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1. Introduction 

Soil quality and fertility are vital for soil scientists, decision-makers, farmers, etc. Thus, it is critical 

to recognise, monitor, and store soil physical and chemical attributes using innovative approaches. 

In this way, demands for soil-related information have risen substantially, and there is ample 

evidence that soil information systems are required to satisfy the growing need for soil data 

(Bullock & Montanarella, 1987). Soil information systems must rely on accurate, reliable, good 

quality and updated soil information. Updating soil information systems has to include alternative 

laboratory technologies to support soil data analysis's time, cost-effectiveness, and environment-

friendliness. Spectroscopic methods are promising and have demonstrated several advantages over 

wet chemistry methods, making them more extensively used in the soil research community, 

notably in soil analysis such as do not require the use of chemical extracts that might harm the 

environment (Rossel et al., 2006), permits rapid acquiring of soil data and attributes prediction. 

The added benefit is that numerous soil attributes can be simultaneously estimated from a single 

spectrum (Rossel et al., 2006). The mid-infrared spectral library database has been usefully applied 

to building statistical models for predictions of various chemical, physical, and biological soil 

properties (Terra et al., 2015). It is also used for applications of soil remote sensing (Deng et al., 

2013) and digital soil mapping (DSM). 

DSM provides a widely accepted framework to map the spatial patterns of soil properties across 

various spatial and temporal scales (Wiesmeier et al., 2011). The use of environmental covariates 

(DEM, climate data and geology map) and the availability of high-resolution remote sensing data 

besides soil spectroscopy gives chances for faster and more cost-effective soil attribute estimates 

and mapping. The correlation of the MIR spectral library, and environmental covariates such as 

remote sensing in DSM approaches has been shown to accurately estimate and map many soil 

attributes such as soil organic carbon, soil texture, CaCO3 and CEC that it can be used to increase 

DSM prediction accuracy (Goydaragh et al., 2021; Rossel et al., 2016).   

Updating soil information systems using the MIR spectral library and applications this technology 

is not a standard yet. Despite the reflectance spectroscopy approach being used for soil analysis in 

Hungary, there is no evidence of the existence of national spectral libraries that include a wide 

diversity of soils. The potential use of this MIR spectral library for DSM has yet to be intensively 

explored (Mirzaeitalarposhti et al., 2017). Few research studies have considered using 

environmental covariates and national MIR spectral libraries, including a wide diversity of soils, 
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for mapping SOC. Such lack of information opens up additional opportunities for study and 

research to take advantage of its applications, such as soil properties prediction and mapping. 

1.1 Research Objectives 

This study aims to put the basics of the mid-infrared spectral library in Hungary and test different 

soil science applications based on it. To achieve this aim, the following objectives were defined. 

1.1.1 General Objectives 

1. To test the use of mid-infrared diffuse reflectance spectroscopy and PLSR model techniques in 

legacy soil sample data at different scenario levels for predicting soil properties. 

2. To test the use of soil mid-infrared spectroscopy data for digital soil mapping.  

3. To compare the mid-infrared spectroscopy data for digital soil mapping with wet chemistry 

data for digital soil mapping. 

1.1.2 Specific Objectives 

1. Contribution to the development of the first Hungarian mid-infrared spectral library. 

2. Build multivariate statistical models using PLSR for different classification scenarios (samples 

classified on the “10 counties” scale, the county scale, and according to main soil types). 

3. Test the predictive capacity of the developed spectral library in the spectral-based estimation of 

key physical and chemical soil properties (SOC, soil texture, CaCO3, CEC, exchangeable Ca and 

Mg and water pH). 

4. Test the predictive capacity of the developed spectral library and environmental covariates for 

spatial mapping of SOC content to target depths of 0 – 30 cm by using DSM techniques (with five 

different models) at the 10-county scale. 

5. Test the predictive capacity of the traditional wet chemistry and environmental covariates for 

spatial mapping of SOC content to target depths of 0 – 30 cm by using DSM techniques (with five 

different models) at the 10-county scale. 

6. Comparison of the SOC map generated from the MIR spectral dataset with the SOC map 

produced from the traditional wet chemistry dataset. 
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2. Materials and methods 

2.1 MIR spectral library and soil properties prediction 

This section describes the data resources to build the MIR spectral library, scanning soil samples, 

pre-processing spectral data, building soil properties prediction models and model performance 

accuracy. Figure 1. Shows the schematic representation of the workflow. 

2.1.1 Resources of data and the MIR spectral library 

The samples for the MIR spectral analysis were collected from soil archives of laboratories 

(Velence, Szolnok) of the Soil Information and Monitoring System (SIMS). A total of 2200 

samples representing Ten Hungarian Counties, 542 sampling locations out of the 1236 and the first 

year of the SIMS survey (1992) were relocated for spectral reading between 2019 and 2020. The 

Ten counties are the following: Baranya, Fejér, Komárom-Esztergom, Nógrád, Pest, Tolna, Bács-

Kiskun, Békés, Csongrád and Jász-Nagykun-Szolnok (Figure 2). 

2.1.2 Preparation and scanning of soil samples 

300 g of each sample from SIMS archives were packaged in plastic bags and shipped to the 

Hungarian University of Agriculture and Life Sciences (MATE) soil laboratory, Department of 

Soil Science, Gödöllő. Coning and quartering were used to obtain 20 g of soil subsamples, which 

were then fine-grinded by hand using an agate pestle and mortar. The prepared soil samples were 

put into aluminium sample cups, and the loaded samples were placed in the sample holding tray 

one by one.  

2.1.3 Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFT) 

The Bruker Alpha II Fourier Transform Infrared Spectrometer (FTIR), with a spectral range of 

2500 – 25000 nm (4000 – 400 cm-1), was used to scan the 2200 soil samples given for this study. 

A scan of the gold background was taken before the measurement of each sample to account for 

variations in temperature and moisture content. Every soil sample was read three times using three 

subsamples, and each spectrum was produced from 48 scans. The information collected for all 

spectra was saved with the FTIR spectrometer OPUS software.  

Soil reference data that contains physical and chemical soil parameters were determined at the 

horizon level using conventional laboratory methods in the frame of the SIMS project and have 

been stored in the project database since 1992. The conventional database was subjected to quality 

and consistency checks before being used as soil reference data for calibration models.
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Figure 1. Flowchart of the main methodology step 

 

 

 



2.1.4 Spectral data pre-processing and outliers detection 

Absorbance spectra were pre-processed with a moving average window of 17 bands to remove 

noise that represents random fluctuations in the signal. 

Principal Component Analysis (PCA) was applied to reduce the dimensionality of the spectral 

dataset. Outlier detection was checked and calculated using the principal component scores of 

spectral data using the Mahalanobis distance method. The samples with a Mahalanobis 

dissimilarity larger than 1 were considered outliers based on standard arbitrary threshold methods. 

2.1.5 Calibration sample selection  

Kennard-Stone sampling (KSS), k-means sampling (KMS), and Latin Hypercube sampling (LHS) 

methods were applied to the spectral library for an estimated optimum number of calibration 

datasets using representativity plots. Kennard-Stone Sampling (KSS) method was selected to 

determine the samples for calibration sets - where the curve „flattens out”. The remaining samples 

were retained as the validation set. 

2.1.6 Building of spectral prediction models and models performance  

The mid-infrared spectral library and soil reference data, including the depths of horizons, were 

merged into one dataset. The dataset was split into three modelling scenarios: “10 counties”, 

“County”, and “main soil type”. The dataset was split into calibration and validation sets in each 

scenario, and individual spectral models were established. In this research, Partial Least Squares 

Regression (PLSR) was fitted between MIR spectral data and reference laboratory soil data using 

the highest number of principal components and the oscorespls method (Wadoux et al., 2020). 

Coefficient of determination (R2), ratio performance to deviation (RPD) and root mean square 

error (RMSE) were used to determine the goodness and inaccuracy of the model's predictions 

based on the testing dataset. 

R Software (R Core Team, 2022) was used for spectral visualization, analysis, modelling processes 

and goodness measurement of prediction and validation models.  

2.2 Soil organic carbon (SOC) content mapping 

This section deals with SOC content mapping based on the MIR spectral library and wet chemistry, 

which describes the harmonisation of soil profile data, download and pre-processing of 

environmental covariates, modelling, and prediction of SOC. Figure 1 shows the schematic 

representation of the workflow. 
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2.2.1 Study area 

The study area was in Hungary's central region, representing 10 Hungarian counties including 

Baranya, Fejer, Komarom Esztergom, Nograd, Pest, Tolna, Bacs-Kiskun, Bekes, Csongrad and 

Jasz-Nagykun-Szolnok. It bounded approximately between the 46.010°N and 48. 010°N latitudes 

and 16. 010°E and 22. 010°E longitudes and covers around 27,236 km (Figure 2). 

 

Figure 2. Study area location map and points distribution 

2.2.2 Build and harmonize soil database  

Two soil datasets were prepared and used to produce digital soil maps for this study. First, the wet 

chemistry SOC content dataset (soil reference data) was used to build a model and create a SOC 

map. Secondly, the predicted SOC content dataset from the MIR spectral library (first section of 

materials and methods) was used to build a model for mapping SOC as a novel technique instead 

of traditional laboratory methods. The main soil dataset used in this study is made up of a total of 

2200 soil samples, corresponding to horizons of 542 soil profiles. The SOC map from the wet 

chemistry dataset was used only for comparison, and the accuracy of the predicted SOC map from 

MIR data was checked. 
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The spline fitting method was used as pre-treatment for both SOC point datasets with lambda 0.1 

to standardize depths from 0 to 30 cm. The two soil datasets at depth 0 – 30 were transformed into 

spatial data using a Coordinate Reference System CRC (EPSG: 4326 - WGS 84) and used as a soil 

database for this study.   

2.2.3 Environmental covariates 

A set of 21 environmental covariates was used for this study (Table. 1). These attributes were 

checked to be consistent with the SCORPAN model proposed by (McBratney et al., 2003). 

Environmental covariates were derived from different spatial datasets to effectively represent each 

key soil-forming factor, including climate, organisms, relief, parent material and spatial location 

that affect soil organic carbon spatial variation. As the same as the SOC points dataset, 

environmental covariate layers were projected to a Coordinate Reference System (EPSG: 4326 - 

WGS 84) at a spatial resolution of 30 m. All environmental covariates were re-projected to a 

coordinate reference system, resampled to Landsat5 (TM), stacked in one raster layer, and then 

intersected with the SOC content point datasets. 

2.2.4 Data evaluation and assessment 

Pearson's correlation coefficients between 21 environmental covariates and both SOC datasets 

were calculated separately to quantify the linear relationship between the environmental variables 

with SOC value. 

Table.1. Summary of environmental covariates used in the prediction of SOC content 

Type Source Format Name Resolution 

Relief ALOS World 3D 

Global Digital Surface Model 

Geo-Tiff DEM 30 m 

Aspect 30 m 

Plan Curvature 30 m 

Profile Curvature 30 m 

Slope 30 m 

Topographic Wetness Index 30 m 

Channel Network Distance 30 m 

Valley depth 30 m 

Organism USGS EarthExplorer Geo-Tiff Landsat 5– band1 (450-520 nm) 30 m 

Landsat 5 - band2 (520-600 nm) 30 m 

Landsat 5 - band3 (630-690 nm) 30 m 

Landsat 5 - band4 (760-900 nm) 30 m 

Landsat 5 - band5 (1550-1750 nm) 30 m 

Landsat 5 -band6 (10400-12500 nm) 30 m 

Landsat 5 - band7 (2080-2350 nm). 30 m 

USGS EarthExplorer Geo-Tiff NDVI 30 m 

GlobeLand30 Geo-Tiff Landcover 30 m 

Climate WorldClim 

1970-2000 

Geo-Tiff Precipitation (mm) 1000 m 

Temperature avg (°C) 1000 m 

Temperature max (°C) 1000 m 

Temperature min (°C) 1000 m 
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2.2.5 Modelling SOC content and spatial prediction map 

In this study, two different modelling scenarios were prepared. The first included environmental 

covariates and a predicted SOC content dataset, while the second contained environmental 

covariates and a wet chemistry SOC content dataset (referenced). A set of models was fitted and 

compared for the two scenarios, including random forest (RF), stochastic gradient boosting 

machine (gbm), support vector machine (SVM), extreme gradient boosting machine (xgboost) and 

generalized linear model (GLM). Random forest models were chosen and used to establish 

relationships between the environmental covariates and the soil database based on training datasets 

(70%) to predict and map SOC content for both datasets spatially. Final fitted random forest models 

were used to predict the nodes of a 30 cm grid using covariate table methods described in (Malone 

et al., 2017, p. 126). 

2.2.6 Validation and models goodness 

Performance models were examined based on validation datasets (30%) using a set of accuracy 

metrics commonly used in digital soil mapping: root mean square error (RMSE), coefficient of 

determination (R2), and mean squared error (MSE). 

R environment (R Core Team, 2022) was used to build and perform the models. 
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3. Results and discussion 

3.1 The results of the Hungarian MIR spectral library and soil property prediction 

3.1.1 Visual interpretation of the recorded spectra 

The Hungarian MIR spectral library of 2200 soil samples at various depths is represented in Figure 

3. The minimum and maximum absorption values recorded from the many sites showed wide 

variations in absorption intensities. Differences in physical and chemical soil properties impact the 

shape of the spectrum curves. Despite, the presence of spectral library overlapping bands, several 

absorption bands linked to certain functional groupings were identified. The hydroxyl stretching 

vibrations of kaolinite, smectite, and illite are thought to be responsible for the absorption bands 

between 3800 and 3600 (1/cm). 

 

Figure 3. Absorbance mid-infrared spectral library data   

Bands around 2592, 2515 and 720 (1/cm) were attributed to calcite while the peaks at 2510, 1479-

1408 and 887-866 (1/cm) were assigned to carbonates. The existence of quartz was recognized by 

absorption bands at about 2000, 1870 and 1790 (1/cm) respectively. Even though soil organic 

matter spectra include vast and overlapping regions, the spectra showed some bands of SOM 

function groups such as 2930, 2850, 1720-1700 and1640-1530 (1/cm). 
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3.1.2 Summary statistics of spectral library soil attributes 

The spectral dataset's soil attributes showed wide-ranging distributions, many skewed from the 

normal distribution. These factors were expected in this database because to samples were derived 

from different depths and horizons of soil types at wide spatial variability covering several 

variations of climatic conditions, geological formation and parent material, land cover and human 

activity.  

3.1.3 Principle Component Analysis – Outlier detection 

In this study, the first three PCs accounted for 63 % of the variance in the spectral data. In soil type 

levels, the PC1 accounted for most of the variability in the spectral data, and it ranged between 33 

- 34 %, while the other successive components (PC2 and PC3) explain a smaller percentage of the 

remaining variability in the data, and it ranged between 11 - 21%. For the counties scale, the 

variance in PC1 ranged from 32 - 36%, and the remaining PC2 and PC3 together ranged between 

10 to 19 %. These few components with lower dimensions explained the variation in the spectral 

data and showed also different spectral distribution patterns in the counties. 

Eight samples were observed as outliers at the “10 county” level. Among spectral data from 10 

Hungarian counties, only two sample outliers were detected in Pest County and one outlier in Fejer 

and Tolna counties, respectively. Also, one sample was detected as an outlier in Meadow soils and 

skeletal soils in terms of soil types. 

3.1.4 Prediction of soil properties for “10 county”, “county” and “main soil types” Models 

3.1.4.1 Soil organic carbon content (SOC) 

The models' performance assessment of SOC showed high prediction accuracies for most of the 

calibration and validation dataset scenarios. The “10 counties” carbon content produced good 

models in both the calibration set (R2 of 0.81, RPD of 2.23 and RMSE of 0.5) and validation set 

(R2: 0.80, RPD: 2.28 and RMSE: 0.46). For main soil types, the SOC content was accurately 

predicted with R2 ranging from 0.99 to 0.76 and RMSE from 0.09 - 0.55 in the calibration model, 

while R2 and RMSE varied from 0.88 – 0.68 and 0.35 to 0.50, respectively, in the validation model. 

For county scenarios, SOC prediction within 10 counties showed that six counties had R2 ≥ 0.90, 

while only two counties had R2 < 0.75 in the calibration set, while in the validation set, six counties 

had R2 ≥ 0.75. Variations in results were due to the variety of soil types and different land 

management practices in these counties. Similar results with a high prediction model for SOC were 

found in some spectral libraries studies by (Baumann et al., 2021; Rossel et al., 2008). 
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3.1.4.2 Calcium carbonate 

The “10 counties” CaCO3 was well modelled with R2 of 0.84, RPD of 2.54 and RMSE of 5.96 in 

the calibration set and R2 of 0.77, RPD of 2.08 and RMSE of 5.96 in the validation set. 

Performance model results of the eight counties were well modelled at a high level of accuracy 

with R2 of 0.94 to 0.83 and RPD from 4.0 to 2.44 in the calibration of the sets. Four counties had 

R2 < 0.75 in the validation sets, while the remaining counties had R2 ≥ 0.75. 

The CaCO3 assessment statistics for main soil types prediction showed that a good calibration 

model was obtained for salt-affected soils (R2 of 0.91, RPD of 3.41, RMSE = 4.4) with 

corresponding high validation results (R2 0.81). Modest predictions were obtained by Chernozem 

soils and Skeletal soils in the calibration set (R2 = 0.73 to 0.56) and validation sets (R2 = 0.78 to 

0.76). Other remaining soil types produced R2 values from 0.89 to 0.79 and RMSE from 3.59 to 

6.33 in the calibration sets, while RMSE ranged from 4.51 - 5.21 and R2 from 0.85 - 0.79 in the 

validation sets. Viscarra Rossel et al. (2016) obtained R2 values of 0.77 and RMSE of 3.96 for the 

calcium carbonate predictions, which are the same or lowest than many values in this study. 

Generally, the high prediction model of SOC and calcium carbonate was attributed to the specific 

strong absorption bands associated with chemical bonds of carbon-containing compounds in soil 

3.1.4.3 Soil texture (Sand, Clay and Silt) 

Amongst all soil properties in this study, soil texture, especially sand content, showed the highest 

prediction model at the “10 counties” level in the calibration set (R2 of 0.89) and validation set (R2 

of 0.85). All calibration models had R2 higher than 0.81 in the counties scenario, and six counties 

had R2 ≥ 0.90, while five counties had R2 higher than 0.8 and RPD higher than 2.35 in validation 

models. All main soil types’ levels had the highest calibration models with R2 greater than 0.83, 

RPD higher than 2.53, R2 greater than 0.74 and RPD near 2 in validation models. Based on TIM, 

(1995), the sand content in Hungary represents (16 %) which may partly explain the high 

prediction of sand and the robust interaction between mid-infrared radiation and minerals of sandy 

soils. The high-accuracy performance models of sand content agreed with the results of some other 

mid-infrared spectral libraries reported by some authors (Demattê et al., 2019; Wijewardane et al., 

2018). 

The clay content at the “10 counties” scale showed high results in the calibration set with R2 of 

0.80 and RMSE of 5.94 and in the validation set with R2 of 0.80 and RMSE of 6.59. At the county 

level, clay content within eight counties was well, with R2 ranging from 0.97 to 0.80 in the 
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calibration set, and five counties had R2 ranging from 0.73 to 0.80 in validation model sets. In the 

main soil types scenario, salt-affected soils showed the best-performing validation model with an 

R2 of 0.80. In three soil types, the R2 was higher than 0.84 and only Brown forest soils and Skeletal 

soils had R2 of 0.76 and 0.64, respectively, in the calibration models. Validation sets showed four 

soil types had R2 higher than 0.78 and RPD higher than 2.14. Since clay minerals are spectrally 

active molecules, this may be why the clay content was predicted accurately. Furthermore, clay 

has fundamental vibrations.  

For the “10 counties” scenario, silt content had a medium level with R2 of 0.64 and 0.69 in 

calibration and validation sets, respectively. Of the ten counties with silt calibration prediction, six 

counties had R2 ≥ 0.83, three had R2 ≥ 0.70, and one had R2 of 0.53. Predictive modelling of silt 

at the main soil types scale showed all calibration sets had R2 ≥ 0.70, except the Chernozem soils 

type, which had R2 of 0.69. Salt-affected soils had R2 of 0.94 and RMSE of 3.85. Four soil types 

had R2 ranging from 0.55 to 0.81 in the validation sets. Generally, our prediction results for clay 

were similar to those found in other studies (Baumann et al., 2021; Terhoeven-Urselmans et al., 

2010), which mainly focused on legacy soil samples. For the same studies, the authors had lower 

prediction results of silt content (R2 range from 0.55 - 0.51) 

3.1.4.4 Cation exchange capacity 

The calibration model of CEC at the “10 counties” scale reached an R2 of 0.61, and the validation 

set reached a respective R2 of 0.57. At the county level, validation sets showed only four counties 

had R2 ≥ 0.60, while the remaining six counties had R2 ≤ 0.51. At the main soil type scenarios, 

validation sets showed two soil types had R2 ≥ 0.70 (Brown forest and Skeletal soils). Four soil 

types showed R2 ≤ 0.50. The poor results were expected because CEC is not spectrally active, 

while other good results were due to the contribution of clay minerals and organic carbon matter 

to the prediction of CEC.  Demattê et al. (2019) showed similar prediction accuracy ranges in 

calibration sets (R2 0.97 – 0.11) for CEC in the Brazilian spectral library 

3.1.4.5 Exchangeable Mg and Ca 

The calibration results at the “10 county” level were good for exchangeable Mg but were 

satisfactory for exchangeable Ca, with respective R2 values of 0.77 and 0.54 and RPD values of 

2.09 and 1.48. On the other hand, validation model sets had R2 values of Mg and Ca of 0.52 and 

0.48, respectively. For county levels, validation prediction results had R2 ranging from 0.14 to 0.66 

for exchangeable Mg and ranging from 0.18 to 0.74 for exchangeable Ca. Validation results of 
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main soil types had R2 ranging from 0.33 to 0.60 for exchangeable Mg and ranging from 0.32 to 

0.71 for exchangeable Ca, except Salt-affected soils had R2 of 0.01. The poor model results were 

not expected, but we posit that exchangeable Ca and Mg may not have particular MIR absorption 

features, and there is a lack of correlation with spectrally active properties. 

3.1.4.6 pH water 

Overall, the predictions for soil chemical reactions within the different scenarios were poor. Soil 

pH water at the “10 county” level had the poorest results in both calibration and validation datasets 

groups. Many counties' pH models were generally better than the “10 county” and main soil type 

levels. All the validation datasets results had R2 ≤ 0.38 for the main soil types. The poor model 

results were expected because this attribute lacked direct spectral responses. 

3.2 The results of mapping SOC content 

3.2.1 DSM models input data 

3.2.1.1 Exploratory data analysis and summary statistics 

The model performance assessment of the SOC dataset predicted from the MIR spectral library 

showed high prediction accuracy. This dataset was spatially distributed using the DSM technique. 

The predicted SOC content in the upper 30 cm ranges from -0.40 to 6.35 %, with the main at 2,144, 

and 1st quartile soil profiles at 1.46. The predicted SOC dataset showed slight skewness from the 

normal distribution. The SOC content values in the upper 30 cm based on wet chemistry ranges 

between 0.09 and 6.68 %, with the mean being 2.22 %, while the value of the 1st quartile soil 

profiles is 1.43 %. It can be observed that the wet chemistry SOC dataset was not normally 

distributed. These spatial variations in both SOC datasets may be due to the variability of soil 

types, climatic conditions, land cover, land use, landscapes, vegetation cover and human activities 

in the study area. 

Descriptive statistics of environmental covariates used in this research showed varied distribution. 

The calculation of the Landsat5 image for NDVI ranged from -0.02 to 0.39 with a mean equal to 

0.15. An increase in the positive NDVI value means greener vegetation. The climate covariates 

map data (i.e. precipitation, maximum, minimum and average temperature) varied between 40.00 

to 57.67 mm/year with a mean value of 44.13 mm/year for rainfall. Maximum temperature varied 

between 12.93 to 16.15 ºC and mean value of 15.22 ºC, while minimum temperature varied 

between 3.9 to 7.2 ºC with mean values of 5.7 ºC. The average temperature had a maximum value 

of 8.56 ºC, a minimum value of 11.45 ºC and a mean value of 10.48 ºC. DEM ranged from 74.0 to 
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496.0 m with mean values of 137.4 m, while plan curvature, which represents a classified 

demonstration of the earth's surface curvature across the direction of aspect, ranged from -231 to 

282 m−1 and mean value equal 357 m−1. Similarly, the slope, which represents the inclination of 

the earth's surface and the topographic wetness index show the potential supply of soil water; they 

had variances ranging from 0.00 to 1.571 % and -19.6 to 4.78 % with mean values of 1.48 % % 

and -11.3 % respectively.  Valley depth ranged from 0.00 to 274.3 m and a mean value of 71.6 m, 

channel network distance values varied between 0.00 to 146.0 m with a mean value equal to 7.43 

m and aspect ranged from 0.00 to 6.28 % with a mean value of 3.13 %. The Landsat bands (b1 - 

b7) also had significant differences in their data distribution across the study area. Band1 and 

band6 varied from 816 to 1284 and from 0 to 447, with mean equal 938 and 416, respectively.  

Band4 and band7 ranged from 855 to 202 and from 759 to 183, with mean values of 142 and 126, 

respectively.  

Generally, variance in data distribution was observed in most environmental covariates in the 

study's frame. Such variability in environmental covariates maps data was expected, especially on 

a large national scale. These spatial variabilities of data distribution are attributed to the variations 

of geological formation, soil types, parent material, climatic zones, land use, landscapes and 

human activities in the study area. 

3.2.1.2 Harmonization database-spline function 

In this study, the equal-area splines harmonised the depth of the SOC distribution in accordance 

with the variations in the natural soil from 0 to 30 cm in MIR spectroscopy and wet chemistry 

datasets. The equal-area splines performed well for SOC from SIMS database soil profiles. The 

SOC layer depths in both datasets are deeper than 30 cm, which is not exceptional in Hungary. 

3.2.1.3 Environmental variables affecting SOC accumulation in DSM 

Environmental covariates components were positively and negatively correlated with SOC 

content. In this study, SOC content in both datasets observed variation in relations with DEM and 

their terrain attributes ranging from positive (topographic wetness index), moderate (aspect, 

channel network distance and plan curvature) and negative (DEM and slope) correlation. Even 

though many studies have noted that SOC is correlated with terrain attributes, the current study 

revealed that not all terrains are correlated with SOC. Land cover and NDVI with 30 m resolution 

correlated lowly with SOC content from the MIR spectral library and wet chemistry datasets. 

These results are not expected since NDVI and some class types of land cover, such as forest land, 
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grassland, cultivated land and shrub land, significantly affect the SOC content accumulation and 

spatial distribution. A negative correlation may be caused by the exposure of soil on the surface 

due to the start of the winter season and low vegetation covers; thus, the correlation between the 

SOC content and NDVI from 15 to 25 October 2000 is insignificant. The SOC content is highly 

correlated with some climate factor maps, such as temperature average and maximum in both 

datasets. In contrast, precipitation and the minimum temperature moderately correlated with SOC. 

SOC content from the MIR spectral library and wet chemistry datasets showed a positive 

correlation with most indices derived from Landsat5: band1, band2, band3, band5, band6 and 

band7, while band4 had moderate relations with SOC. Moderate correlation may be because as the 

SOC content increases, the soil becomes darker, decreasing the overall reflectance. 

On the other hand, for the first scenario (SOC based on the MIR dataset), the most important 

environmental covariates used by random forest spatial modelling were maximum temperature, 

digital elevation model map, Landsat band6 layer, minimum temperature, valley depth layer, 

precipitation and profile curvature layer map. In contrast, for the second scenario (SOC from wet 

chemistry dataset), the maximum temperature, digital elevation model map, profile curvature 

layer, topographic wetness index layer, Landsat band6 layer, temperature average and valley depth 

layer map were the most important. 

3.2.2 DSM model results 

3.2.2.1 Models performance comparison assessment 

In this study, the results of comparing a set of different models showed that the RF was the most 

appropriate estimating model with the highest coefficient of determination and the lowest RMSE 

for both dataset scenarios. RF model performance assessment results of SOC based on the MIR 

spectral library showed R2 = 0.35, MAE = 0.59 and RMSE = 0.75. The RF assessment based on 

the wet chemistry dataset had lower results than the MIR dataset but was still higher than other 

models with R2 of 0.20, MAE of 0.80 and RMSR of 1.0. Similar results were reported by Farooq 

et al., (2022) that RF proves better in predicting SOC mapping using a set of models. The linear 

model showed the worst results for both dataset scenarios with R2 of 0.18, RMSE of 1.0 for the 

MIR dataset, while R2 = 0.15 and RMSE = 1.5 for the wet chemistry dataset. 
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3.2.2.2 Assessment of random forest model performance using a combination of 

environmental covariates and the two SOC datasets 

According to the models' comparative assessment result, the RF models were used to spatial map 

SOC content for both datasets in the specified 0 – 30 cm depth. This study's first scenario, which 

represents the combination of environmental covariates and the SOC-based MIR dataset, had 

RMSE reaching 0.69 of the RF model prediction errors. In contrast, MSE represents 0.48 of 

prediction errors and the coefficient of determination reaching 0.34. The RF model performance 

assessment for the second scenario, which means the combination of environmental covariates and 

SOC based on the wet chemistry dataset, showed higher prediction errors compared to the first 

scenario with an RMSE of 0.96, MSE of 0.93 and coefficient determination of 0.20, respectively. 

The RF models used in this research showed the first scenario had better spatial prediction 

accuracy than the second one. These results may be attributed to the fact that the wet chemistry 

SOC dataset, despite having been used in one laboratory protocol, was analysed in various 

laboratories using different equipment and technicians. These conditions may have led to the 

inclusion of human errors and environmental laboratory errors within the dataset, compared to the 

MIR spectral dataset, which was subjected to analysis by a singular individual using one 

instrument and all potential errors have been removed. Although the SOC spatial prediction 

accuracy assessment for the second scenario was low, it is still in the range or higher than that of 

many studies. For instance, this value was higher than the results of the study conducted by Zhang 

et al., (2021), who implemented four types of models (R2 range from 0.06 to 0.21). The first 

scenario spatial SOC prediction obtained in our study is better than those previously obtained by 

(Tziolas et al., 2020, RMSE 0.61 - 0.92) using a small open soil spectral libraries dataset for 

generating SOC maps, as well as by Yang et al., (2023), (R2 0.18) using vis-NIR Spectroscopy as 

a covariate in SOC mapping. 

3.2.2.3 Spatial prediction of SOC content 

In this study, SOC content estimated from the MIR spectral library for 542 soil profiles that spread 

across the study area was successfully predicted using an RF predictive soil mapping approach to 

arrive at a 30 m resolution digital map of SOC for the 10 Hungarian counties (Figure 4). The 

estimated SOC content shows significant variation in their spatial distribution across the study 

area. Generally, a trend of decreasing SOC content from the eastern region to the central sector of 

the country is clearly recognized. Therefore, the highest values of SOC content were observed in 
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the northeast and southeast of Hungary (Figure 4). The SOC content decreased in the central region 

and in certain parts of the southwestern and north-western regions (Figure 4). This may be because 

sandy and skeletal soils with low original organic matter contents are situated in the southwestern 

and central parts of Hungary. A remarkable increase in some spots showed between these regions. 

Many factors, including climatic conditions, mineralogy, texture, altitude, topography, and land 

use, impact the SOC distribution. The area with a high SOC content was expected to be mainly 

distributed in areas covered with clay and organic soil texture, chernozems, meadow and organic 

soil types, and high-elevation and forest areas. Generally, trees, grassland and cropland produce a 

lot of leaf litter, which, after being mineralised, becomes a source of SOC. 

 
Figure 4.  Spatial prediction of SOC content based on MIR spectroscopy for 10 Hungarian counties (0 – 30 cm) 

Spatial distribution of SOC content based on the wet chemistry dataset over 10 Hungarian counties 

as a result of the application of the fitted random forest model shown in Figure 5. Despite the weak 

statistical correlation, the map's overall appearance is encouraging. It is consistent with how we 

currently understand the spatial distribution of SOM content in Hungary, which is influenced by 
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climate, geology, biotics, and human influences on soil formation. By comparing the first and 

second scenario maps (Figures 4 and 5), these two maps showed similar features and spatial 

distribution patterns of SOC, and there weren't many differences between them. Although the 

second scenario map looks similar to the first scenario map, the first scenario still has some spatial 

discrepancies, which are related to the predictor variables that they used for predicting the SOC 

contents and produced a much more detailed and accurate picture based on visual inspection by 

experts than a map of the second scenario. The most significant difference between the two 

scenario maps is located in the small line starting from the corner at the southwest part until the 

middle of the study area (Figure 5). The main difference existed with a higher SOC content in the 

second scenario map in this line but a lower SOM content in the first scenario map (Figure 4). 

 
Figure 5. Spatial prediction of SOC content based on the traditional laboratory dataset for 10 Hungarian counties (0 – 30 cm) 
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4. Conclusions and recommendations 

This study contributed to the development of the first Hungarian MIR spectral library, which 

includes 2200 soil samples based on legacy soil samples from the SIMS project. Nine soil 

properties were predicted using PLSR models for the “10 counties”, “county”, and “main soil type” 

scenarios.  

The Hungarian MIR spectral library is valuable for estimating soil properties such as SOC, 

CaCO3, and physical soil texture with variable results between different model scenarios.  

The results were logical for spectrally active elements that include SOC, CaCO3, sand and clay, 

as well as for silt and CEC, which are not spectrally active but correlated with other active 

components. Soil properties that are not spectrally active with low content in the soil or have small 

sizes of samples, the prediction can turn out to be inaccurate (like pH water).  

The current study proposed a novel method for mapping SOC that combines environmental 

covariates with an MIR spectral library using the RF model. The study tested and compared the 

MIR spectral library spectroscopy and conventional wet chemistry analysis methods in mapping 

SOC. RF predicted the map of the spatial distribution of the SOC was more realistic and 

interpretable in terms of the soil–environmental covariates and produced a fine spatial resolution 

(30m × 30m) digital soil map of the SOC at “10 county” level. 

The results showed that legacy soil samples could be used to generate a spectral library with good-

quality information. This spectral library can provide rapid soil estimates at a low cost, which 

forms the basis for updating soil information and monitoring systems.  

Current study findings demonstrated that the MIR spectral library can be a source of information 

for determining soil spatial distribution and mapping SOC at the “10 county” level.  

Based on the final findings of this study, the following points can be recommended: 

✓ Further work is required to produce maps of the remaining key soil properties that were 

predicted with high-accuracy assessment from the MIR spectral library (CaCO3, soil 

texture)  

✓ Improving this Hungarian MIR spectral library is suggested by adding new soil samples 

and the remaining samples from the SIMS survey to include all soil types in Hungary. 
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5. Summary of scientific results 

 

1. In my doctoral studies, I recorded the middle-infrared absorbance of 2,200 legacy soil 

samples from the Soil Conservation Information and Monitoring System (SIMS) project to 

contribute to developing the first Hungarian middle-infrared spectral library. This spectral 

library was built for the first time and successfully used in Hungary at a regional scale, 

representing the spectral variability the soils of 10 Hungarian counties and six main soil 

types. The spectral library enables efficient soil property prediction and spatial mapping, 

supports efficient soil monitoring, and serves as a base for numerous future research topics.  

2. In this research, the developed middle-infrared (MIR) spectral library was tested for the 

prediction of a set of soil properties using three Partial Least-squares Regression model 

scenarios, “10 counties”, “county”, and “main soil type”, based on calibration between 

MIR spectra and reference soil data (Soil Conservation Information and Monitoring 

System database). I achieved excellent results for predicting soil organic carbon (R2 = 0.80, 

RMSE = 0.57), CaCO3 content (R2 = 0.77, RMSE = 5.96) and soil texture (Clay – R2 = 

0.80, RMSE = 6.97; Sand –R2 = 0.85, RMSE = 10.97; Silt – R2 = 0.69, RMSE = 10.79) 

even on “10 counties” scale making this study the first to test the efficiency of a mid-

infrared spectral library across such a large area in Hungary.  

3. Based on the developed mid-infrared spectral library and 21 environmental covariates, I 

have produced the first digital soil organic carbon content map (0 – 30 cm) using spectrally 

predicted soil organic carbon values at Hungary's “10 counties” level using a random forest 

model selected from the set of 5 models.  

4. By comparing the produced SOC map based on the MIR spectral library against the SOC 

map generated from the SIMS reference soil database, this study validated the accuracy of 

the SOC from the MIR spectral library (R2 = 0.34 vs R2 = 0.20). This research lays an 

excellent and novel base for validating the MIR database map using a reference soil 

database.  
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