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1. INTRODUCTION 

Food quality is an important aspect of the food industry that has gained increased attention 

with the continuous development of living standards and the relative change of dietary structure. 

There is a rising and persistent increase in demand for nutritious and safe food owing to the recent 

surge in fraudulent activities in the food industry, especially for foods with high economical and 

global value such as wine, protein powders and meat. Tokaji wine for instance is a Hungarian 

delicacy acknowledged for its unique taste, which is believed to be acquired from the noble rotten 

berries (botrytized berries) used during its production. Exclusion of botrytized berries during 

Tokaji wine production or manipulating the sugar content of lower grade wines to imitate high 

grade wines are some of the suspicions fraudulent activities that threaten the hard-earned 

reputation of Tokaji wines. In the protein powder industry, conventional analytical methods 

measure total nitrogen, not specifically protein nitrogen. That means certain adulterants with high 

nitrogen content or non-organic sources can be used to make an apparent increase in the pseudo 

protein content of protein powders for a competitive edge and financial gain. These new trends of 

adulteration in most instances, are to maneuver detection when conventional methods are used. In 

the meat industry, quality assessments are often a rather complex concept, which includes different 

microbiological, physicochemical and biochemical attributes (Woodvine 2009) which can all be 

tampered with at any point in the food production chain for financial gains.  

The great variability in food processing methods, thus, leads to a high variability in many 

products on the market and imposes great pressure on the food manufacturing industry to explore 

new emerging technologies for reliable product monitoring. Quality assurance and quality control 

are major tasks in the production and processing of foods that are often related to consistency in 

chemical and sensory attributes (Haddi et al. 2015). In the wine, protein powder and meat industry, 

many compositional characteristics come into play in implementing quality control. Standard 

analytical techniques (conventional methods) used for monitoring such parameters include the 

Kjeldahl method (for crude protein), Soxhlet Extraction Method (for crude fat), pH meter 

(acidity/alkalinity), colorimeter (for color) (Pugliese and Sirtori 2012). Some of these methods 

however, are tedious, destructive, time consuming and in some cases expensive and often do not 

give a complete overview of the food being investigated.  

Challenges such as these have led to the exploration of rapid alternatives that are capable 

of overcoming these setbacks. Major examples of such alternatives are spectroscopy, an 

interaction between light and an analyte in a defined wavelength range that overlays a 

compositional overview of the analyte. In the near-infrared (750-2500nm) region, the technique 

can provide information through vibrational bonding in the form of overtones and combination 
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bands, which can be interpreted with advanced statistical tools. In spite of the low intensity, the 

band shape often defines a single compound or group of compounds, making this technique 

suitable for qualitative and quantitative purposes for food authentication. Near infrared 

spectroscopy (NIRS) has been widely used in the wine industry for monitoring different food 

parameters ranging from grape quality to wine characterization (Aleixandre-Tudo et al. 2018; 

Petrovic, Aleixandre-Tudo, and Buica 2020; Osmond et al. 2010) but with a paucity for tracking 

wine adulteration particularly, wine adulteration with sweeteners such as grape concentrate. 

Recent studies show that it has also, been used to monitor protein powder quality in diverse forms 

(Osborne 2000; DeVries et al. 2017; Lukacs et al. 2018) but complex forms of adulteration with 

innovative nitrogenous based substances at low concentration have not been reported. In addition, 

the emergence of handheld devices capable of remote analysis could also be explored for practical 

quality control purposes. 

Another trend in the food industry for quality control is the adoption of sensory evaluations. 

Trained panels are often utilized in quality control cases or in product development projects in the 

initial phase (J. Yang and Lee 2019). Sensory evaluation is centered on the proper functioning of 

the five human senses (vision, sound, touch, smell and taste). Although screening is often 

performed to improve sensory results, the human senses are often prone to fatigue during long 

periods of sensory evaluation. In addition, the process is subjective, can be time consuming and 

could pose some significant risk to the assessor depending on the food content and the human 

senses that are being used (Maria Sirangelo 2019). Challenges such as these propelled interest in 

electronically engineered alternatives for food monitoring. A common example is the electronic 

tongue (e-tongue). The International Union of Pure and Applied Chemistry (IUPAC) defines the 

electronic tongue as “a multisensory system consisting of a number of selective sensors and uses 

advanced mathematical procedures for signal processing based on pattern recognition and/or 

multivariate data analysis” (Vlasov et al., 2005). In comparison with the human tongue, e-tongue 

has improvements in the sensitivity, selectivity, and multiplexing capacity of modern biosensors 

(Perumal and Hashim 2014). It is capable of providing rapid, real-time, accurate and reliable data 

about various samples understudy and has gained fame in the pharmaceutical, cosmetics, 

environmental control, engineering (petroleum), agriculture, food beverage industries.  

For quality control purposes, e-tongue has been applied for the geographical authentication 

of monofloral honey (Wei and Wang 2011a), Moroccan honey (El et al. 2017), Hungarian honey 

(Fanni Adrienn Koncz et al. 2018) and recently, Romanian honey (Oroian and Ropciuc 2019). It 

has been used to detect adulteration in oils (Meenu, Cai, and Xu 2019), beer (Arrieta et al. 2010), 

Spanish wines (López de Lerma et al. 2013), non-alcoholic beverages (Peres et al. 2009) and milk 
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(Wei and Wang 2011b) etc. It has scantily been applied for meat and fish evaluations, (Zaukuu et 

al. 2019), but its potential can be explored several quality control purposes in the meat industry. 

In combination with chemometrics and multivariate data analysis, advanced instruments 

such as the e-tongue and NIRS can be explored for their capabilities to discriminate, detect and 

predict novel, innovative and undesirable complex forms of food adulteration. Multivariate data 

analysis in food authenticity are simply, mathematical measures that can be employed to provide 

real-time and reliable statistical information about a production variation or deviation from quality, 

otherwise known as fingerprinting. 
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2. OBJECTIVES  

The aim of this thesis was to develop rapid techniques for the determination and prediction 

of foods with economical and global value using near infrared spectroscopy (NIRS) and electronic 

tongue (e-tongue). There were primarily two main objectives.  

The first main objective was to apply a benchtop spectrophotometer and handheld 

spectrophotometer to: 

1. Develop models that could discriminate, classify and predict different classes of Tokaji 

wine and also, to classify inferior Tokaji wines that were adulterated with grape must 

concentrate and sucrose at different sugar concentrations. 

2. Develop models that could discriminate, classify and predict whey, beef and pea 

protein powders that were adulterated with four nitrogen-based adulterants: urea, 

glycine, taurine and melamine at very low concentrations.  

3. Emulate practical situations by testing the feasibility of scanning through a low-density 

polyethylene (LDPE) plastic bag containing whey, beef and pea protein powders 

adulterated with urea, glycine, taurine and melamine using a handheld 

spectrophotometer. 

The second main objective was to apply e-tongue to: 

1. Develop models that could discriminate, classify and predict different classes of Tokaji 

wine and also, to classify inferior Tokaji wines that were adulterated with grape must 

concentrate and sucrose at different sugar concentrations. 

2. Determine the optimal dilution level of meat extract for e-tongue evaluation in the meat 

industry and also to develop standardized sample preparation methods for meat 

analysis with the e-tongue, using red meat and poultry adulteration as case studies. 
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3. LITERATURE REVIEW 

This section of the thesis reviews existing literature within the scope of the aims defined in 

the introduction. 

3.1. Food fraud  

Food is a basic necessity of life. One works hard and earns to satisfy our hunger and relax 

later but at the end of the day, many of us are not sure of what we eat. We may be eating a 

dangerous dye, sawdust, soap stone, industrial starch and aluminium foil, which in simple terms 

may be referred to as adulterants. An adulterant is a chemical substance which should not be 

contained in food or not above its legal limits (Abhirami and Radha 2015). The addition of 

adulterants is called adulteration: the addition of ingredients which are not permitted in food 

(Kartheek et al., 2011). Adulteration is commonly practiced in both branded and unbranded foods 

in daily life. From the local market to the hyper market, adulteration is prevalent everywhere. 

Examples of food adulteration include the addition of dye and artificial coloring with cancerous 

effects to tea leaves and tea powder, addition of corn syrup and sugar to honey could lead to obesity 

(Kartheek et al. 2011). Other types of adulteration include the addition of pure of diluted ethanol 

alcoholic beverages (whisky, rum etc.), addition of sweeteners to wine or manipulating the 

composition of any food item to suit the objectives of the producer at the detriment of the 

consumer. They are mostly added for business purposes. The European food law stipulates on the 

“prevention of fraudulent or deceptive practices, the adulteration of food and any other practices 

which may mislead the consumer” (Jack 2018). Misleading consumers can also be in the form of 

mislabeling. According to the European Union regulation Number 1169/2011 (European Union 

2011), accurate food labelling is of paramount importance and should contain the specific contents 

of the food being marketed. 

The European Union (EU) is a major importer of food and agricultural products, so 

expected monitoring and controls at its external borders are vital in deterring food adulteration. In 

contrast, criminals’ intent on profiting from food adulteration can be expected to exploit and take 

advantage of weaknesses in these controls to gain access to the internal market. Subsequently, the 

EU legal framework on import controls is also heavily reliant upon Member State implementation 

but neither food adulteration nor compliance with food law generally, has traditionally been a 

priority concern for Member States (Jack 2018). Also, trends in food production and changes in 

production systems have compounded with globalization of food supply to make the ultimate 

supply chain much more complex and easily susceptible to fraud. The most targeted and affected 

areas of the food production system are meat, liquid and powdered foods. These have been targeted 

their adulteration is easy to perform can easily go undetected. There have been heavy reports 
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especially about the adulteration of wine, protein powders and meat. According to the European 

Commission (European Commission 2018), in 2018 alone, replacement/dilution/addition/removal 

accounted for 26% of fraud cases in alcoholic beverages whereas 19% of the same criteria was 

recorded for fraud cases in food supplements. Food fraud and food adulteration in most instances, 

are dangerous and present health complications to consumers. 

3.1.1. Wine fraud and detection techniques 

Wine is a beverage produced through the partial or total fermentation of grapes in several 

steps: harvesting, crushing and pressing, fermentation, clarification, aging and bottling. Wine 

makers often adopt these different sequential steps but sometimes add variations and deviations 

along the way to make their wine unique. Each step of the wine production can be an opportunity 

to perpetuate fraud, therefore tracking wine quality requires a continuous and consistent effort. 

The wine matrix (composition) is of particular importance within the authenticity testing of foods, 

because wine production and trade has always been associated with high costs that make it 

vulnerable to adulteration (Geana et al. 2016).  

Wine counterfeiting or adulteration refers to illegal techniques that aim to substitute one 

valuable component with a cheaper one, to increase profit, thus affecting the final product by 

changing the wine chemical composition and/or sensorial properties. Wine assessment for 

traceability and authenticity is a major concern that has rapidly gained a lot of attention. In 2009 

alone, more than 1 million adulterated Amarone wine bottles were sold in Italy (Versari et al., 

2014). In Asia, anthocyanins are reportedly extracted from black rice (mainly located in the husk) 

and used as correctors for wine color (Ferrari et al., 2011). On the other hand, anthocyanins have 

proved to be useful as markers for red wine classification as their presence depends on the grape 

variety, climate, soil conditions and the winemaking process (da Costa et al. 2018). The origin of 

white wines from Brazil was confirmed using anthocyanins as markers with the Headspace solid-

phase microextraction (HS-SPME) method (Elisa et al. 2013). Wines can also be spiked with 

controlled amounts of alcohols (methanol or ethanol) between 3-10%v/v, for a deceptive alcoholic 

content or with other wines of inferior quality but mostly of the same color, to increase the volume 

(Penza and Cassano 2004). According to the European Commission, wine was the most 

adulterated food product in 2016 due to the emergence of even more complex adulteration 

techniques (European Commission 2018). Evaluation of the authenticity of wine involves the 

assessment of several aspects such as declaration of origin, vintage, variety and production method 

(Geana et al. 2016). In the last decades, the interest in classifying wines based on their grape variety 

and geographical origin has increased. The soil, climatic conditions, type of harvest and production 

conditions contribute to the characteristics that make a wine unique. This concept is linked to the 
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so-called ’Protected Geographical Status’ defined in European Union law for wines and other food 

products, which is gradually expanding internationally (da Costa et al. 2018). Information about 

wine volatile profile may contribute to the achievement of a geographical indication, such as 

designation of origin, which serves as a benchmark and guarantees product consistency, defining 

a product that is characteristic of a certain region (Elisa et al. 2013). Currently gaining attention 

with regards to the concept of wine origin is the Tokaji wine, a botrytized wine of indigenous to 

the people of Tokaji, a wine producing region in Hungary. Tokaji wine is protected by the 

European Commission under the ’Protected Geographical Status’ law (EU 2020). 

Tokaji wines exist in many specialties and are regarded as a national treasure for their 

historical significance, unparalleled sensory attributes and organoleptic properties. The wines are 

produced in the Tokaji region of Hungary, a declared UNESCO World Heritage Site since June 

2002 (Makra et al. 2009) for its unique landscape and climate (World Heritage Commitee 2002) 

that are believed to render some agricultural benefits to the crops in the area. The climate and the 

grape varieties of Tokaji, contributes to a special process called “noble rot” of the grapes. This 

involves a partial infection of the berries by the mould Botrytis cinerea, combined with physical 

dehydration due to evaporation that leads to the shriveled state of the berries and makes them 

desirable for Tokaji wine production. The noble rotten berries have a high sugar content and a 

unique chemical composition of acids, nitrogenous compounds, polyphenols and aroma 

compounds that contribute to the wine quality (Magyar & Soos, 2016; Magyar, 2011). Several 

types of Tokaji wine exist depending on the class (level of shriveling) of the berries used or the 

method of production. Among common Tokaji wine specialities are: Tokaji Aszu, Tokaji 

Szamorodni, Tokaji Maslas and Tokaji Forditas. The principle of production for the different 

specialties is basically a skin contact (maceration) between the botrytized berries and a base 

wine/grape juice to extract the sugars and aromatic substances (Torino 2016). Extensive details 

about the compositional quality of different Tokaji wines have been reported by Kerényi (2013) 

and the effects of noble rotted berries on wine quality have also been detailed by Magyar (2011). 

The ratio of the botrytized grapes to the extracting wine/juice, the duration of maceration (mostly 

between 12 - 48 hours) and residual sugar content are all contributing factors in defining the type 

of specialty being produced (Magyar & Soos, 2016). These factors, with many other parameters, 

are strictly regulated by law as they strongly influence the selling price of the wines. As of the year 

2020, the price of Tokaji wines ranged from about 10 euro/L to about 960 euro/L depending on 

the residual sugar content (Carl-Gustav 2010). The Tokaji wine Eszencia is considered the 

sweetest with about 450 g of residual sugar/L (Carl-Gustav 2010) but some vintage bottles can go 

for as high as 32,855 euro/L (REUTERS 2019). The volumes of production however, are subject 

to market demand and consumer preference. High market demands often instigates fraudulent 
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ambitions for financial gains. Addition of natural sweeteners to wine is sometimes accepted when 

the grapes do not accumulate enough sugars due to inappropriate weather conditions but this 

remains a relatively controversial topic because the legality of this procedure varies by country, 

region and even wine type (Regulation (EU) No 1308 2013). For Tokaji wines Hungary, only 

botrytized berries are permitted, addition of any kinds of sugars, including concentrated juice, is 

strictly forbidden during the production of Tokaji wine specialties. 

 

Figure 1: General flow of wine preparation with a unique step for Tokaji wine production 

source: (Joshi et al. 2017) 

The red rectangle in Figure 1 shows the unique step of preparation for Tokaji wines. 

Notably, a partial replacement of botrytized berries (noble rotted berries) with grape must 

concentrate occasionally might be an illegal practice that devalues the wine, puts its reputation at 

stake, and affects consumer trust in the product. With the wine currently, penetrating the 

international markets with the prestige of the country on its shoulders, meticulous controls are 

required to guarantee the quality of the wine. Wine fraud has been tracked with high performance 

liquid chromatography to authenticate geographical origin of wines with Spanish appellations 

(Serrano-lourido et al. 2012). Inductively coupled plasma mass spectrometry and optical emission 

were also used to determine the multielement composition of 272 bottled Slovenian wines (Šelih, 

Šala, and Drgan 2014). Propylene glycol, sorbic and benzoic acids were also detected as 

adulterants in semi-dry white wines using headspace solid-phase microextraction (Sagandykova 

et al. 2017). Descriptive sensory analysis (Vidal et al. 2017) and other advanced tools (Petropoulos 
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et al. 2017; Kutyła-Olesiuk et al. 2014) have also been used to monitor the quality of different 

wines but controversial forms of adulteration continue to evolve that require novel techniques of 

detection. Sugar concentration is a key parameter in wine grading systems. In the case of high 

sugar concentrations in wine, it is necessary to analyze the sample for the glycerol content as a 

marker of fermentation depth (Gnilomedova, Anikina, and Gerzhikova 2018). The values of the 

indicators characteristic of high sugar grapes are typical for the wines obtained by sweetening with 

grape must concentrate (Cozzolino et al. 2006), which is often measured by the rather expensive 

methods such as chromatography, nuclear magnetic resonance and mass spectrometry (Jordão, 

Vilela, and Cosme 2015). 

3.1.2. Meat fraud and detection techniques 

Meat is a central part of diets around the world and is considered as a primary source of 

protein across the globe. The world population increased by almost 4 billion in the last 50 years 

(128%) while the global average meat consumption per capita increased by 75% (Milford et al. 

2019). Demand for proteins from plant-based sources has remained stable over time but the same 

cannot be said for proteins from animal sources. There has been a sharp increase with animal 

products now accounting for 58% of protein availability per capita/day (Bonnet et al. 2020). This 

implies that the global meat consumption and production almost quadrupled. Debates about meat 

production and consumption are often complex and controversial (Wu 2016) but, the same can 

also be said about meat quality control. Today, animal products provide approximately 30% of the 

available calories in the European Union (EU) with about 28 g of protein/capita/day, followed by 

wheat products and dairy products (Bonnet et al. 2020). Controlling meat quality is therefore of 

paramount importance because meat adulteration or misrepresentation can lead to consumer 

distrust in the meat value chain which can impact economic revenues. Misrepresentation of meat 

could equally, also have bad implications from religious and moral perspectives as people have 

different preferences of meat they wish to consume. Thus, even if different types of meats are 

mixed and sold in minced forms, their content should be fully labelled in accordance with labelling 

regulations (European Union 2011). 

Primarily, meat from animal sources can be classified into red meat and poultry 

(McWilliams 2012). In the broad sense red meat, encompasses red fleshed carcass, among which 

the most patronized are pork, lamb/mutton, beef, and veal (McWilliams 2012). Red meat has been 

credited with good levels of biological protein, minerals (iron, thiamin, riboflavin, zinc) and 

vitamins (B6 and B12) (Wyness 2016). They can however, allegedly, contribute to heart diseases 

depending on their processing (Wu 2016). Poultry meat is the general term used to represent 

chicken, geese, turkey, duck and other fowls (McWilliams 2012). For reasons such as nutritional 
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quality and consumer preference or the part of animal that is being sold, the prices all these meat 

types can vary. For instance, beef is often regarded as a more expensive type of red meat. In the 

year 2020 in some Hungarian markets (central Europe), beef thigh was sold at a higher price of 

3199 HUF/kg (equivalent of 8.88 euro/kg) in comparison to pork thigh which was sold at 1499 

HUF/kg (equivalent of 4.16 euro/kg). Turkey breast was also sold at a higher of 1899 HUF/kg 

(equivalent of 5.27 euro/kg) in comparison to chicken breast which was sold at 1499 HUF/kg 

(equivalent of 4.02 euro/kg). It is important to note that, some minced meat products already exist 

in market that can contain a mix of both high-priced and low-priced meat. This is acceptable so 

long as it is evident in the labelling of the product. What is unacceptable is mixing the high-priced 

meat with the low-priced meat during mincing and representing it as a 100% version of the 

expensive one, or falsely stating the applied mixing ratio. This type of adulteration be done at 

varying concentration levels of meat types depending on the meat type and market demand. 

Concentration levels with increasing scales of 5% w/w (Alamprese et al. 2013), 10% w/w (Sarno 

et al. 2020), and 20% w/w (Han et al. 2020) of meat adulteration, are among the most common in 

literature. The European Union regulation states that the country of origin must be declared in the 

case of pork and sheep, goat and poultry meat. The previous food law already had these obligations 

for beef, even to the extent of the countries of animal birth, growth, slaughter and cutting or mixing 

having to be specified on the label (European Union 2011). 

For detecting such adulteration and tampering, many studies have explored different 

techniques. Common examples are mass spectrometry (Black, Chevallier, and Elliott 2016), 

polymerase chain reaction (PCR) (Lin et al. 2014; Karabasanavar et al. 2017) and Enzyme-linked 

immunosorbent assay (ELISA)(Thienes et al. 2019). Due to cost, accuracy, reliability, less 

sophistication and speed of the analytical process, other methods such as spectroscopy, has become 

more preferred methods for detecting meat adulteration (Mamani-linares, Gallo, and Alomar 2012; 

Alamprese et al. 2013, 2016; Z. Zhao et al. 2020; Leng et al. 2020). Another advanced method 

however, is the e-tongue, but it is generally, suited for liquid samples. As a result, it has been 

scantly applied in the meat industry although its advantages as an analytical method continuous to 

be explored in other industrial applications. Few studies have however, adopted the e-tongue to 

monitor physical–chemical and microbiological changes in pork meat during storage (Gil et al. 

2011) and also, the impact of curing agents in meat (Gil et al. 2010). E-tongue could also detect 

ammonia and putrescine in beef products (Apetrei and Apetrei 2016). Very little was however, 

mentioned about the sample extraction method in all the studies for easy adaptation of the 

instrument for meat quality control. In fact, there is no clearly defined sample preparation method 

for meat analysis with the e-tongue. A standardized sample preparation for e-tongue is necessary 
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because, a less effective method can decrease the sensitivity of the sensors (Kovacs et al. 2020) 

which, can negatively affect the results of the instruments.  

3.1.3. Protein powder fraud and detection techniques 

Proteins are important nutritional requirements with a recommended Dietary Reference 

Intake (DRI) of 0.8 g of protein/kg of body weight (Wu 2016). In seeking alternative sources of 

protein for the busy upper echelon consumers, protein supplements have gained attention for their 

contribution to health. With increasing urbanization, the powdered form has become the most 

preferred because they are easy to use, store and are easily assimilated upon consumption. In 

certain contexts, they have even been classified as ergogenic aids mostly sorted by sportive people 

(Mart et al. 2017) but they can also be expensive depending on the source of their raw materials: 

beef, pea or whey. Whey protein-based supplements have been promoted as the optimal protein 

source at maximizing resistance-training outcomes. Beef powder is a new high-quality protein 

source that reportedly leads to a significant increase in lean body mass performance (Roiffé et al. 

2019). Plant-based proteins have less of an anabolic effect than animal proteins due to their lower 

digestibility, lower essential amino acid content (especially leucine), and deficiency in other 

essential amino acids but they have recently sorted for their ability preserve skeletal muscle mass 

to maintain or improve metabolic homeostasis and physical function (Berrazaga et al. 2019). 

The purported high price of these products, in addition to an increased demand, has resulted 

in innovative ideas to manipulate the product for increased profit. Prices of protein powders can 

range from as low as 10 euro to as high as 100 euro depending on the packaging unit, protein 

content and protein source (Final Step Marketing 2016). According to the International Society of 

Sports Nutrition, average serving of protein powders have been reported to be about two 

servings/day, averagely 42 g/day. Council for Responsible Nutrition (an industry trade group), 

reported that 11% of adults took protein supplements in 2016 and in America alone, 3.86 billion 

was spent on protein supplements in the past between 2017 and 2019 years but this amount was 

still expected rise to nearly 6.57 billion by 2020 (McMillen 2020). Such increasing demands, 

entices the greed in some producers to explore alternative ways to make more money by 

manipulating the protein content of some of these products. Common adulterants in protein 

powder supplements are mainly from cheaper materials and inferior alternatives that have the 

potential to damage the well-being and health of consumers. Gaining grounds are nitrogen-based 

substances (Figure 2) that can range from amino acids such as a glycine and taurine to more 

complex and dangerous chemicals such as urea and melamine which are only acceptable in animal 

feeds (Tadele and Amha 2015).  
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Figure 2: Concept of protein powder adulteration with nitrogenous-based substances: glycine, 

urea, taurine and melamine  

Glycine (H2NCH2COOH) is the simplest naturally occurring amino acid that plays crucial 

roles in protein synthesis (Razak et al. 2017). It is considered as an ideal adulterant for protein 

powders because it is a naturally sweet nitrogenous based product but at high doses, glycine can 

cause some negative side effects. Daily endogenous production of glycine is around 125 mg/kg 

(Mart et al. 2017). Very high intake equivalent to 2.4 g/kg (more than three times the recommended 

daily allowance) is thought to increase the risk of renal glomerular sclerosis and accelerate 

osteoporosis (Kohlmeier 2015). Taurine (C2H7NO3S) is an important beta amino acid the plays 

essential roles in many physiological activities. There are no regulations for addition of taurine in 

protein powders but when used as ingredients in enhanced water beverages, it must not exceed 

concentrations of 0.0045% (FDA 2015). There is also no clearly defined daily tolerable intake but 

some reports have indicated allergies such eye and skin irritation and mild diarrhea and 

constipation (Kohlmeier 2015), adults only need as little as 30–40 mg/day from endogenous 

synthesis and diet combined. Urea (NH2CONH2) is an endogenous product from the degradation 

of a wide range of nitrogen containing bio-molecules (Hediger et al. 1996). It is generally 

considered as a toxic product in humans, with approximately 20–35 g being excreted in urine per 

day (J. Zhao et al. 2018). With appropriate labelling it is accepted as an additive in feed but not in 

food for human consumption (European Commission 2012). Melamine (C3H6N6) is an organic 

nitrogenous compound synthesized from urea and used in the production of plastics, dyes, 

fertilizers, and fabrics. Melamine consumption have been linked to nephrolithiasis, chronic kidney 

inflammation, and bladder carcinoma (Aldrich et al. 2011) but sometimes still ends up in food. A 

tolerable daily intake of 0.2 mg/kg body weight was adapted by the World Health Organization in 
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2008 (Tyan et al. 2009). Codex Commission has also adopted a maximum melamine level of 1 

mg/kg for powdered infant formula (Codex Alimentarius 2017).  

Consequently, the methods and techniques used to authenticate and determine the quality 

of food products continues to be on the rise. The techniques range from conventional methods 

such as the Kjeldahl and Dumas crude protein measurement methods to sophisticated ones such 

as the Bradford and Ninhydrin assays (Field and Field 2010), DNA extraction (Liao et al. 2017), 

mass spectrometry (Lu et al. 2017), etc. Many of these methods remain effective but the high cost 

and technicalities associated with their use can sometimes be overwhelming. Also, some 

mischievous producers have managed to explore the gaps in some of these methods and are using 

them to their advantage. For instance, Kjeldahl and Dumas crude protein measurement methods 

are unable to differentiate between nitrogen native to milk and new age nitrogen-rich adulterants 

with nitrogen in low molecular mass (DeVries et al. 2017). This is because, the methods are based 

on the assumption that the average nitrogen content of a protein is about 16% (Urbat et al. 2019). 

An initiative by the Codex Alimentarius committee published that a standard conversion factor of 

6.38 rather than 6.25 should be used to determine protein in milk products (Mæhre et al. 2018) but 

this also translates into extra cost for the industry. In 2008, this meant an additional expense of 

88.5million euro affecting the European dairy industry (Koletzko and Shamir 2006). In addition, 

the conversion factors have their limitations in the fact that, while rich nitrogen-based amino acids 

such as glycine (18.6% N), histidine (27.1% N), taurine (11.19% N) and melamine (66.6% N), 

urea (46.62% N) would lower the standard conversion factor, poor nitrogen-based amino acids 

such as phenylalanine (8.5% N) and tyrosine (7.7% N) (Urbat et al. 2019) would increase it. For 

instance, urea contains 46% nitrogen; thus each kilogram of urea is equivalent to 2.88 kg of crude 

milk protein (6.25 × 0.46) (Tadele and Amha 2015). Therefore, substituting rich nitrogen-based 

adulterants into protein powders is a viable adulteration technique. Practicality of these flaws 

include melamine poisoning where, the producer diluted the formula by adding melamine, but still 

passed the protein content test (R. Yang et al. 2009). At least six babies died of kidney failure and 

tens of thousands became ill (Sharma and Paradakar 2010). There is therefore a need for affordable 

alternative approaches with low technicalities and the possibility of rapid analysis. 

3.2. Emerging methods for food quality control 

Food quality assessment is a complex process that translates into assessing all the molecular 

composition of the food. This can be sometimes overwhelming for the human on biological 

receptors (sensory evaluation) and the rather expensive and time consuming conventional 

analytical methods. In the search for optimum food safety, consumers, regulatory bodies and 

manufacturers are all interested in having reliable analytical tools and information to allow the 

authentication of foods. 
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In this regard, near infrared spectroscopy (NIRS) and electronic tongue (e-tongue) have 

recently gained grounds for their effectiveness in quality control. The NIRS approaches is based 

on the operating on the interactions of analyte in a defined region of the electromagnetic spectrum 

of light to give an overview of the compositional structure of the compounds present. E-tongue 

approach on the other hand, is based on artificial sensors that are able to relay information about 

the analyte through pattern recognition. Both NIRS and the e-tongue have proven themselves as 

next generation analytical instruments that will be crucial in the fight against food adulteration. 

They have been reported to overcome challenges associated with conventional analytical (Figure 

3) methods while presenting unique advantages (Table 1). 

 

Figure 3: Challenges associated with some common conventional methods 

Table 1: Major advantages of the electronic tongue and near infrared spectroscopy 

Criterion E-tongue Spectroscopy 

Rapid YES YES 

Sophisticated NO NO 

Requires reagents NO NO 

Easy to install and use YES YES 

Good sensitivity YES YES 

Handheld versions 

available 
YES YES 

Non-invasive NO YES 

Laborious NO NO 

3.2.1. Near infrared spectroscopy (NIRS) 

NIRS is a well-established technique that operates within a wavelength range of 750 nm 

(13,300 cm-1) and 2500 nm (4,000 cm-1) (Nicolaï et al. 2007) using a spectrophotometer. 

Spectrophotometers are instruments composed of a light source, a tool for decomposition of 

polychromatic light, and a detector (Kagaya and Miyamoto 2017). The NIRS principle basically 
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encompasses the emission, absorption and reflection of light, which are dependent on the chemical 

composition of the product (microstructure) and its light scattering properties.  

Figure 4 shows main principles of the most commonly used NIR spectrophotometers: 

scanning grating monochromator, grating polychromator photodiode array spectrophotometers 

(DA) and Fourier transform NIR analyzers (FT-NIR). The scanning grating spectrophotometers 

(Figure 4 a) will be primarily used in this thesis. 

 

Figure 4: General principles of some common spectrophotometers. Scanning grating 

monochromator (a) grating polychromator photodiode array (b) Fourier transform (c). Source: 

(Skvaril, Kyprianidis, and Dahlquist 2017) 

In scanning grating spectrophotometers, polychromatic light projects onto diffraction 

gratings, which then disperses the light into its constituent wavelength. The grating is mechanically 

rotated so that a narrow group of wavelengths are allowed through the narrow slit (Okazaki 2012). 

Spectral information can be carried out in different modes as explained in  

Figure 5: transmittance, diffuse reflectance and transflectance (Aamer 2011). Diffuse reflectance 

and transflectance modes will be the focus of NIRS measurements in this thesis. 

 

Figure 5: Modes of measurements in NIRS: Transmittance (a), diffuse reflectance (b), 

transflectance (c). Source: (Aamer 2011) 
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The most commonly used instrumentation for acquisition of high-quality reflectance 

spectra of materials moving on a conveyor belt is a fiber-optic coupled head that illuminates the 

sample usually with halogen light sources (Skvaril, Kyprianidis, and Dahlquist 2017). The most 

innovative light sources however, are tunable diode lasers, also called super luminescent light-

emitting diodes (SLED). Using the semi-conductor technology of diodes, tunable diode lasers are 

much smaller than the traditional tunable laser, cheaper, have excellent wavelength resolution, 

brighter, and have lower noise frequencies than tungsten lamps (Agelet and Hurburgh 2010). 

SLEDs are suitable for measuring weak absorptions at good signal-to noise ratio and as light 

sources in miniature instruments which will also be explored in this thesis. Improvement of tunable 

diode lasers allows, controlling emitted light at a specific wavelength, combining light source, and 

wavelength selection features (Agelet and Hurburgh 2010). 

NIRS is routinely employed to give a compositional, functional and sensorial overview of 

food raw materials, process intermediates and final products. An outstanding advantage of NIRS 

is that little or no sample preparation is necessary, so the analysis is very rapid (from less than a 

second to some minutes), free of danger (to both the user and the analyte) and can be carried out 

on-line (Rateni, Dario, and Cavallo 2017). One of its major strength is the possibility to measure 

several constituents concurrently and non-invasively. NIRS has been accurately used for 

geographical identification and classification of Syrah wines from Argentina (Mendoza) and Chile 

(Central Valley) (da Costa et al., 2018). It was applied for the assessment of metals in Tokaji wine 

(Murányi and Kovács 2000) where it was concluded that, different production methods of the wine 

determines the proportion of lead and iron manganese in the wine. In tracking food adulteration, 

NIRS has been used to detect yellow metanil in tamarind powder (Rukundo et al. 2020), melamine 

adulteration in milk (Lim et al. 2016) and predict diverse adulterants in cereal products (Ambrose 

and Cho 2014), herbs and spices (Petrakis and Polissiou 2017), Hungarian honey (Kaszab et al. 

2018) and coffee (Dias et al. 2018) etc. It was used for the determination of Sudan I-II-II-IV dye 

adulteration in spices ( Di Anibal et al., 2009), identification of papaya seeds in black pepper 

(Orrillo et al. 2019), paprika adulteration with lead chromate, 3% w/w lead oxide 5% w/w silicon 

dioxide, 10% w/w polyvinyl chloride, and 10% w/w gum Arabic (Horn et al. 2018), analysis to 

detect adulteration in black pepper (Wilde et al. 2019) etc. It can therefore, be inferred from 

literature that, NIRS is a good tool for qualitative quantitative investigation of foods. In the near 

infrared region, foods are characterized by certain absorption bands that make it possible to 

authenticate their quality based on fingerprinting and chemometric or multivariate data evaluations 

(Lim et al. 2016; Henn et al. 2017; Wold et al. 2020). 
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3.2.2. Electronic tongue (e-tongue) 

Artificial sensors have been widely studied for their potentials in quality assurance. 

Artificial sensors in engineering can be said to imitate human biological receptors except that, 

artificial sensors are man-made and can be modified to suit whatever purpose they are desired for. 

Gaining grounds in the field of sensors are the acoustic, chemical, electrochemical, optical 

mechanical and thermal sensors etc. (Stroble et al., 2009) but the electrochemical sensors have 

particularly been lauded for their accuracy, sensitivity and speed when used in analytical 

instruments such as the electronic tongue. 

E-tongue can be defined as an advanced analytical instrument made up of an array of 

sensors and pattern recognition technologies capable of performing quantitative and qualitative 

analysis (Winquist 2008). The instrument is composed of an autosampler, an array of artificial 

sensors, transducer and system unit. The auto sample is designed to contain the sample, the sensor 

array measures information about the food composition through signals which are processed in the 

transducer and before storage on the system unit or computer. A full discussion about the different 

architectures of e-tongue have been reported by Banerjee et al (2016) but the most frequently used 

are the potentiometric and voltammetric e-tongue (Figure 6 shows their general setup) 

 

Figure 6: A general setup of a voltammetric e-tongue (A) versus the potentiometric e-tongue (B) 

The potentiometric e-tongue operates on the direct application of the Nernst equation and 

the changes in the electrical potentials of non-polarized electrodes (Magdalena and Wardencki 

2015). In the voltammetric e-tongue, the potential is applied on the working electrode, followed 

by the measurement of the resulting current between the working electrode and the reference 

electrode. In the development of e-tongue working electrodes or sensors, one of the first class of 

materials used were lipid membranes in an attempt to mimic the materials of the human tongue 

(lipid bilayers provide the framework for a cell membrane). Chalcogenide glasses in 
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electrochemical measurements have also been explored and presented main advantages such as 

ease of electrode preparation and cross selectivity (Rudnitskaya et al. 2017). Also gaining grounds, 

are the ion sensitive field effect transistors (ISFET) and chemically modified field-effect- 

transistor (CHEMFET). These are novel integrated devices in micro electrochemical laboratories. 

They are very similar to the metal oxide semiconductor field effect transistor (MOSFET) but their 

sensitive area represents a transistor gate and incorporates the means of transduction from an ion 

concentration to a voltage (Rita et al., 2017). The e-tongue that would be used in this thesis 

operated on potentiometry and was adapted to CHEMFET sensors. 

Taste is a subjective attribute due to the sensitivity differences in the human tongue of 

different consumers so advanced instruments such as the e-tongue however, provides reliable non-

subjective analysis of taste components in foods as a result of their compositional differences. In 

food quality assurance, e-tongues have been used for on-site quantification of ethylphenol 

metabolites (González-Calabuig & del Valle, 2018), storage experiments (Rudnitskaya et al., 

2017), quantification of polyphenols (Ce and Ceto 2012) and geographical classification (Lozano 

et al., 2006) of wines. In food safety, it could detect lead, cadmium, iron in wine (Simões Da Costa, 

Delgadillo, and Rudnitskaya 2014). With regards to adulteration, it has been used to predict diverse 

adulterants in tomato paste (Vitalis et al. 2020), honey (Bodor et al. 2017), beer (Polshin et al. 

2010), oils (Oroian et al. 2018; Meenu, Cai, and Xu 2019; Apetrei and Apetrei 2014) and coffee 

(Carpintero et al. 2018). In depth applications of the instruments for food quality have been 

reported (Bratov, Abramova, and Ipatov 2010; Tian et al. 2018; Zaukuu et al. 2019). The e-tongue 

has clearly been appraised and acknowledged in food industries for liquid food analysis but its 

dwindling application for solid food samples such as meat continues to be a challenge that requires 

attention. 

3.3. Data pre-processing techniques and emerging methods 

Application of NIRS and e-tongue, always involves more than one variable that can all be 

influenced by diverse parameters ranging from environmental conditions to sample conditioning. 

Mathematical correction techniques have therefore been explored to compensate for such 

drawbacks and are discussed below. 

3.3.1. NIRS data pre-preprocessing 

Samples that are scanned using diffuse reflectance or transmittance modes, when using 

spectrophotometers often show significant differences in the spectra. These differences can be due 

to several conditions such as non-homogeneous distribution of the particles, changes in refractive 

index, particle size distribution, sample packing/density variability, and sample morphology 

(surface roughness/shape) (Agelet and Hurburgh 2010). Most often, these conditions are 
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controlled because they are caused by physical means but even when controlled, they can still 

contribute to sample pathlength issues that result in additive, multiplicative and wavelength-

dependent effects depending on the scanning methodology. Generally, wavelength-dependent 

scattering can appear as baseline shifts, tilt or a curve scaling difference in some instances, where 

the effect is more pronounced for longer wavelength region of the spectrum. Spectra 

measurements of samples from a given chemical matrix that exhibit variable physical 

characteristics can sometimes look completely different due to these phenomena, masking any 

subtle chemical variations. Such unwanted variations are unrelated to the chemical response and 

can be detrimental to the final experiment assessment or yield inaccurate results (Wang and Zhou 

2011). It is therefore crucial to apply appropriate pretreatment to minimize such spectra defects 

for reliable results. Wavelength selection is often the first approach in such situations because it is 

regarded as the simplest, but most effective pretreatment procedure in spectroscopy, if prior 

knowledge is available about the regions of interest (Roumiana Tsenkova et al. 2018). Wavelength 

selection is often performed at the region that are directly related to the analyte of interest and can 

present advantages such as the elimination of unrelated variables. The scattering effect in NIRS 

consists of the following (Wehrens 2011): 1) Additive effect, which is reflected as a baseline offset 

(simple baseline shift) in NIR spectra; 2) Multiplicative effect (pure) that scales the entire spectrum 

by a given factor, for example due to pathlength differences; 3) Wavelength-dependent baseline 

variation, where the degree of baseline shift varies with wavelength. In addition to wavelength 

selection, many types of pretreatment methods have also been reported. Common among these are 

the derivatives, de-trending (baseline correction), Standard Normal Variate (SNV) and 

Multiplicative Scatter Correction (MSC) (Bevilacqua et al. 2017). These methods can improve the 

modeling accuracy depending on the scattering effect in the dataset. 

Derivatives are among the most common signal pretreatments applied to spectral data. 

Derivatives are mainly used to resolve peak overlap (or enhance resolution) and eliminate constant 

and linear baseline shifts between samples. First and second derivatives are more common in 

practice than higher-order ones. Spectral derivatives can be calculated by obtaining the differences 

between two consecutive points, or by smoothing/differentiating specified gap distance; or 

Savitzky-Golay polynomial fitting (Savitzky and Golay 1964). Some common disadvantages of 

applying derivatives are noise enhancement and difficult spectral interpretation which are also 

often dependent on the nature of the data. De-trending is performed through subtraction of a linear 

or polynomial fit of baseline from the original spectrum to remove tilted baseline variation, usually 

found in NIR reflectance spectra and Raman spectra with fluorescence background reference 

(Agelet and Hurburgh 2010). Scaling spectra involves dividing each wavelength data by its 

standard deviation, which allows each wavelength to have the same weight or relevance during 
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calibration development. SNV and MSC are two widely known methods that reduce spectral 

distortions due to scattering. SNV centers and scales each spectrum individually, so each has a 

mean equal to 0 and standard deviation equal to 1. SNV is often used on spectra where baseline 

and pathlength changes cause differences between otherwise identical spectra. The method was 

proposed by (Barnes, Dhanoa, and Lister 1989). MSC correction is achieved by regressing a 

measured spectrum against a reference spectrum and then correcting the measured spectrum using 

the slope and intercept of this linear fit (Martens and Naes 1990). This pretreatment method has 

proven to be effective in minimizing baseline offsets and multiplicative effects. MSC is more 

complex and memory-consuming than SNV and depends on the whole spectra set, while SNV 

treats each spectrum individually and independently (Agelet and Hurburgh 2010). 

3.3.2. E-tongue data pre-processing 

In addressing some of the occurring inaccuracies of e-tongue multidimensional data, 

several approaches have been adopted, but empirical mathematical logarithms have so far provided 

better outcomes. Among the first steps in e-tongue data analysis is visual inspection using principal 

component analysis. This technique helps to detect and eliminate outliers before deciding on what 

type of signal preprocessing correction is required. Preprocessing is mainly performed to 

compensate for poor signal-to-noise ratio or otherwise referred to as sensor instability as these can 

impair e-tongue results. The instability of the chemical sensors is often referred to as sensor drift. 

It was also defined by Holmberg and Artursson (Holmberg and Artursson 2002) as “a gradual 

change in any quantitative characteristic that is supposed to remain constant” but in general terms, 

drift can refer to the inaccurate signal measurements of sensor-based instruments. Drift is a major 

undesirable characteristic of sensor-based equipment’s which, could occur because of various 

known and unknown factors such as sensor deterioration due to the evolution of the materials used 

in sensor development (Holmin et al. 2001). Changes in the environmental conditions of the 

experiment especially, in temperature or unsatisfactory sensor cleaning can also lead to drift. Even 

high variation in sample quality or concentration are among the most known effects contributing 

to sensor drift in the form of memory effect (Kovacs et al. 2020). The response of the sensor 

depends on what it has recently been exposed to, because remnants of previous samples may be 

still present on the sensor surface (Holmberg and Artursson 2002). For such reasons, measuring 

samples with highly different chemical composition and/or concentration may increase the 

probability of drift in the dataset; this phenomenon is often referred to as the memory effect. The 

transfer of a portion of the liquid sample on a macro scale due to unsatisfactory sensor cleaning is 

also a known contributor to changes in sensor signal which, is often called cross-contamination. 

Another consequence of the cross-contamination would be having some noise that has less to do 

with the multicomponent response and more to do with the interaction between contaminants and 
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sensors through a series of adsorption/desorption reactions leading to limited performances (Legin, 

Kirsanov, and del Valle 2019). These phenomena could be observed for all the different sensors 

of the e-tongue and could engender the inhibition of electrochemical reactions of interest hence a 

loss of the electrodes activity (Wei et al. 2017). From a technical and industrial perspective, drift 

problems hinder the long term operation of all kinds of sensors (Chen and Chan 2008; Polster, 

Fabian, and Villinger 2009; Owens and Wong 2009). The problem of drift associated stability is 

an even more important issue for the ion-selective field-effect transistor (ISFET) sensor based 

electronic tongues. These instruments have high sensitivity, but are often associated with several 

disturbances (Oelssner et al. 2005). It is therefore of paramount important to always apply some 

preprocessing technique that can enhance e-tongue signals. Standardized experimental methods, 

environment conditions and sample dilution before e-tongue analysis have been acknowledged to 

reduce some of these effect (Szöllosi 2015; Soós et al. 2015) but mathematical corrections have 

been reported to work best. Many mathematical preprocessing techniques have been developed 

for e-tongue drift correction (Holmin et al. 2001; Natale, Paolesse, and Legin 2016; Panchuk et al. 

2016) devices but three recently developed ones by Kovacs et al. (2020), have so far proven to be 

the most effective and will be used in this study. 

3.4. Chemometrics and multivariate data analysis 

Both e-tongue and NIRS rely heavily on an arsenal of chemometric and multivariate data 

analysis tools for rapid real-time evaluation and interpretation of results. Multivariate data analysis 

and chemometrics, are simply simultaneous observations and analyses of more than one outcome 

variable in an experiment and can be used to visualize patterns in the data and build classification 

and prediction models for the dataset. This is contrary to univariate and bivariate analysis which 

involves just one and two outcomes respectively. Depending on the objectives of the study, the 

different tools in Figure 7. can be adopted. 

 

Figure 7: Multivariate data analysis tools commonly used with the e-tongue and NIRS. Source: 

(Zaukuu et al. 2019) 
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Adequate data processing is an essential step when using NIRS or biosensor instruments 

for reliable results. Primarily, Principal component analysis (PCA), linear discriminant analysis 

(LDA) and partial least squares (PLS) regression will be used in this thesis.   

PCA is most known for data visualization purposes. It is favorable because it is a way of 

identifying patterns in data and it expresses the data in such a way that it highlights their 

differences and similarities. It is an outlier sensitive statistical method that reduces the amount of 

data to a smaller number of newly derived variables which represent the original data adequately 

(Shlens, 2005). Detailed concepts of PCA application have been reported by Joliffe & Morgan 

(1992). 

LDA is most known as a classification technique. It is often used for multi-class 

classification of different samples. It is a supervised method so the class membership has to be 

known for the analysis (Granato et al., 2018). Results are often expressed as classification 

accuracies in terms of recognition (calibration) or validation (prediction) that can be used to extract 

the required information from the usually convoluted spectra in NIRS (Hu et al. 2019) or the e-

tongue sensor signals. Target accuracies are often dependent on the objective of the study and 

analytes being studied but for detecting food adulteration, the ratio between within-class and 

between-class variances should be maximum in a lower dimensional space because some 

adulterants can present severe health complications. 

PLS, seeks to maximize the covariance between the X and Y blocks, in a way that the new 

latent variables not only explain the variability of X but are also maximally correlated to Y 

(Bevilacqua et al. 2017). Correlation is the measure of the degree of association between two 

variables when both are measured on a series of objects. The strength of the correlation is given 

by the coefficient of determination (R2). R2 or adjusted regression coefficient (R2adj) close to one 

is recommended in literature (Schunn and Wallach 2005). R2adj adjusts for the adjusted number 

of explanatory terms in a model relative to the number of data points and its value is usually less 

than or equal to that of R2. When comparing models, the one with the highest adjusted coefficient 

is the best model (Granato, de Araújo Calado and Jarvis, 2014). However, R2adj alone is not 

enough to evaluate goodness of fit as, the calibration error, i.e., the residuals of the calibration data 

need to be considered. This is often referred to as Root Mean Squared Error Calibration (RMSEC) 

or RMSECV when cross-validation is used (Kamiloglu 2019). Depending on the sample size, an 

RMSEC or RMSECV close to zero is often recommended (Simões Da Costa, Delgadillo, and 

Rudnitskaya 2014). Details about PLS regression methods have been reported by Palit et al. 

(2010).  
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3.5. Limit of detection 

The goal of analytical procedures is generally to achieve qualitative and/or quantitative 

result with acceptable uncertainty levels. Therefore, theoretically speaking, “validation ” really 

indicates “measuring uncertainty” (Sengul 2016). In practice, method validations are performed 

by evaluating a series of method-performance characteristic such as limit of detection minimum 

value (LODmin), limit of detection maximum value (LODmax), limit of quantification minimum 

value (LOQmin), limit of quantification maximum value (LOQmax), explained variance X (the 

actual dataset) and explained variance Y (the predicted dataset). There have been some lack of 

agreement among researchers as to the terminology that is best suited to describe some of these 

parameters (Armbruster and Pry 2008) but in statistics, explained variation measures the 

proportion to which a mathematical model accounts for the variation of a given data set (Henn et 

al. 2017). LOD can be defined as the lowest amount of analyte in the sample, which can be detected 

but not necessarily quantitated under stated experimental conditions. LOQ is generally defined as 

a parameter of quantitative assays for low levels of compounds in sample matrices (Shrivastava 

and Gupta 2011). Typically, LOQ will be found at the same or higher concentration than LOD, 

but how much higher depends on the specifications for bias and imprecision used to define it 

(Armbruster and Pry 2008). These terminologies are often used to describe the smallest 

concentration of an analyte that can be reliably measured by an analytical procedure. Lower and 

upper limits of the LODminimum and LODmaximum (LODmin/max) correspond to the 

calibration samples with the lowest and largest extrapolated leverages to zero analyte 

concentration (Lukacs et al., 2018). According to the International Union of Pure and Applied 

Chemistry (IUPAC), LODmin/max measurements are recommended because they bring together 

two important analytical concepts: the sensitivity and the precision in the analytical determinations 

(Allegrini and Olivieri 2014). In spectroscopy, these can be used to assess the measurement 

performance directly related to the experimental conditions (Henn et al. 2017). Several approaches 

can be used to calculate detection and quantification limits through visual evaluation, signal-to-

noise, standard deviation of the blank, and calibration curve methods (Sengul 2016) but the 

calibration curve methods will be adopted in this thesis because this method yields more 

homogeneous distribution that can result in a more relevant mathematical assessment (Shrivastava 

and Gupta 2011). LODmin/max, LOQmin/max and explained variance will be used to evaluate 

models built to predict protein powder adulteration in this thesis. 
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4. MATERIALS AND METHODS 

This section of the thesis focuses on how all the experiments were performed to achieve 

the set objectives. For easy reading and understanding, it has been divided into three main parts: 

sample preparation, applied methods and statistical methods that will all focus on the foods under 

investigation.  

4.1. Sample preparation  

The sample preparation section focuses on how all the samples in each experiment were 

acquired and prepared before instrumental analysis with the applied methods to achieve the set 

aim and objectives of the thesis. 

4.1.1. Determination of Tokaji Aszu and Tokaji Forditas wine adulteration 

Grape must concentrate (G.M.C) and four Tokaji wines of different quality grade (in 

increasing order of quality): Tokaji Forditas II, Tokaji Forditas I, Tokaji Aszu II and Tokaji Aszu 

I, were obtained from experts at the winemaking Tokaji region of Hungary (Figure 8). 

 

Figure 8: Authentic Tokaji wines from the Tokaji region of Hungary acquired as raw materials 

for the determination of Tokaji wine adulteration 

The wines were produced according to the standard requirements of Tokaji wine production 

as described: maceration of first class botrytized berries with base wine (fermented grape juice) to 

get Tokaji Aszu I wine and maceration of second class botrytized berries with base wine to get 

Tokaji Aszu II wine. Tokaji Forditas I and Tokaji Forditas II wines were prepared by reusing the 

botrytized berries from Tokaji Aszu I and Aszu II wine production for a second maceration with 

base wine, which is the normal practice in making Tokaji Forditas wines. The wines had a 

maceration period of 48 hours and resulted in diverse sugar concentrations that were determined 

by HPLC at the Department of Oenology, Szent Istvan University (now, Hungarian University of 

Agriculture and Life Sciences).  
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Tokaji Forditas I and Forditas II wine wines were manipulated with G.M.C of 775.3 g/L 

sugar concentration to mimic the sugar concentrations of the authentic Tokaji wines. The 

adulteration was done in steps, resulting in four different adulteration levels (C1 -C4) each for 

Forditas I wine and Forditas II wine adulteration (Figure 9).  

 

Figure 9: General setup of sample preparation for Tokaji Forditas I wine adulteration (A) and 

Tokaji Forditas II wine adulteration 

The sugar concentration of the adulterated wines covered the range of sugar concentration 

generally existing in the authentic Tokaji wines). The purpose of this artificial adulteration was to 

monitor the possibility of producing wines of similar quality to the authentic Tokaji wines by sugar 

manipulation. Also included was a complex wine referred to as “Base_sugar” in this study. This 

wine contained sucrose during its refermentation and was not macerated with botrytized berries, 

but was refermented after the addition of sugar. It was meant to represent complex forms of 

adulteration. Three repeats of each sample was prepared using a 50% dilution factor as this was 

reported to be the recommended dilution level for wine analysis with the electronic tongue (Soós 

et al. 2015). 
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Table 2: List of samples showing the non-adulterated Tokaji wine, adulterated Tokaji wine and 

their corresponding sugar concentrations 

Sample number Tokaji wines Adulterated Tokaji wines Sugar concentrations 

g/L 

1 Forditas_II  98.9  

2 Forditas_I  130.2 

3  Forditas_II_C1 130.2 

4 Aszu_II  168.2  

5  Forditas_II_C2 168.2  

6  Forditas_I_C1 168.2  

7  Forditas_I_C2 203.5a 

8  Base_Sugar 238.8  

9  Forditas_II_C3 238.8 

10  Forditas_I_C3 239.6b 

11 Aszu_I  254.5  

12  Forditas_II_C4 254.5  

13  Forditas_I_C4 254.5 

a: the value is derived from (Forditas_I + Base_Sugar)/2 

b: the value is derived from (Aszu_I + Base Sugar)/2 

4.1.2. Determination of optimal dilution and optimal extraction for meat analysis with the 

e-tongue 

Fresh poultry (turkey and chicken breast) and red meat (beef and pork thigh) were 

purchased from reputable supermarkets (SPAR) in Budapest, Hungary and transported to the 

laboratory for processing and analysis. One kilogram of each meat type was minced in the 

laboratory with a commercially made mincer before commencing the experiments. 

4.1.2.1. Determination of optimal dilution 

Samples are also often recommended to be diluted before e-tongue analysis as a means of 

prolonging the long-term usage of the sensors and also, to achieve a range where sensor 

sensitivities are optimal. Three dilution levels were tested to identify the one that gave the best 

accuracies for detecting meat adulteration. Figure 10 shows the basic steps that were taken to 

achieve this objective. 
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Figure 10: Flow chart for the determination of optimal meat extraction.  

Minced turkey and chicken were artificially adulterated to four different concentration 

levels: 100% 97%, 95% and 90% w/w of turkey/chicken to have a total of 20 g per sample (meat 

mixture concentration) as shown in Table 3. The concentration levels for this experiment were 

determined based on the commonly reported ranges in literature (Alamprese et al. 2013; Sarno et 

al. 2020; Han et al. 2020) but the extra lower level of 97% w/w turkey was included to study the 

feasibility of e-tongue in discriminating lower concentrations than those reported in literature. 

Table 3: Mixture combination for turkey and chicken adulteration for determination of optimal 

dilution 

sample 

ID 

Turkey (% 

w/w) 

Chicken (% 

w/w) Turkey (g) Chicken (g) 

% w/v of 

meat mixture 

05_100 100 0 20.00 0.00 0.50 

05_097 97 3 19.40 0.60 0.50 

05_095 95 5 19.00 1.00 0.50 

05_090 90 10 18.00 2.00 0.50 

10_100 100 0 20.00 0.00 1.00 

10_097 97 3 19.40 0.60 1.00 

10_095 95 5 19.00 1.00 1.00 

10_090 90 10 18.00 2.00 1.00 

20_100 100 0 20.00 0.00 2.00 

20_097 97 3 19.40 0.60 2.00 

20_095 95 5 19.00 1.00 2.00 

20_090 90 10 18.00 2.00 2.00 

Each meat mixture was extracted by transferring the sample into a 200 mL volumetric flask 

and filled up to volume with distilled water then homogenized by vigorously shaking in the flask 

for 3 minutes. It was then filtered using a wire mesh filter (1 mm pore size) to obtain the stock 

filtrate. This method was referred to as the “Raw meat extraction method”.  

From the stock filtrate of each of the prepared meat mixtures, 0.5%, 1% and 2% w/v 

dilutions were prepared by pipetting 5 mL, 10 mL and 20 mL respectively, into separate 100 mL 

volumetric flasks and homogenized by shaking the flask for 3 minutes before filling up to volume 

with distilled water, then transferred into 100 mL glass beakers for e-tongue analysis. 
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4.1.2.2. Determination of optimal extraction method 

Overall extraction efficiency often depends on the total extractable material weight or the 

individual components after extraction, this has been reported to be most significantly affected by 

the extraction temperature (Liu, Ang, and Springer 2000). Based on this, three different extraction 

methods were developed that fell within the sustainable green technology category of the 

Sustainable Development Goals Index (SGDI) (Guo et al. 2020), non-chemical related analysis 

for environmental sustainability. They were “raw meat extraction method”, “frozen meat 

extraction method” and “cooked meat extraction method”.  

Raw meat extraction method (previously used for the determination of optimal dilution): 

20 g of meat mixture was extracted as described in the experiment for the determination of optimal 

dilution to obtain the stock filtrates and as shown in Figure 11. From the stock filtrate, the pre-

determined optimal dilution level was pipetted into a 100 mL volumetric flask, filled up to volume 

with distilled water, homogenized and transferred into 100 mL glass beakers for e-tongue analysis. 

This method was developed to test the possibility of extracting meat components using distilled 

water at room temperature (25 °C). 

 

Figure 11: Sample preparation for raw meat extraction with distilled water 

Frozen meat extraction method: 20 g of meat mixture was stored by freezing at a 

temperature -18 °C. The Frozen samples were removed on the second day of storage and put into 

a water bath of 50 °C for 20 minutes for them to thaw. Chief determinants of thawing are time 

temperature and the size of the cut, the higher the thawing temperature, the shorter the time 

required (Belle et al. 1952), that is why the meat samples were put in the water bath of 50 °C for 

20 minutes. After thawing, the samples were then prepared in a similar way to the raw meat 
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extraction method (Figure 12). The method parameters were decided on the basis that, thawing 

weight loss of meat principally consists of "drip" (the fluid that oozes from the meat) (Aidani et 

al. 2014). The feasibility of the e-tongue to discriminate the different meat mixtures based on meat 

components from drip was the primary interest.  

 

Figure 12: Sample preparation for meat extraction by freezing  

Cooked meat extraction method: 20 g of meat mixture was put in a cooking pot containing 

200 mL distilled water at room temperature and covered with the lid before boiling for five minutes 

with a commercial electric hot plate (Sencor, SCP 1500). It was afterwards, filtered with a wire 

mesh filter (1 mm) to obtain the stock filtrate. From the stock filtrate, the pre-determined optimal 

dilution level was pipetted into a 100 mL volumetric flask, filled up to volume with distilled water, 

homogenized and transferred into 100 mL glass beakers for e-tongue analysis. Figure 13 shows 

the process flow for this method.  

 

Figure 13: Sample preparation for meat extraction by cooking  
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Six defined concentrations of poultry (Table 4) and red meat (Table 5) mixtures were used 

to evaluate all the three described sample preparation methods. The efficiency of the three 

developed mixtures was determined by their ability to discriminate the different meat mixtures 

after e-tongue analysis with diluted extracts prepared from the three methods. Three repeats were 

prepared for each meat mixture concentration level resulting in a total of 18 samples for poultry 

and red meat adulterated mixture respectively, for each of the three sample extraction methods. 

Table 4: Mixture combination for turkey and chicken adulteration determination of optimal 

extraction 

sample ID Turkey (%) Chicken (%) Turkey (g) Chicken (g) 

T100 100 0 20.00 0.00 

T099 99 1 19.80 0.20 

T097 97 3 19.40 0.60 

T095 95 5 19.00 1.00 

T090 90 10 18.00 2.00 

T080 80 20 16.00 4.00 

Table 5: Mixture combination for beef and pork adulteration determination of optimal extraction 

sample ID Beef (%) Pork (%) Beef (g) Pork (g) 

B100 100 0 20.00 0.00 

B099 99 1 19.80 0.20 

B097 97 3 19.40 0.60 

B095 95 5 19.00 1.00 

B090 90 10 18.00 2.00 

B080 80 20 16.00 4.00 

 

4.1.3. Determination of whey, beef and pea protein powder adulteration 

Whey protein powder, beef protein powder, pea protein powder, taurine, and glycine were 

provided by SCITEC Ltd. (Dunakeszi, Hungary). Urea was acquired from Elemental SRL (Bihor, 

Romania) and melamine was acquired from Carl Roth GmbH (Karlsruhe, Germany). All three 

protein powders were artificially adulterated using urea (U), glycine (G), taurine (T) and melamine 

(M) as adulterants. The nitrogen content (N) of the adulterants were: urea (46.62% N), glycine 

(18.65% N), taurine (11.19% N) and melamine (66.60% N). To have equal particle size, protein 

powders and adulterants were sieved through a wire mesh sieve with pore size (0.6mm) before 

adulteration. 

A combination pattern was developed to contain single adulterant mixtures (U, G, T, M), 

dual mixtures (GT, UG, GM, UT, TM, UM) and multiple mixtures (UGT, GTM, UGM, UTM, 

UGTM). This resulted in a total of 15 different mixture combinations. All the mixture 

combinations were prepared to have total adulterant concentrations of 0.5%, 1%, 1.5%, 2%, 2.5%, 
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and 3% w/w in whey, beef and pea protein powders. The exact amount of protein powder used in 

each mixture was calculated based on the nitrogen content of the individual adulterants using 

melamine as the base adulterant because it had the highest nitrogen content of 66.6%. Triplicates 

of each mixture were prepared with each weighing three gram (total mass after adulteration) and 

rigorously homogenized by shaking for 3 minutes. In total, there were 273 samples per protein 

type. Barcode system was used for easy labelling and identification of the samples during scanning 

with the instruments. 

4.2. Applied methods 

This section covers all the technical details about the NIRS and e-tongue instruments used 

for the experiments, the brands, modus operandi and how they were applied in each experiment to 

achieve the set aim and objectives of the thesis. 

4.2.1. Near infrared spectroscopy (NIRS) 

The MetriNIR (MetriNIR Research, Development and Service Co., Budapest, Hungary) 

with a wavelength range of 750-1700 nm and a spectral stepping of 2 nm was used as the benchtop 

spectrophotometer (Figure 14 A). The NIR-S-G1 (InnoSpectra Co., Hsinchu, Taiwan) with a 

wavelength range of 900-1700 nm and a spectral stepping of 3-4 nm was used as the handheld 

spectrophotometer (Figure 14 B). 

 

Figure 14: MetriNIR benchtop spectrophotometer (A) and NIR-S-G1handheld 

spectrophotometer (B) 

4.2.1.1. Spectra acquisition of Tokaji wine and protein powder mixtures with NIRS 

For determination of Tokaji wine adulteration, three consecutive transflectance spectra 

were collected for each repeat sample using benchtop and handheld spectrophotometers with an 

optical glass cuvette of 0.4 mm layer thickness. There was a total of 117 spectra per 

spectrophotometer representing three consecutive scans for each of the four authentic wines and 

their three repeats (12 samples), adulterated Forditas I wine and their three repeats (12 samples), 
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adulterated Forditas II wine and their three repeats (12 samples) and base sugar wine and its three 

repeats (3 samples). 

For determination of protein powder adulteration, three consecutive diffuse reflectance 

spectra of each sample repeat were collected using three setups: benchtop spectrophotometer with 

optical glass cuvette (Figure 15 A), handheld spectrophotometer with optical glass cuvette of 0.4 

mm layer thickness (Figure 15 B), and handheld spectrophotometer with low density polyethylene 

(LDPE) zip lock bags (Figure 15 C). There was a total of 2457 spectra per setup representing three 

consecutive spectra for each of the whey (273 samples), beef (273 samples) and pea (273 samples) 

protein powder mixtures. For the scans taken with the optical glass cuvette, each consecutive scan 

was taken after rotating the cuvette in the spectrophotometer. There was no stirring or re-packing 

between consecutive scans of the protein powder mixtures and no backing material was placed 

behind the sample. For the scans taken with the LDPE plastic bag, each consecutive scan was 

taken when all three gram of each protein powder mixture was moved to the tip of the plastic bag 

as much as possible (Figure 15 C) Layer thickness of the LDPE plastic was 0.09 mm and thickness 

after filing in with powdered samples was 5-6 mm.  

All spectral acquisition was performed at room temperature, the temperature of the room 

was monitored using the Voltcraft DL-121TH Multi-Data logger to reveal any substantial changes 

in temperature and relative humidity. The "aquap2" package (Kovacs and Pollner 2016) in R-

project was used for spectral analysis. 
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Figure 15: Methods for spectral acquisition of adulterated protein powder using the bench top 

and handheld instrument through a glass cuvette and plastic surface 

4.2.2. Electronic tongue (e-tongue) 

The Alpha Astree potentiometric e-tongue (Figure 16) with Ag/AgCl reference electrode 

and Chemical Modified Field Effect Transistor (CHEMFET) sensors (for food applications) from 

Alpha M.O.S (Toulouse, France) was used to discriminate the different wine and meat mixtures 

based on pattern recognition. According to the manufacturer’s recommendations, the instrument 

was conditioned in two phases: with 0.01 N HCL and with mixture of the samples under study, 

before the analysis to reduce sensor drift and memory effect (Alpha Astree 2010).  
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Figure 16: The Alpha Astree potentiometric e-tongue by AlphaM.O.S (Toulouse, France) 

Source: (Alpha Astree 2010) 

4.2.2.1. Calibration and signal acquisition for Tokaji wine and meat mixtures with e-

tongue 

Aliquots of the different wine mixtures after 50% aqua dilution were mixed to obtain a total 

of 100 mL solution that was used to calibrate the instrument before signal acquisition. For signal 

acquisition, there was a total of 156 data points representing four measurements for each of the 

four authentic wines and their three repeats (12 samples), adulterated Forditas I wine and their 

three repeats (12 samples), adulterated Forditas II wine their three repeats (12 samples) and base 

sugar wine and its three repeats (3 samples). 

Aliquots of pure turkey meat extract after tenfold aqua dilution was used to calibrate the 

instrument before signal acquisition for the determination of optimal dilution. For signal 

acquisition for the determination of optimal dilution, there was a total of 48 data points 

representing four measurements of each of the four different meat mixtures (100%, 97%, 95% and 

90% w/w turkey/chicken) prepared using 0.5% w/v, 1% w/v and 2% w/v dilutions.  

Aliquots of pure turkey meat extract and pure beef extract after 10x aqua dilution were 

respectively, used to calibrate the instrument for the determination of optimal extraction method 

poultry meat mixtures and red meat mixtures. For signal acquisition, there was a total of 216 data 

points representing four e-tongue measurements of the six different meat mixture concentrations 

of turkey/chicken (100%, 99%, 97%, 95%, 90% and 80% w/w) prepared in three repeats and 

extracted using each the raw meat extraction, frozen meat and cooked meat extraction methods, 

separately.  

During the e-tongue measurements for determination of Tokaji wine adulteration, 

determination of optimal dilution for meat analysis and optimal extraction for meat analysis, the 
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tested sample volume was 100 mL, the sampling time was 120 seconds, the sampling frequency 

was 1 second, and the cleaning time with distilled water was 20 seconds. The last 10 seconds of 

the sensor signals, representing stabilized and optimal sensitivity of the different sensors were 

exported for statistical evaluations in R-project. 

4.3. Statistical methods 

The purpose of statistical methods when using NIRS and e-tongue, is to calibrate the spectra 

or signal responses and permit fitting of the multidimensional output (Wei et al., 2017). This 

section of the materials and methods covers all the details about how the different preprocessing 

methods (pretreatments). Chemometric analysis was applied on the datasets from all the different 

experiments. 

4.3.1. Spectra preprocessing for Tokaji wine and protein powder experiments with NIRS  

Raw spectra inspection was performed to obtain the best wavelength selection range for the 

dataset from the Tokaj wine and protein powder experiments. Peaks and wavelengths that showed 

some correlations with the composition of the different analytes were also identified and discussed. 

Outlier detection was performed in principal component analysis (PCA) before applying 

preprocessing techniques. Different types of pretreatment and their different combinations were 

tested on the raw spectra for their ability to reduce baseline shifts, spectral noise, correct additive 

and/or multiplicative effects in spectral data and enhance spectral information. The pretreatments 

were selected based on their frequent use in literature for liquid and powdered samples and 

included Savitzky-Golay smoothing filter (smoothing point 21), 1st derivative Savitzky-Golay 

smoothing filter (smoothing point 21), 2nd derivative Savitzky-Golay smoothing filter (smoothing 

point 21), Standard Normal Variate (SNV), Multiplicative Scatter Correction (MSC) and detrend. 

Their tested combinations were Savitzky-Golay (smoothing point 21) + MSC, Savitzky-Golay 

(smoothing point 21) + SNV, 1st derivative Savitzky-Golay (smoothing point 21) + MSC, 2nd 

derivative Savitzky-Golay (smoothing point 21) + MSC. This was performed on the dataset from 

both the Tokaji wine and protein powder experiments.  

For the dataset from the Tokaji wine experiment, the pretreatment that could classify all the 

authentic and adulterated wine mixtures with the highest average recognition and prediction 

(cross-validation) accuracy was deemed the best and was applied before developing detailed 

classification models. This was done using the dataset using the dataset from both the benchtop 

and handheld spectrophotometers.  

For the dataset from the protein powder experiment, the pretreatment that could classify all 

the protein powder mixtures with the highest average recognition and prediction (cross-validation) 

accuracy regardless of the protein source or adulterant concentration, was deemed the best and 
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was applied before developing detailed classification models. The pretreatment that could predict 

melamine concentration in the whole dataset with the highest R2CV and lowest RMSECV 

regardless of protein source or mixture combination, was deemed the best and was also applied 

before building detailed regression models. This was done using the dataset from the three setups: 

benchtop spectrophotometer with optical glass cuvette, handheld spectrophotometer with optical 

glass cuvette and handheld spectrophotometer with LDPE. 

4.3.2. E-tongue signal correction for Tokaji wine and meat experiments  

Sensor signals for the dataset for the determination of Tokaji wine adulteration, 

determination of optimal dilution and determination of optimal extract were all pretreated with the 

additive correction relative to all samples (Kovacs et al. 2020). This mathematical drift correction 

method is appropriate in cases where, measurements are performed with the same sample set and 

sequence. The key to this method lies primarily in the simplicity of its calculation and secondarily 

that, there is no assumption about the behavior of the drift so it can correct the effect of varying 

temperature or memory.  

In addition to the additive correction relative to all samples, a sensor optimization process 

was performed for the dataset from the determination of optimal extraction. This was necessary 

because of the poor results achieved from pre-analysis even after the additive correction relative 

to all samples was performed. The sensor optimization process was performed to improve both 

LDA and regression results. To improve the LDA results, sensor optimization was done by running 

LDA simulation models in six steps. One sensor was removed in each step of the simulation and 

the average values of cross-validation were compared to the average value of cross-validation 

when all seven sensors were used. The sensor combination that produced the highest accuracy 

after cross-validation was selected and used to develop the subsequent LDA models. The same 

thing was done to improve the accuracies of regression models too but this time, using the 

RMSECV’s as the parameter of evaluation. The sensor combination that produced the lowest 

RMSECV was selected and used to develop the subsequent regression models. 

4.3.3. LDA multi-class classifications for determination of wine, meat and protein powder 

adulteration 

For determination of Tokaji wine adulteration, classification models were firstly, developed 

to classify authentic wines using dataset from e-tongue, benchtop spectrophotometer and handheld 

spectrophotometer. Models were also developed to classify authentic wines, Forditas I and 

Forditas II adulterated wine mixtures using e-tongue, benchtop spectrophotometer and handheld 

spectrophotometer.  
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For determination of optimal dilution for meat analysis with e-tongue, classification models 

were developed to classify 100%, 97%, 95% and 90% w/w turkey/chicken after 0.5%, 1% and 2% 

w/v dilution. The dilution level that gave the highest average recognition and prediction (cross-

validation) accuracy was considered to be the optimum dilution level for meat analysis with e-

tongue.  

For determination of optimal extraction method for meat analysis with e-tongue, 

classification models were developed to classify 100%, 99%, 97%, 95%, 90%, 80% w/w 

turkey/chicken and beef/pork respectively after extraction using raw meat, frozen meat and cooked 

extraction method and dilution with the determined optimal dilution level.  

For determination of protein powder adulteration, classification models were firstly, 

developed to classify whey, beef and pea protein powders regardless of their adulterant 

concentrations or combinations. The second model was developed to classify the adulterant 

combinations regardless of their protein base or concentrations. For more practical applications 

where, is it important to merely determine if protein powders are adulterated or not, models were 

developed to classify all the adulterant mixtures at the lowest adulterant concentration (0.5% w/w) 

regardless of their protein base. Also, for practical situations where, it may be merely important to 

determine the type of adulterant in the protein powder and not necessarily its combination with 

other adulterants, classification models were developed to classify urea, glycine, taurine and 

melamine separately in adulterated whey protein powder samples, beef protein powder samples 

and pea protein powder samples. All the classification models described were performed for each 

of the three setups: benchtop spectrophotometer with optical glass, handheld spectrophotometer 

with optical glass and handheld spectrophotometer with LDPE plastic bag.  

LDA model validations: 

The reliability of all the described LDA models was tested by splitting the data into two 

groups: the training set and validation set. The training set consisted of two-third of the data which 

included spectra (or sensor signals for datasets from the e-tongue) from the first and second 

replicate samples. The validation set consisted of spectra (or sensor signals for datasets from the 

e-tongue) from the third replicate samples. Cross-validation was done three times for each 

instrumental setup (three-fold cross-validation). The statistical parameters used to evaluate the 

performance of the LDA models were the recognition accuracy (%) and prediction accuracy (%). 

Recognition accuracy (%), represents the accuracy of calibration, whereas prediction accuracy 

(%), represents the accuracy of cross-validation (%). These were assessed through confusion 

matrices where, columns represented the actual class membership and the rows represented the 
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predicted class membership. Where visual discrimination was prominent, classification plots of 

the model was also presented and discussed.  

4.3.4. PLSR models for determination of wine, meat and protein powder adulteration 

For determination of Tokaji wine adulteration, prediction models were developed to 

quantitate sugar concentrations of the authentic wines using e-tongue, benchtop spectrophotometer 

and handheld spectrophotometer.  

For determination of optimal dilution for meat analysis with e-tongue, prediction models 

were also developed to predict the concentration of turkey in the poultry meat mixtures for each 

of the three tested dilution levels: 0.5%, 1%, and 2% w/v aqua dilution.  

For determination of optimal extraction method for meat analysis with e-tongue, prediction 

models were also developed to predict turkey and beef concentration in poultry and red meat 

mixtures respectively for all the three tested extraction methods: raw meat, frozen meat and cooked 

meat extraction method.  

For determination of protein powder adulteration, prediction models were developed to 

predict the concentrations of urea, glycine, taurine and melamine in all the protein powder mixtures 

regardless of their protein base, mixture combination and adulterant concentration, using all three 

setups: benchtop spectrophotometer, handheld spectrophotometer with optical glass and handheld 

spectrophotometer with LDPE plastic bag. For more robust models, independent predictions were 

also performed to predict urea, glycine, taurine and melamine in all the protein powder mixtures 

regardless of their protein base, mixture combination and adulterant concentration. For this, the 

dataset from each of the three setups was repartitioned by splitting into two groups: the training 

set and validation set. The training set consisted of the first and second replicates of each mixture 

sample whereas, the validation set consisted of third replicate of each mixture sample (this was 

never used in the calibration model). Independent prediction was only performed with the dataset 

from the protein powders due to its data matrix. For practical situations where it may be important 

to merely predict protein powder concentrations, two additional independent prediction model was 

developed for each setup firstly, to predict protein powder concentrations regardless of the protein 

base, adulterant combination or adulterant concentration and secondly to predict protein powder 

concentrations in protein powder samples containing only single adulterants and regardless of their 

protein base or adulterant concentrations. 

PLSR model validations: 

The predictive significance of all the PLS regression models described was tested with 

leave-one-sample out cross-validations: spectra (for NIRS analysis) or sensor signal (for e-tongue 

analysis) of all three repeats of a sample (9 spectra/sensor signals) was each time, left out of the 
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validation process. The statistical parameters used to evaluate the performance of the PLS 

regression models were the root mean square error of calibration (RMSEC) and the coefficient of 

determination (R2C); in cross-validation (RMSECV, R2CV). The accuracies for the independent 

predictions were reported as determination coefficient of prediction (R2pred) and root mean square 

error of prediction (RMSEP). For all the models, the optimum number of latent variables was 

determined based on the minimum, RMSEC, RMSECV and RMSEP value to prevent over fitting 

of the models. The "aquap2" package (Kovacs and Pollner 2016) in R-project was used for all 

spectral evaluations.  

4.3.5. Limit of detection, limit of quantification and limit of quantification for 

determination of protein powder adulteration 

For the protein powder mixtures, limit of detection minimum value (LODmin), limit of 

detection maximum value (LODmax), limit of quantification minimum value (LOQmin), limit of 

quantification maximum value (LOQmax), explained variance X (the actual dataset) and explained 

variance Y (the predicted dataset) were calculated through the partial least-squares (PLS) methods 

according to the International Union of Pure and Applied Chemistry (IUPAC) approach described 

by (Allegrini and Olivieri 2014): 

𝐿𝑂𝐷𝑚𝑖𝑛 =  3.3 [𝑆𝐸𝑁 −  𝑣𝑎𝑟 (𝑥)  +  ℎ0𝑚𝑖𝑛 𝑆𝐸𝑁 −  𝑣𝑎𝑟 (𝑥)  +  ℎ0𝑚𝑖𝑛 𝑣𝑎𝑟 (𝑦𝑐𝑎𝑙)]1/2 

𝐿𝑂𝐷𝑚𝑎𝑥 =  3.3 [𝑆𝐸𝑁 −  𝑣𝑎𝑟 (𝑥)  +  ℎ0𝑚𝑎𝑥 𝑆𝐸𝑁 −  𝑣𝑎𝑟 (𝑥)  +  ℎ0𝑚𝑎𝑥 𝑣𝑎𝑟 (𝑦𝑐𝑎𝑙)]1/2 

Where, SEN is the sensitivity (inverse of the length of the regression coefficient), var (x) 

is the variance of the instrument signals. h0min/max is the minimum/maximum distance between 

a hyperplane for the calibration set, representing the scores of the samples for which the analyte 

of interest is absent and the center of a normalized calibration score space. Var (ycal) is the 

variance in the calibration concentrations. Lower and upper limits of the LODmin/max interval 

(LODmin and LODmax) correspond to the calibration samples with the lowest and largest 

extrapolated leverages to zero analyte concentration (Lukacs et al., 2018). LOQmin/max interval 

was obtained by multiplying the LODmin/max values with a factor value of three (Allegrini and 

Olivieri 2014). LODmin/max and LOQmin/max values were used to further evaluate the 

performance of the models for detecting urea, glycine, taurine and melamine in protein powders 

using all three setups: benchtop spectrophotometer with optical glass, handheld spectrophotometer 

with optical glass and handheld spectrophotometer with LDPE plastic bag.  
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5. RESULTS AND DISCUSSION 

The results from all the experiments in the materials and methods section are presented and 

discussed in this section. For clarity and easy understanding, the results from each instrument are 

discussed according with the type of food adulteration that was investigated. Results from the 

application of NIRS and e-tongue for the determination of Tokaji wine are discussed first, followed 

by the determination of optimal dilution and optimal extraction method for meat analysis with e-

tongue, then finally discussions of NIRS for the detection of whey, beef and pea protein powder 

adulteration.  

5.1. Determination of Tokaji wine adulteration with NIRS 

Discussed in this section are the results from NIRS spectra examination, preprocessing, 

LDA and PLSR results for determination of Tokaji wine adulteration.  

5.1.1. NIRS spectra examination and optimization  

Based on the location of the absorption peaks of the tested components and results of PCA, the 

wavelength ranges of 950–1650 nm was selected for the spectra optimization using benchtop 

(Figure 17 B). The spectra of handheld spectrophotometer were observed to be characterized by 

clipping between the wavelength range 1400-1500 nm (Figure 17 C), so the wavelength range 

950-1400 nm was selected (Figure 17 D) to eliminate the clipping before spectra optimization. 

There was no drastic change in temperature throughout the analysis as temperature ranged 

from 24.5-26.5 °C throughout the experiment. However, other environmental characteristics, 

physical characteristics, detector sensitivities and spectra collection methods are some of the many 

factors that can affect reflectance or diffuse reflectance measurements especially at higher 

wavelengths (combination bands region) (Agelet and Hurburgh 2010). From Figure 17 (A and C), 

the spectra from both benchtop and handheld spectrophotometer showed baseline offsets. The 

baseline offset was suspected to be due to the large distance from the unit’s light sources to the 

reflective/diffusive backing of the transflectance cell. Handheld spectrophotometer had the highest 

baseline offset. The observed baseline offsets suggested that they may require some form of 

spectra correction. 
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Figure 17: Raw spectra (A) and pretreated spectra (B) plot from the benchtop spectrophotometer 

and raw spectra (C) and pretreated and truncated spectra (D) of the handheld spectrophotometer 

for the determination of Tokaji wine adulteration. SNV: standard normal variate 

Table 6 shows the results of LDA models built for the classification of authentic Tokaji 

wines using the benchtop spectrophotometer for the different tested pretreatments. Savitzky-Golay 

smoothing (21 points) followed by standard normal variate (SNV) showed the highest 

classification accuracy for both the benchtop and handheld spectrophotometers so this was applied 

before detecting outliers and developing detailed LDA and PLSR models for the determination of 

Tokaji wine adulteration. 
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Table 6: Pretreatment selection for Tokaji wine mixtures obtained using the benchtop and 

handheld spectrophotometer. Wavelength range of 950-1650nm for benchtop spectrophotometer 

and 950-1400 nm for handheld spectrophotometer  

 Benchtop Spectrophotometer Handheld Spectrophotometer 

 Average 

recognition (%) 

Average 

prediction (%) 

Average 

recognition (%) 

Average 

prediction (%) 

Raw 98.71 91.95 69.85 62.23 

Savitzky-Golay 

smoothing (21 

points) 

99.58 91.39 71.20 63.98 

MSC 91.02 86.36 63.21 54.98 

Savitzky-Golay 

smoothing (21 

points) + MSC 

98.73 90.65 69.00 60.66 

SNV 97.87 86.37 56.93 54.19 

Savitzky-Golay 

smoothing (21 

points) + SNV 

100 91.95 76.68 64.41 

1st Derivative 100 89.26 73.60 68.50 

1st Derivative + 

MSC 

100 90.21 60.28 54.38 

2nd Derivative 99.54 87.01 75.21 58.39 

2nd Derivative + 

MSC 

99.15 86.31 60.27 54.38 

Detrend 100 84.67 66.57 59.53 

 

5.1.2. Classification of authentic Tokaji wines with benchtop and handheld 

spectrophotometers 

Figure 18 shows the classification of authentic Tokaji wines using the benchtop and 

handheld spectrophotometer. The lower grade wines (Tokaji Forditas I and Forditas II) could be 

visually separated from the higher-grade wines (Tokaji Aszu I and Aszu II) using the benchtop 

spectrophotometer (Figure 18 A). Tokaji Aszu I and Aszu II, which were prepared from first and 

second class botrytized berries respectively, were classified closely to each other. Tokaji Forditas 

I and Forditas II, which were prepared by reusing the first- and second-class berries were also 

classified close to each other.  
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Using the handheld spectrophotometer (Figure 18 B) showed some visual overlapping. 

Using the handheld spectrophotometer, all the authentic wines could be classified with 100% 

correct accuracy after cross-validation except the wine with the highest grade (Aszu I) (Table 7). 

Aszu I wine was misclassified as Aszu II and Forditas I wines with misclassified 11.04% 

misclassification rates each. 

 

Figure 18: Classification plots developed with the benchtop (A) and the handheld (B) 

spectrophotometers for classifying authentic Tokaji Aszu I, Aszu II, Forditas I, Forditas II wines 

Table 7: Confusion matrix for the classification of authentic Tokaji wines using the handheld 

spectrophotometer. Columns represent the actual class membership (%) and the rows represent the 

predicted class membership (%). 

Average accuracies  Aszu I Aszu II Forditas I Forditas II 

Recognition 

98.62% 

Aszu I 94.5 0 0 0 

Aszu II 0 100 0 0 

Forditas I 5.5 0 100 0 

Forditas II 0 0 0 100 

Cross-validation 

94.48% 

Aszu I 77.93 0 0 0 

Aszu II 11.04 100 0 0 

Ford I 11.04 0 100 0 

Ford II 0 0 0 100 

5.1.3. Classification of authentic Tokaji wines and Forditas I adulterated wines with 

benchtop and handheld spectrophotometers 

Using the benchtop spectrophotometer, there was average recognition of 97.01% and 

average prediction of 96.78% for the classification of authentic and Forditas I wine that was 

adulterated with grape must concentrate and sucrose to mimic the sugar concentration of the 

authentic wines. This could be visualized in Figure 19 with 96.6% of the between group variance 



45 

expressed in the root1 of the LDA plot. With cross validation, all the authentic wines could be 

classified with 100% accuracy, only adulterated Forditas I wines showed misclassification 

amongst themselves (Appendices - A2, Table 30). 

 

Figure 19: Classification plot developed with the benchtop spectrophotometer for classification 

of authentic Tokaji wines and Forditas I wine that was adulterated with grape must concentrate 

and sucrose to mimic the sugar concentration of the authentic wines  

Using the handheld spectrophotometer, there was average recognition of 72.40% and 

average prediction of 68.22% for the classification of authentic and Forditas I wine that was 

adulterated with grape must concentrate and sucrose to mimic the sugar concentration of the 

authentic wines. With cross validation, Aszu I, Aszu II, Forditas I and Forditas II could be 

classified 70.18%, 77.93%, 89% and 66.67% accuracy respectively. The wine that contained 

sucrose before refermentation (Base sugar wine) was misclassified as authentic Aszu I wine and 

authentic Aszu II wine with misclassification rates of 33.44% and 11.04% respectively. 

Adulterated Forditas I wines concentrate also showed misclassification amongst themselves 

(Appendices – A2, Table 31). There was no clear visual pattern in the classification plot of the 

handheld spectrophotometer. 

5.1.4. Classification of authentic Tokaji wines and Forditas II adulterated wines with 

benchtop and handheld spectrophotometers 

Using the benchtop spectrophotometer, there was average recognition of 98.76% and 

average prediction of 98.78% for the classification of authentic and Forditas II wine that was 

adulterated with grape must concentrate and sucrose to mimic the sugar concentration of the 

authentic wines. This could be visualized in Figure 20 with 96.47% of the variance expressed in 
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the root1 of the LDA plot. With cross validation, all the authentic wines could be classified with 

100% accuracy, only adulterated Forditas II wines showed misclassification amongst themselves 

(Appendices -A3, Table 32). 

 

Figure 20: Classification plot developed with the benchtop spectrophotometer for classifying 

authentic Tokaji wines and Forditas II wine that was adulterated with grape must concentrate and 

sucrose to mimic the sugar concentration of the authentic wines 

Using the handheld spectrophotometer, there was average recognition of 81.87% and 

average prediction of 76.07% for the classification of authentic and Forditas II wine that was 

adulterated with grape must concentrate and sucrose to mimic the sugar concentration of the 

authentic wines. With cross validation, Aszu I, Aszu II, Forditas I and Forditas II could be 

classified 80.18%, 89%, 100% and 44.48% accuracy respectively. The wine that contained sucrose 

before refermentation (Base sugar wine) was misclassified as authentic Aszu I wine and authentic 

Aszu II wine with misclassification rates of 33.44% and 11.04% respectively. The lowest grade 

authentic wine (Tokaji Forditas II wine) was misclassified as authentic Forditas I wine and base 

sugar wine with misclassification rates of 33.44% and 11.04% respectively. Forditas II wines 

showed misclassification amongst themselves (Appendices -A3, Table 33). There was no clear 

visual pattern in the classification plot of the handheld spectrophotometer. 

5.1.4.1. PLSR prediction of Tokaji wine sugar concentrations with NIRS 

Sugar concentrations of authentic wines were predicted in PLSR with both benchtop and 

handheld spectrophotometer (Table 8).  
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Table 8: PLSR models developed with the benchtop and handheld spectrophotometer to predict 

sugar concentrations of Tokaji wines 

Instrument Wavelength 

range (nm) 

Latent 

Variable (LV) 

R2C RMSEC 

(g/L) 

R2CV RMSECV 

(g/L) 

Benchtop 

spectrophotometer 

950-1650  10 0.99 2.72 0.92 16.80 

Benchtop 

spectrophotometer 

950-1400 10 0.98 6.73 0.45 46.59 

Handheld 

spectrophotometer 

950-1400 10 0.91 17.21 NR 194.73 

NR: not reliable 

Benchtop spectrophotometer could predict the sugar concentration of the authentic wines 

with R2CV of 0.92 and RMSECV of 16.80 g/L using the wavelength range between 950 and 1650 

nm. The handheld spectrophotometer could not predict the sugar content of the authentic wines 

with cross-validation although calibration models were possible. When PLSR models were 

developed for the benchtop spectrophotometer using a wavelength range of 950-1400 nm, lower 

accuracies were achieved with R2CV 0.45 and RMSECV 46.59 g/L. This suggests that the first 

overtone wavelength range of water (1300-1600 nm) maybe, provides important information for 

tracking Tokaji wine adulteration with grape must concentrate as already reported in studies 

related to other liquids (Muncan 2019) through the novel scientific discipline known as 

“aquaphotomics” (Tsenkova et al. 2018). The interval between 1441 and 1470 nm have been 

assigned to the water dimers, trimers and tetramers i.e. water molecules having H-bonds with one, 

two or three other water molecules, respectively (Luck 1998). Bands above 1500 nm have been 

related to aqueous solutions of fructose (1583 nm), sucrose (1584 nm) and glucose (1587 nm) (de 

Almeida et al. 2018). Some of these sugars, have been reported to be major constituents in grape 

must concentrate composition (Coelho et al. 2007).  

The results from this study signal a potential for using near infrared spectroscopy to track 

Tokaji wine adulteration. For practicality on industrial basis, further studies may be required with 

higher sample numbers for more robust models. The setup of the handheld spectrophotometer used 

in this study should also be carefully considered and adapted to better experimental procedures if 

it is to be used to track Tokaji wine adulteration.  

  



48 

5.2. Determination of Tokaji wine adulteration with e-tongue 

Discussed in this section, are the results from e-tongue sensor optimization, LDA and PLSR 

analysis for determination of Tokaji adulteration.  

5.2.1. E-tongue signal correction 

All the seven e-tongue sensors in the Alpha Astree liquid and taste analyzer often exhibit a 

combined effective for the determination of food quality (Soós et al. 2015; Chung et al. 2019; F. 

A. Koncz et al. 2017). However, the sensors respond differently to environmental conditions that 

could arise during analysis and may influence sensor sensitivity (Panchuk et al. 2016).  

5.2.2. Classification of authentic Tokaji wines with e-tongue 

All the authentic wines could be visually separated from each other (Figure 21). There was 

100% cross-validation accuracy for all the different authentic wines using the e-tongue.  

 

Figure 21: Classification plot developed with the e-tongue for classifying authentic Tokaji Aszu 

I, Aszu II, Forditas I, Forditas II  

Figure 22 (A) shows the e-tongue classification plots of authentic and Forditas I wine that 

was adulterated with grape must concentrate and sucrose to mimic the sugar concentration of the 

authentic wines. Visually, all the wine mixtures could be separated and classification was observed 

in a linear pattern for adulterated wines from C1 to C4 concentration of adulteration. There was 

average recognition accuracy of 99.54% and prediction accuracy of 98.17% when authentic wines 

and Forditas I adulterated wines were classified. With cross validation, all the authentic wines 

could be classified with 100% accuracy, only Forditas I adulterated wines showed 

misclassification amongst themselves (Appendices – A4, Table 34). 
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Figure 22 (B) shows the classification plot of authentic and Forditas II wine that was 

adulterated with grape must concentrate and sucrose to mimic the sugar concentration of the 

authentic wines. Visually, most of the wine types could be separated but base sugar adulterated 

wine overlapped with authentic Forditas II wine. There was average recognition of 100% and 

prediction of 93.17%. The overlapping observed in the classification plot was confirmed by 

53.81% misclassification of authentic Forditas II wine as base sugar wine and 7.62% 

misclassification of base sugar wine as authentic Forditas II wine rate of 53.81% with cross-

validation (Appendices – A4, Table 35). This suggests that adding sucrose to wine before 

refermentation could be a potent form of wine adulteration base sugar adulteration of Forditas II 

wines could be a potent form of adulteration.  

 

Figure 22: Classification plot developed with the e-tongue for classifying authentic Tokaji wines 

and Forditas I (A) and Forditas II (B) wines that were adulterated with grape must concentrate 

and sucrose to mimic the sugar concentration of the authentic wines 

Hitherto this study, there was no report about using the e-tongue to detect adulteration of 

wines with grape must concentrate. The demonstrated classification capabilities of the e-tongue 

could be taken advantage of by the wine industries for reliable quality monitoring of botrytized 

wines. Additive correction relative to all samples improved the classification results of the e-

tongue datasets (Appendices - A5, Table 36) and can be adopted for samples measurements 

performed with the same sample set and sequence. 

5.2.3. PLSR prediction of Tokaji wine sugar concentrations with e-tongue 

Sugar concentration of the wines could be predicted with R2CV of 0.90 and RMSECV of 

17.67 g/L of wine using 7 latent variables. Some studies have also reported similar prediction 

accuracies when e-tongue was used to predict different wine parameters such as aging 
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(Rudnitskaya et al. 2007), fermentation compounds (Kutyła-Olesiuk et al. 2014), sensory 

parameters (Cetó et al. 2015), and characterization of different wines (Buratti et al. 2004). 

5.2.4. Performance comparison of benchtop spectrophotometer, handheld 

spectrophotometer and e-tongue for classifying Forditas I and Forditas wine adulteration 

The e-tongue gave the best classification accuracies for the determination of Forditas I 

adulteration ( 

Figure 23 A) and the benchtop spectrophotometer gave the best accuracies for the 

determination of Forditas II wine adulteration ( 

Figure 23 B). Thus comparatively, the e-tongue could classify Forditas I wines better than 

the benchtop spectrophotometer but the benchtop spectrophotometer could classify Forditas II 

wines better. This suggests that the benchtop spectrophotometer was more sensitive to higher 

added sugar concentrations than the e-tongue as Forditas II adulterated wines contained more 

grape must concentrate because they were the lowest grade wines. 

 

Figure 23: Classification performance comparison of the benchtop spectrophotometer, handheld 

spectrophotometer and e-tongue for the detection of Tokaji Forditas I wine adulteration (A) and 

Forditas II wine adulteration (B)  
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5.3. Determination of optimal dilution for meat analysis 

Discussed in this section are the results from e-tongue sensor optimization LDA and PLSR 

for the determination of optimal dilution and optimal extraction for meat analysis.  

5.3.1. E-tongue signal correction  

Table 9 shows the sensors that were selected for each of the meat analysis based on the 

sensor optimization method described in the materials and methods section. Generally, sensors 

HA, BB, ZZ, GA and JB provided the best accuracies using LDA simulations.  

Table 9: Results of LDA sensor optimization using all the three different sample preparation 

methods to detect turkey/chicken and beef/pork adulteration  

Meat 

combination 

Sample 

preparation 

Selected 

sensors 

Omitted 

sensors 

Initial 

cross-

validation 

accuracies 

(%) 

Optimized 

cross-

validation 

accuracies 

(%) 

 

 

Chicken and 

turkey 

adulteration 

Raw meat 

extraction 

with distilled 

water 

HA, BB, ZZ, 

GA  

JE, CA, JB 47.99 58.35 

Meat 

extraction by 

cooking with 

distilled water 

BB, ZZ, GA, 

JB 

HA, JE, CA 54.14 64.72 

Frozen meat 

extraction 

with distilled 

water 

All: 

HA, BB, ZZ, 

GA, JE, JB, 

CA 

None 62.55 62.55 

 

 

Pork and 

beef 

adulteration 

Raw meat 

extraction 

with distilled 

water 

HA, ZZ, GA, 

JB 

BB, CA, JE 45.90 54.25 

Meat 

extraction by 

cooking with 

distilled water 

HA, ZZ, GA 

CA, JE, JB 

BB 58.37 68.77 

Frozen meat 

extraction 

with distilled 

water 

HA, ZZ, BB, 

GA, JE, JB 

CA 52.11 56.41 

 

From PLSR simulations in the sensor optimization process, sensors HA, BB, ZZ and GA 

were the most important sensors in predicting the concentrations of the meat mixtures. These 
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sensors provided the lowest RMSECV’s (Table 10). This was in agreement with those obtained 

from sensor optimization for LDA analysis. 

Table 10: Results of PLS regression sensor optimization using all the three different extraction 

methods to detect turkey/chicken and beef/pork adulteration 

Meat 

combination 

Sample 

preparation 

Selected 

sensors 

Omitted 

sensors 

Initial 

RMSECV 

(% w/w 

meat 

mixture) 

Optimized 

RMSECV 

(% w/w 

meat 

mixture) 

 

 

Turkey and 

chicken 

adulteration 

Raw meat 

extraction 

with distilled 

water 

HA, BB, ZZ, 

GA,  

JE, JB, 

CA  

3.68 3.34 

Meat 

extraction by 

cooking with 

distilled water 

HA, BB, ZZ, 

CA, JB 

JE, GA 5.19 4.93 

Frozen meat 

extraction 

with distilled 

water 

HA, BB, ZZ, 

GA, JE 

JB, CA 3.04 2.89 

 

 

Beef and 

beef pork 

adulteration 

Raw meat 

extraction 

with distilled 

water 

HA, BB, CA, 

GA 

JE, JB, ZZ 5.91 5.51 

Meat 

extraction by 

cooking with 

distilled water 

HA, ZZ, JB JE, GA, 

BB, CA 

4.44 3.83 

Frozen meat 

extraction 

with distilled 

water 

HA, BB, ZZ 

JB, JE 

GA, CA 5.81 5.16 

 

5.3.2. Classification of poultry meat mixtures after 0.5%, 1% and 2% w/v extract dilution 

Figure 24, shows the LDA model developed to classify minced chicken in turkey using all 

the three different dilution levels. There were visually distinct separation patterns using all three 

different dilutions. The visual separation was confirmed with average recognition and prediction 

accuracy of 100% respectively for the classification of adulterated meat samples using all three 

different dilutions. There was therefore a need to apply some other multivariate tools to ascertain 

the optimum dilution level. PLS regression was used for this. 
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Figure 24: Classification of 100%, 97%, 95% and 90% w/w turkey/chicken using 0.5% (A), 1% 

dilution (B) and 2% w/v dilution (C) 
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5.3.3. PLSR predictions of meat mixture concentrations after 0.5%, 1% and 2% w/v extract 

dilution 

All the different dilution levels produced 100% classification accuracy in LDA, so it was 

necessary to build PLS regression models as well to determine the optimal dilution as shown in 

Table 11.  

Table 11: PLSR models developed with e-tongue to predict concentration turkey in the different 

meat mixtures after 0.5%, 1% and 2% w/v extract dilution 

Dilution level LV R2 RMSEC 

 (% w/w 

meat 

mixture)  

R2CV RMSECV 

(% w/w 

meat 

mixture) 

Dilution level 1  

(2% w/v turkey) 

3 0.88 1.26 0.81 1.57 

Dilution level 2 

(1% w/v turkey) 

3 0.97 0.59 0.95 0.80 

Dilution level 3 

(0.5% w/v turkey) 

1 0.71 1.96 0.65 2.14 

The different meat mixtures could be predicted with R2CV in the range of 0.65-0.95 and 

RMSECV generally, less than 2.14% w/w of turkey using all three dilutions. Dilution level 2 with 

1% w/v was proven to be the optimum dilution level the highest R2CV of 0.95 and the lowest 

RMSECV of 0.80% w/w among all the three tested dilution methods. It was used for subsequent 

experiments for the determination of optimal extraction method. 

5.4. Determination of optimal extraction method for meat analysis 

5.4.1. Classification of poultry mixtures processed with raw meat extraction  

Figure 25 (A), shows the LDA plot developed to classify chicken and turkey adulteration 

with more than 88% of the between groups variance expressed in the root 1 whereas, Figure 25 

(B), shows the LDA plot developed to classify pork and beef adulteration with more than 51% of 

the variance expressed in the root 1. Very little visual separation could be observed in the plots 

developed to classify turkey/chicken mixture concentrations but sample T080 could be separated 

from the other concentrations (Figure 25 A). There was no visual separation in the plot developed 

to classify beef/pork meat mixtures (Figure 25 B).  
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Figure 25: Classification plot developed using e-tongue to classify turkey/chicken mixtures (A) 

and beef/pork mixtures (B) after the raw meat extraction  

Table 12, shows the confusion table for classification of turkey/chicken meat mixture 

concentrations using the raw meat extraction method. There was average recognition accuracy of 

81.28% and prediction accuracy of 58.35%. With cross validation, only sample T080 showed 

100% classification, confirming the separation observed in the plot. Samples T090 and T100 

showed the second highest classification accuracies of 87.59% each. However, 12.41% of sample 

T090 was misclassified as T097 and 12.41% of sample T100 was misclassified as T095. Samples 

T099 and T097 had the lowest correct classification accuracies of 12.36% and 25.09% 

respectively.  

Table 12: Confusion table for the classification of turkey/chicken meat mixture concentrations 

using the raw meat extraction method. Columns represent the actual class membership (%) and 

the rows represent the predicted class membership (%). T: percentage of turkey in the mixture 

Average accuracies  T080 T090 T095 T097 T099 T100 

 

Recognition 

81.28% 

T080 100 0 0 0 0 0 

T090 0 93.81 18.73 24.95 0 0 

T095 0 0 56.18 0 12.57 6.19 

T097 0 6.19 0 68.86 6.19 0 

T099 0 0 12.55 6.19 75.05 0 

 T100 0 0 12.55 0 6.19 93.81 

 

Cross-validation 

58.35% 

T080 100 0 0 0 0 0 

T090 0 87.59 0 49.81 0 0 

T095 0 0 37.45 0 25.09 12.41 

T097 0 12.41 12.36 25.09 37.45 0 

T099 0 0 25.09 25.09 12.36 0 

 T100 0 0 25.09 0 25.09 87.59 
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Table 13, shows the confusion table for classification of beef/pork meat mixture 

concentrations using the raw meat extraction method. There was average recognition accuracy of 

67.73% and prediction accuracy of 54.25%. The poor separation in the plot (Figure 25 B) was 

confirmed by misclassifications in all the mixtures with cross-validation. The worst 

misclassification was 37.45%, observed for sample B099. B080 gave the best correct classification 

accuracy of 62.78%. Samples B095 and B097 both gave correct classification accuracies of 50% 

respectively. 

Table 13: Confusion table for the classification of beef/pork meat mixture concentrations using 

the raw meat extraction method. Columns represent the actual class membership (%) and the rows 

represent the predicted class membership (%). B: percentage of beef in the mixture 

Average accuracies  B080 B090 B095 B097 B099 B100 

 

Recognition 

67.73% 

B080 75.05 6.19 0 24.95 12.57 0 

B090 6.19 75.05 0 0 0 0 

B095 0 12.57 75.05 0 18.76 0 

B097 18.76 6.19 6.19 56.29 6.19 0 

B099 0 0 18.76 12.57 43.71 18.76 

 B100 0 0 0 6.19 18.76 81.24 

 

Cross-validation 

54.25% 

B080 62.78 12.41 0 25.19 25.09 0 

B090 12.41 62.78 0 12.41 0 0 

B095 0 12.41 50 0 12.36 0 

B097 12.41 12.41 12.41 50 0 0 

B099 12.41 0 37.59 0 37.45 37.45 

 B100 0 0 0 12.41 25.09 62.55 

Misclassification rates associated with the concentrations 99%, 97% and 95% w/w of both 

turkey/chicken and beef/pork meat mixtures after raw meat extraction suggests that perhaps, the 

meat compounds extracted were not sufficient for detection and discrimination with the e-tongue. 

Extracting meat compounds with water may be a challenge especially with the presence of fat-

soluble compounds, which is often processed with other methods such as the Soxhlet method, 

Bligh and Dyer method, Folch method, microwave solvent extraction etc. (Hewavitharana et al. 

2020). This is particularly true as the samples with the highest concentrations: T080 and B080 

always gave the best classification accuracies whereas, those with the lowest concentration T099 

and B099 consistently gave the worst. Extraction of meat compounds often involve using 

denaturing or non-denaturing solutions, which can be expensive (Malva et al. 2018). Better 

accuracies of 100% were however achieved with this extraction for determination of optimal 

dilution. This could be due to the differences in the range of the mixture concentrations. 

5.4.2. Classification of meat mixtures processed with frozen meat extraction method 

Very little visual separation could be observed in the classification plots developed to 

classify turkey/chicken mixture concentrations (Figure 26 A) but sample T080 and T090 could be 
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distinguished in the plot. In the classification plot developed to classify beef/pork mixture 

concentrations (Figure 26 B), only B080 and B097 showed some visual separation.  

 

Figure 26: Classification plot developed using e-tongue to classify turkey/chicken mixtures (A) 

and beef/pork mixtures (B) after frozen meat extraction method  

Table 14, shows the confusion table for classification of turkey/chicken meat mixture 

concentrations using the frozen meat extraction method. There was average recognition of 80.52% 

and prediction accuracy of 62.55%. With cross validation, only sample T080 showed 100% 

classification, confirming the separation in the plot. Samples T095, T097 and T100 showed the 

second highest correct classification accuracies of 62.55%, 62.55% and 75.19%. The worst 

classification was observed for T099.  

Table 14: Confusion table for the classification of turkey/chicken meat mixture concentrations 

using the frozen meat extraction method. Columns represent the actual class membership (%) and 

the rows represent the predicted class membership (%). T: percentage of turkey in the mixture 

Average accuracies  T080 T090 T095 T097 T099 T100 

 

Recognition 

80.52% 

T080 100 0 0 0 0 0 

T090 0 81.39 6.19 6.19 0 0 

T095 0 6.2 87.62 0 18.76 0 

T097 0 6.2 0 93.81 0 0 

T099 0 6.2 6.19 0 81.24 12.55 

 T100 0 0 0 0 0 87.45 

 

Cross-validation 

62.55% 

T080 100 0 0 0 0 0 

T090 0 37.45 0 25.09 0 0 

T095 0 25.09 62.55 12.36 50 12.41 

T097 0 25.09 0 62.55 12.41 0 

T099 0 12.36 25.09 0 37.59 12.41 

 T100 0 0 12.36 0 0 75.19 
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Table 15, shows the confusion table for classification of beef/pork using the frozen meat 

extraction method. There was average recognition accuracy of 85.51% and prediction accuracy of 

56.41%. The poor separation in the plot (Figure 26 B) was confirmed by misclassifications in all 

the mixtures with cross-validation. The worst misclassification was 12.41%, observed for sample 

B099. Sample B097 gave the best cross-validation accuracy of 87.59%. B080 showed 

misclassifications with the higher ranged concentrations (B090 and B095) but not with the lower 

ranged ones (B097 and B099). 

Table 15: Confusion table for classification of beef/pork using the frozen meat extraction method. 

Columns represent the actual class membership (%) and the rows represent the predicted class 

membership (%). B: percentage of beef in the mixture 

Average accuracies  B080 B090 B095 B097 B099 B100 

 

Recognition 

85.51% 

B080 100 0 0 0 0 0 

B090 0 93.81 12.55 0 6.19 0 

B095 0 0 68.73 0 6.19 12.55 

B097 0 0 6.18 100 0 0 

B099 0 6.19 12.55 0 75.05 12.55 

 B100 0 0 0 0 12.57 74.91 

 

Cross-validation 

56.41% 

B080 50 0 0 0 0 0 

B090 37.59 100 12.41 0 12.41 0 

B095 12.41 0 62.78 12.41 25.19 37.45 

B097 0 0 0 87.59 0 0 

B099 0 0 12.41 0 12.41 37.45 

 B100 0 0 12.41 0 50 25.09 

Misclassifications observed with the frozen meat extraction method suggest that, the meat 

compounds extracted may also, not have been sufficient for detection and discrimination by the e-

tongue sensors. The quality of frozen/thawed meat is affected by the amount of frozen and 

unfrozen water, freezing rate and the temperature and time of frozen storage (Daszkiewicz, 

Kubiak, and Panfil 2018). The characteristics of unfrozen water influences the rate and extent of 

physical, chemical, and biochemical processes in meat (Leygonie, Britz, and Hoffman 2012) 

which, may have influenced drip and the concentrations of compounds necessary for the detection 

and discrimination with the e-tongue sensors. 

5.4.3. Classification of meat mixtures processed with cooked meat extraction method  

Very little visual separation could be observed in the plot developed to classify 

turkey/chicken mixtures using the cooked meat extraction method (Figure 27 A). In the plot 

developed to classify beef/pork mixtures (Figure 27 B), there was a decreasing pattern of mixture 

concentrations from left to right. 
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Figure 27: Classification plot developed using e-tongue to classify turkey/chicken mixtures (A) 

and beef/pork mixtures (B) after cooked meat extraction method  

Table 16, shows the confusion table for classification of turkey/chicken meat mixtures 

using the cooked meat extraction method. There was average recognition accuracy of 78.13% and 

prediction accuracy of 64.73%. With cross validation, sample T097 yielded the highest 

classification of 87.59%. Samples T090 and T080 also showed cross-validation accuracies of 

75.19% respectively. The worst classifications were observed for T099 with 25.09% cross-

validation accuracy. 

Table 16: Confusion table for classification of turkey/chicken meat mixtures using the cooked 

meat extraction method. Columns represent the actual class membership (%) and the rows 

represent the predicted class membership (%). T: percentage of turkey in the mixture 

Average accuracies  T080 T090 T095 T097 T099 T100 

 

Recognition 

78.13% 

T080 74.91 0 0 0 6.19 0 

T090 12.55 87.62 0 0 6.19 12.55 

T095 0 0 75.05 0 0 12.55 

T097 0 0 0 100 0 0 

T099 12.55 6.19 0 0 68.86 12.55 

 T100 0 6.19 24.95 0 18.76 62.36 

 

Cross-validation 

64.72% 

T080 75.19 0 0 0 12.36 0 

T090 12.41 75.19 0 0 25.09 12.41 

T095 0 0 62.55 12.41 0 12.41 

T097 0 0 12.36 87.59 0 0 

T099 12.41 12.41 0 0 25.09 12.41 

 T100 0 12.41 25.09 0 37.45 62.78 

 

Table 17, shows the confusion table for classification of beef/pork meat mixtures using the 

cooked meat extraction method. There was average recognition accuracy of 89.62% and prediction 
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accuracy of 68.77%. With cross validation, only sample B100 showed 100% cross-validation 

accuracy. Samples B090 and B080 showed the second highest correct classification accuracies of 

87.59% each and misclassifications of 12.41% each. B080 only showed misclassification with 

B090 whereas, B090 only showed misclassification with B095. The worst classifications were 

observed for B095 with 37.45% cross-validation accuracy. B097 and B099 showed correct 

classification accuracies of 50% each.  

Table 17: Confusion table for classification of beef/pork meat mixtures using the cooked meat 

extraction method. Columns represent the actual class membership (%) and the rows represent the 

predicted class membership (%). B: percentage of beef in the mixture 

Average accuracies  B080 B090 B095 B097 B099 B100 

 

Recognition 

89.62% 

B080 100 0 0 0 0 0 

B090 0 87.62 18.73 6.19 0 0 

B095 0 6.19 68.73 6.19 6.19 0 

B097 0 6.19 0 87.62 0 0 

B099 0 0 12.55 0 93.81 0 

 B100 0 0 0 0 0 100 

 

Cross-validation 

68.77% 

B080 87.59 0 0 0 12.41 0 

B090 12.41 87.59 25.09 12.41 0 0 

B095 0 12.41 37.45 25.19 25.19 0 

B097 0 0 0 50 12.41 0 

B099 0 0 37.45 12.41 50 0 

 B100 0 0 0 0 0 100 

Besides time consumption, elevated temperatures have been widely acknowledge to be 

effective in the extraction of bioactive compounds in diverse foods (Putnik et al. 2018; Khan, 

Aslam, and Makroo 2019). Meat extraction by cooking was also reported to be effective in the 

extraction of compounds from chicken bone (Kumoro et al. 2010) and also, for the detection beef 

adulteration with illegal hormonal substances (Goga, Ferraro, and Barbera 2011).  

5.4.4. Performance comparison of three extraction methods for classifying turkey/chicken 

and beef/pork mixtures with e-tongue  

Comparatively, all the three extraction methods yielded similar recognition accuracies but 

the cooked meat extraction yielded the best cross-validation accuracies for classifying 

turkey/chicken mixtures (Figure 28 A) and beef/pork mixtures (Figure 28 B). Better accuracies 

were achieved for the red meat adulteration compared to the poultry adulteration. Additive 

correction relative to all samples also improved the classification results of all the datasets 

(Appendices - A6, Table 37) 
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Figure 28: Classification performance comparison of the different extraction methods for the 

classification of poultry meat mixtures (A) and red meat mixtures (B) using e-tongue  

5.4.5. PLSR prediction of meat mixtures processed with the three different extraction 

methods 

Table 18, shows the PLS models to regress on adulterated meat mixtures using the raw 

meat extraction with distilled water, meat extraction by cooking with distilled water and frozen 

meat extraction with distilled water methods. Using latent variables (LV) in the range of three to 

five, the different concentrations of meat samples could be predicted with R2CV’s in the range 

0.34-0.76 and errors (RMSECV) in range 3.34-5.51% w/w of meat mixtures. The best PLSR 

model for the prediction of chicken in turkey was achieved when the frozen meat extraction with 

distilled water method was used but for pork in beef, it was the meat extraction by cooking. 
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Table 18: PLS models developed to predict the concentration of adulterated meat mixtures using 

all the three extraction methods  

Meat 

mixture 

Sample preparation 

method 

LV R2 RMSEC 

 (% w/w meat 

mixture) 

R2CV RMSECV 

(% w/w 

meat 

mixture) 

Chicken 

and turkey 

Raw meat extraction 

with distilled water 

3 0.82 2.91 0.76 3.34 

 Meat extraction by 

cooking with distilled 

water 

5 0.67 3.92 0.47 4.93 

 Frozen meat extraction 

with distilled water 

4 0.86 2.57 0.81 2.89 

Pork and 

beef 

Raw meat extraction 

with distilled water 

4 0.51 4.78 0.34 5.51 

 Meat extraction by 

cooking with distilled 

water 

3 0.76 3.35 0.72 3.83 

 Frozen meat extraction 

with distilled water 

4 0.65 4.05 0.43 5.16 

Figure 29, shows a visual comparison of the three methods based on their PLSR predictions 

of pork in beef. The extraction by cooking yielded the highest R2CV and lowest RMSECV results 

after cross-validation for predicting pork (Figure 29, A) but yielded the worst accuracies in 

predicting chicken in turkey (Figure 29, B).  

 

Figure 29: PLS performance comparison of the classification of poultry mixtures (A) and red 

meat mixtures (B) after electronic tongue analysis using all three extraction methods 

5.5. Determination of protein powder adulteration with NIRS 

Discussed in this section are the results from NIRS spectra examination, preprocessing, 

LDA and PLSR for determination of whey, beef and pea protein powder adulteration with urea 

(U), glycine (G), taurine (T) and melamine (M).  
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5.5.1. Spectral preprocessing and optimization  

Figure 30, shows the raw spectra plot (A) and pretreated spectra plot (B) of whey, beef and 

pea protein powder using the benchtop spectrophotometer, the raw spectra (C) and pretreated 

spectra (D) of whey, beef and pea protein powder using the handheld spectrophotometer and 

optical glass and raw spectra (E) and pretreated spectra (F) of whey, beef and pea protein powder 

using the handheld spectrophotometer and LDPE plastic bag.  

Based on the location of the absorption peaks of the tested components and results of PCA, 

the wavelength range 950–1650 nm was selected and used for the spectra optimization. This was 

done for spectra from all three setups (Figure 30 B, D and F): benchtop spectrophotometer and 

optical glass, handheld spectrophotometer and optical glass and spectrophotometer and LDPE 

plastic.  

 

Figure 30: Raw spectra plot of protein powder mixtures using the benchtop spectrophotometer 

(A), handheld spectrophotometer with optical glass (C) and handheld spectrophotometer with 

LDPE plastic (E). Pretreated spectra plot of protein powder mixtures using the benchtop 

spectrophotometer (B), handheld spectrophotometer with optical glass (D) and handheld 

spectrophotometer with LDPE plastic (F). SNV: standard normal variate 
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The handheld spectrophotometer scanned through the optical glass had the highest base 

line shift (Figure 30 C) compared to the one scanned through the LDPE plastic bag (Figure 30 E) 

or when benchtop spectrophotometer (Figure 30 A) was used. The reason for this could be that, 

the optical glass surface could not fit properly to the window of the handheld spectrophotometer 

because of its structural design. This may have resulted in a small air gap between the two surfaces 

that further influenced the optical path of the light that reaches the detector during analysis. This 

can be visualized in Figure 31. 

 

Figure 31: Evaluation of scanning methodology for the handheld spectrophotometer 

Temperature ranged between 24.90-27.30 °C, during the experiment. Table 19, Table 20 

and Table 21 shows the different pretreatments that were used for spectra optimization of the 

benchtop spectrophotometer with optical glass, handheld spectrophotometer with optical glass and 

handheld spectrophotometer with LDPE plastic bag, respectively. 
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Table 19: Pretreatment selection for protein powder spectra obtained using the benchtop 

spectrophotometer 

 PLS prediction of urea in all 

mixtures 

LDA classification of all 

mixtures at 0.5% w/w 

adulteration 

 R2CV RMSECV 

(% w/w) 

Average 

recognition 

(%) 

Average 

prediction 

(%) 

Raw 0.85 0.22 99.01 98.77 

Savitzky-Golay smoothing 

(21 points) 

0.84 0.23 99.05 98.74 

MSC 0.86 0.21 99.23 97.55 

Savitzky-Golay smoothing 

(21 points) + MSC 

0.88 0.20 99.01 98.52 

SNV 0.85 0.22 99.23 98.51 

Savitzky-Golay smoothing 

(21 points) + SNV 

0.84 0.23 99.51 98.90 

1st Derivative 0.85 0.22 99.38 98.52 

1st Derivative+MSC 0.86 0.21 99.13 98.52 

2nd derivative 0.84 0.23 98.89 97.79 

2nd Derivative +MSC 0.87 0.21 99.25 98.04 

Detrend 0.85 0.22 98.27 98.52 

 

Table 20: Pretreatment selection for protein powder spectra obtained using the handheld 

spectrophotometer and optical glass 

 PLS prediction of urea in all 

mixtures 

LDA classification of all 

mixtures at 0.5% w/w 

adulteration 

 R2CV RMSECV 

(% w/w) 

Average 

recognition (%) 

Average 

prediction (%) 

Raw 0.78 0.27 71.74 49.37 

Savitzky-Golay smoothing 

(21 points) 

0.78 0.27 65.56 50.85 

MSC 0.79 0.26 75.98 47.15 

Savitzky-Golay smoothing 

(21 points) + MSC 

0.79 0.26 65.46 49.86 

SNV 0.80 0.26 66.50 46.91 

Savitzky-Golay smoothing 

(21 points) + SNV 

0.80 0.26 75.94 50.84 

1st Derivative 0.78 0.27 69.04 51.08 

1st derivative+MSC 0.75 0.29 72.64 49.39 

2nd Derivative 0.78 0.27 74.02 50.19 

2nd Derivative +MSC 0.79 0.26 58.26 47.87 

Detrend 0.78 0.27 70.89 45.20 
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Table 21: Pretreatment selection for protein powder spectra obtained using the handheld 

spectrophotometer and LDPE 

 PLS prediction of urea in all 

mixtures 

LDA classification of all 

mixtures at 0.5% w/w 

adulteration 

 R2CV RMSECV 

(% w/w) 

Average 

recognition 

(%) 

Average 

prediction 

(%) 

Raw 0.72 0.30 71.68 39.71 

Savitzky-Golay smoothing 

(21 points) 

0.71 0.31 78.11 48.47 

MSC 0.75 0.29 68.05 40.39 

Savitzky-Golay smoothing 

(21 points) + MSC 

0.74 0.30 77.57 47.59 

SNV 0.74 0.29 69.70 42.44 

Savitzky-Golay smoothing 

(21 points) + SNV 

0.75 0.29 79.23 49.77 

1st Derivative 0.72 0.30 78.86 46.72 

1st Derivative+MSC 0.75 0.29 75.46 46.27 

2nd derivative 0.73 0.30 78.24 48.08 

2nd Derivative +MSC 0.73 0.30 70.03 47.41 

Detrend 0.73 0.30 69.65 39.32 

From Table 19, applying the Savitzky-Golay smoothing (21 points) before MSC was the 

most effective pretreatment for predicting melamine in the protein powder mixtures using PLSR. 

This was deemed as the optimum pretreatment for PLSR analysis using benchtop 

spectrophotometer and optical glass. Applying the Savitzky-Golay smoothing (21 points) before 

SNV gave the highest classification accuracies for classifying all the different mixture 

combinations (U, G, T, M, GT, UG, GM, UT, TM, UM, UGT, GTM, UGM, UTM, UGTM) and 

pure whey, beef and pea protein powder. This was deemed as the optimum pretreatment for LDA 

analysis using benchtop spectrophotometer and optical glass. 

Table 20 and Table 21 showed that applying the Savitzky-Golay smoothing (21 points) 

before SNV was the most effective pretreatment for predicting melamine in the protein powder 

mixtures using PLSR, when the handheld spectrophotometer was used with both optical glass and 

LDPE. Applying the Savitzky-Golay smoothing (21 points) before SNV also gave the highest 

classification accuracies for classifying all the different mixture combinations (U, G, T, M, GT, 

UG, GM, UT, TM, UM, UGT, GTM, UGM, UTM, UGTM) and pure whey, beef and pea protein 

powder when the handheld spectrophotometer was used with both optical glass and LDPE. Key 

parameters associated with the control of spectrum noise are slit width, detector gain, and 

integration (response) time (Wang and Zhou 2011), so different spectrophotometers may respond 

to different types of pretreatment for spectral optimization. In the near infrared region (700-2500 
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nm), food products and their adulterants can be characterized by certain absorption bands that relay 

important information about their chemical structure (Aouadi et al. 2020) and can be useful for 

authentication through fingerprinting. The wavelength range 1180-1260 nm has been reported to 

be related to the second overtone of C—H stretching (Song et al. 2018). The 1450 nm band has 

been associated with the O—H first overtone and is sensitive to H bonding whereas, the band 1430 

nm corresponds to the second and first overtone regions of N—H bonds or first overtone vibration 

of water (Inagaki, Watanabe, and Tsuchikawa 2017). The band at 1530 nm signifies the presence 

of either N—H stretching vibration of the amide group from protein to stretching and O—H (Song 

et al. 2018). The band at 1570 nm corresponds either to N—H stretching vibrations of amide 

groups or O—H of vibrating water whereas, the band range 1580-1650 nm corresponds to N—H 

(Osborne 2000). Bands 1600-1650 nm signify the presence of carbonyl groups (C=O) (Rodriguez-

Saona et al. 2006). 

The chemical structures of the adulterants themselves could be related to some of these 

important absorption bands in the absorption plot. Melamine for instance, has three nitrogen atoms 

attached to three amine groups, taurine is characterized by a sulphate group and an amine group, 

urea is characterized by carbonyl groups (C=O) and two amines, glycine is characterized by a 

carbonyl group, a hydroxyl group and an amine group. Correlations can be made with the bands 

give a hint about adulterant presence, their mixture combinations or concentrations in the three 

protein powder mixtures.   

5.5.2. Classification of pure and adulterated protein powders with NIRS based on their 

protein base 

Figure 32, shows the classification plots for adulterated and non-adulterated whey, beef and 

pea protein powder using the benchtop spectrophotometer and optical glass cuvette (A), handheld 

spectrophotometer and optical glass cuvette (B) and handheld spectrophotometer with LDPE 

plastic bag (C). All the protein powders could be visually distinguished irrespective of the 

adulterant combination or concentration. There was 100% correct classification in both 

recognition and cross-validation for all the datasets. 
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Figure 32: Classification of adulterated and non-adulterated whey, beef and pea protein powder 

using the benchtop spectrophotometer and optical glass cuvette (A), handheld spectrophotometer 

and optical glass cuvette (B) and handheld spectrophotometer with LDPE plastic bag (C) 

5.5.3. Classification of pure protein powders and their adulterated mixture combinations 

Figure 33, shows the plot for the classification of whey, beef and pea protein powder and 

their adulterated mixture combinations and using the benchtop spectrophotometer and optical glass 

cuvette (A), handheld spectrophotometer and optical glass cuvette (B) and handheld 

spectrophotometer with LDPE plastic bag (C). All the plots were characterized by an increasing 

adulteration (0%-3% w/v) from the center to the extremities. In plot A and B, all the single 

adulterant mixtures could be separated and even some of the dual and multiple adulterant mixtures 

could be separated as well. There was average recognition accuracy of 74.01% and prediction 

accuracy of 74.09% using the benchtop spectrophotometer. Using the handheld spectrophotometer 

with optical glass yielded average recognition accuracies of 58.99% and prediction of 56.46%. 

Using the handheld spectrophotometer with LDPE plastic yielded average recognition accuracies 

of 62.17% and prediction of 54.48%.  
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Figure 33: Mixture classification of adulterated and non-adulterated protein powder using the 

benchtop spectrophotometer and optical glass cuvette (A), handheld spectrophotometer and 

optical glass cuvette (B) and handheld spectrophotometer with LDPE plastic bag (C)  

Figure 33 showed an increasing adulteration from the center of the plot to the extremities, 

signaling the influence of the different adulterant concentrations on mixture classifications so 

detailed analysis were performed to evaluate the potential of the instruments in detecting 

adulteration at the lowest adulterant concentration of 0.5% w/w.  

5.5.4. Classification of pure and adulterated protein powder mixtures at the lowest 

adulterant concentration of 0.5% w/w with NIRS  

These models were developed to assume situations where producers may use very low 

concentrations because practically, tracking adulteration involves determining whether 

adulteration has occurred or not and not necessary the percentage of its existence. Thus, 0.5% w/w 

being the lowest adulterant concentration tested in this study, it’s detection regardless of the 

protein type would be more practical and be of much significance.  

Using the benchtop spectrophotometer, there was 99.47% average recognition and 98.75% 

average prediction for classifying all the protein powders at the lowest adulterant concentration of 

0.5% w/w using benchtop spectrophotometer. There was visual separation of all the mixtures in 

the classification plot (Figure 34). There was no misclassification between pure protein powders 

and all mixture combinations with cross-validation (Appendices - A7, Table 39). 
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Figure 34: Mixture classification of adulterated and non-adulterated protein powder at lowest 

adulterant concentration 0.5% w/w using the benchtop spectrophotometer  

Using handheld spectrophotometer and optical glass yielded average recognition of 65.13% 

and average prediction of 53.49%. Pure whey, beef and pea protein powders could be classified 

with 66.89%, 100%, 89% accuracies respectively. There was 33.11% and 11% misclassification 

of pure whey and pea protein powder respectively as adulterated protein powder samples 

(Appendices - A7, Table 41). 

Using the handheld spectrometer with LDPE plastic bag yielded average recognition 

83.79% and average prediction 56.19% achieved using handheld spectrophotometer with LDPE 

plastic bag. Pure whey, beef and pea protein powders could be classified with 66.89%, 66.89%, 

89% accuracies respectively and misclassifications of 11.04%, 22.08% and 11% respectively as 

adulterated protein powder samples. Pure whey and pea protein powders also showed 

misclassifications (11.04%) amongst themselves (Appendices - A7, Table 43). 

5.5.4.1. Performance comparison for using benchtop and handheld spectrophotometers 

to classify adulterated protein powder mixtures at the lowest adulterant concentration (0.5% 

w/w)  

From the classification results of all three-setups (Figure 35), benchtop spectrophotometer 

gave the best accuracies for classifying urea, glycine, taurine, melamine and their different mixture 

combinations at the lowest concentration of 0.5% w/w in whey, beef and pea protein powder. 

Using the handheld spectrophotometer with LPDE plastic bag gave better average accuracies than 
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using the handheld spectrophotometer with optical glass. These findings are particularly important 

because hitherto this studies, adulterant concentrations in literature ranged between 1- 5% w/w 

and no scanning was done through plastic bag. In addition, classification of the complex adulterant 

mixture combinations reported in this study signals the potential of the spectrophotometers in 

detecting complex forms of protein powder adulteration. The findings in this study, provides 

grounds for detecting novel forms of adulteration in whey, beef and pea protein powder. Compared 

to traditional methodology such as the Dumas method where, a test run by takes from 5 to 10 min 

depending on sample weighing and combustion, a single scan with NIRS takes less than 1 min. In 

terms of expenses, the average cost of the Dumas method is about $25 per sample, whereas the 

NIR test method can be <$5.00 per sample) (Ingle et al. 2016). The discriminatory and 

classification accuracies achieved with the benchtop and handheld spectrophotometers proves 

their potential for detecting urea, glycine, taurine and melamine concentrations as low as 0.5% 

w/w in protein powders and provides advantages from both time and cost perspective. The 

handheld spectrophotometer provides an extra advantage of expeditious onsite detection of 

adulterants. Scanning through the optical glass or LDPE plastic both gave accuracies that can be 

adapted for practical applications. 

 

Figure 35: Performance comparison for using benchtop and handheld spectrophotometers to 

classify adulterated protein powder mixtures at the lowest adulterant concentration (0.5% w/w) 

5.5.5. Classification of urea, glycine, taurine and melamine in protein powder using only 

mixtures with single adulterants  

Figure 36, shows the classification plots developed to classify authentic whey (A, B C), 

beef (D, E, F) and pea (G, H, I) protein powders their mixtures containing only single adulterants 
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classification plots using benchtop spectrophotometer (A, D, G), handheld spectrophotometer with 

optical glass (B, E, H) and handheld spectrophotometer with LDPE (C, F, I). Visually, melamine, 

urea and taurine could be separated from all the other adulterants but there were some overlapping 

between pure whey, beef or pea protein powder in all cases. In certain cases, glycine could also be 

visually separated. The best separation pattern of urea, glycine, taurine and melamine was achieved 

with the benchtop spectrophotometer for all the three protein powders. 

 

Figure 36: classification plots for whey (A, B C), beef (D, E, F) and pea (G, H, I) protein powder 

containing only single adulterants between 0.5 -3% w/w. Benchtop spectrophotometer (A, D, G), 

handheld spectrophotometer with optical glass cuvette (B, E, H) and handheld 

spectrophotometer with LDPE (C, F, I). 

Using the handheld spectrophotometer with optical glass yielded average 91.72% 

recognition and 90.43% prediction for classification of single adulterants in whey protein powder 

(Table 22). With cross-validation, only melamine (11%) was misclassified as pure whey protein 

powder. Using the handheld spectrophotometer with LDPE plastic bag yielded an average 
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recognition accuracy of 93.35% and 90.03% prediction were achieved when the LDPE plastic bag 

was used. With cross-validation, only glycine (11%) was misclassified as pure whey protein 

powder.  

Table 22: Confusion matrix for classifying urea (U), glycine (G), taurine (T) and melamine (M) in 

whey protein powder by scanning through optical glass or LDPE plastic bag with the handheld 

spectrophotometer. Columns represent the actual class membership (%) and the rows represent the 

predicted class membership (%) 

Average Recognition (91.72%) Average Cross-validation (90.43%) 

  U G T M Pure U G T M Pure 

Optical 

glass 

U 86.43 0.92 0 0 5.51 82 0 0 0 0 

G 0 87.05 0.97 0 0 0 87.06 0 0 0 

T 9.7 6.47 1.97 99.08 5.51 0 0 94.12 0 0 

M 0 0 97.06 0 0 12 7.39 3.94 100 11 

Pure 3.87 5.56 0 0.92 88.98 6 5.56 1.94 0 89 

Average Recognition (93.35%) Average Cross-validation (90.03%) 

  U G T M Pure U G T M Pure 

LDPE 

plastic 

U 91.18 0 0 0 0 90.23 0 0 0 0 

G 0.97 90.34 6.41 0 0 1.94 87.74 5.66 0 11 

T 0 0 91.74 0 0 0 0 92.47 0 0 

M 1.97 0 0 93.53 0 0 1.74 0 90.72 0 

Pure 5.88 9.66 1.84 6.47 100 7.83 10.53 1.87 9.28 89 
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For beef protein powder mixtures, there was an average classification accuracy of 95.66% 

recognition and 94.80% prediction accuracy when handheld spectrophotometer was used with 

optical glass (Table 23). Average recognition and prediction accuracy were 95.82% and 91.99% 

respectively when handheld spectrophotometer and LDPE plastic bag was used. With or without 

cross-validation, pure beef protein powders could be classified with 100% correct accuracy when 

they were scanned through either optical glass or LDPE plastic bag.  

Table 23: Confusion matrix for classifying urea (U), glycine (G), taurine (T) and melamine (M) in 

beef protein powder by scanning through optical glass or LDPE plastic bag with the handheld 

spectrophotometer. Columns represent the actual class membership (%) and the rows represent the 

predicted class membership (%) 

Average Recognition (95.66%) Average Cross-validation (94.80%) 

  U G T M Pure U G T M Pure 

Optical 

glass 

U 95.09 0 0 0 0 96.06 0 0 0 0 

G 0 96.88 3.91 1.95 0 0 93.75 1.94 1.98 0 

T 0 0 93.15 0 0 0 0 92.18 0 0 

M 2.94 0 0 93.19 0 3.94 0 0 92.02 0 

Pure 1.97 3.12 2.94 4.86 100 0 6.25 5.88 6 100 

Average Recognition (95.82%) Average Cross-validation (91.99%) 

  U G T M Pure U G T M Pure 

LDPE 

plastic 

U 95.4 0 0 0 0 90.55 0 0 0 0 

G 0 95.84 0 0 0 0 85.44 0 0 0 

T 0 0 93.75 0 0 0 0 93.75 1.94 0 

M 1.84 0 0 94.12 0 3.79 6.25 0 90.23 0 

Pure 2.75 4.16 6.25 5.88 100 5.66 8.31 6.25 7.83 100 
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For pea protein powder mixtures, average 94.65% recognition and 93.71% prediction 

accuracy were achieved when handheld spectrophotometer was used with optical glass (Table 24). 

With no cross-validation, only samples containing melamine (5.51%) were misclassified as pure 

pea protein powder. This was the same with cross-validation but with a higher misclassification 

rate of 11%. Using handheld spectrophotometer and LDPE plastic bag, accuracies of 93.55% 

(recognition) and 94.02% (prediction) were achieved. With no cross-validation, only samples 

containing glycine (11.17%) were misclassified as pure pea protein powder. This was the same 

with cross-validation but with a slightly lower misclassification rate of 11%. 

Table 24: Confusion matrix for classifying urea (U), glycine (G), taurine (T) and melamine (M) in 

pea protein powder by scanning through optical glass or LDPE plastic bag with the handheld 

spectrophotometer. Columns represent the actual class membership (%) and the rows represent the 

predicted class membership (%)  

Average Recognition (94.65%) Average Cross-validation (93.71%) 

  U G T M Pure U G T M Pure 

Optical 

glass 

U 92.58 0 0 1.86 0 92.56 0 1.87 1.83 0 

G 0 96.31 3.66 0 0 0 96.28 1.87 0 0 

T 0 0 93.59 0 0 0 0 94.39 0 0 

M 1.86 0 0 96.28 5.5 3.72 0 0 96.33 11 

Pure 5.56 3.69 2.75 1.86 94.5 3.72 3.72 1.87 1.83 89 

Average Recognition (94.08%) Average Cross-validation (92.59%) 

  U G T M Pure U G T M Pure 

LDPE 

plastic 

U 98.17 0 0 0 0 96.33 0 1.83 0 0 

G 0.92 97.22 3.7 0 11.17 1.83 94.44 3.72 0 11 

T 0 0 92.61 0 0 0 0 90.72 0 0 

M 0 0 0.92 93.59 0 0 1.83 0 92.47 0 

Pure 0.92 2.78 2.78 6.41 88.83 1.83 3.72 3.72 7.53 89 

The best accuracies for classifying urea, glycine, taurine and melamine in protein powder 

mixtures with single adulterants were achieved with the benchtop spectrophotometer for all the 

three protein powders. There was average 98.71% recognition and 96.28% prediction for whey 

protein powder, 100% recognition and 99.62% prediction for beef protein powder and 98.89% 

recognition and 98.88% prediction for pea. With cross-validation, pure beef and pea protein 

powder could be predicted with 100% correct accuracy but 11% of samples containing melamine 

were misclassified as pure whey protein powder. Table 25 shows a summary of the cross-validated 

accuracies for pure whey, beef, and pea protein powder mixtures after using the benchtop and 
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handheld spectrophotometers to classify authentic protein powders and protein powder mixtures 

containing single adulterants.  

Table 25: Cross-validated accuracies for pure whey, beef, and pea protein powder mixtures after 

using the benchtop and handheld spectrophotometers to classify authentic protein powders and 

protein powder mixtures containing single adulterants 

 Pure protein 

powder 

Correct 

classification 

(%) 

Misclassification 

(%) 

Misclassified 

adulterant 

Benchtop 

spectrophotometer 

with optical glass 

Whey 89 11 Melamine 

Beef 100 0 - 

Pea 100 0 - 

Handheld 

spectrophotometer 

with optical glass 

Whey 89 11 Melamine 

Beef 100 0 - 

Pea 89 11 Melamine 

Handheld 

spectrophotometer 

with LDPE plastic 

Whey 89 11 Glycine 

Beef 100 0 - 

Pea 89 11 Glycine 

 

5.5.6. PLSR prediction of urea, glycine, taurine and melamine concentrations in protein 

powder mixtures 

From Table 26, all the models could predict the adulterants with R2CV in the range of 0.74-

0.93 and RMSECV in the range of 0.21- 1.57% w/w of adulterated protein powders. The best 

models were achieved with the benchtop spectrophotometer but the accuracies achieved with the 

handheld spectrophotometer signifies its potential for such analysis as well. The models developed 

with the dataset from scanning through the LDPE plastic bag was generally weaker compared to 

those developed with the dataset from scanning through optical glass with the handheld 

spectrophotometer. Urea could be predicted with the highest accuracies for all three setups: 

benchtop spectrophotometer with optical glass, handheld spectrophotometer with optical glass and 

handheld spectrophotometer with LDPE plastic. The best model was R2CV of 0.93 and RMSECV 

of 0.21% w/w using the benchtop spectrophotometer (Figure 37).Models were also built to classify 

the urea, glycine, taurine and melamine separately in whey protein powder (Appendices – A7, 

Table 44-Table 46), beef protein powder (Appendices – A7, Table 47-Table 49), and pea protein 

powder mixtures (Appendices – A7, Table 50-Table 52). 
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Table 26: PLSR prediction models developed with the benchtop and handheld spectrophotometer 

to predict urea, glycine, taurine and melamine concentration in protein powder mixtures regardless 

of their mixture combination 

Spectrophotometer Predicted 

adulterant 

LV R2 RMSEC  

(% w/w) 

R2CV RMSECV  

(% w/w) 

Benchtop 

(2431 spectra) 

 

Urea 22 0.95 0.18 0.93 0.21 

Glycine 8 0.90 0.92 0.87 0.97 

Taurine 25 0.95 0.94 0.93 0.94 

Melamine 13 0.93 0.15 0.93 0.16 

Handheld with 

optical glass  

(2383 spectra) 

Urea 20 0.90 0.25 0.89 0.27 

Glycine 18 0.81 0.88 0.79 0.91 

Taurine 15 0.86 1.25 0.86 1.30 

Melamine 17 0.85 0.22 0.82 0.23 

Handheld with 

LDPE plastic 

(2424 spectra) 

Urea 19 0.92 0.23 0.91 0.25 

Glycine 17 0.75 1.01 0.74 1.09 

Taurine 24 0.82 1.48 0.79 1.57 

Melamine 17 0.76 0.28 0.75 0.29 

 

 

Figure 37: PLS to quantitate urea concentrations in protein powder mixtures at spectral range of 

950-1650 nm using the benchtop spectrophotometer 
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Figure 38 shows the visual performance comparison of the different spectrophotometers 

for PLS prediction of urea (A), glycine (B), taurine (C) and melamine (D). All the adulterants 

could be predicted with R2CV higher than 0.80 irrespective of the scanning medium or 

spectrophotometer. RMSECV was generally lowest for the prediction of melamine in the protein 

powder mixtures. Glycine yielded the highest RMSECV. 

 

Figure 38: PLS comparative performance of the different spectrophotometers for prediction of 

urea (A), glycine (B), taurine (C) and melamine (D) in authentic and adulterated whey, beef and 

pea protein powder mixtures irrespective of their protein base 
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5.5.7. PLSR prediction of urea, glycine, taurine and melamine concentrations in protein 

powder mixtures from analysis with independent data 

All the models could predict the adulterants with R2pred in the range 0.72-0.94 and RMSEP 

in the range 0.18- 1.59% w/w of adulterated protein powders (Table 27). Urea could be predicted 

with the highest accuracies for all three cases: with benchtop spectrophotometer, handheld 

spectrophotometer with optical glass and handheld spectrophotometer with LDPE plastic bag, the 

best was as R2pred of 0.94 and RMSECV of 0.18% w/w using the benchtop spectrophotometer 

(Figure 39).   

Table 27: Independent PLS regression models developed with the benchtop and handheld 

spectrophotometer to predict urea, glycine, taurine and melamine in all adulterated protein powder 

samples at spectral range of 950-1650 nm 

Spectrophotometer Predicted 

adulterant 

LV R2pred RMSEP  

(% w/w) 

Benchtop 

Cal: 1624 

Valid: 807 

Urea 22 0.94 0.18 

Glycine 9 0.77 0.94 

Taurine 20 0.93 0.91 

Melamine 11 0.93 0.15 

Handheld with optical 

glass 

Cal: 1591 

Valid: 792 

Urea 20 0.90 0.25 

Glycine 17 0.79 0.91 

Taurine 16 0.86 1.29 

Melamine 17 0.85 0.20 

handheld with LDPE 

plastic 

Cal: 1611 

Valid: 813 

Urea 19 0.91 0.24 

Glycine 17 0.73 1.03 

Taurine 18 0.79 1.59 

Melamine 16 0.72     0.30 
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Figure 39: Independent PLS model to quantitate urea concentrations in protein powder mixtures 

at spectral range of 950-1650 nm using the benchtop spectrophotometer 

5.5.8. PLSR prediction of protein powder concentrations in protein powder mixtures from 

analysis with independent data 

Table 28 shows the independent PLS regression models developed with the benchtop and 

handheld spectrophotometers to predict protein powder concentrations in all samples and also in 

protein powder mixtures that contained single mixtures of urea, glycine, taurine and melamine at 

concentrations of 0.5% w/w – 3% w/w.  

For prediction of protein powder concentration in all mixtures, using the handheld 

spectrophotometer with optical glass gave R2CV 0.84, RMSECV 1.38% w/w, R2pred 0.84 and 

RMSEP 1.38% w/w. Using the handheld spectrophotometer with optical LDPE plastic gave R2CV 

0.86, RMSECV 1.39% w/w, R2pred 0.84 and RMSEP 1.47% w/w. Based on the R2CV and 

RMSECV values using the LDPE plastic bag gave the best results for predicting protein powder 

in the samples when the handheld spectrophotometer was used, compared to using the handheld 

spectrophotometer with optical glass. They both however, had similar R2pred and RMSEP values. 

Using the benchtop spectrophotometer gave the best model for predicting protein powder 

concentrations in all the samples with R2CV 0.86, RMSECV 1.36% w/w, R2pred 0.87 and RMSEP 

1.30% w/w. 
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Table 28: Independent PLS regression models developed with the benchtop and handheld 

spectrophotometer to predict protein powder concentrations in all samples and also in protein 

powder mixtures that contained single mixtures of urea, glycine, taurine and melamine at 

concentrations of 0.5% w/w – 3% w/w at spectral range of 950-1650 nm 

 Spectrophotometer LV R2CV RMSECV  

(% w/w) 

R2pred RMSEP  

(% w/w) 

Whole 

dataset 

Benchtop 

spectrophotometer  

15 0.86 1.36 0.87 1.30 

 Handheld 

spectrophotometer 

with optical glass 

15 0.84 1.38 0.84 1.38 

 Handheld 

spectrophotometer 

with LDPE plastic 

bag 

15 0.86 1.39 0.84 1.47 

Single 

adulterants 

Benchtop 

spectrophotometer  

15 0.90 1.41 0.93 1.22 

 Handheld 

spectrophotometer 

with optical glass 

15 0.84 1.18 0.88 1.58 

 Handheld 

spectrophotometer 

with LDPE plastic 

bag 

15 0.91 1.36 0.92 1.33 

For prediction of protein powder concentrations in protein powder mixtures that contained 

single mixtures of urea, glycine, taurine and melamine at concentrations of 0.5% w/w – 3% w/w 

(Table 28), using the handheld spectrophotometer with optical glass gave R2CV 0.84, RMSECV 

1.18% w/w, R2pred 0.88 and RMSEP 1.58% w/w. Using the handheld spectrophotometer with 

optical LDPE plastic gave R2CV 0.91, RMSECV 1.36% w/w, R2pred 0.92 and RMSEP 1.33% 

w/w. Based on the R2CV, RMSECV, R2pred and RMSEP values, using the handheld 

spectrophotometer with LDPE plastic bag gave the best results compared to using the handheld 

spectrophotometer with optical glass for predicting protein powder concentrations in protein 

powder mixtures that contained single mixtures of urea, glycine, taurine and melamine at 

concentrations of 0.5– 3% w/w. Using the benchtop spectrophotometer gave the best model for 

predicting protein powder concentrations in protein powder mixtures that contained single 

mixtures of urea, glycine, taurine and melamine at concentrations of 0.5% w/w – 3% w/w. There 

was R2CV 0.90, RMSECV 1.41% w/w, R2pred 0.93 and RMSEP 1.22% w/w. 



82 

5.5.9. LODmin, LODmax, LOQmin and LOQmax for the determination of urea, glycine, 

taurine and melamine in protein powder 

Table 29, shows the LODmin, LODmax, LOQmin and LOQmax and the explained 

variance between the X (actual concentrations) and Y (predicted concentrations) variables in the 

dataset. Typically, LOQ will be found at the same or higher concentration than LOD, but how 

much higher depends on the specifications for bias and imprecision used to define it (Armbruster 

and Pry 2008), as it is dependent on LOD. 

Table 29: Model validation for the prediction of urea, glycine, taurine and melamine in whey, beef, 

and pea protein powder mixtures 

 

Adulterant LV 

LODmin 

(%) 

LODmax 

(%) 

LOQmin 

(%) 

LOQmax 

(%) 

E_varX 

(%) 

E_varY 

(%) 

Benchtop Urea 22 0.11 0.26 0.34 0.79 100.00 100.00 

Glycine 11 0.15 0.86 0.44 2.59 100.00 99.99 

Taurine 18 0.44 1.08 1.32 3.23 100.00 100.00 

Melamine 11 0.07 0.19 0.22 0.56 100.00 100.00 

Handheld 

with 

optical 

glass 

Urea 20 0.18 0.86 0.53 2.58 100.00 100.00 

Glycine 18 0.39 2.31 1.17 6.92 100.00 99.99 

Taurine 17 0.53 3.10 1.59 9.29 100.00 99.99 

Melamine 17 0.19 0.61 0.56 1.83 100.00 99.99 

Handheld 

with 

LDPE 

plastic 

Urea 19 0.20 0.34 0.60 1.01 100.00 100.00 

Glycine 17 0.74 1.30 2.23 3.90 100.00 99.99 

Taurine 26 0.85 1.99 2.56 5.97 100.00 99.99 

Melamine 17 0.16 0.32 0.47 0.97 100.00 99.99 

LV: latent variable 

LODmin: Limit of detection minimum value (% w/w) 

LODmax: Limit of detection maximum value (% w/w) 

LOQmin: Limit of quantification minimum value (% w/w) 

LODmax: Limit of quantification maximum value (% w/w) 

E_varX: Explained variance X 

Handheld spectrophotometer with optical glass had LODmin in the range 0.18 -0.53% w/w. 

Only taurine had LODmin higher than the minimum adulterant concentration of 0.5% w/w used 

in this study. LODmax was in the range 0.61-3.10% w/w. Only taurine had LODmax higher than 

the maximum adulterant concentration of 3% w/w used in this study. 

Handheld spectrophotometer with LDPE plastic had LODmin in the range 0.16 -

0.85%w/w. Only taurine and glycine had LODmin higher than the minimum adulterant 

concentration of 0.5% w/w used in this study. LODmax was in the range 0.32-1.99% w/w, which 

was below the maximum adulterant concentration of 3% w/w used in this study. 
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Benchtop spectrophotometer gave the lowest LOD min/max values for the determination 

of urea, glycine, taurine and melamine in the protein powder mixtures. The LODmin using this 

instrument were in the range 0.11-0.44% w/w, which was below the tested minimum adulterant 

concentration of 0.5% w/w for all the adulterants. LODmax was in the range of 0.56-3.23% w/w. 

Only taurine had LODmax higher than the maximum adulterant concentration of 3% w/w used in 

this study when the benchtop spectrophotometer was used. 

According to the International Union of Pure and Applied Chemistry (IUPAC), 

LODmin/max measurements are recommended because they bring together two important 

analytical concepts: the sensitivity and the precision in the analytical determinations (Allegrini and 

Olivieri 2014). Differences in explained variances between the X (actual concentrations) and Y 

(predicted concentrations) were between 0-0.01%. Comparatively, using the handheld 

spectrophotometer and optical glass yielded lower LODmin/max and LOQmin/max for some of 

the adulterants than when the handheld spectrophotometer was used with optical glass. Samples 

scanned through the LDPE plastic bag, however, had a better repeatability when average LOD and 

LOQ’s were evaluated (Figure 40). Urea and melamine had the lowest LOD and LOQ irrespective 

of the instrument or scanning method. Taurine always had the highest LOD and LOQ irrespective 

of the instrument or scanning method. Lukacs et al. (2018) also reported LOD and LOQ values 

within this range for determination of urea, taurine and histidine in whey protein powder. 

Figure 40: Average limit of detection (LODmin/max) and standard deviation for the different 

adulterants using the benchtop spectrophotometer, handheld spectrophotometer with optical 

glass and handheld spectrophotometer with LDPE plastic 
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5.6. Challenges with the handheld spectrophotometer 

According to the manual of the handheld spectrophotometer used in this study, the NR-S-

G-1(InnoSpectra 2000), the collection lens gathers light from a 2.5 mm diameter region at the 

sample window. The size of the collection region is matched to the nominal illumination spot size 

created by the lens-end lamps. This requires that the sample be placed directly against the sapphire 

window, where the two angled light source paths intersect the collection vision cone of the lens. 

If the sample is shifted farther away from the window, the sample may not receive enough 

illumination for the system to perform an accurate scan (Figure 41). The optical path of the 

polychromatic and monochromatic light thus, is always important and influences the amount of 

light that gets back to the detector. This can also be influenced by factors such as the layer thickness 

of the scanning medium, the experimental setup and the instrument design so all these need to be 

carefully considered before experiments with similar spectrophotometers. 

 

Figure 41: Challenges of using handheld spectrophotometer with optical glass 
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6. CONCLUSION AND RECOMMENDATION 

When authentic wines (in increasing order of quality): Tokaji Forditas II, Tokaji Forditas 

I, Tokaji Aszu II and Tokaji Aszu I were acquired from the Tokaji region of Hungary and analysed 

with the benchtop and handheld spectrophotometers, all the authentic wines could be classified 

(linear discriminant analysis) with 100% accuracy using the benchtop spectrophotometer at a 

wavelength range of 950-1650 nm. Handheld spectrophotometer could only classify authentic 

Tokaji Forditas I, Forditas II and Aszu II with 100% accuracy using the wavelength 950-1400 nm. 

The authentic wines could also, be predicted in Partial least squares regression with R2CV of 0.92 

and an RMSECV of 16.80 g/L of wine using the benchtop spectrophotometer at wavelength 950-

1650 nm. Handheld spectrophotometer produced unsatisfactory results for predicting sugar 

concentrations of the wines. Electronic tongue (e-tongue) analysis after 50% v/v aqua dilution 

showed that all authentic wines could be classified with 100% correct accuracy. They could also 

be predicted in PLS with R2CV of 0.90 and an RMSECV of 17.67 g/L. When authentic Tokaji 

Forditas I wine and Forditas II wine were adulterated with grape must concentrate and sucrose in 

different steps to mimic the sugar concentrations of the authentic wines, benchtop 

spectrophotometer could correctly classify the different Forditas I wine mixtures with average 

cross-validation accuracies of 96.78% and 98.78% for Forditas II wine mixtures. Handheld 

spectrophotometer could also, correctly classify adulterated Forditas I and Forditas II wine 

mixtures with average cross-validation accuracy of 68.22% and 76.06% respectively. Forditas I 

and Forditas II wine mixtures could also be classified with average cross-validation accuracies of 

98.17% and 93.10% using the e-tongue. The results in this study signal a potential for using 

electronic-tongue and near infrared spectroscopy to track Tokaji wine adulteration. For practically 

on industrial basis, further studies may be required with higher sample numbers for more robust 

models. The setup of the handheld spectrophotometer used in this study should also be carefully 

considered and adapted to better experimental procedures if it is to be used to track Tokaji wine 

adulteration.  

Among the three tested dilution factors for the determination of optimum dilution for e-

tongue analysis, 1% w/v dilution produced the best PLSR accuracies for predicting the different 

poultry mixtures with an R2CV of 0.95 and RMSECV of 0.80% w/w. Using the optimum dilution 

factor of 1% w/v for the three tested meat extraction methods, the cooked meat extraction method 

produced the best results for classifying 100%, 99%, 97%, 95%, 90% and 80% w/w of both poultry 

and red meat mixtures (beef/pork). There was average recognition of 78.13% and average 

prediction of 64.72% for classification of poultry mixtures and average recognition of 89.62% and 

average prediction of 68.77% for classification of red meat mixtures. The cooked meat extraction 
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method also gave the best PLSR accuracies for predicting red meat mixtures with an R2CV of 

0.72 and RMSECV of 3.83% w/w but gave the worst accuracies for predicting poultry mixtures. 

Sensors HA, BB, ZZ, GA and JB were the most important sensors in discriminating the adulterated 

meat mixtures. The determined optimal dilution and extraction method can be explored for rapid 

meat quality control checks with the electronic tongue, however, the study is recommended to be 

extended with alternative set of meat mixtures, wide range of mixture concentrations to ascertain 

the reliability of the methods for all meat types. This may also help understand why the cooked 

meat extraction method worked better for PLSR prediction of beef mixtures compared to the 

poultry mixtures.  

At the lowest adulterant concentration of 0.5% w/w and irrespective of the protein base, 

benchtop spectrophotometer could classify all the different adulterant mixtures with accuracies of 

99.47% average recognition and 98.75% average prediction. Classification results using the 

handheld spectrophotometer yielded accuracies of 65.13% average recognition and 53.49% 

average prediction for the optical glass cuvette and average recognition 83.79% and average 

prediction 56.19% for the LDPE plastic bag. Benchtop spectrophotometer gave the best LDA 

accuracies for classifying single, dual, triple and quadruple mixtures of urea, glycine, taurine and 

melamine and that lowest concentration. of 0.5% w/w. Using the handheld spectrophotometer with 

LPDE plastic bag gave better accuracies than using the handheld spectrophotometer with optical 

glass. Using the benchtop spectrophotometer gave the best model for predicting protein powder 

concentrations in all the samples with R2CV 0.86, RMSECV 1.36% w/w, R2pred 0.87 and RMSEP 

1.30% w/w. Using the handheld spectrophotometer with optical glass gave R2CV 0.84, RMSECV 

1.38% w/w, R2pred 0.84 and RMSEP 1.38% w/w, for predicting protein powder concentrations in 

all the samples. Using the handheld spectrophotometer with optical LDPE plastic gave R2CV 0.86, 

RMSECV 1.39% w/w, R2pred 0.84 and RMSEP 1.47% w/w for predicting protein powder 

concentrations in all the samples. Based on the R2CV and RMSECV values using the LDPE plastic 

bag gave the results for predicting protein powder in the samples compared to using the handheld 

spectrophotometer with optical glass. They both however, had similar R2pred and RMSEP values. 

Using the benchtop spectrophotometer gave the best model for predicting protein powder 

concentrations in protein powder mixtures that contained only single adulterants of urea, glycine, 

taurine and melamine at concentrations of 0.5 – 3% w/w. There was R2CV 0.90, RMSECV 1.41% 

w/w, R2pred 0.93 and RMSEP 1.22% w/w. Using the handheld spectrophotometer with optical 

glass gave R2CV 0.84, RMSECV 1.18% w/w, R2pred 0.88 and RMSEP 1.58% w/w for predicting 

protein powder concentrations in protein powder mixtures that contained single mixtures of urea, 

glycine, taurine and melamine at concentrations of 0.5–3% w/w. Using the handheld 

spectrophotometer with optical LDPE plastic gave R2CV 0.91, RMSECV 1.36 w/w, R2pred 0.92 
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and RMSEP 1.33% w/w for predicting protein powder concentrations in protein powder mixtures 

that contained single mixtures of urea, glycine, taurine and melamine at concentrations of 0.5 – 

3% w/w. Based on the R2CV, RMSECV , R2pred and RMSEP values, using the LDPE plastic bag 

gave the results compared to using the handheld spectrophotometer with optical glass for 

predicting protein powder concentrations in protein powder mixtures that contained single 

mixtures of urea, glycine, taurine and melamine at concentrations of 0.5 – 3% w/w. 

Benchtop spectrophotometer yielded the lowest limit of detections (LOD’s) and limit 

of quantifications (LOQ’s) for quantifying urea, glycine, taurine and melamine in whey, beef and 

beef protein powder compared to when the handheld spectrophotometer was used. Comparatively, 

using the handheld spectrophotometer and optical glass yielded lower LODmin/max and 

LOQmin/max for some of the adulterants than when the handheld spectrophotometer was used 

with optical glass was used but samples scanned through the LDPE plastic bag, had a better 

repeatability when average LOD and LOQ’s were evaluated. Urea and melamine had the lowest 

LOD and LOQ irrespective of the instrument or scanning method. Taurine always had the highest 

LOD and LOQ irrespective of the instrument or scanning method. For future studies regarding 

protein powder adulteration, it is recommended to examine practically worthy levels of protein 

powder adulteration so that specific models may be developed for them with well-defined target 

accuracies. Assessing the factors that can influence the optical of the handheld spectrometer is 

very much recommended before starting experiments to obtain reliable experimental datasets. 
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7. NEW SCIENTIFIC RESULTS 

For purposes of these new scientific findings, benchtop spectrophotometer refers to the 

MetriNIR (MetriNIR, Research Development and Service Co., Budapest, Hungary) whereas, 

handheld spectrophotometer refers to the NIR-S-G1 (InnoSpectra Co., Hsinchu, Taiwan). E-

tongue refers to the Alpha Astree potentiometric electronic tongue (AlphaM.O.S, Toulouse, 

France) equipped with seven sensors developed for food application (BB, HA, ZZ, GA CA, JE, 

JB), a reference electrode and a 16 position auto sampler. 

1.  Authentic Tokaji Forditas II, Forditas I, Aszu II and Aszu I wines were scanned in 

transflectance mode with benchtop spectrophotometer (950-1650 nm) and handheld 

spectrophotometer (950-1400 nm) using a glass cuvette with layer thickness 0.4 mm. E-

tongue was also used to analyze the wines after 50% v/v aqua dilution. Classification models 

with linear discriminant analysis (LDA) and prediction models with partial least squares 

regression (PLSR) were developed using data from all the instruments.  

- Benchtop spectrophotometer could classify all the authentic wines with 100% accuracy. 

Sugar content of authentic wines was predicted with R2CV of 0.92 and RMSECV of 16.80 

g/L of wine.  

- Handheld spectrophotometer could classify the authentic wines with average cross-

validation accuracy of 94.48% with Forditas I (11.04%) and Aszu II (11.04%) being 

misclassified as Aszu I. Model developed to predict sugar content of authentic wines with 

the current setup of handheld spectrophotometer was unsatisfactory. 

-  E-tongue could classify all authentic wines with 100% correct accuracy and predict the 

sugar content of authentic wines with R2CV of 0.90 and RMSECV of 17.67 g/L of wine. 

2. Authentic Tokaji wines (Forditas II, Forditas I, Aszu II, Aszu I), adulterated Forditas I and 

Forditas II wines (add must concentrate to mimic authentic wine sugar concentration) and 

wine with added sucrose before refermentation were analyzed with spectrophotometers and 

e-tongue (after 50% v/v aqua dilution). The samples were scanned in transflectance mode with 

benchtop spectrophotometer (950-1650 nm) and handheld spectrophotometer (950-1400 nm) 

using a glass cuvette with layer thickness 0.4 mm. Classification models with linear 

discriminant analysis (LDA) and prediction models with partial least squares regression 

(PLSR) were developed using data from all the instruments.  

- Benchtop spectrophotometer could classify the different Forditas I and Forditas II wine 

mixtures with average cross-validation accuracies of 96.78% and 98.78%, respectively. 

There was no misclassification between authentic and adulterated wines.  
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- Handheld spectrophotometer could classify adulterated Forditas I and Forditas II wine 

mixtures with average cross-validation accuracy of 68.22% and 76.06%, respectively. 

There were misclassifications between authentic and adulterated wines in both Forditas I 

and Forditas II wine mixtures.  

- E-tongue could classify adulterated Forditas I and Forditas II wine mixtures with average 

cross-validation accuracies of 98.17% and 93.10%. There was no misclassification 

between authentic and adulterated wines in Forditas I wine mixtures. The wine containing 

sucrose before refermentation was the only adulterated wine misclassified (53.81%) as 

an authentic Tokaji wine (Forditas II wine). 

3. Raw meat extracts from 100%, 97%, 95%, 90% w/w turkey/chicken mixtures were obtained 

using aqua dilution levels of 0.5%, 1% and 2% w/v and analyzed using e-tongue. 

Classification models with linear discriminant analysis (LDA) and prediction models with 

partial least squares regression (PLSR) were developed using data from e-tongue. 

- E-tongue could classify turkey/chicken mixtures after 0.5%, 1% and 2% w/v dilution and 

predict turkey concentration with R2CV 0.65, 0.95, 0.81 and RMSECV 2.14% w/w, 

0.80% w/w 1.57% w/w for the respective dilution levels. Dilution level (1% w/v) was the 

optimum among the three tested dilution levels for e-tongue analysis. 

4. Raw meat extracts from 100%, 99%, 97%, 95%, 90% and 80% w/w poultry (turkey/chicken) 

and 100%, 99%, 97%, 95%, 90% and 80% w/w red meat (beef/pork) were obtained using raw 

meat/frozen meat/cooked extraction method and diluted to 1% w/v. Classification models 

with linear discriminant analysis (LDA) and prediction models with partial least squares 

regression (PLSR) were developed using data from e-tongue. 

- E-tongue could classify poultry mixtures with cross-validation of 58.35%, 62.55%, 

64.72% for raw meat, frozen meat, cooked meat extraction methods respectively, and 

predict them with R2CV 0.76, 0.81, 0.47 and RMSECV 3.34% w/w, 2.89% w/w and 

4.93% w/w respectively. 

- E-tongue could classify red meat mixtures with cross-validation of 54.25%, 56.41%, 

68.77% for raw meat, frozen meat, cooked meat extraction methods respectively, and 

predict them with R2CV 0.76, 0.81, 0.47 and RMSECV of 3.34% w/w, 2.89% w/w and 

4.93% w/w, respectively.  
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Whey, beef and pea protein powders were adulterated with urea, glycine, taurine and 

melamine at a total of 0.5%, 1%, 1.5%, 2%, 2.5% and 3% w/w adulteration using either single, 

dual, triple or quadruple mixture combinations (16 mixtures). The mixtures were scanned in 

diffuse reflectance mode using three setups: benchtop spectrophotometer with optical glass, 

handheld spectrophotometer with optical glass and handheld spectrophotometer with low density 

polyethylene (LDPE) plastic bag. Wavelength range for all three setups was 950-1650 nm.  

5. When only protein powder mixtures containing single adulterants were analyzed using linear 

discriminant analysis and predictions with independent data was performed using partial 

least squares regression: 

- All three setups could classify pure beef protein powder with 100% cross-validation 

accuracy.  

- Benchtop spectrophotometer with optical glass could classify pure whey protein 

powder with 89% cross-validation accuracy and 11% misclassification as protein powder 

samples containing melamine. Protein powder concentration in the mixtures could be 

predicted with R2CV 0.86, RMSECV 1.36% w/w, R2pred 0.87 and RMSEP 1.30% w/w 

respectively. 

- Handheld spectrophotometer with optical glass could classify pure whey and pure pea 

protein powder with 89% cross-validation accuracy each and 11% misclassification each 

as protein powder samples containing melamine. Protein powder concentration in the 

mixtures could be predicted with R2CV 0.84, RMSECV 1.38% w/w, R2pred 0.84 and 

RMSEP 1.38% w/w respectively. 

- Handheld spectrophotometer with LDPE plastic bag could classify pure whey and 

pure pea protein powder with 89% cross-validation accuracy each and 11% 

misclassification each as protein powder samples containing glycine. Protein powder 

concentration in the mixtures could be predicted with R2CV 0.86, RMSECV 1.39% w/w, 

R2pred 0.84 and RMSEP 1.47% w/w respectively. 

6. When only samples containing the lowest adulterant concentration of 0.5%w/w were analyzed 

using linear discriminant analysis:  

- Benchtop spectrophotometer with optical glass could classify all the different mixture 

combinations with average cross-validation accuracy of 98.75%. There was no 

misclassification between pure protein powders and all mixture combinations. 

- Handheld spectrophotometer with optical glass could classify all the different mixture 

combinations with average cross-validation accuracy of 53.49%. Pure whey, beef and pea 

protein powders could be classified with 66.89%, 100%, 89% accuracies respectively. 

There was 33.11% and 11% misclassification of pure whey and pea protein powder 

respectively as adulterated protein powder samples.  
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- Handheld spectrophotometer with LDPE plastic bag could classify all the different 

mixture combinations with average cross-validation accuracy of 56.19%. Pure whey, beef 

and pea protein powders could be classified with 66.89%, 66.89%, 89% accuracies 

respectively and misclassifications of 11.04%, 22.08% and 11% respectively as 

adulterated protein powder samples. Pure whey and pea protein powders showed 

misclassifications (11.04%) amongst themselves.  

7. When all mixtures were analyzed using partial least squares regression with leave-one-

sample-out cross-validation: 

- Benchtop spectrophotometer with optical glass could predict urea, glycine, taurine and 

melamine concentrations with R2CV 0.93, 0.87, 0.93, 0.93 and RMSECV 0.21, 0.97, 

0.94, 0.16% w/w respectively.  

- Handheld spectrophotometer with optical glass could predict urea, glycine, taurine and 

melamine concentrations with R2CV 0.89, 0.79, 0.86, 0.82 and RMSECV 0.27, 0.91, 

1.30, 0.23% w/w respectively. 

- Handheld spectrophotometer with LDPE plastic bag could predict urea, glycine, 

taurine and melamine concentrations with R2CV 0.91, 0.74, 0.79, 0.75 and RMSECV 

0.25, 1.09, 1.57, 0.29% w/w respectively.  

- All three setups could predict urea with the highest accuracy.  

8. When limit of detection was calculated for urea, glycine, taurine and melamine in all the 

mixtures: 

- Benchtop spectrophotometer with optical glass produced the lowest average limit of 

detections (LOD’s) 0.18%, 0.50%, 0.76% and 0.13% for urea, glycine, taurine and 

melamine respectively. Urea and melamine had average LOD’s below the minimum 

tested adulterant concentration of 0.5% w/w.  

- Handheld spectrophotometer with optical glass produced average limit of detections 

(LOD’s) of 0.52%, 1.35, 1.81% and 0.40% for urea, glycine, taurine and melamine 

respectively. Melamine had average LOD below the minimum tested adulterant 

concentration of 0.5% w/w.  

- Handheld spectrophotometer with LDPE plastic bag produced average limit of 

detections (LOD’s) of 0.27%, 1.02%, 1.42% and 0.24% for urea, glycine, taurine and 

melamine respectively. Urea and melamine had LOD’s below the minimum tested 

adulterant concentration of 0.5% w/w.  

- All three setups produced LOD’s in urea, taurine, glycine and melamine that were below 

the maximum tested adulterant concentration of 3% w/w. Taurine always had the highest 

LOD.  
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8. SUMMARY 

The great variability in food processing methods is a challenge for food quality control as 

food quality can be tampered with at any point of the production process. This is particularly a big 

issue for foods such wine, mean and protein powders with high economic value. This imposes 

great pressure on the industry to explore new emerging technologies for quality control. As many 

of the existing conventional methods, are tedious, invasive, expensive, time consuming and require 

high technical expertise. Advance methods such as near infrared spectroscopy (NIRS) and 

electronic tongue (e-tongue) are steadily gains grounds for their rapid, affordable, portable, easy 

to use and fingerprinting capabilities that can be used to track food adulteration. The goal of this 

thesis was to develop rapid techniques for the determination and prediction of foods with 

economical and global value using NIRS and e-tongue. The foods under focus were Tokaji wine, 

poultry (turkey and chicken), red meat (beef and pork) and protein powder concentrates. Linear 

discriminant analysis (LDA) was used to develop classification models to detect different forms 

of adulteration these foods while partial least squares regression (PLSR) was used to predict the 

adulterations. 

When authentic wines (in increasing order of quality): Tokaji Forditas II, Tokaji Forditas 

I, Tokaji Aszu II and Tokaji Aszu I were acquired from the Tokaji region of Hungary and analysed 

with the benchtop and handheld spectrophotometer, all the authentic wines could be classified 

(linear discriminant analysis) with 100% accuracy using the benchtop spectrophotometer at a 

wavelength range of 950-1650 nm. Handheld spectrophotometer could only classify authentic 

Tokaji Forditas I, Forditas II and Aszu II with 100% accuracy using the wavelength 950-1400 nm. 

The authentic wines could also, be predicted in Partial least squares regression with R2CV of 0.92 

and an RMSECV of 16.80 g/L of wine using the benchtop spectrophotometer at wavelength 950-

1650 nm. Handheld spectrophotometer produced unsatisfactory results for predicting sugar 

concentrations of the wines. Electronic tongue (e-tongue) analysis after 50% v/v aqua dilution 

showed that all authentic wines could be classified with 100% correct accuracy. They could also 

be predicted in PLS with R2CV of 0.90 and an RMSECV of 17.67 g/L. When authentic Tokaji 

Forditas I wine and Forditas II wine were adulterated with grape must concentrate and sucrose in 

different steps to mimic the sugar concentrations of the authentic wines, benchtop 

spectrophotometer could correctly classify the different Forditas I wine mixtures with average 

cross-validation accuracies of 96.78% and 98.78% for Forditas II wine mixtures. Handheld 

spectrophotometer could also, correctly classify adulterated Forditas I and Forditas II wine 

mixtures with average cross-validation accuracy of 68.22% and 76.06% respectively. Forditas I 

and Forditas II wine mixtures could also be classified with average cross-validation accuracies of 
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98.17% and 93.10% using the e-tongue. The results in this study signal a potential for using 

electronic-tongue and near infrared spectroscopy to track Tokaji wine adulteration. For practically 

on industrial basis, further may be required with higher sample numbers for more robust models. 

The setup of the handheld spectrophotometer used in this study should also be carefully considered 

and adapted to better experimental procedures if it is to be used to track Tokaji wine adulteration.  

Among the three tested dilution factors for the determination of optimum dilution for e-

tongue analysis, 1% w/v dilution found to produce the best LDA classification results of 100% 

accuracy for the discrimination of 100%, 97%, 95% and 90% w/w of poultry (turkey/chicken). It 

also produced the best PLSR accuracies for predicting the different poultry mixtures with an R2CV 

of 0.95 and RMSECV of 0.80% w/w. Using the optimum dilution factor of 1% w/v for the three 

tested meat extraction methods, the cooked meat extraction method produced the best results for 

classifying 100%, 99%, 97%, 95%, 90% and 80% w/w of both poultry and red meat mixtures 

(beef/pork). There was average recognition of 78.13% and average prediction 64.72% for 

classification of poultry mixtures and average recognition of 89.62% and average prediction 

68.77% for classification of red meat mixtures. The cooked meat extraction method also gave the 

best PLSR accuracies for predicting red meat mixtures with an R2CV of 0.72 and RMSECV of 

3.83% w/w but gave the worst accuracies for predicting poultry mixtures. Sensors HA, BB, ZZ, 

GA and JB were the most important sensors in discriminating the adulterated meat mixtures. The 

determined optimal dilution and extraction method can be explored for rapid meat quality control 

checks with the electronic tongue, however, the study is recommended to be extended with 

alternative set of meat mixtures, wide range of mixture concentrations to ascertain the reliability 

of the methods for all meat types. This may also help understand why the cooked meat extraction 

method worked better for PLSR prediction of beef mixtures compared to the poultry mixtures.  

At the lowest adulterant concentration of 0.5% w/w and irrespective of the protein base, 

benchtop spectrophotometer could classify all the different adulterant mixtures with accuracies of 

99.47% average recognition and 98.75% average prediction. Classification results using the 

handheld spectrophotometer yielded accuracies of 65.13% average recognition and 53.49% 

average prediction for the optical glass cuvette and average recognition 83.79% and average 

prediction 56.19% for the LDPE plastic bag. Benchtop spectrophotometer gave the best LDA 

accuracies for classifying single, dual, triple and quadruple mixtures of urea, glycine, taurine and 

melamine and that lowest concentration. of 0.5% w/w. Using the handheld spectrophotometer with 

LPDE plastic bag gave better accuracies than using the handheld spectrophotometer with optical 

glass. Using the benchtop spectrophotometer gave the best model for predicting protein powder 

concentrations in all the samples with R2CV 0.86, RMSECV 1.36% w/w, R2pred 0.87 and RMSEP 

1.30% w/w. Using the handheld spectrophotometer with optical glass gave R2CV 0.84, RMSECV 
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1.38% w/w, R2pred 0.84 and RMSEP 1.38% w/w for predicting protein powder concentrations in 

all the samples. Using the handheld spectrophotometer with optical LDPE plastic gave R2CV 0.86, 

RMSECV 1.39% w/w, R2pred 0.84 and RMSEP 1.47% w/w for predicting protein powder 

concentrations in all the samples. Based on the R2CV and RMSECV values using the LDPE plastic 

bag gave the results for predicting protein powder in the samples compared to using the handheld 

spectrophotometer with optical glass. They both however, had similar R2pred and RMSEP values. 

Using the benchtop spectrophotometer gave the best model for predicting protein powder 

concentrations in protein powder mixtures that contained only single adulterants of urea, glycine, 

taurine and melamine at concentrations of 0.5-3% w/w. There was R2CV 0.90, RMSECV 1.41% 

w/w, R2pred 0.93 and RMSEP 1.22% w/w. Using the handheld spectrophotometer with optical 

glass gave R2CV 0.84, RMSECV 1.18% w/w, R2pred 0.88 and RMSEP 1.58% w/w for predicting 

protein powder concentrations in protein powder mixtures that contained single mixtures of urea, 

glycine, taurine and melamine at concentrations of 0.5–3% w/w. Using the handheld 

spectrophotometer with optical LDPE plastic gave R2CV 0.91, RMSECV 1.36% w/w, R2pred 0.92 

and RMSEP 1.33% w/w for predicting protein powder concentrations in protein powder mixtures 

that contained single mixtures of urea, glycine, taurine and melamine at concentrations of 0.5-3% 

w/w. Based on the R2CV, RMSECV , R2pred and RMSEP values, using the LDPE plastic bag 

gave the results compared to using the handheld spectrophotometer with optical glass for 

predicting protein powder concentrations in protein powder mixtures that contained single 

mixtures of urea, glycine, taurine and melamine at concentrations of 0.5-3% w/w. 

Benchtop spectrophotometer yielded the lowest limit of detections (LOD’s) and limit 

of quantifications (LOQ’s) for quantifying urea, glycine, taurine and melamine in whey, beef and 

beef protein powder compared to when the handheld spectrophotometer was used. Comparatively, 

using the handheld spectrophotometer and optical glass yielded lower LODmin/max and 

LOQmin/max for some of the adulterants than when the handheld spectrophotometer was used 

with optical glass was used but samples scanned through the LDPE plastic bag, had a better 

repeatability when average LOD and LOQ’s were evaluated. Urea and melamine had the lowest 

LOD and LOQ irrespective of the instrument or scanning method. Taurine always had the highest 

LOD and LOQ irrespective of the instrument or scanning method. For future studies regarding 

protein powder adulteration, it is recommended to examine practically worthy levels of protein 

powder adulteration so that specific models may be developed for them with well-defined target 

accuracies.  
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10.2. A2 

Table 30: Confusion matrix using the benchtop spectrophotometer to classify authentic Tokaji wine and Forditas I wine that was adulterated with grape 

must concentrate and sucrose to mimic the sugar concentration of the authentic wines. Columns represent the actual class membership (%) and the rows 

represent the predicted class membership (%)   

Accuracies 

 Aszu_I Aszu_II Forditas_I Forditas_II Base_Sugar 

Forditas_I 

C1 

Forditas_I 

C2 

Forditas_I 

C3 

Forditas_I 

C4 

Average 

recognition 

97.01% 

Aszu_I 100 0 0 0 0 11.17 0 0 0 

Aszu_II 0 100 0 0 0 0 0 0 0 

Forditas_I 0 0 100 0 0 0 0 0 0 

Forditas_II 0 0 0 100 0 0 0 0 0 

Base_Sugar 0 0 0 0 100 0 0 0 15.8 

Forditas_I_C1 0 0 0 0 0 88.83 0 0 0 

Forditas_I_C2 0 0 0 0 0 0 100 0 0 

Forditas_I_C3 0 0 0 0 0 0 0 100 0 

Forditas_I_C4 0 0 0 0 0 0 0 0 84.2 

Average 

prediction 

96.18%  

Aszu_I 100 0 0 0 0 0 0 0 0 

Aszu_II 0 100 0 0 0 0 0 0 0 

Forditas_I 0 0 100 0 0 0 0 0 0 

Forditas_II 0 0 0 100 0 0 0 0 0 

Base_Sugar 0 0 0 0 100 0 0 11 12.41 

Forditas_I_C1 0 0 0 0 0 89 0 0 0 

Forditas_I_C2 0 0 0 0 0 11 100 0 0 

Forditas_I_C3 0 0 0 0 0 0 0 89 0 

Forditas_I_C4 0 0 0 0 0 0 0 0 87.59 
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Table 31: Confusion matrix using the handheld spectrophotometer to classify authentic Tokaji wine and Forditas I wine that was adulterated with grape 

must concentrate and sucrose to mimic the sugar concentration of the authentic wines. Columns represent the actual class membership (%) and the rows 

represent the predicted class membership (%)   

Accuracies 

 Aszu_I Aszu_II Forditas_I Forditas_II Base_Sugar 

Forditas_I 

C1 

Forditas_I 

C2 

Forditas_I 

C3 

Forditas_I 

C4 

Average 

recognition 

72.40% 

Aszu_I 59.97 0 0 5.5 33.33 5.51 16.67 0 0 

Aszu_II 0 83.33 0 0 11.17 0 0 8.25 30.72 

Forditas_I 0 0 100 16.67 0 0 0 0 0 

Forditas_II 10.04 0 0 66.67 0 0 0 0 0 

Base_Sugar 0 5.5 0 0 55.5 0 0 0 0 

Forditas_I_C1 0 0 0 0 0 66.78 0 0 0 

Forditas_I_C2 19.94 0 0 11.17 0 22.2 83.33 25 0 

Forditas_I_C3 10.04 11.17 0 0 0 5.51 0 66.75 0 

Forditas_I_C4 0 0 0 0 0 0 0 0 69.28 

Average 

prediction 

68.22%  

Aszu_I 70.18 0 11 0 33.44 11.04 11 0 0 

Aszu_II 0 77.93 0 0 11.04 0 0 16.5 40.12 

Forditas_I 0 0 89 22.33 0 0 0 0 0 

Forditas_II 9.94 0 0 66.67 0 0 0 0 0 

Base_Sugar 0 11.04 0 0 44.48 0 0 0 0 

Forditas_I_C1 0 0 0 0 11.04 66.89 0 0 0 

Forditas_I_C2 9.94 0 0 11 0 11.04 89 33.5 0 

Forditas_I_C3 9.94 11.04 0 0 0 11.04 0 50 0 

Forditas_I_C4 0 0 0 0 0 0 0 0 51.88 
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10.3. A3 

Table 32: Confusion matrix using the benchtop spectrophotometer to classify authentic Tokaji wine and Forditas II wine that was adulterated with grape 

must concentrate and sucrose to mimic the sugar concentration of the authentic wines. Columns represent the actual class membership (%) and the rows 

represent the predicted class membership (%)   

Accuracies 

 Aszu_I Aszu_II Forditas_I Forditas_II Base_Sugar 

Forditas_II 

C1 

Forditas_II 

C2 

Forditas_II 

C3 

Forditas_II 

C4 

Average 

recognition 

98.76% 

Aszu_I 100 0 0 0 0 0 0 0 0 

Aszu_II 0 100 0 0 0 0 0 0 0 

Forditas_I 0 0 100 0 0 0 0 0 0 

Forditas_II 0 0 0 100 0 0 0 0 0 

Base_Sugar 0 0 0 0 100 0 11.17 0 0 

Forditas_II_C1 0 0 0 0 0 100 0 0 0 

Forditas_II_C2 0 0 0 0 0 0 88.83 0 0 

Forditas_II_C3 0 0 0 0 0 0 0 100 0 

Forditas_II_C4 0 0 0 0 0 0 0 0 100 

Average 

prediction 

98.78%  

Aszu_I 100 0 0 0 0 0 0 0 0 

Aszu_II 0 100 0 0 0 0 0 0 0 

Forditas_I 0 0 100 0 0 0 0 0 0 

Forditas_II 0 0 0 100 0 0 0 0 0 

Base_Sugar 0 0 0 0 100 0 11 0 0 

Forditas_II_C1 0 0 0 0 0 100 0 0 0 

Forditas_II_C2 0 0 0 0 0 0 89 0 0 

Forditas_II_C3 0 0 0 0 0 0 0 100 0 

Forditas_II_C4 0 0 0 0 0 0 0 0 100 
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Table 33: Confusion matrix using the handheld spectrophotometer to classify authentic Tokaji wine and Forditas II wine that was adulterated with grape 

must concentrate and sucrose to mimic the sugar concentration of the authentic wines. Columns represent the actual class membership (%) and the rows 

represent the predicted class membership (%)   

Accuracies 

 Aszu_I Aszu_II Forditas_I Forditas_II Base_Sugar 

Forditas_II 

C1 

Forditas_II 

C2 

Forditas_II 

C3 

Forditas_II 

C4 

Average 

recognition 

81.87% 

Aszu_I 89.96 0 0 0 11.15 27.83 0 0 0 

Aszu_II 0 83.33 0 0 11.15 0 34.98 12.55 0 

Forditas_I 0 0 100 33.33 0 0 0 0 0 

Forditas_II 0 0 0 66.67 0 0 0 0 0 

Base_Sugar 0 11.17 0 0 77.7 5.5 0 0 0 

Forditas_II_C1 0 0 0 0 0 66.67 0 0 0 

Forditas_II_C2 0 0 0 0 0 0 65.02 0 0 

Forditas_II_C3 10.04 5.5 0 0 0 0 0 87.45 0 

Forditas_II_C4 0 0 0 0 0 0 0 0 100 

Average 

prediction 

76.07%  

Aszu_I 80.18 0 0 11.04 11 22.33 0 0 0 

Aszu_II 0 89 0 0 0 0 29.94 12.41 0 

Forditas_I 0 0 100 33.44 0 0 0 0 0 

Forditas_II 9.91 0 0 44.48 0 0 0 0 0 

Base_Sugar 0 11 0 11.04 66.67 11 20.06 0 0 

Forditas_II_C1 0 0 0 0 0 66.67 0 0 0 

Forditas_II_C2 0 0 0 0 22.33 0 50 0 0 

Forditas_II_C3 9.91 0 0 0 0 0 0 87.59 0 

Forditas_II_C4 0 0 0 0 0 0 0 0 100 
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10.4. A4 

Table 34: Confusion matrix using the electronic tongue to classify authentic Tokaji wine and Forditas I wine that was adulterated with grape must 

concentrate and sucrose to mimic the sugar concentration of the authentic wines. Columns represent the actual class membership (%) and the rows 

represent the predicted class membership (%)   

Accuracies 

 Aszu_I Aszu_II Forditas_I Forditas_II Base_Sugar 

Forditas_I 

C1 

Forditas_I 

C2 

Forditas_I 

C3 

Forditas_I 

C4 

Average 

recognition 

99.54% 

Aszu_I 100 0 0 0 0 0 0 0 0 

Aszu_II 0 100 0 0 0 0 0 0 0 

Forditas_I 0 0 100 0 0 0 0 0 0 

Forditas_II 0 0 0 100 0 0 0 0 0 

Base_Sugar 0 0 0 0 100 0 0 0 0 

Forditas_I_C1 0 0 0 0 0 100 0 0 0 

Forditas_I_C2 0 0 0 0 0 0 100 0 0 

Forditas_I_C3 0 0 0 0 0 0 0 100 4.12 

Forditas_I_C4 0 0 0 0 0 0 0 0 95.88 

Average 

prediction 

98.17%  

Aszu_I 100 0 0 0 0 0 0 0 0 

Aszu_II 0 100 0 0 0 0 0 0 0 

Forditas_I 0 0 100 0 0 0 0 0 0 

Forditas_II 0 0 0 100 0 0 0 0 0 

Base_Sugar 0 0 0 0 100 0 0 0 0 

Forditas_I_C1 0 0 0 0 0 100 0 0 0 

Forditas_I_C2 0 0 0 0 0 0 100 0 0 

Forditas_I_C3 0 0 0 0 0 0 0 91.75 8.25 

Forditas_I_C4 0 0 0 0 0 0 0 8.25 91.75 

 

  



123 

Table 35: Confusion matrix using the electronic tongue to classify authentic Tokaji wine and Forditas II wine that was adulterated with grape must 

concentrate and sucrose to mimic the sugar concentration of the authentic wines. Columns represent the actual class membership (%) and the rows 

represent the predicted class membership (%)   

Accuracies 

 Aszu_I Aszu_II Forditas_I Forditas_II Base_Sugar 

Forditas_II 

C1 

Forditas_II 

C2 

Forditas_II 

C3 

Forditas_II 

C4 

Average 

recognition 

100% 

Aszu_I 100 0 0 0 0 0 0 0 0 

Aszu_II 0 100 0 0 0 0 0 0 0 

Forditas_I 0 0 100 0 0 0 0 0 0 

Forditas_II 0 0 0 100 0 0 0 0 0 

Base_Sugar 0 0 0 0 100 0 0 0 0 

Forditas_II_C1 0 0 0 0 0 100 0 0 0 

Forditas_II_C2 0 0 0 0 0 0 100 0 0 

Forditas_II_C3 0 0 0 0 0 0 0 100 0 

Forditas_II_C4 0 0 0 0 0 0 0 0 100 

Average 

prediction 

93.17%  

Aszu_I 100 0 0 0 0 0 0 0 0 

Aszu_II 0 100 0 0 0 0 0 0 0 

Forditas_I 0 0 100 0 0 0 0 0 0 

Forditas_II 0 0 0 46.19 7.62 0 0 0 0 

Base_Sugar 0 0 0 53.81 92.38 0 0 0 0 

Forditas_II_C1 0 0 0 0 0 100 0 0 0 

Forditas_II_C2 0 0 0 0 0 0 100 0 0 

Forditas_II_C3 0 0 0 0 0 0 0 100 0 

Forditas_II_C4 0 0 0 0 0 0 0 0 100 
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10.5. A5 

Table 36: Electronic tongue signal correction using the additive correction relative to all samples 

(Kovacs et al., 2020) for datasets from the Tokaji wine experiment 

 With no drift correction With drift correction 

 Average 

recognition 

(%) 

Average 

Prediction (%) 

Average 

recognition (%) 

Average 

Prediction (%) 

Forditas I wine adulteration 98.66 94.32 99.54 98.16 

Forditas II wine adulteration 99.54 89.69 100 93.17 

 

 

10.6. A6 

Table 37: Electronic tongue signal correction using the additive correction relative to all samples 

(Kovacs et al., 2020) for datasets from the meat experiment for determination of optimal extraction 

method 

  

With drift correction With no drift correction 

  

Average 

recognition (%) 

Average Prediction 

(%) 

Average 

recognition (%) 

Average Prediction 

(%) 

Chicken 

and 

turkey 

mixtures 

Raw meat extraction with 

distilled water 

81.28 58.34 91.03 33.37 

Frozen meat extraction with 

distilled water 

88.58 62.55 72.92 31.25 

Meat extraction by cooking 

with distilled water 

78.13 64.72 77.07 39.61 

Pork and 

beef 

mixtures 

Raw meat extraction with 

distilled water 

67.73 54.25 53.16 18.81 

Frozen meat extraction with 

distilled water 

85.41 56.31 72.96 25.02 

Meat extraction by cooking 

with distilled water 

89.62 66.77 65.70 24.94 
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10.7. A7 

Table 38: Confusion matrix (calibration results) using the benchtop spectrophotometer and optical glass to classify authentic protein powders and 16 

different adulterated protein powder mixture containing urea, glycine, taurine and melamine at their lowest concentrations of 0.5%w/w. Columns 

represent the actual class membership (%) and the rows represent the predicted class membership (%). Average calibration: 99.47%  

 G GM GT GTM M 

Pure 

beef 

Pure 

pea 

Pure 

whey T TM U UG UGM UGT UGTM UM UT UTM 

G 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

GM 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

GT 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

GTM 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

M 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 

Pure beef 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 

Pure pea 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 

Pure whey 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 

T 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 

TM 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 

U 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 

UG 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 

UGM 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 

UGT 0 0 0 0 0 0 0 0 0 0 0 0 0 96.14 0 0 0 0 

UGTM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 98.17 0 3.72 0 

UM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 

UT 0 0 0 0 0 0 0 0 0 0 0 0 0 3.86 1.83 0 96.28 0 

UTM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 
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Table 39: Confusion matrix (prediction results) using the benchtop spectrophotometer and optical glass to classify authentic protein powders and 16 

different adulterated protein powder mixture containing urea, glycine, taurine and melamine at their lowest concentrations of 0.5%w/w. Columns 

represent the actual class membership (%) and the rows represent the predicted class membership (%). Average prediction: 98.75%   

 G GM GT GTM M 

Pure 

beef 

Pure 

pea 

Pure 

whey T TM U UG UGM UGT UGTM UM UT UTM 

G 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

GM 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

GT 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

GTM 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

M 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 

Pure beef 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 

Pure pea 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 

Pure whey 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 

T 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 

TM 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 

U 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 3.67 0 0 

UG 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 

UGM 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 

UGT 0 0 0 0 0 0 0 0 0 0 0 0 0 96.19 0 0 0 0 

UGTM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 7.44 0 

UM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 96.33 0 0 

UT 0 0 0 0 0 0 0 0 0 0 0 0 0 3.81 0 0 92.56 7.44 

UTM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 92.56 

 

  



127 

Table 40: Confusion matrix (calibration results) using the handheld spectrophotometer and optical glass to classify authentic protein powders and 16 

different adulterated protein powder mixture containing urea, glycine, taurine and melamine at their lowest concentrations of 0.5%w/w. Columns 

represent the actual class membership (%) and the rows represent the predicted class membership (%). Average calibration: 65.13%    

 G GM GT GTM M 

Pure 

beef 

Pure 

pea 

Pure 

whey T TM U UG UGM UGT UGTM UM UT UTM 

G 81.45 0 14.83 0 0 0 5.51 0 1.83 0 0 0 0 0 3.72 0 0 0 

GM 1.83 62.98 0 5.56 14.83 0 5.51 5.5 1.83 1.83 0 3.72 7.39 5.56 1.83 1.83 0 9.28 

GT 3.72 0 64.8 0 0 0 0 0 20.4 1.83 0 0 0 0 1.83 0 0 0 

GTM 0 0 3.72 55.59 0 0 0 0 3.72 7.39 0 0 1.83 7.39 1.83 0 0 3.72 

M 0 11.12 0 0 79.61 0 0 0 0 7.39 0 0 7.39 0 0 12.95 0 1.83 

Pure beef 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 1.83 0 0 

Pure pea 0 0 0 0 0 0 88.98 0 0 3.72 0 0 1.83 0 0 0 0 0 

Pure whey 9.27 1.83 5.55 1.83 0 0 0 94.5 1.83 0 0 0 0 0 0 0 0 1.83 

T 0 0 9.27 9.28 0 0 0 0 66.7 1.83 0 0 0 0 0 0 1.9 1.83 

TM 3.72 1.83 1.83 7.39 0 0 0 0 0 68.54 0 0 0 9.28 0 0 11.53 0 

U 0 0 0 0 0 0 0 0 0 0 63.67 1.83 3.72 1.83 0 20.4 5.76 0 

UG 0 1.83 0 1.83 0 0 0 0 0 0 5.46 70.39 22.23 5.56 3.72 3.72 5.76 0 

UGM 0 0 0 0 1.83 0 0 0 0 0 5.46 7.39 29.63 0 3.72 1.83 9.63 3.72 

UGT 0 14.84 0 7.39 0 0 0 0 0 0 0 5.56 14.84 51.86 7.39 0 15.39 0 

UGTM 0 1.83 0 5.56 0 0 0 0 1.83 3.72 0 5.56 5.56 9.28 62.94 3.72 9.63 7.39 

UM 0 0 0 0 0 0 0 0 0 0 18.17 1.83 3.72 1.83 3.72 44.47 3.86 1.83 

UT 0 3.72 0 1.83 0 0 0 0 1.83 0 0 0 0 5.56 3.72 1.83 26.92 9.28 

UTM 0 0 0 3.72 3.72 0 0 0 0 3.72 7.26 3.72 1.83 1.83 5.56 7.39 9.63 59.28 
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Table 41: Confusion matrix (prediction results) using the handheld spectrophotometer and optical glass to classify authentic protein powders and 15 

different adulterated protein powder mixture containing urea, glycine, taurine and melamine at their lowest concentrations of 0.5%w/w. Columns 

represent the actual class membership (%) and the rows represent the predicted class membership (%). Average prediction: 53.49%  

 G GM GT GTM M 

Pure 

beef 

Pure 

pea 

Pure 

whey T TM U UG UGM UGT UGTM UM UT UTM 

G 74.11 0 18.56 0 0 0 11 11.04 0 0 0 3.67 3.67 0 3.67 0 0 0 

GM 0 55.56 0 14.78 14.81 0 0 11.04 3.67 18.6 0 7.45 11.14 18.56 3.67 0 0 7.44 

GT 7.44 0 51.89 3.67 0 0 0 0 18.58 3.67 0 0 0 0 0 0 0 0 

GTM 0 3.67 3.67 29.67 0 0 0 0 3.67 3.67 0 0 0 7.44 3.67 0 0 11.1 

M 0 11.11 0 0 66.82 0 0 0 0 14.81 0 0 7.46 0 0 14.79 0 7.44 

Pure beef 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 3.67 0 0 

Pure pea 0 0 0 0 0 0 89 0 0 0 0 0 3.67 0 0 0 0 0 

Pure whey 14.78 3.67 3.67 0 0 0 0 66.89 0 0 0 0 3.67 0 0 0 0 0 

T 0 0 14.78 14.78 0 0 0 0 66.74 3.67 0 0 0 0 0 0 3.81 0 

TM 3.67 7.44 7.44 11.11 3.67 0 0 0 3.67 48.22 0 0 3.67 7.44 0 0 11.55 0 

U 0 0 0 0 3.67 0 0 0 0 0 61.48 3.67 7.46 0 3.67 25.92 7.74 0 

UG 0 7.44 0 0 0 0 0 0 0 0 7.73 70.41 14.81 3.67 3.67 3.67 11.55 0 

UGM 0 0 0 0 0 0 0 11.04 0 0 7.73 0 11.14 0 3.67 11.12 3.81 7.44 

UGT 0 0 0 7.44 0 0 0 0 3.67 0 0 0 14.81 37 11.14 0 23.09 11.1 

UGTM 0 7.44 0 7.44 3.67 0 0 0 0 3.67 0 3.67 11.14 11.11 52 3.67 15.36 3.66 

UM 0 0 0 0 3.67 0 0 0 0 0 15.34 0 3.67 3.67 0 29.7 0 7.44 

UT 0 3.67 0 3.67 3.67 0 0 0 0 0 0 0 3.67 7.44 3.67 0 15.36 7.44 

UTM 0 0 0 7.44 0 0 0 0 0 3.67 7.73 11.12 0 3.67 11.14 7.45 7.74 36.96 
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Table 42: Confusion matrix (calibration results) using the handheld spectrophotometer and LDPE plastic to classify authentic protein powders and 15 

different adulterated protein powder mixture containing urea, glycine, taurine and melamine at their lowest concentrations of 0.5%w/w. Columns 

represent the actual class membership (%) and the rows represent the predicted class membership (%). Average calibration: 83.79%    

 G GM GT GTM M 

Pure 

beef 

Pure 

pea 

Pure 

whey T TM U UG UGM UGT UGTM UM UT UTM 

G 83.36 0 7.39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

GM 2.06 81.55 0 11.11 3.72 0 0 0 0 1.84 0 0 5.56 2.36 1.65 0 1.83 1.83 

GT 0 3.72 75.99 3.72 0 0 0 0 9.11 5.56 0 0 0 2.36 5 0 0 0 

GTM 8.32 1.83 1.83 74.06 0 0 0 0 3.65 5.56 0 0 0 0 0 0 0 0 

M 0 0 0 0 94.44 0 0 0 0 3.73 0 0 1.83 0 3.35 0 0 0 

Pure beef 2.06 0 0 0 0 100 0 0 0 1.84 0 0 0 0 0 0 0 0 

Pure pea 0 1.83 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 

Pure whey 4.19 1.83 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 

T 0 0 7.39 0 0 0 0 0 87.24 0 0 0 0 0 0 0 3.72 1.83 

TM 0 0 5.56 11.11 0 0 0 0 0 57.45 0 0 3.72 0 5 0 0 3.72 

U 0 0 0 0 0 0 0 0 0 0 100 1.83 0 0 1.65 2.06 0 0 

UG 0 1.83 0 0 0 0 0 0 0 0 0 81.55 7.39 4.79 1.65 6.25 5.56 0 

UGM 0 0 0 0 1.83 0 0 0 0 0 0 9.28 62.94 4.79 1.65 0 3.72 3.72 

UGT 0 0 0 0 0 0 0 0 0 1.84 0 1.83 0 73.79 0 0 5.56 5.56 

UGTM 0 1.83 0 0 0 0 0 0 0 1.84 0 0 7.39 2.36 63.38 0 1.83 9.28 

UM 0 0 0 0 0 0 0 0 0 0 0 1.83 3.72 0 6.65 91.69 0 1.83 

UT 0 0 1.83 0 0 0 0 0 0 1.84 0 1.83 3.72 4.79 5 0 68.5 0 

UTM 0 5.56 0 0 0 0 0 0 0 18.52 0 1.83 3.72 4.79 5 0 9.28 72.22 



130 

Table 43: Confusion matrix (prediction results) using the handheld spectrophotometer and LDPE plastic to classify authentic protein powders and 16 

different adulterated protein powder mixture containing urea, glycine, taurine and melamine at their lowest concentrations of 0.5%w/w. Columns 

represent the actual class membership (%) and the rows represent the predicted class membership (%). Average prediction: 56.19%   

 G GM GT GTM M 

Pure 

beef 

Pure 

pea 

Pure 

whey T TM U UG UGM UGT UGTM UM UT UTM 

G 70.88 11.12 7.45 3.67 0 0 0 11.04 0 0 0 0 0 0 0 0 0 0 

GM 8.38 48.16 3.67 18.58 14.78 0 11.04 0 0 0 0 3.67 7.44 4.72 6.69 0 0 0 

GT 0 0 55.62 0 0 0 0 0 19.26 7.45 0 0 0 4.72 9.99 0 0 0 

GTM 4.12 7.45 3.67 37.04 0 0 0 0 7.73 11.12 0 0 0 0 0 0 7.44 11.12 

M 0 14.79 0 0 66.67 0 11.04 0 0 3.67 0 0 0 0 0 12.5 0 3.67 

Pure beef 4.12 0 0 7.45 0 89 0 11.04 0 3.67 0 0 3.67 0 0 0 0 3.67 

Pure pea 0 0 0 3.67 7.44 0 66.89 11.04 3.81 0 0 0 0 0 0 0 0 0 

Pure whey 12.5 3.67 0 0 0 0 11.04 66.89 0 0 0 0 0 0 0 0 0 0 

T 0 0 14.79 3.67 0 0 0 0 65.4 3.67 0 0 0 0 0 0 3.66 3.67 

TM 0 0 11.12 7.45 0 0 0 0 0 37.04 0 0 3.67 4.72 0 0 0 0 

U 0 0 0 0 0 0 0 0 0 0 95.88 3.67 0 0 3.3 16.62 3.66 0 

UG 0 0 0 0 0 0 0 0 0 0 4.12 55.56 7.44 9.59 6.69 8.38 18.53 7.45 

UGM 0 0 0 0 0 0 0 0 0 0 0 3.67 37 4.72 6.69 0 7.44 7.45 

UGT 0 3.67 3.67 11.12 0 0 0 0 3.81 3.67 0 7.44 3.67 33.33 0 0 7.44 0 

UGTM 0 7.45 0 3.67 0 0 0 0 0 7.45 0 7.44 18.56 4.72 29.97 0 0 3.67 

UM 0 0 0 0 0 0 0 0 0 0 0 11.11 7.44 0 9.99 58.38 0 3.67 

UT 0 0 0 3.67 0 0 0 0 0 7.45 0 7.44 0 23.89 9.99 0 40.73 18.58 

UTM 0 3.67 0 0 11.11 11 0 0 0 14.79 0 0 11.11 9.59 16.68 4.12 11.1 37.04 
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Table 44: PLSR models for adulterated whey protein powder samples scanned with the benchtop 

spectrophotometer and analyzed at the spectral range of 950-1650 nm 

Models Adulterant LV R2 RMSEC 

(% w/w) 

R2CV RMSECV 

(% w/w) 

Whole data Urea 5 0.93 0.22 0.88 0.29 

Glycine 7 0.91 0.63 0.84 0.86 

Taurine 10 0.93 0.86 0.84 1.40 

Melamine 5 0.92 0.17 0.87 0.21 

Only 

Single 

mixtures 

Urea 6 0.99 0.12 0.61 0.76 

Glycine 3 0.88 1.05 0.46 2.23 

Taurine 6 0.98 0.75 0.51 3.55 

Melamine 3 0.87 0.31 0.65 0.50 

Only Dual 

mixtures 

Urea 3 0.90 0.19 0.80 0.27 

Glycine 2 0.88 0.52 0.82 0.65 

Taurine 2 0.87 0.90 0.82 1.08 

Melamine 4 0.89 0.14 0.70 0.24 

Only 

Multiple 

mixtures 

Urea 3 0.85 0.15 0.79 0.17 

Glycine 7 0.89 0.32 0.79 0.45 

Taurine 3 0.83 0.67 0.78 0.76 

Melamine 10 0.95 0.06 0.77 0.13 

Table 45: PLSR models for adulterated whey protein powder samples scanned with the handheld 

spectrophotometer through the optical glass and analyzed at the spectral range of 950-1650 nm 

Model 

dataset 

Predicted 

adulterant 

LV R2 RMSEC (% 

w/w) 

R2CV RMSECV 

(% w/w) 

Whole data Urea 17 0.94 0.19 0.89 0.27 

Glycine 13 0.84 0.83 0.79 0.93 

Taurine 11 0.86 1.31 0.81 1.52 

Melamine 14 0.89 0.19 0.82 0.25 

Only 

Single 

mixtures 

Urea 7 0.92 0.34 0.84 0.49 

Glycine 7 0.82 1.32 0.74 1.59 

Taurine 6 0.80 2.29 0.61 3.24 

Melamine 6 0.86 0.32 0.59 0.55 

Only Dual 

mixtures 

Urea 7 0.88 0.26 0.85 0.29 

Glycine 10 0.81 0.73 0.68 0.95 

Taurine 7 0.81 1.39 0.71 1.69 

Melamine 7 0.83 0.22 0.77 0.25 

Only 

Multiple 

mixtures 

Urea 10 0.88 0.16 0.79 0.21 

Glycine 12 0.83 0.49 0.69 0.65 

Taurine 10 0.82 0.83 0.67 1.12 

Melamine 11 0.81 0.14 0.68 0.19 

 

  



132 

Table 46: PLSR models for adulterated whey protein powder samples scanned with the handheld 

spectrophotometer through the LDPE plastic bag and analyzed at the spectral range of 950-1650 

nm. 

Model 

dataset 

Predicted 

adulterant 

LV R2 RMSEC (% 

w/w) 

R2CV RMSECV 

(% w/w) 

Whole data Urea 11 0.95 0.19 0.92 0.23 

Glycine 17 0.86 0.79 0.74 1.09 

Taurine 13 0.85 1.37 0.78 1.66 

Melamine 8 0.82 0.26 0.78 0.28 

Only 

Single 

mixtures 

Urea 5 0.96 0.24 0.92 0.35 

Glycine 5 0.79 1.40 0.67 1.79 

Taurine 4 0.87 1.87 0.60 3.27 

Melamine 5 0.92 0.25 0.84 0.35 

Only Dual 

mixtures 

Urea 7 0.95 0.18 0.91 0.23 

Glycine 7 0.85 0.75 0.78 0.89 

Taurine 8 0.88 1.12 0.80 1.42 

Melamine 7 0.87 0.19 0.83 0.22 

Only 

Multiple 

mixtures 

Urea 6 0.90 0.15 0.83 0.19 

Glycine 10 0.74 0.62 0.49 0.86  

Taurine 8 0.74 0.98 0.57 1.27 

Melamine 8 0.73 0.17 0.54 0.23 

Table 47: PLSR models for adulterated beef protein powder samples scanned with the benchtop 

spectrophotometer and analyzed at the spectral range of 950-1650 nm 

Models Adulterant LV R2 RMSEC 

(% w/w) 

R2CV RMSECV 

(% w/w) 

Whole data Urea 8 0.95 0.19 0.85 0.33 

Glycine 4 0.90 0.68 0.83 0.90 

Taurine 12 0.98 0.53 0.87 1.25 

Melamine 5 0.75 0.29 0.52 0.41 

Only 

Single 

mixtures 

Urea 1 0.87 0.44 0.26 1.05 

Glycine 6 0.99 0.16 0.22 2.69 

Taurine 6 0.99 0.24 0.69 2.84 

Melamine 2 0.95 0.19 0.74 0.44 

Only Dual 

mixtures 

Urea 3 0.92 0.17 0.84 0.24 

Glycine 6 0.95 0.34 0.54 1.04 

Taurine 3 0.87 0.90 0.69 1.40 

Melamine 3 0.88 0.15 0.78 0.19 

Only 

Multiple 

mixtures 

Urea 3 0.87 0.14 0.81 0.17 

Glycine 12 0.99 0.10 0.79 0.45 

Taurine 4 0.87 0.59 0.79 0.74 

Melamine 3 0.82 0.11 0.74 0.14 
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Table 48: PLSR models for adulterated beef protein powder samples scanned with the handheld 

spectrophotometer through the optical glass and analyzed at the spectral range of 950-1650 nm. 

Model 

dataset 

Predicted 

adulterant 

LV R2 RMSEC (% 

w/w) 

R2CV RMSECV 

(% w/w) 

Whole data Urea 15 0.92 0.24 0.89 0.27 

Glycine 9 0.83 0.84 0.79 0.94 

Taurine 13 0.88 1.24 0.83 1.44 

Melamine 13 0.78 0.28 0.70 0.32 

Only 

Single 

mixtures 

Urea 7 0.92 0.35 0.76 0.61 

Glycine 6 0.91 0.92 0.85 1.22 

Taurine 7 0.90 1.63 0.74 2.65 

Melamine 7 0.85 0.33 0.68 0.49 

Only Dual 

mixtures 

Urea 7 0.86 0.29 0.79 0.34 

Glycine 9 0.76 0.83 0.62 1.04 

Taurine 7 0.83 1.32 0.74 1.61 

Melamine 7 0.66 0.31 0.34 0.43 

Only 

Multiple 

mixtures 

Urea 13 0.86 0.18 0.75 0.24 

Glycine 9 0.81 0.51 0.75 0.59 

Taurine 9 0.81 0.85 0.69 1.08 

Melamine 12 0.78 0.15 0.61 0.20 

Table 49: PLSR models for adulterated beef protein powder samples scanned with the handheld 

spectrophotometer through the LDPE plastic bag and analyzed at the spectral range of 950-1650 

nm 

Model 

dataset 

Predicted 

adulterant 

LV R2 RMSEC (% 

w/w) 

R2CV RMSECV 

(% w/w) 

Whole data Urea 17 0.94 0.19 0.93 0.23 

Glycine 16 0.79 0.97 0.73 1.11 

Taurine 16 0.82 1.48 0.75 1.74 

Melamine 13 0.74 0.31 0.66 0.35 

Only 

Single 

mixtures 

Urea 7 0.92 0.37 0.79 0.57 

Glycine 5 0.82 1.34 0.72 1.68 

Taurine 7 0.88 1.77 0.64 3.09 

Melamine 7 0.84 0.35 0.74 0.45 

Only Dual 

mixtures 

Urea 7 0.84 0.31 0.79 0.35 

Glycine 7 0.71 1.03 0.58 1.23 

Taurine 8 0.83 1.33 0.75 1.61 

Melamine 7 0.60 0.34 0.23 0.47 

Only 

Multiple 

mixtures 

Urea 11 0.89 0.15 0.82 0.19 

Glycine 12 0.62 0.73 0.39 0.93  

Taurine 19 0.83 0.78 0.61 1.19 

Melamine 12 0.71 0.18 0.51 0.23 
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Table 50: PLSR models for adulterated pea protein powder samples scanned with the benchtop 

spectrophotometer and analyzed at the spectral range of 950-1650 nm 

Models Adulterant LV R2 RMSEC 

(% w/w) 

R2CV RMSECV 

(% w/w) 

(1) Whole 

data 

Urea 5 0.93 0.22 0.88 0.29 

Glycine 3 0.92 0.64 0.85 0.89 

Taurine 6 0.93 0.97 0.85 1.34 

Melamine 5 0.92 0.16 0.89 0.19 

Only 

Single 

mixtures 

Urea 1 0.89 0.39 0.60 0.76 

Glycine 4 0.97 0.55 0.48 2.28 

Taurine 1 0.88 1.73 0.41 3.90 

Melamine 1 0.88 0.29 0.71 0.46 

Only Dual 

mixtures 

Urea 3 0.91 0.18 0.84 0.25 

Glycine 4 0.94 0.38 0.80 0.68 

Taurine 3 0.88 0.86 0.77 1.21 

Melamine 3 0.91 0.13 0.83 0.17 

Only 

Multiple 

mixtures 

Urea 3 0.85 0.15 0.79 0.18 

Glycine 4 0.88 0.33 0.82 0.42 

Taurine 2 0.85 0.64 0.79 0.74 

Melamine 4 0.83 0.11 0.75 0.14 

Table 51: PLSR models for adulterated pea protein powder samples scanned with the handheld 

spectrophotometer through the optical glass and analyzed at the spectral range of 950-1650 nm 

Model 

dataset 

Predicted 

adulterant 

LV R2 RMSEC (% 

w/w) 

R2CV RMSECV 

(% w/w) 

Whole data Urea 17 0.93 0.22 0.91 0.25 

Glycine 16 0.85 0.78 0.81 0.88 

Taurine 16 0.89 1.13 0.86 1.31 

Melamine 16 0.87 0.21 0.84 0.24 

Only 

Single 

mixtures 

Urea 7 0.92 0.34 0.85 0.48 

Glycine 7 0.89 1.04 0.82 1.33 

Taurine 7 0.91 1.55 0.82 2.20 

Melamine 7 0.89 0.29 0.80 0.39 

Only Dual 

mixtures 

Urea 7 0.89 0.25 0.83 0.31 

Glycine 10 0.79 0.76 0.70 0.92 

Taurine 7 0.85 1.21 0.80 1.41 

Melamine 7 0.78 0.25 0.71 0.29 

Only 

Multiple 

mixtures 

Urea 13 0.86 0.17 0.74 0.24 

Glycine 11 0.78 0.55 0.67 0.67 

Taurine 9 0.78 0.91 0.69 1.08 

Melamine 12 0.75 0.16 0.62 0.20 
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Table 52: PLSR models for adulterated pea protein powder samples scanned with the handheld 

spectrophotometer through the LDPE plastic bag and analyzed at the spectral range of 950-1650 

nm 

Model 

dataset 

Predicted 

adulterant 

LV R2 RMSEC (% 

w/w) 

R2CV RMSECV 

(% w/w) 

 Whole 

data 

Urea 13 0.92 0.22 0.91 0.25 

Glycine 16 0.83 0.88 0.77 1.01 

Taurine 17 0.82 1.50 0.77 1.69 

Melamine 16 0.83 0.24 0.78 0.27 

Only 

Single 

mixtures 

Urea 7 0.95 0.28 0.85 0.48 

Glycine 7 0.89 1.04 0.82 1.31 

Taurine 6 0.89 1.70 0.74 2.62 

Melamine 7 0.89 0.28 0.68 0.49 

Only Dual 

mixtures 

Urea 7 0.90 0.23 0.86 0.28 

Glycine 7 0.77 0.92 0.68 1.09 

Taurine 8 0.82 1.37 0.73 1.67 

Melamine 7 0.79 0.24 0.74 0.27 

Only 

Multiple 

mixtures 

Urea 12 0.84 0.19 0.77 0.23 

Glycine 12 0.65 0.71 0.34 0.96  

Taurine 11 0.67 1.13 0.52 1.37 

Melamine 11 0.70 0.18 0.52 0.23 
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