 

seasons and proved to be better at estimating PM2.5 than the MERRA-2 

practical calculations. In conclusion, Coupling MERRA-2 and meteorological 

data with other meaningful parameters and employing machine learning to 

predict PM concentrations can yield promising results, as demonstrated in our 

case for the three stations in Hungary. 

For the calibration of CAMS PM2.5 data using machine learning in Hungary, 

our model improved the degree of accuracy of CAMS PM2.5 data from low 

R (>0.25) to higher R (<0.79), demonstrating the effectiveness of calibration 

schemes using LightGBM machine learning model in reducing modelling 

biases and enhancing the performance of CAMS PM2.5 data in Hungary. Jin 

et al. (2022) proposes a calibration method to improve the accuracy of CAMS 

PM2.5 data, using the Extremely Tree machine learning model, resulting in 

significant accuracy improvement, with R reaching up to 0.81 and RMSE 

decreasing by about 60% for the original CAMS PM2.5 For China, US and 

Africa. Overall, CAMS reanalysis datasets require significant improvement 

for use in local and regional air quality monitoring, and our study showed a 

significantly better correlation between the Calibrated PM2.5 and in-situ 

measurements of PM2.5 over Hungary, suggesting an improved accuracy of 

Calibrated CAMS PM2.5. 

Concerning the recommendations, further research on the impact of obstacles 

on PM concentrations: It is recommended that the impact of different types of 

obstacles on PM concentrations be understood and that more accurate models 

to predict PM concentrations in the presence of obstacles be developed. 

Use of satellite-based models to estimate PM pollutants: It is recommended to 

use satellite-based models to estimate PM pollutants in Hungary and to 

compare the results with in situ measurements to validate the accuracy of the 

models. 
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Further research on the impact of Saharan dust storms on PM concentrations: 

It is recommended that the impact of different types of dust storms on PM 

concentrations be understood and that more accurate models to predict PM 

concentrations during dust storms be developed. 

Use of machine learning algorithms to estimate PM concentrations: It is 

recommended to use machine learning algorithms to estimate PM 

concentrations in other locations in Hungary and to expand the study by using 

more extensive data. 

In conclusion, the research conducted in this PhD thesis has contributed 

valuable insights into the impact of various factors on PM concentrations. It 

has provided recommendations for further research to improve the accuracy 

of PM concentration predictions. This research's findings can help protect 

public health and the environment by providing accurate and reliable PM 

concentration data. 
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5 New scientific results 

 

1. As a result of small-scale experiments, I have shown that the PM10 

concentration from a point source depends on the wind speed (Ws=0-

2.9 m/s) and the height and position of a simple "obstacle" placed 

between the source and the measurement point - with a critical ratio 

of obstacle distance from the source over obstacle height ranging 

(OD/OH) from 0 to 2.3. A linear equation established the relationship 

between the mentioned parameters to calculate PM10 concentration, 

reaching an R2 of 0.79. I declare that, the obstacle's position emerges 

as an essential determinant shaping the estimated PM10 

concentration, underscoring its profound significance in our findings.  

 

Research conducted a multiple regression analysis to predict PM10A 

concentration using "OH" (Obstacle height), "OD" (Distance of the 

obstacle from the source), "PM10C" (PM10 concentration), and "Ws" 

(Wind speed) as independent variables. The regression model equation 

was: 

 
𝑃𝑀10𝐴  =  143.07 − 71.86 ∗ 𝑂𝐻 −  171.42 ∗ 𝑂𝐷 +  1.23 ∗  𝑃𝑀10𝐶  +  12.34 ∗ 𝑊𝑠 
 

Results showed a moderately significant positive connection between 

PM10A and the independent variables (R=0.89). The model explained 

79% of PM10A variation (R2=0.79). Obstacle height, distance from the 

source, and wind speed had significant positive effects on PM10A. 

The experiment elicits know how a simple obstacle in the form of a solid 

barrier can reduce the PM concentrations. And using the equation, it is 

possible to strategically position the obstacle to obstruct the PM particle 

movements and opt for the optimal possible height to effectively isolate 

the area from direct PM transportation to minimize the PM concentration 

levels to acceptable levels. 

 

2. I conclude that hill height influences PM10-wind speed correlations 

negatively as a result of a series of outdoor trials investigating the 

effects of different ground surface elevations (H=0-1 m) on the 

dispersion of PM10 and PM2.5 pollutants at various wind speeds 

(Ws=0-6 m/s) in short range, revealing the complicated interplay 

between topography and air pollution patterns. 
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The study examines the correlations between PM10 concentrations 

recorded by three different sensors (S1, S2, and S3) over three different 

experimental situations with varied wind speeds on a hill with varying 

heights. Correlations between PM10 concentrations and wind speed 

differ between sensors (S1, S2, S3) and experimental cases on a hill 

with variable elevation. 

Sensor 1 (S1), which is near to the source, has a negative correlation 

of -0.5 in Case 3, but weaker and inverted correlations to -0.18 and 0.2 

in Cases 2 and 1 respectively. Sensor 2 (S2) positioned at the edge of 

the hill's slope, has continuous positive correlations in all cases, 

however they are weaker in case 2 (0.27) and 3 (0.18), probably due 

to changes in nearby terrain. Sensor 3 (S3), located atop the hill, retains 

positive associations, although they decline as elevation increases, 

yielding values of 0.65 (Case 3), 0.84 (Case 2), and 0.8 (Case 1), 

suggesting that shifting wind patterns impact PM10 transport. 

 

 

 

3. HYSPLIT dust simulations offer compelling insights into the origin 

and trajectory of Saharan dust particles. Our analysis reveals that 

these particles observed in the Gulf of Mexico during the June 2020 

Saharan storm unmistakably trace back to the Moroccan and 

Mauritanian Saharan regions. Dust storms emerged from specific 

hotspots, such as Tinduf near the Moroccan border and Adrar, Tiris 

Zemmour, and Tagant in Mauritania. Markedly, the June 2020 

Saharan dust storm was associated with the highest June aerosol 

optical depths recorded, exceeding AOD=3.5 in Bir Anzarane, 

Morocco, and an astonishing AOD=5.5 in Nouakchott, Mauritania, 

affecting the PM concentrations to unhealthy levels in several US Gulf 

States, further substantiating that due to climate change, the Saharan 

dust storms are getting more intense, especially in the Moroccan and 

Mauritanian Sahara. 

 

Based on HYSPLIT dust simulation and also comparing the simulation 

results maps with MODIS AOD average maps, the dust storm in the 

region of Morocco and Mauritania started on the 14th of June 2020, 

from the region of Tinduf close to the borders of Morocco with 

Algeria, Adrar Tiris Zemmour and Tagant in Mauritania. Due to the 

wind field heading towards the Atlantic oceans, the dust was 

transported across the ocean to the American continents. In addition, 
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HYSPLIT cluster analysis from many places in Morocco and 

Mauritania showed a significant percentage of PM10 particles that 

negatively affected the PM10 and PM2.5 concentrations in the 

Caribbean Sea and US coastal in the Gulf of Mexico, originated from 

places like Bir Anzarane, Morocco, Nouakchott, and Tichit 

Mauritania, and Bordj Badji Mokhtar Algeria. In addition, there was 

an increase in Bir Anzarane, Morocco, in AOD with a value of 3.522. 

This marks a surge of 188% compared to the highest recorded value 

between 2010 and 2019, 1.87 in June 2017. Similarly, in Nouakchott, 

Mauritania, the peak AOD value from 2010 to 2019 was 2.78 in June 

2010. However, there was a rise in June 2020, with an AOD value 

reaching 5.87, representing an increase of around 211%. 

 

 

4. I conclude that events where the Saharan dust transport was brought 

on by Central Mediterranean cyclones to Hungary, - called type 2 

Saharan dust storm events - were dominant in 2018 and 2022 and 

usually happen in February, March, or April, with a maximum hourly 

dust mass between 450 and 1000 mg/m2. The 2 Saharan Dust storms 

in March 2022 raised the concentrations of PM10 and PM2.5 in 

Budapest by 12 µg/m3 and 10 µg/m3, respectively, during the first 

Saharan Dust event and by 14 µg/m3 and 5 µg/m3 during the Second 

Saharan Dust event. 

 

Based on my evaluation of the Saharan dust storm events in Hungary, 

between 2018 and 2022, 11 SDEs were identified in Hungary. Type 2 

SDEs were dominated in that period and characterised by high Dust 

mass, negatively affecting the PM concentrations. And most of the 

time, the SDEs were likely to occur between February and April. 

Moreover, March 2022 was a unique month due to two extreme 

outbreaks of Saharan Dust events (14-19 and 28-31), which were 

unusual throughout the study period. In general, the Saharan dust 

events between 2018 and 2022 were associated with an increase of 

PM10 daily average concentration by a factor of 2 or more, according 

to PM10 concentration measurements from an urban background air 

quality station in Budapest. 
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5. I find that PM10 and PM2.5 concentrations simulated from 

MERRAero data, encompassing five PM species (SO4, OC, BC, DS 

and SS), AOD, and meteorological parameters (T, Ws10, Ws50, RH, P 

and PBLH), between 2019 and 2021 accurately estimated using the 

Extra-Tree regression model for three cities in Hungary (Budapest, 

Kecskemét and Kazincbarcika), achieving R2 values between 0.75 and 

0.8 for PM10 and PM2.5.  

 

Based on my evaluation of the estimated PM10 and PM2.5 based on the 

five PM species simulated by the MERRAero hourly data collection of 

(SO4, OC, BC, DS, and SS), in conjunction with aerosol optical depth 

(AOD) and meteorological parameters (T, Ws10, Ws50, RH, P, and PBLH) 

for the period spanning 2019 to 2021, using a variety of machine learning 

algorithms, it is discerned that the Extra-Tree regression model 

consistently produced the most favourable outcomes. The quantitative 

results, disaggregated by location, are as follows:  

➢ In Budapest, the determination coefficient (R2) reached 0.78 

and 0.8 for the estimation of PM10 and PM2.5, respectively. 

➢ In Kecskemét, the R2 values achieved were 0.75 and 0.76 for 

PM10 and PM2.5 estimation, respectively. 

➢ For Kazincbarcika, the R2 values obtained for PM10 and 

PM2.5 were 0.77 and 0.8, respectively. 

The significance of these results lies in their potential to enhance air 

quality monitoring and forecasting in urban areas such as Budapest, 

Kecskemét, and Kazincbarcika. The Extra-Tree regression model 

demonstrates robust predictive capabilities, with R2 values consistently 

approaching or exceeding 0.75. 

 

6. Utilizing Machine learning algorithm (Extra-Tree regression model) 

to estimate PM2.5 concentrations based on MERRA-2 AOD, 

meteorological data (T, Ws10, Ws50, RH, P and PBLH), and in-situ 

measurements of NO2, O3, and SO2 over three years (2019 to 2021) in 

3 locations in Hungary (Budapest, Kecskemét and Kazincbarcika) 

underscores the importance of machine learning in PM2.5 prediction 

attaining an R2 ranging from 0.73 to 0.83, and RMSE between 5.5 and 

7.6 µg/m3. 
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The utilisation of machine learning algorithms to estimate PM2.5 

concentrations based on a comprehensive dataset comprising 

MERRA-2 AOD, meteorological data, and in-situ measurements of 

NO2, O3, and SO2 over three years (2019 to 2021) for 3 locations in 

Hungary underscored the effectiveness of machine learning as a 

valuable predictive tool but also revealed the superiority of the Extra-

Tree regression model over alternative approaches. Specific results for 

each location are as follows: 

➢ In case of Budapest, I had an R2 of 0.73, RMSE of 5.5 µg/m3, 

and MAE of 3.7 µg/m3  

➢ In case of Kecskemét, I had an R2 of 0.75, RMSE of 6.4 µg/m3, 

and MAE of 4.2 µg/m3. 

➢ In case of Kazincbarcika, I had an R2 of 0.84, RMSE of 7.6 

µg/m3, and MAE of 4.8 µg/m3.  

These findings hold paramount importance as they affirm the 

applicability of machine learning for precise PM2.5 predictions, 

offering a robust and versatile methodology for air quality assessment 

and prediction in these specific geographical areas. Such accurate 

predictive models are instrumental for public health, urban planning, 

and environmental management 

 

7. Using the LightGBM algorithm in calibrating CAMS PM2.5 data for 

11 air quality stations in Hungary reveals a remarkable improvement 

in data accuracy and alignment with in-situ measurements with post-

calibration, correlations substantially increased, with values ranging 

from 0.78 to 0.88, underscoring a solid association between calibrated 

CAMS data and actual PM2.5 measurements, and a coefficient of 

determination values ranging from 0.61 to 0.77. 

 

➢ Correlation analysis shows initial alignment between raw 

CAMS data and in-situ measurements, with correlations before 

training ranging from 0.071 to 0.207. After training, 

correlations significantly improve, ranging from 0.787 to 

0.882, demonstrating a strong association between calibrated 

CAMS data and in-situ PM2.5 measurements. 

➢ The coefficient of determination values ranges from 0.618 to 

0.774, indicating a substantial portion of the variance in in-situ 

PM2.5 measurements is explained by the calibrated CAMS 

PM2.5. 
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➢ Lower root mean square error values reflect reduced 

discrepancies between the calibrated CAMS PM2.5 and actual 

measurements, indicating improved accuracy and precision. 

The findings underscore the critical role of calibration in 

improving the accuracy of air quality data (such as CAMS PM raw 

data). Enhanced correlations, higher coefficient of determination 

values, and reduced root mean square error values following 

machine learning calibration are scientifically significant and have 

direct practical implications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

74 

 

6 SUMMARY 

Studying the PM pollutants is broad field that have many branches, from 

studying the chemical composition of the PM particles to improving 

measurements and developing computer-based models to forecast PM 

pollutions of any kind. In the initial phase of my research, I looked over the 

literature in a few relevant subfields, which led to Saharan dust storm study 

both the June 2020 event and to know the effect of climate change on the 

triggering and transport of Saharan dust to Hungary. In addition to understand 

the dispersion of PM particles around simple obstacle and in small range 

elevated hills, as well as understanding the relationship between inside and 

outside PM concentrations. Moreover, deep search in the literature lights the 

fact that no one has done an estimation of the PM pollutants in Hungary using 

the Satellite based models, despite the fact of the increasing interest in this 

subfield of research and the rise of the number of papers published in order to 

improve the use of the Satellite datasets to estimate one of the major and 

dangerous air pollutants. 

The study of small-scale PM dispersion around simple obstacle demonstrated 

that Obstacle height, Distance of the obstacle from the source, and Wind speed 

had significant positive effects on PM10 concentration after the obstacle. The 

analysis revealed a moderately significant positive connection between the 

dependent variable (PM10 concentration after the obstacle) and the set of 

independent factors, as indicated by the correlation coefficient (R) of 0.89. 

Moreover, the independent variables in the model collectively explained 

approximately 79% of the variation in the dependent variable, as reflected by 

the coefficient of determination (R2) of 0.79. Overall, the research provides 

valuable insights into the impact of obstacle height, distance from the source, 

and wind speed on PM10 concentration and confirms the transport behaviour 

of PM particles in both small-scale experiments and larger-scale urban 

settings. 

For the study of the effects of small hills on PM concentrations, the results 

revealed that at low wind speeds (0 and 0.7 m/s), the average concentrations 

of PM10 and PM2.5 were similar for all three cases. However, at higher wind 

speeds (2.4, 3.7, and 5.1 m/s), the average concentrations of PM10 and PM2.5 

were significantly higher in the 1m height and 0.8 m height cases compared 

to the flat ground surface. Furthermore, the study showed that the difference 

in ground surface elevation between the 1m height and 0.8 m height cases had 

a notable impact on PM dispersion. The elevated ground surface (hill) altered 

the dispersion pathways of PM particles, resulting in higher concentrations in 

certain areas. Sensor 1 recorded higher PM concentrations in cases 2 and 3 
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compared to case 1, especially at wind speeds below 3 m/s, primarily due to 

the reflective effect of the hill and low wind speeds. Sensor 2 registered higher 

PM concentrations before the hill, indicating particle trapping in that area. The 

study also employed multiple linear regression to estimate PM10 

concentration at the top of the hill based on measurements from sensor near 

the source, and sensor at the bottom of the hill, wind speed, and hill height. 

The regression analysis showed a strong positive correlation (R=0.9) between 

the dependent variable (PM10 concentration at the top of the hill) and the 

combination of independent variables (mentioned above). Approximately 

82% of the variance in PM10 concentration at the top of the hill was explained 

by the independent variables (R2=0.82). Also, the correlation coefficient 

between measured PM10 by all three sensors and wind speed demonstrates 

that hill height is important in shaping correlations between PM10 and wind 

speed, revealing intricate connections between topography and air pollution 

pattern. 

For the dust storm simulation over the Sahara Desert (Moroccan and 

Mauritanian regions) using HYSPLIT, the average PM10 concentration 

between 0 and 100m reached severe levels according to the HYSPLIT dust 

simulation results. Regions like Dakhla-Oued Ed-Dahab in Morocco, Adrar 

and Tiris Zemmour in Mauritania had higher PM10 concentrations (higher 

than 100 µg/m3) and AOD values (between 0.7 and 1) during the 4 days of the 

dust storm. Moreover, PM10 particles were transported over the Atlantic 

Ocean to the Caribbean Sea and the Gulf of Mexico, causing raise in the level 

of concentrations in those regions. The tropospheric level of the Caribbean 

Sea and the Gulf of Mexico was loaded by dust particles transported from the 

study area. Bir Anzarane Morocco, Nouakchott and Tichit Mauritania, and 

Bordj Badji Mokhtar Algeria all contributed to the high PM10 concentrations 

observed in the Martinique islands and the southern United States, while the 

top altitude of the dust layer was between 4 and 4.5 km, according to the 

backscatter vertical profile measured by CALIPSO. Therefore, PM10 

concentration and AOD revealed their peak values during June 2020 dust 

storm, and this is evidenced by AOD values recorded at Bir Anzarane, 

Morocco, and Nouakchott, Mauritania, both of which are historical by June 

norms. There was a rise in AOD, with a value of 3.52 in Bir Anzarane, 

Morocco. This represents an increase of 188% above the highest recorded 

figure between 2010 and 2019, which was 1.87 in June 2017. Similarly, from 

2010 to 2019, the AOD value in Nouakchott, Mauritania, was 2.78 in June 

2010. However, there was a spike in June 2020, with an AOD value reaching 

as high as 5.87, reflecting a 211% increase. 
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For the identification and evaluation of the Saharan dust storm events in 

Budapest, Hungary between 2018 and 2022, type 2 SDEs predominated in that 

period with 5 occurrences, whereas types 1 and 3 appeared three times each. 

In addition, February, March, and April have seen the most SDEs (7 times), 

and SDEs occurring in those months are more likely to be severe events 

because that period had the highest dust mass recorded (SDE4 - April 23-27, 

2019) and an increase in PM10 daily average concentration of at least a factor 

of 2. 

For the case study of the Saharan dust effects on PM10 and PM2.5 

concentrations in Budapest in March 2022, the two type 3 dust storms 

contributed to an increase in PM10 and PM2.5 concentration levels. The 

PM10 concentrations increased by 12 and 14 µg/m3, during first and second 

Saharan dust events, while for PM2.5 the concentration rise by 10 and 5 

µg/m3, in first and second Saharan dust events respectively, highlighting the 

fact that first Saharan dust event had bigger impact on PM2.5 that the second 

Saharan dust events, in contrast for PM10, the impact of the two Saharan dust 

events were nearly similar. 

For the evaluation of PM surface concentrations simulated by Version 5.12.4 

of NASA's MERRA-2 Aerosol Reanalysis over Hungary in the period 

between 2019 and 2021, the estimation of the PM10 and PM2.5 concentrations 

done in two approaches. The first approach involved estimating PM10 and 

PM2.5 using equations 1 and 2, that calculate the PM10 and PM2.5 in function 

of BC, OC, DS, SO4 and SS concentrations given by MERRA-2 Aerosol 

analysis dataset and compare it with real measurements of PM10 and PM2.5, 

in addition to estimations using machine learning algorithms such as MLR, 

OLS, RF, and XT, and the data used in machine learning algorithm is coupled 

with meteorological data (T, P, RH, Ws10, Ws50 and PBLH) and AOD. The 

second approach used the machine learning techniques used in the first 

approach to estimate PM2.5 and this time based on AOD in conjunction with 

observations of NO2, O3, SO2, and meteorological data (T, P, RH, Ws10, Ws50 

and PBLH). And, both first and second approaches were applicated in 3 cities 

in Hungary, Budapest, Kecskemét, and Kazincbarcika. In case of the first 

approaches, results showed that using XT model gave the best results for all 

the three locations of the study, for Budapest I got an R2 of 0.78 and 0.8 for 

PM10 and PM2.5 estimations respectively, and for Kecskemét an R2 of 0.75 

and 0.76, in addition for an R2 of 0.77 and 0.8 for PM10 and PM2.5 

estimations respectively for Kazincbarcika, proving the effectiveness of the 

XT machine learning model in estimating the PM concentrations. Moreover, 

for the second approach, Estimating the PM2.5 using XT model also gave the 
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best results. The best R2 achieved was for Kazincbarcika with value of 0.84, 

followed by Kecskemét with value of 0.75 and Budapest with value of 0.73. 

The use of Satellite based data, coupled with meteorological data can give 

accurate estimations of PM concentrations, especially PM2.5, where it is 

highlighted in many research studies that PM2.5 have a complex relationship 

with AOD and can be used to predict it’s concentrations. Furthermore, the use 

of machine learning or deep learning methods prove to be useful tool in PM 

estimations in the study that I’ve done in this thesis, and my study can be 

expended by using bigger data and to other locations that could cover all the 

Hungarian territory. 

Finally for the calibration of CAMS PM2.5 data, results reveal significant 

improvements in various metrics. The correlation coefficients before (ranged 

from 0.07 to 0.20) and after (ranging from 0.78 to 0.88) of the calibration 

method demonstrate noteworthy enhancements, indicating a stronger 

alignment between the CAMS PM2.5 data and in situ measurements. 

Additionally, the coefficient of determination (R2) (ranged from 0.61 to 0.77) 

exhibits substantial increases, highlighting the improved predictive power of 

the calibrated data. The calibration process also leads to reductions root mean 

squared error (RMSE), indicating decreased variability between predicted and 

observed PM2.5 values. 

These calibration outcomes have implications not only for Hungary but also 

for other countries grappling with air quality issues. Accurate and reliable 

CAMS PM2.5 data serves as a vital resource for governments, environmental 

agencies, and health organizations worldwide. By leveraging calibration 

techniques like LightGBM, countries can enhance the quality of their air 

quality datasets, leading to more accurate assessments of pollution levels and 

better-informed decision-making.



 

78 

 

 

7 Relevant publications related to the thesis 

MTMT: https://m2.mtmt.hu/api/author/10072503 

Refereed papers in foreign languages: 

1. Qor-el-aine A., Béres, A., Géczi, G. (2022): Case Study of the 

Saharan Dust Effects on PM10 and PM2.5 Concentrations in Budapest 

in March 2022, JOURNAL OF CENTRAL EUROPEAN GREEN 

INNOVATION 10: Suppl 1 pp. 67-78., 12 p. 

https://doi.org/10.33038/jcegi.3500 

2. Qor-el-aine A., Géczi, G., Béres, A. (2021): Dust Storm simulation 

over the Sahara Desert (Moroccan and Mauritanian regions) using 

HYSPLIT, Atmospheric Science Letters, e1076. 

https://doi.org/10.1002/asl.1076 ; Impact factor (2022): 2.992; Q1. 

3. Qor-el-aine A., Béres A., Géczi G. (2021): The concentration level of 

PM10 in southern Poland (Katowice, Krakow, and Rzeszów) during 

the year 2018, Science, Technology and Innovation, 14(3-4), 27–34. 

https://doi.org/10.55225/sti.8  

4. Qor-el-aine A., Benécs J., Béres A., Géczi G. (2021): Small scale 

experiments of PM10 dispersion around obstacles, Hungarian 

Agricultural Engineering, Vol. 40, pp. 96-101., HU ISSN 2415-9751. 

https://doi.org/10.17676/HAE.2021.40.96 

5. Qor-el-aine A., Béres A., Géczi G. (2021): The nitrogen dioxide (NO2 

and PM10 pollution level in Debrecen, Miskolc, and Nyíregyháza 

Hungary in the previous 4 years, Hungarian Agricultural Research, 

Budapest, Hungary, Vol. 30, No. 2, pp. 04-10., HU ISSN 1216-4526. 

6. Qor-el-aine A., Benécs J., Béres A., Géczi G. (2020): Evaluation of 

particulate matter low-cost sensors: laboratory case study, Mechanical 

Engineering Letters, Gödöllő, Hungary, Vol. 20, pp. 67-72., HU ISSN 

2060-3789. 

Refereed papers in Hungarian: 

7. Géczi, G., Qor-el-aine A., Béres, A. (2021): Debrecenben megfigyelt 

magas PM10 koncentráció elemzése, ACTA AGRONOMICA 

ÓVÁRIENSIS 62: Különszám I. pp. 170-183, 14 p. 

 

https://doi.org/10.33038/jcegi.3500
https://doi.org/10.1002/asl.1076
https://doi.org/10.55225/sti.8
https://doi.org/10.17676/HAE.2021.40.96

