Doctorate (PhD) Dissertation

Kamirán Áron Hamow Hungary, Gödöllő 2024

METHOD DEVELOPMENT AND EVALUATION FOR SAMPLING, HEADSPACE GC-MS ANALYSIS AND PREDICTIVE USE OF VOLATILE ORGANIC COMPOUNDS FROM ECONOMICALLY IMPORTANT PLANTS

(MÓDSZERFEJLESZTÉS ÉS -ÉRTÉKELÉS GAZDASÁGILAG FONTOS

HASZONNÖVÉNYEK LÉGTERÉBŐL SZÁRMAZÓ SZERVES

ILLÉKONY VEGYÜLETEK MINTAVÉTELEZÉSÉHEZ, GC-MS

ANALÍZISÉHEZ ÉS ELŐREJELZÉSI CÉLÚ FELHASZNÁLÁSÁHOZ)

PhD Dissertation

DOI: 10.54598/005360

KAMIRÁN ÁRON HAMOW

Hungary, Gödöllő 2024

Discipline:	Plant breeding and horticultur	al sciences
Head of School:	Prof. Lajos HELYES (CMHAS) Professor MATE	5)
Supervisor:	Prof. Katalin POSTA (DSc) Professor MATE Institute of Genetics and Biote	echnology
Prof. Lajos Approved by he		Prof. Katalin Posta Approved by supervisor

Doctoral school: Plant Sciences

Contents

Lis	st of Abbreviations	5
1.	INTRODUCTION	6
2.	OBJECTIVES AND AIMS	9
3.	LITERATURE REVIEW	10
	3.1 The origin, genetics, distribution, and economic significance of wheat and its disease powdery mildew (PM) caused by fungal pathogen <i>Blumeria graminis</i> f. sp. <i>tritici</i>	10
	3.2 Description of plant and plant-related volatile organic compounds (VOCs): diversity, functions, biosynthesis	
	3.2.1 Chemical groups of plant VOCs	14
	3.3 Abiotic stress-induced volatiles in plants	15
	3.4 Biotic stress-induced volatiles in plants	16
	3.5 Original physiological roles of plant VOCs and their significance in agroecosystems	16
	3.6 Microbial derived VOCs	18
	3.7 Volatile compounds as biomarkers of infection and diseases	18
	3.8 Challenges in aboveground and belowground VOC differentiation, plant belowground VOC and effects on fungal pathogens, fungal VOCs and its effect to plant host	
	3.9 Volatile organic compounds in mycorrhizal symbiosis	22
	3.10 Options for collecting and analyzing volatile compounds	27
	3.10.1 Sampling VOCs with static headspace analysis methods	29
	3.10.2 Possibilities of Dynamic Headspace Analysis (DHS)	30
	3.10.3 Methodology on belowground research of volatile organic compounds	34
	3.10.4 Gas chromatographic separation and detection possibilities for the measurement of plant volatile organic compounds (VOCs)	37
	3.10.5 Evaluation of methods used for VOC sampling and analysis	41
4.	MATERIALS AND METHODS	42
	4.1 Materials and methods regarding a pilot experiments for surveying different plant-pathogen/pessetups and methods for VOC collection	
	4.1.1 Plant species and their cultivation	42
	4.1.2 VOC collection methods in the pilot experiment	42
	4.1.3 Pests and pathogens and sampling time	43
	4.1.4 Structure determination and relative quantitation by GC-MS for pilot experiments	43
	4.2.1 Reference solutions and mixtures, general handling of VOC traps	45
	4.2.2 Spiking of reference mixture solutions to VOC traps directly for assessing SPE elution of components and effect of mixtures from porapak Q adsorbent by <i>n</i> -hexane with calculation of recovery (%)	45
	4.2.3 Investigation of recovery in case of continuous and periodic open-loop-pull-type-DHS sampl followed by SPE elution	
	4.3 GC-MS VOC analysis method for liquid injection of eluates and samples obtained by open-loop-pull-type-DHS VOC collection and SPE elution sample preparation	
	4.4 Application of open-loop-pull-type-DHS for non-invasive dynamic sampling followed by untarge quantitative GC-MS measurement in relation to wheat PM infection	
	4.4.1 Plant material and inoculation treatment	50
	4.4.2 Dynamic headspace volatile collection and sample handling	51
	4.4.3 Data evaluation, mining, quality control and statistical analysis	52

5. RESULTS AND DISCUSSION	54
5.1 Results regarding pilot experiments for surveying different plant-pathogen/pest setups and met for VOC collection	
5.1.1 Changes in the aroma compounds of three different barley varieties due to <i>Pyrenophora terteres</i> infection	
5.1.2 Changes in the odor profiles of different plants (wheat, tomato) as a result of infections	57
5.2 pull-type-DHS-SPE-GC-MS method performance tests, results and their interpretation	58
5.2.1 Performance parameters of the GC-MS analysis method for qualitative and quantitative purposes	58
5.2.2 Recovery (%) results obtained from spiking of reference mix solutions (submixes) with and without internal standard correction for 1-bromodecane	
5.2.3 Recovery (%) results obtained from spiking of reference mixture solutions (submixes) and complete mixture with internal standard correction for 1-bromodecane	67
5.3 Results and evaluation of binding site competition tests	70
5.4. Emission of novel volatile biomarkers of wheat powdery mildew	75
5.4.1. Volatile profile analysis from the headspace of wheat plants	75
5.4.2. Identification of diagnostic BVOCs for powdery mildew	75
5.4.3. Confirmation of VOC biomarkers in mixed pathogen background	78
5.4.4. Calculation of aerial emission quantities	82
5.4.5. Aerial release of discovered BVOCs of the wheat-powdery mildew interaction, discussing associated literature about their role, other occurrences and emission origins	82
6. CONCLUSIONS AND SUGGESTIONS	86
6.1 Conclusion and future perspectives for below ground sampling	86
6.2 Proposed future <i>in-situ</i> system design for dynamic and static combined automated sampling an experimental setup for VOC origin characterization	
6.3 open-loop-pull-type-DHS-SPE-GC-MS method performance characteristics	88
6.4 Emission of novel volatile biomarkers of wheat powdery mildew	89
6.4.1 The diagnostic VOCs are biomarkers of PM disease	89
6.4.2 Atmospheric release and relevance: reactivity and toxicology	91
7. NEW SCIENTIFIC RESULTS	92
8. SUMMARY	93
8. ÖSSZEFOGLALÁS	96
9. ANNEXES	100
9.1 List of references	100
10. ACKNOWLEDGEMENTS	150
10.1 Acknowledgement of grants, funds supporting my research work and me in any way	150
10.2 Acknowledgements for research colleagues for their useful suggestions or support	150
10.3 Acknowledgements for inspiring, supporting friends, students, muscians and family	150

List of Abbreviations

GC-MS BVOC(s) Biogenic volatile organic compound(s) BBVOC(s) Biomarker biogenic volatile organic compound(s) HUN-REN CAR Hungarian Research RAI Artificial intelligence Organization Organization Organization Organization Office RBByoc RBBy	VOC(s)	Volatile organic compound(s)	ToF MS	Time of flight mass
BVOC(s) Biogenic volatile organic compound(s) BBVOC(s) Biomarker biogenic volatile DHS Dynamic headspace sampling / analysis HUN-REN CAR Hungarian Research PTFE Teflon, Polytetrafluoroethylene Network Centre for Agricultural Research Al Artificial intelligence MW Molecular weight SPME Solid phase microextraction PTV Programmable temperature vaporization CIS Cooled injection system PM Powdery mildew PEG Polytethylene glycol Bgt. Blumeria Graminis EAD Electroantennographic detection SPE Solid phase extraction PID Photoionization detector RI Retention index Graminis PID Photoionization detector PID Photophyland Electroantennographic detection MS/MS International PID Photophyland Electroantennographic detector Species and genomes GLV Green leaf volatiles PAL Phenylalanine ammonia lyase ROS Reactive oxigene species AM Methyl jasmonate NIST National Institutes of Standards and Technology Agency International Institutes of Standards and Technology Agency PID Photophylander PID Photophylander PID Photophylander Spectroscopy School PID Photophylander Spectroscopy School PID Photophylander Spectroscopy	GC-MS	Gas chromatography coupled		spectrometry
BBVOC(s) Biomarker biogenic volatile organic compound(s) HUN-REN CAR Hungarian Research Network Centre for Agricultural Research Network Centre for Agricultural Research PTFE Solid phase microextraction PTV Programmable temperature vaporization Organization CIS Cooled injection system PEG Polyethylene glycol Bgt. Blumeria Graminis EAD Electroantennographic detection PID Photoionization detector PID Photoionization detector PID Photoionization detector SPE Solid phase extraction PID Photoionization detector PID Photoionization PID Photoionization detector PID Photoionization PID Photoionization detector PID Photoionization PID PID PI		to mass spectrometry	GC	Gas chromatography
BBVOC(s) Biomarker biogenic volatile organic compound(s) HUN-REN CAR Hungarian Research PTFE Teflon, Polytetrafluoroethylene Network Centre for Agricultural Research AI Artificial intelligence MW Molecular weight PTV Programmable temperature vaporization PTV Programmable temperature vaporization Organization CIS Cooled injection system PM Powdery mildew PEG Polyethylene glycol Bgt. Blumeria Graminis EAD Electroantennographic detection SPE Solid phase extraction PTD Photoionization detector RSH Hungarian Central Statistical Office RI Retention index Individual EI Electron impact RI Retention index Individual EI Electron impact RI RI Retention index Individual Electron	BVOC(s)	Biogenic volatile organic	LED	light-emitting diode
HUN-REN CAR Hungarian Research PTFE Teflon, Polytetrafluoroethylene Network Centre for Agricultural Research DVB Divinylbenzene Al Artificial intelligence MW Molecular weight SPME Solid phase microextraction PTV Programmable temperature vaporization Organization CIS Cooled injection system PM Powdery mildew PEG Polyethylene glycol Bgt. Blumeria Graminis EAD Electroantennographic detection SPE Solid phase extraction PID Photoionization detector RI Hungarian Central Statistical Office RI Electron impact RI Electron index the Methylerythritol phosphate FT-IR FOurier-transform infrared Spectroscopy Stylene PAL Phenylalanine ammonia lyase and genomes GLV Green leaf volatiles DAI Days after inoculation LOX Lipoxygenase SIS Reactive oxigene species O.D. Outer diameter SAR Systematic acquired resistance BSIVs Biotic stress induced volatiles PIVs Pathogen induced volatiles PIVs Photoacoustic spectroscopy S/N Signal-to-noise ratio PAS Proton transfer reaction mass PP PTG-NT FTG-NT PTG-PTG-PTG-PTG-PTG-PTG-PTG-PTG-PTG-PTG-			HS	Headspace
HUN-REN CAR Hungarian Research PTFE Teflon, Polytetrafluoroethylene Network Centre for Agricultural Research DVB Divinylbenzene AI Artificial intelligence MW Molecular weight SPME Solid phase microextraction PTV Programmable temperature vaporization FAO Food and Agricultural Organization CIS Cooled injection system PM Powdery mildew PEG Polyethylene glycol Bgt. Blumeria Graminis EAD Electroantennographic detection SPE Solid phase extraction PID Photoionization detector KSH Hungarian Central Statistical Office RI Retention index MEP Methylerythritol phosphate RI Retention index MEP Methylerythritol phosphate FT-IR Fourier-transform infrared IPP Isopentenyl diphosphate FT-IR Fourier-transform infrared KEGG Kyoto encyclopedia of genes GCxGC two dimensional gas KEGG Kyoto encyclopedia of genes Sor ISTD Internal standard	BBVOC(s)	Biomarker biogenic volatile	DHS	Dynamic headspace sampling /
Network Centre for Agricultural Research AI Artificial intelligence SPME Solid phase microextraction FAO Food and Agricultural Organization CIS Cooled injection system PM Powdery mildew PEG Polyethylene glycol Bgt. Blumeria Graminis SPE Solid phase extraction KSH Hungarian Central Statistical Office RI Retention index Methylerythritol phosphate IPP Isopentenyl diphosphate FT-IR Fourier-transform infrared DMAPP Dimethylallyl diphosphate KEGG Kyoto encyclopedia of genes and genomes GLV Green leaf volatiles DAI Days after inoculation LOX Lipoxygenase ROS Reactive oxigene species MEJA Methyl jasmonate NIST National Institutes of Standards SAR Systematic acquired resistance BSIVs Biotic stress induced volatiles PIVs Pathogen indu		organic compound(s)		analysis
Network Centre for Agricultural Research AI Artificial intelligence SPME Solid phase microextraction FAO Food and Agricultural Organization CIS Cooled injection system PM Powdery mildew PEG Polyethylene glycol Bgt. Blumeria Graminis SPE Solid phase extraction KSH Hungarian Central Statistical Office RI Retention index Methylerythritol phosphate IPP Isopentenyl diphosphate FT-IR Fourier-transform infrared DMAPP Dimethylallyl diphosphate KEGG Kyoto encyclopedia of genes and genomes GLV Green leaf volatiles DAI Days after inoculation LOX Lipoxygenase ROS Reactive oxigene species MEJA Methyl jasmonate NIST National Institutes of Standards SAR Systematic acquired resistance BSIVs Biotic stress induced volatiles PIVs Pathogen indu	HUN-REN C	AR Hungarian Research	PTFE	Teflon, Polytetrafluoroethylene
SPMESolid phase microextraction Food and AgriculturalPTVProgrammable temperature vaporizationFAOFood and AgriculturalvaporizationOrganizationCISCooled injection systemPMPowdery mildewPEGPolyethylene glycolBgt.Blumeria GraminisEADElectroantennographic detectionSPESolid phase extractionPIDPhotoionization detectorKSHHungarian Central Statistical OfficeEIElectron impactMEPMethylerythritol phosphateRIRetention indexIPPIsopentenyl diphosphateMS/MStandem mass spectrometryIPPIsopentenyl diphosphateFT-IRFourier-transform infrared spectroscopyKEGGKyoto encyclopedia of genes and genomesGCXGCtwo dimensional gasGLVGreen leaf volatilesDAIDays after inoculationLOXLipoxygenaseIS or ISTDInternal standardPALPhenylalanine ammonia lyaseSIMSelective ion monitoringROSReactive oxigene speciesO.D.Outer diameterMeJAMethyl jasmonateNISTNational Institutes of StandardsSARSystematic acquired resistanceEPAEnvironmental ProtectionBSIVsBiotic stress induced volatilesEPAEnvironmental ProtectionHIPVsHerbivore induced volatilesPAEnvironmental ProtectionOHHydroxyl radicalBLASTBasic local alignment searchAMFArbuscular mycorrhizal <td< td=""><td>Network Cen</td><td>tre for Agricultural Research</td><td>DVB</td><td>Divinylbenzene</td></td<>	Network Cen	tre for Agricultural Research	DVB	Divinylbenzene
FAO Pood and Agricultural Organization CIS Cooled injection system PM Powdery mildew PEG Polyethylene glycol Bgt. Blumeria Graminis EAD Electroantennographic detection SPE Solid phase extraction PID Photoionization detector KSH Hungarian Central Statistical Office RI RI Retention index MEP Methylerythritol phosphate Dimethylallyl diphosphate Dimethylallyl diphosphate BKEGG Kyoto encyclopedia of genes and genomes and genomes and genomes SIM Selective ion monitoring GLV Green leaf volatiles DAI Days after inoculation LOX Lipoxygenase IS or ISTD Internal standard PAL Phenylalanine ammonia lyase ROS Reactive oxigene species O.D. Outer diameter MEJA Methyl jasmonate SIM Selective ion monitoring ROS Reactive oxigene species O.D. Outer diameter MEJA Methyl jasmonate NIST National Institutes of Standards SAR Systematic acquired resistance BSIVS Biotic stress induced volatiles HIPV's Herbivore induced volatiles OH Hydroxyl radical BLAST Basic local alignment search OH Hydroxyl radical PCA Principal component analysis EM Ectomycorrhizal TIC Total ion chromatogram AM Arbuscular mycorrhizal TIC Total ion chromatogram ABA Abscisic acid MIZ Mass-to-charge ratio PAS Photoacoustic spectroscopy S/N Signal-to-noise ratio PAS Photoacoustic spectroscopy S/N Signal-to-noise ratio PAS Proton transfer reaction mass spectrometry LoD Limit of detection GC-FID Gas chromatography coupled to LoQ Limit of quantification PDMS Polydimethylsiloxane Lod In-PODE In-pydroperoxyoctadecadienoic acid	AI	Artificial intelligence	MW	Molecular weight
PMPowdery mildewPEGPolyethylene glycolBgt.Blumeria GraminisEADElectroantennographic detectionSPESolid phase extractionPIDPhotoionization detectorKSHHungarian Central Statistical OfficeEIElectron impactMEPMethylerythritol phosphate IPPRIRetention indexMEPMethylerythritol phosphate Dimethylallyl diphosphate And genomesFT-IRFourier-transform infrared spectroscopyKEGGKyoto encyclopedia of genes and genomesGCxGCtwo dimensional gas chromatographyGLVGreen leaf volatilesDAIDays after inoculationLOXLipoxygenaseIS or ISTDInternal standardPALPhenylalanine ammonia lyase SARSIMSelective ion monitoringROSReactive oxigene speciesO.D.Outer diameterMeIAMethyl jasmonateNISTNational Institutes of StandardsSARSystematic acquired resistanceEPAEnvironmental ProtectionBSIVsBiotic stress induced volatilesEPAEnvironmental ProtectionHIPVsHerbivore induced volatilesNIHNational Institutes of HealthPIVsPathogen induced volatilesNIHNational Institutes of HealthOHHydroxyl radicalBLASTBasic local alignment searchAMFArbuscular mycorrhizalPCAPrincipal component analysisEMEctomycorrhizalTICTotal ion chromatogramABAAbscisic acidEICExt	SPME	Solid phase microextraction	PTV	Programmable temperature
PMPowdery mildewPEGPolyethylene glycolBgt.Blumeria GraminisEADElectroantennographic detectionSPESolid phase extractionPIDPhotoionization detectorKSHHungarian Central Statistical OfficeEIElectron impactMEPMethylerythritol phosphate IPPIsopentenyl diphosphateKS/MStandem mass spectrometryIPPIsopentenyl diphosphateFT-IRFourier-transform infraredKEGGKyoto encyclopedia of genes and genomesGCxGCtwo dimensional gas chromatographyGLVGreen leaf volatilesDAIDays after inoculationLOXLipoxygenaseIS or ISTDInternal standardPALPhenylalanine ammonia lyaseSIMSelective ion monitoringROSReactive oxigene speciesO.D.Outer diameterMeIAMethyl jasmonateNISTNational Institutes of StandardsSARSystematic acquired resistanceSINSTNational Institutes of StandardsBSIVsBiotic stress induced volatilesEPAEnvironmental ProtectionHIPVsHerbivore induced volatilesNIHNational Institutes of Health10HHydroxyl radicalBLASTBasic local alignment searchAMFArbuscular mycorrhizalFCAPrincipal component analysisEMEctomycorrhizalTICTotal ion chromatogramABAAbscisic acidm/zMass-to-charge ratioPASPhotoacoustic spectroscopyS/NSignal-to-noise ratio<	FAO	Food and Agricultural		vaporization
Bgt.Blumeria GraminisEADElectroantennographic detectionSPESolid phase extractionPIDPhotoionization detectorKSHHungarian Central Statistical OfficeEIElectron impactMEPMethylerythritol phosphate IPPMS/MStandem mass spectrometryIPPIsopentenyl diphosphateFT-IRFourier-transform infrared spectroscopyKEGGKyoto encyclopedia of genes and genomesGCxGCtwo dimensional gas chromatographyGLVGreen leaf volatilesDAIDays after inoculationLOXLipoxygenaseIS or ISTDInternal standardPALPhenylalanine ammonia lyase ROSSIMSelective ion monitoringROSReactive oxigene species O.D.O.D.Outer diameterMeJAMethyl jasmonateNISTNational Institutes of StandardsSARSystematic acquired resistance BSIVsBiotic stress induced volatiles HIPVsHerbivore induced volatiles Herbivore induced volatilesEPAEnvironmental ProtectionHIPVsPathogen induced volatiles Hydroxyl radicalNIH BLASTNational Institutes of HealthAMFArbuscular mycorrhizal fungi AMBLASTBasic local alignment search toolAMFArbuscular mycorrhizal ABATICTotal ion chromatogramABAAbscisic acidEICExtracted ion chromatogramBABAbscisic acidEICExtracted ion chromatogramPASPhotoacoustic spectroscopy SPAS/NSignal-to-noise ratio		Organization	CIS	Cooled injection system
SPE Solid phase extraction PID Photoionization detector KSH Hungarian Central Statistical EI Electron impact Office RI Retention index MEP Methylerythritol phosphate MS/MS tandem mass spectrometry IPP Isopentenyl diphosphate FT-IR Fourier-transform infrared spectroscopy KEGG Kyoto encyclopedia of genes and genomes GLV Green leaf volatiles DAI Days after inoculation LOX Lipoxygenase IS or ISTD Internal standard PAL Phenylalanine ammonia lyase SIM Selective ion monitoring ROS Reactive oxigene species O.D. Outer diameter MeJA Methyl jasmonate NIST National Institutes of Standards SAR Systematic acquired resistance and Technology BIVS Biotic stress induced volatiles HIPVs Herbivore induced volatiles PIVs Pathogen induced volatiles OH Hydroxyl radical BLAST Basic local alignment search AMF Arbuscular mycorrhizal fungi AM Arbuscular mycorrhizal fungi AM Abscisic acid EIC Extracted ion chromatogram ABA Abscisic acid EIC Extracted ion chromatogram ABA Abscisic acid m/z Mass-to-charge ratio PAS Photoacoustic spectroscopy S/N Signal-to-noise ratio BC-FID Gas chromatography coupled to LoQ Limit of quantification FDMS Polydimethylsiloxane Line Electory in impact tander and tracked acid	PM	Powdery mildew	PEG	Polyethylene glycol
KSHHungarian Central Statistical OfficeEIElectron impactMEPMethylerythritol phosphate IPPIsopentenyl diphosphate Isopentenyl diphosphateMS/MS Isandem mass spectrometryDMAPPDimethylallyl diphosphate KEGGFT-IRFourier-transform infraredKEGGKyoto encyclopedia of genes and genomesGCxGC Ichromatographytwo dimensional gas chromatographyGLVGreen leaf volatilesDAIDays after inoculationLOXLipoxygenaseIS or ISTDInternal standardPALPhenylalanine ammonia lyase ROSSIMSelective ion monitoringROSReactive oxigene speciesO.D.Outer diameterMeJAMethyl jasmonateNISTNational Institutes of StandardsSARSystematic acquired resistance BSIVsBiotic stress induced volatilesEPAEnvironmental ProtectionHIPVsHerbivore induced volatilesEPAEnvironmental ProtectionHIPVsPathogen induced volatilesNIHNational Institutes of Health•OHHydroxyl radicalBLASTBasic local alignment searchAMFArbuscular mycorrhizal fungitoolAMArbuscular mycorrhizalTICTotal ion chromatogramSASalicylic acidm/zMass-to-charge ratioPASPhotoacoustic spectroscopyS/NSignal-to-noise ratioPASPhotoacoustic spectroscopyS/NSignal-to-noise ratioPTR-MSProton transfer reaction mass spectrometryLoDLimit of detect	Bgt.	Blumeria Graminis	EAD	Electroantennographic detection
MEP Methylerythritol phosphate ISopentenyl diphosphate ISopentenyl diphosphate ISOpentenyl diphosphate ISOpentenyl diphosphate ISOpentenyl diphosphate ISOpentenyl diphosphate ISOPENIA		Solid phase extraction	PID	Photoionization detector
MEPMethylerythritol phosphateMS/MStandem mass spectrometryIPPIsopentenyl diphosphateFT-IRFourier-transform infraredDMAPPDimethylallyl diphosphatespectroscopyKEGGKyoto encyclopedia of genes and genomesGCxGCtwo dimensional gasGLVGreen leaf volatilesDAIDays after inoculationLOXLipoxygenaseIS or ISTDInternal standardPALPhenylalanine ammonia lyaseSIMSelective ion monitoringROSReactive oxigene speciesO.D.Outer diameterMeJAMethyl jasmonateNISTNational Institutes of StandardsSARSystematic acquired resistanceEPAEnvironmental ProtectionBSIVsBiotic stress induced volatilesEPAEnvironmental ProtectionHIPVsHerbivore induced volatilesNIHNational Institutes of HealthOHHydroxyl radicalBLASTBasic local alignment searchOHHydroxyl radicalBLASTBasic local alignment searchAMFArbuscular mycorrhizal fungiTICTotal ion chromatogramAMArbuscular mycorrhizalTICTotal ion chromatogramSASalicylic acidm/zMass-to-charge ratioPASPhotoacoustic spectroscopyS/NSignal-to-noise ratioPTR-MSProton transfer reaction massBPBoiling pointSpectrometryLoDLimit of quantificationGC-FIDGas chromatography coupled to LoQLimit of quantificationHoph	KSH	Hungarian Central Statistical	EI	Electron impact
IPPIsopentenyl diphosphateFT-IRFourier-transform infraredDMAPPDimethylallyl diphosphatespectroscopyKEGGKyoto encyclopedia of genes and genomesGCxGCtwo dimensional gas chromatographyGLVGreen leaf volatilesDAIDays after inoculationLOXLipoxygenaseIS or ISTDInternal standardPALPhenylalanine ammonia lyaseSIMSelective ion monitoringROSReactive oxigene speciesO.D.Outer diameterMeJAMethyl jasmonateNISTNational Institutes of StandardsSARSystematic acquired resistanceand TechnologyBSIVsBiotic stress induced volatilesEPAEnvironmental ProtectionHIPVsHerbivore induced volatilesNIHNational Institutes of HealthOHHydroxyl radicalBLASTBasic local alignment searchAMFArbuscular mycorrhizal fungitoolAMArbuscular mycorrhizalPCAPrincipal component analysisEMEctomycorrhizalTICTotal ion chromatogramABAAbscisic acidEICExtracted ion chromatogramSASalicylic acidm/zMass-to-charge ratioPASPhotoacoustic spectroscopyS/NSignal-to-noise ratioPTR-MSProton transfer reaction mass spectrometryBPBoiling pointGC-FIDGas chromatography coupled to LoQ flame ionization detectorOTL1-octene-3-olBDSEStir bar sorptive extraction10-HPODE10-hydr		Office	RI	Retention index
DMAPP Dimethylallyl diphosphate KEGG Kyoto encyclopedia of genes and genomes GLV Green leaf volatiles LOX Lipoxygenase ROS Reactive oxigene species BSIVs Biotic stress induced volatiles HIPVs Herbivore induced volatiles PAL Hydroxyl radical AMF Arbuscular mycorrhizal fungi AM Arbuscular mycorrhizal EM Ectomycorrhizal ABA Abscisic acid PAS Photoacoustic spectroscopy BSIVs Poton transfer reaction mass PC-FID GC-FID GG-FID GG-FI	MEP	Methylerythritol phosphate	MS/MS	tandem mass spectrometry
KEGGKyoto encyclopedia of genes and genomesGCxGCtwo dimensional gas chromatographyGLVGreen leaf volatilesDAIDays after inoculationLOXLipoxygenaseIS or ISTDInternal standardPALPhenylalanine ammonia lyase ROSReactive oxigene speciesO.D.Outer diameterMeJAMethyl jasmonateNISTNational Institutes of StandardsSARSystematic acquired resistance BSIVsBiotic stress induced volatiles HIPVsEPAEnvironmental ProtectionHIPVsHerbivore induced volatiles Hydroxyl radicalNIHNational Institutes of HealthOHHydroxyl radicalBLASTBasic local alignment searchAMFArbuscular mycorrhizal fungitoolAMArbuscular mycorrhizalPCAPrincipal component analysisEMEctomycorrhizalTICTotal ion chromatogramABAAbscisic acidEICExtracted ion chromatogramSASalicylic acidm/zMass-to-charge ratioPASPhotoacoustic spectroscopyS/NSignal-to-noise ratioPTR-MSProton transfer reaction mass spectrometryBPBoiling pointGC-FIDGas chromatography coupled to LoQLimit of quantificationGBSEStir bar sorptive extraction10-HPODE10-hydroperoxyoctadecadienoicPDMSPolydimethylsiloxaneacid	IPP	Isopentenyl diphosphate	FT-IR	Fourier-transform infrared
and genomes GLV Green leaf volatiles LOX Lipoxygenase PAL Phenylalanine ammonia lyase ROS Reactive oxigene species MeJA Methyl jasmonate BSIVs Biotic stress induced volatiles PVS Pathogen induced volatiles PVS Pathogen induced volatiles PVS Pathogen induced volatiles PVS Pathosen induced volatiles PVS Pathogen induced volatiles PVS Pathoge	DMAPP	Dimethylallyl diphosphate		spectroscopy
GLV Green leaf volatiles DAI Days after inoculation LOX Lipoxygenase IS or ISTD Internal standard PAL Phenylalanine ammonia lyase SIM Selective ion monitoring ROS Reactive oxigene species O.D. Outer diameter MeJA Methyl jasmonate NIST National Institutes of Standards SAR Systematic acquired resistance BSIV's Biotic stress induced volatiles EPA Environmental Protection HIPV's Herbivore induced volatiles PIV's Pathogen induced volatiles NIH National Institutes of Health OH Hydroxyl radical BLAST Basic local alignment search AMF Arbuscular mycorrhizal mugi AM Arbuscular mycorrhizal PCA Principal component analysis EM Ectomycorrhizal TIC Total ion chromatogram ABA Abscisic acid EIC Extracted ion chromatogram SA Salicylic acid m/z Mass-to-charge ratio PAS Photoacoustic spectroscopy S/N Signal-to-noise ratio PTR-MS Proton transfer reaction mass BP Boiling point spectrometry LoD Limit of detection GC-FID Gas chromatography coupled to LoQ Limit of quantification flame ionization detector OTL 1-octene-3-ol SBSE Stir bar sorptive extraction 10-HPODE 10-hydroperoxyoctadecadienoic pDMS Polydimethylsiloxane	KEGG	Kyoto encyclopedia of genes	GCxGC	two dimensional gas
LOXLipoxygenaseIS or ISTDInternal standardPALPhenylalanine ammonia lyase ROSReactive oxigene speciesO.D.Outer diameterMeJAMethyl jasmonateNISTNational Institutes of StandardsSARSystematic acquired resistance BSIVsBiotic stress induced volatilesEPAEnvironmental ProtectionHIPVsHerbivore induced volatilesNIHNational Institutes of HealthOHHydroxyl radicalBLASTBasic local alignment searchAMFArbuscular mycorrhizal fungitoolAMArbuscular mycorrhizalPCAPrincipal component analysisEMEctomycorrhizalTICTotal ion chromatogramABAAbscisic acidEICExtracted ion chromatogramSASalicylic acidm/zMass-to-charge ratioPASPhotoacoustic spectroscopyS/NSignal-to-noise ratioPTR-MSProton transfer reaction massBPBoiling pointGC-FIDGas chromatography coupled to LoQLimit of detectionGC-FIDGas chromatography coupled to LoQLimit of quantificationSBSEStir bar sorptive extraction10-HPODE10-hydroperoxyoctadecadienoicPDMSPolydimethylsiloxane10-HPODE10-hydroperoxyoctadecadienoic				chromatography
PAL Phenylalanine ammonia lyase ROS Reactive oxigene species O.D. Outer diameter MeJA Methyl jasmonate NIST National Institutes of Standards SAR Systematic acquired resistance and Technology BSIVs Biotic stress induced volatiles EPA Environmental Protection HIPVs Herbivore induced volatiles NIH National Institutes of Health 'OH Hydroxyl radical BLAST Basic local alignment search AMF Arbuscular mycorrhizal fungi tool AM Arbuscular mycorrhizal PCA Principal component analysis EM Ectomycorrhizal TIC Total ion chromatogram ABA Abscisic acid EIC Extracted ion chromatogram SA Salicylic acid m/z Mass-to-charge ratio PAS Photoacoustic spectroscopy S/N Signal-to-noise ratio PTR-MS Proton transfer reaction mass BP Boiling point spectrometry LoD Limit of detection GC-FID Gas chromatography coupled to LoQ Limit of quantification flame ionization detector OTL 1-octene-3-ol SBSE Stir bar sorptive extraction 10-HPODE 10-hydroperoxyoctadecadienoic acid	GLV	Green leaf volatiles	DAI	Days after inoculation
ROS Reactive oxigene species O.D. Outer diameter MeJA Methyl jasmonate NIST National Institutes of Standards SAR Systematic acquired resistance and Technology BSIVs Biotic stress induced volatiles EPA Environmental Protection HIPVs Herbivore induced volatiles Agency PIVs Pathogen induced volatiles NIH National Institutes of Health 'OH Hydroxyl radical BLAST Basic local alignment search AMF Arbuscular mycorrhizal fungi AM Arbuscular mycorrhizal PCA Principal component analysis EM Ectomycorrhizal TIC Total ion chromatogram ABA Abscisic acid EIC Extracted ion chromatogram SA Salicylic acid m/z Mass-to-charge ratio PAS Photoacoustic spectroscopy S/N Signal-to-noise ratio PTR-MS Proton transfer reaction mass BP Boiling point spectrometry LoD Limit of detection GC-FID Gas chromatography coupled to LoQ Limit of quantification flame ionization detector OTL 1-octene-3-ol SBSE Stir bar sorptive extraction 10-HPODE 10-hydroperoxyoctadecadienoic PDMS Polydimethylsiloxane	LOX	Lipoxygenase	IS or ISTD	Internal standard
MeJAMethyl jasmonateNISTNational Institutes of StandardsSARSystematic acquired resistanceand TechnologyBSIVsBiotic stress induced volatilesEPAEnvironmental ProtectionHIPVsHerbivore induced volatilesNIHNational Institutes of HealthPIVsPathogen induced volatilesNIHNational Institutes of HealthOHHydroxyl radicalBLASTBasic local alignment searchAMFArbuscular mycorrhizal fungitoolAMArbuscular mycorrhizal propertionPCAPrincipal component analysisEMEctomycorrhizalTICTotal ion chromatogramABAAbscisic acidEICExtracted ion chromatogramSASalicylic acidm/zMass-to-charge ratioPASPhotoacoustic spectroscopyS/NSignal-to-noise ratioPTR-MSProton transfer reaction massBPBoiling pointSPBoiling pointLoDLimit of detectionGC-FIDGas chromatography coupled to LoQLimit of quantificationGC-FIDGas chromatography coupled to LoQLimit of quantificationFlame ionization detectorOTL1-octene-3-olSBSEStir bar sorptive extraction10-HPODE10-hydroperoxyoctadecadienoicPDMSPolydimethylsiloxaneacid	PAL	Phenylalanine ammonia lyase	SIM	Selective ion monitoring
SAR Systematic acquired resistance BSIVs Biotic stress induced volatiles EPA Environmental Protection HIPVs Herbivore induced volatiles Agency PIVs Pathogen induced volatiles NIH National Institutes of Health 'OH Hydroxyl radical BLAST Basic local alignment search AMF Arbuscular mycorrhizal fungi AM Arbuscular mycorrhizal PCA Principal component analysis EM Ectomycorrhizal TIC Total ion chromatogram ABA Abscisic acid EIC Extracted ion chromatogram SA Salicylic acid m/z Mass-to-charge ratio PAS Photoacoustic spectroscopy S/N Signal-to-noise ratio PTR-MS Proton transfer reaction mass BP Boiling point spectrometry LoD Limit of detection GC-FID Gas chromatography coupled to LoQ Limit of quantification flame ionization detector OTL 1-octene-3-ol SBSE Stir bar sorptive extraction 10-HPODE 10-hydroperoxyoctadecadienoic PDMS Polydimethylsiloxane	ROS	Reactive oxigene species	O.D.	Outer diameter
BSIVs Biotic stress induced volatiles EPA Environmental Protection HIPVs Herbivore induced volatiles Agency PIVs Pathogen induced volatiles NIH National Institutes of Health OH Hydroxyl radical BLAST Basic local alignment search AMF Arbuscular mycorrhizal fungi AM Arbuscular mycorrhizal PCA Principal component analysis EM Ectomycorrhizal TIC Total ion chromatogram ABA Abscisic acid EIC Extracted ion chromatogram SA Salicylic acid m/z Mass-to-charge ratio PAS Photoacoustic spectroscopy S/N Signal-to-noise ratio PTR-MS Proton transfer reaction mass BP Boiling point spectrometry LoD Limit of detection GC-FID Gas chromatography coupled to LoQ Limit of quantification flame ionization detector OTL 1-octene-3-ol SBSE Stir bar sorptive extraction 10-HPODE 10-hydroperoxyoctadecadienoic PDMS Polydimethylsiloxane	MeJA	Methyl jasmonate	NIST	National Institutes of Standards
HIPVs Pathogen induced volatiles NIH National Institutes of Health OH Hydroxyl radical BLAST Basic local alignment search AMF Arbuscular mycorrhizal fungi AM Arbuscular mycorrhizal PCA Principal component analysis EM Ectomycorrhizal TIC Total ion chromatogram ABA Abscisic acid EIC Extracted ion chromatogram SA Salicylic acid m/z Mass-to-charge ratio PAS Photoacoustic spectroscopy S/N Signal-to-noise ratio PTR-MS Proton transfer reaction mass BP Boiling point spectrometry LoD Limit of detection GC-FID Gas chromatography coupled to LoQ Limit of quantification flame ionization detector OTL 1-octene-3-ol SBSE Stir bar sorptive extraction 10-HPODE 10-hydroperoxyoctadecadienoic PDMS Polydimethylsiloxane	SAR	Systematic acquired resistance		and Technology
PIVs Pathogen induced volatiles NIH National Institutes of Health OH Hydroxyl radical BLAST Basic local alignment search AMF Arbuscular mycorrhizal fungi AM Arbuscular mycorrhizal PCA Principal component analysis EM Ectomycorrhizal TIC Total ion chromatogram ABA Abscisic acid EIC Extracted ion chromatogram SA Salicylic acid m/z Mass-to-charge ratio PAS Photoacoustic spectroscopy S/N Signal-to-noise ratio PTR-MS Proton transfer reaction mass BP Boiling point spectrometry LoD Limit of detection GC-FID Gas chromatography coupled to LoQ Limit of quantification flame ionization detector OTL 1-octene-3-ol SBSE Stir bar sorptive extraction 10-HPODE 10-hydroperoxyoctadecadienoic PDMS Polydimethylsiloxane	BSIVs	Biotic stress induced volatiles	EPA	Environmental Protection
OH Hydroxyl radical BLAST Basic local alignment search AMF Arbuscular mycorrhizal fungi tool AM Arbuscular mycorrhizal PCA Principal component analysis EM Ectomycorrhizal TIC Total ion chromatogram ABA Abscisic acid EIC Extracted ion chromatogram SA Salicylic acid m/z Mass-to-charge ratio PAS Photoacoustic spectroscopy S/N Signal-to-noise ratio PTR-MS Proton transfer reaction mass BP Boiling point spectrometry LoD Limit of detection GC-FID Gas chromatography coupled to LoQ Limit of quantification flame ionization detector OTL 1-octene-3-ol SBSE Stir bar sorptive extraction 10-HPODE 10-hydroperoxyoctadecadienoic acid	HIPVs	Herbivore induced volatiles		Agency
AMF Arbuscular mycorrhizal fungi tool AM Arbuscular mycorrhizal PCA Principal component analysis EM Ectomycorrhizal TIC Total ion chromatogram ABA Abscisic acid EIC Extracted ion chromatogram SA Salicylic acid m/z Mass-to-charge ratio PAS Photoacoustic spectroscopy S/N Signal-to-noise ratio PTR-MS Proton transfer reaction mass BP Boiling point spectrometry LoD Limit of detection GC-FID Gas chromatography coupled to LoQ Limit of quantification flame ionization detector OTL 1-octene-3-ol SBSE Stir bar sorptive extraction 10-HPODE 10-hydroperoxyoctadecadienoic PDMS Polydimethylsiloxane acid	PIVs	Pathogen induced volatiles	NIH	National Institutes of Health
AM Arbuscular mycorrhizal PCA Principal component analysis EM Ectomycorrhizal TIC Total ion chromatogram ABA Abscisic acid EIC Extracted ion chromatogram SA Salicylic acid m/z Mass-to-charge ratio PAS Photoacoustic spectroscopy S/N Signal-to-noise ratio PTR-MS Proton transfer reaction mass BP Boiling point spectrometry LoD Limit of detection GC-FID Gas chromatography coupled to LoQ Limit of quantification flame ionization detector OTL 1-octene-3-ol SBSE Stir bar sorptive extraction 10-HPODE 10-hydroperoxyoctadecadienoic PDMS Polydimethylsiloxane	\cdot OH	Hydroxyl radical	BLAST	Basic local alignment search
EM Ectomycorrhizal TIC Total ion chromatogram ABA Abscisic acid EIC Extracted ion chromatogram SA Salicylic acid m/z Mass-to-charge ratio PAS Photoacoustic spectroscopy S/N Signal-to-noise ratio PTR-MS Proton transfer reaction mass BP Boiling point spectrometry LoD Limit of detection GC-FID Gas chromatography coupled to LoQ Limit of quantification flame ionization detector OTL 1-octene-3-ol SBSE Stir bar sorptive extraction 10-HPODE 10-hydroperoxyoctadecadienoic PDMS Polydimethylsiloxane	AMF	Arbuscular mycorrhizal fungi		tool
ABA Abscisic acid EIC Extracted ion chromatogram SA Salicylic acid m/z Mass-to-charge ratio PAS Photoacoustic spectroscopy S/N Signal-to-noise ratio PTR-MS Proton transfer reaction mass BP Boiling point spectrometry LoD Limit of detection GC-FID Gas chromatography coupled to LoQ Limit of quantification flame ionization detector OTL 1-octene-3-ol SBSE Stir bar sorptive extraction 10-HPODE 10-hydroperoxyoctadecadienoic PDMS Polydimethylsiloxane acid	AM	Arbuscular mycorrhizal	PCA	Principal component analysis
SA Salicylic acid m/z Mass-to-charge ratio PAS Photoacoustic spectroscopy S/N Signal-to-noise ratio PTR-MS Proton transfer reaction mass BP Boiling point spectrometry LoD Limit of detection GC-FID Gas chromatography coupled to LoQ Limit of quantification flame ionization detector OTL 1-octene-3-ol SBSE Stir bar sorptive extraction 10-HPODE 10-hydroperoxyoctadecadienoic PDMS Polydimethylsiloxane acid	EM	Ectomycorrhizal	TIC	Total ion chromatogram
PAS Photoacoustic spectroscopy S/N Signal-to-noise ratio PTR-MS Proton transfer reaction mass BP Boiling point spectrometry LoD Limit of detection GC-FID Gas chromatography coupled to LoQ Limit of quantification flame ionization detector OTL 1-octene-3-ol SBSE Stir bar sorptive extraction 10-HPODE 10-hydroperoxyoctadecadienoic PDMS Polydimethylsiloxane acid	ABA	Abscisic acid	EIC	Extracted ion chromatogram
PTR-MS Proton transfer reaction mass BP Boiling point spectrometry LoD Limit of detection GC-FID Gas chromatography coupled to LoQ Limit of quantification flame ionization detector OTL 1-octene-3-ol SBSE Stir bar sorptive extraction 10-HPODE 10-hydroperoxyoctadecadienoic PDMS Polydimethylsiloxane acid	SA	Salicylic acid	m/z	Mass-to-charge ratio
spectrometry LoD Limit of detection GC-FID Gas chromatography coupled to LoQ Limit of quantification flame ionization detector OTL 1-octene-3-ol SBSE Stir bar sorptive extraction 10-HPODE 10-hydroperoxyoctadecadienoic PDMS Polydimethylsiloxane acid	PAS	Photoacoustic spectroscopy	S/N	Signal-to-noise ratio
GC-FID Gas chromatography coupled to LoQ Limit of quantification flame ionization detector OTL 1-octene-3-ol SBSE Stir bar sorptive extraction 10-HPODE 10-hydroperoxyoctadecadienoic PDMS Polydimethylsiloxane acid	PTR-MS	Proton transfer reaction mass	BP	Boiling point
flame ionization detector OTL 1-octene-3-ol SBSE Stir bar sorptive extraction PDMS Polydimethylsiloxane 10-HPODE 10-hydroperoxyoctadecadienoic acid		spectrometry	LoD	Limit of detection
flame ionization detector OTL 1-octene-3-ol SBSE Stir bar sorptive extraction PDMS Polydimethylsiloxane 10-HPODE 10-hydroperoxyoctadecadienoic acid	GC-FID	Gas chromatography coupled to	LoQ	Limit of quantification
PDMS Polydimethylsiloxane acid			_	
· · · · · · · · · · · · · · · · · · ·	SBSE	Stir bar sorptive extraction	10-HPODE	10-hydroperoxyoctadecadienoic
TDU Thermal desorption unit SOA Secondary organic aerosols	PDMS	Polydimethylsiloxane		acid
	TDU	Thermal desorption unit	SOA	Secondary organic aerosols

1. INTRODUCTION

Plants produce a wide range of volatile organic compounds (VOCs) during their metabolic processes. Almost any part of the plant—roots, stems, leaves, flowers, and fruits—is capable of producing, storing, and releasing these compounds (Owen et al. 2002; Köllner et al. 2004; Laothawornkitkul et al. 2009; Crespo et al. 2012; Colquhoun et al. 2013). Numerous studies have already focused on identifying plant scent compounds (Dicke and Loreto, 2010; Spinelli et al. 2011). The emission of these compounds is influenced by the plant's age and phenological stage (Loreto and Schnitzler, 2010), as well as the presence of abiotic and biotic stressors. The wide spectrum of VOCs produced by the plants can be excreted in significant amounts during physical damage, pest injury, or pathogen infection. These VOCs are released even hours or days after the stress event (Dudareva et al. 2013). Fungal diseases are accompanied by the immediate release of fungal VOCs when they colonize a substrate-rich medium, such as cereal grains (Magan and Evans 2000). The analysis of the volatile headspace of plants can point to a yet visually undetectable infection, and the pathogen may even be identified selectively (Dudareva et al. 2013). Numerous research groups have already dealt with the detection of plant infections, separation from healthy plants, and analysis of volatile compounds (Schuh et al. 1997; Loreto et al. 2006; Derendorp et al. 2010; Jansen et al. 2010a; Jansen et al. 2010b; Elad et al. 2016; Kasal-Slavik et al. 2017).

E-nose Laboratory has been working on "Analysis of Natural Odor Patterns and Their Agricultural Applications" since 2017 in Martonvásár, Hungary, at the HUN-REN Centre for Agricultural Research (CAR). The main goal of our research was to develop a new type of artificial sensory system that can determine the complex odor compositions of agricultural plants and allow for early detection of pests and pathogens in agricultural crops based on changes in their scent composition. For this reason, a baseline task was to collect VOCs and analyze them by gas chromatography coupled to mass spectrometry (GC-MS) measurements from healthy and infected or diseased plants. In addition, establish biomarker biogenic volatile organic compounds (BBVOC) of the different adverse states at various plant growth and infection stages to build a database of related VOC patterns. The purpose of the database included analysis by machine learning and AI-based statistics, thus enabling the development of prediction algorithms so stable biomarkers can be targeted by other techniques.

There are many methods for extracting and collecting volatile compounds from plants. Previously, destructive solvent extractions were widespread, but nowadays, non-destructive sampling techniques are more popular. One type of scent collection is the so-called static method, in which

equilibrium is established between the sample and the volatile compounds in the airspace above it, and then sampling takes place. The other type is the dynamic method, in which the vapor phase is continuously renewed and equilibrium is not established. Among the static sampling techniques, SPME (solid-phase microextraction) (Arthur and Pawliszyn, 1990) is commonly used, while among the dynamic methods, open or closed system volatile collection is the most widely used (Vuts et al. 2018). With the aforementioned techniques, our group had the opportunity to collect various plant volatile compounds and detect and monitor changes in the plant's volatile profile. A non-invasive sampling and analysis approach where samples can be stored and reanalyzed if needed with cost effectiveness and field portability for sampling, the pull-type open-loop DHS VOC collection followed by SPE and GC-MS analysis, was chosen. The choice for this approach and its adaptation, implementation, refinement, and testing exhibit unique challenges since, despite its widespread use by various fields in science, little do we know about performance parameters affecting the accuracy of such methods, also detailed and comprehensive know-how descriptions are gaps in scientific literature. After adaptation and testing application of approach and workflow for sampling and analysis of different plant-pathogen and/or other diseased states followed by characterization of the volatile fingerprint and its components as well as their abundance. From this complex dataset it is possible to establish candidates for Biomarker Biogenic Volatile Organic Compounds (BBVOCs), select the most promising combinations, and study the identified biomarkers and their emission characteristics. Early detection of infections and pests can be crucial for effective, environmentally friendly defense, precision agricultural techniques, early disease detection, and also aid in patho- and chemotyping. Pathogen-derived BVOCs (Biogenic Volatile Organic Compounds) can substantially and dynamically modify the VOC profile in and above a crop field or even on a larger scale and may also function as biomarkers for the detection of or forecasting of early infections (Li et al. 2019). However, surprisingly little is known at present about the composition and quantity of BVOC emissions specifically from crop fields (Guenther, 2013; Bachy et al. 2016 and 2020), which is in contrast with their comparatively great abundance. Therefore, it is of high priority that their precise composition, temporal and geographical distribution, and fluxes are characterized and understood. To measure and characterize this process and its significance, the wheat-powdery mildew interaction was tested and presented here (aside from the many other pathogens and plant species sampled, analyzed, and tested during the project) in this thesis since wheat is the most important cereal in the temperate climate, with a global production of ca. 750 million tons harvested on more than 200 million hectares (FAO 2020). Powdery mildew (PM) disease, caused by the fungus Blumeria graminis (DC.) Speer f.sp. tritici Marchal (Bgt, syn. Erysiphe graminis DC. f.sp. tritici Marchal), is one of the most widespread

foliar diseases of wheat globally. It occurs practically everywhere wheat is grown, and thus may release biomarker and other BVOCs from millions of hectares worldwide (Basandrai and Basandrai, 2018). This pathogen can cause significant yield losses, especially where nitrogen fertilizers are routinely applied (Last, 1953; Rowaished, 1980; Tompkins et al. 1992). Though annual variations occur regionally depending on weather and other conditions (Murray, 2009), yield reductions without protective measures may amount, in extreme cases, to 40–50% (Oerke, 2006; Savary et al. 2019), while grain quality is also affected (Gao et al. 2018). This is an obligate biotrophic pathogen, i.e., it grows only on the leaves of living plants and has a relatively minimalistic interaction with the host (Liang et al. 2018). As a result, fungal BVOCs will essentially be emitted from an active infection site, contrary to other pathogens, which may induce additional emissions during their subsequent necrotrophic or saprophytic stages (Pusztahelyi et al. 2017). Importantly, VOC emission from wheat (Bachy et al. 2020) appears to be weak and simple in profile compared to other crops (Gomez et al. 2019). This relatively "noise-poor" volatile background provides a yet unnoticed advantage and represents an excellent experimental system to screen for specific BVOCs that may be involved in and signal the progression of Bgt or other fungal pathogen infection in wheat and other cereals (Hamow et al. 2021).

2. OBJECTIVES AND AIMS

During my PhD work I have set the following aims:

- 1. Selecting a non-invasive static/dynamic sampling and analysis approach based on pilot experiments, where samples can be stored and reanalyzed, for differentiation between healthy and adversely affected economically important plants in agri- and horticulture.
- 2. Implement an open-loop-pull-type-dynamic headspace VOC collection followed by SPE (solid-phase extraction) elution and GC-MS analysis (open-loop-pull-type-DHS-SPE-GC-MS) approach as a method, as well as to test and critically evaluate method performance, and if possible refine the methodological approach
 - Performance parameters of the GC-MS analysis method for qualitative and quantitative purposes
 - Adsorbent SPE elution recovery without/with internal standard correction and testing the effects of mixtures for VOC-s used for calibration
 - Characterization of sorbent breakthrough and desorption effects by recovery experiments, in case of continuous and periodic (intermittent) DHS-VOC sampling to mitigate possible breakthrough and adsorption/desorption effects
 - Evaluate sorbent trap capacity and competition of VOC-s for the volatile traps binding sites during continuous DHS sampling

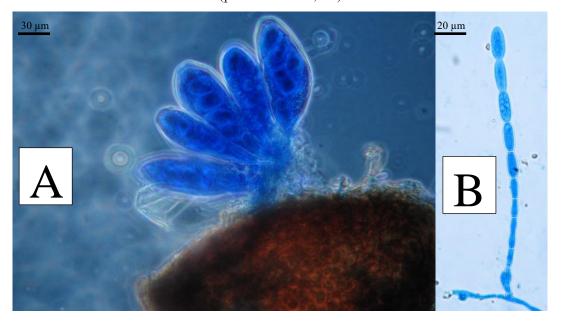
3. Application of the pull-type-DHS-SPE-GC-MS method

- From healthy and fungal pathogen (emphasis on *Blumeria Graminis* f. sp. *tritici* wheat powdery mildew) affected wheat headspaces characterization of potential robust volatile biomarker biogen molecules (BBVOC) as indicators of infection at early and advanced states
- Survey of robustness of BBVOC-s and monitoring of their emissions and their testing in mixed pathogen background

3. LITERATURE REVIEW

3.1 The origin, genetics, distribution, and economic significance of wheat and its disease powdery mildew (PM) caused by fungal pathogen *Blumeria graminis* f. sp. *tritici*

Common wheat, or bread wheat (*Triticum aestivum* L.), belongs to the grass family (*Poaceae*) and the genus Triticum. It originates from Southwest Asia, the so-called "Fertile Crescent," which includes present-day Southwest Iran, North Iraq, Southeast Turkey, Syria, Jordan, and Israel (Lev-Yadun et al. 2000). Based on their chromosome numbers, wheat species can be classified into three groups (Kihara, 1924): Diploid series with n=7; genome: A; B, D, G; Tetraploid series with n=14; genome: AB or AG; Hexaploid series with n=21; genome: ABD or ABG. The hexaploid T. aestivum likely evolved after the cultivation of diploid and tetraploid wheats that are assumed to have originated from Northwest Iran or Northeast Turkey. Based on their growth habit, wheat can be categorized into two main types: winter and spring. Winter wheat varieties can be grown in areas where winter weather conditions provide adequate cold treatment for vernalization, but the temperature is not too low to cause damage to the plants. Winter wheat generally has higher yield and greater crop stability than spring wheat due to its longer vegetative phase, resulting in better tilling and the accumulation of more assimilates in the grain. Spring genotypes of wheat can be economically grown in areas where winter is too cold for winter wheat or (in subtropical and Mediterranean climates) where the "winter" is too warm for meeting the cold requirements of winter wheat varieties (Kiss, 2016).


Wheat is an important commodity crop that provides food to about 30% of the world's population and accounts for over 20% of human-consumed calories (Arzani and Ashrah, 2017). Over the last decade, global wheat production has shown an increasing trend except for a slight decrease during the 2018/2019 growing season. It is worth noting that the global human population is expected to exceed the 9 billion by 2050 increasing the global demand for food. Current wheat yield gains are estimated at around 0.5 to 1% per annum, below the 2.4% required to meet the global demand for this commodity. Consequently, wheat production should increase by up to 70% to meet the projected global demand for wheat products by 2050. The average yield of wheat has been stagnant by up to 40% in recent years, which shows that the current output and productivity rate are not sufficient to ensure future food security. The shortage of arable land, the tension on water resources, and climate change limit the potential to expand production areas to increase output. Furthermore, the low productivity of wheat is also attributed to several biotic and abiotic factors that reduce its yield potential. Therefore, new-generation wheat cultivars need to be developed with enhanced tolerance/resistance to a plethora of stresses, *e.g.*, resistance to diseases, pests, soil alkalinity and salinity, and nitrogen use efficiency to enhance yield potential (Bapela et al. 2023).

On a global scale, wheat is cultivated on nearly 240 million hectares, playing a fundamental role in both food supply and livestock feed. In Hungary, the annual sown area of winter wheat approaches 1.0-1.2 million hectares, constituting a significant portion of the agricultural land under cultivation. Depending on the yield, we produce approximately 5-6 million tons of goods annually (Láng and Bedő, 2006). Hungary is particularly susceptible to extreme weather events, increasing the vulnerability of agricultural production. The main objectives of wheat breeders are to enhance yield security, resistance to pathogens and pests (biotic stress tolerance), improve crop quality, and increase plant tolerance to abiotic stresses. Generally, economically and safely cultivable varieties are those selected based on multi-year field trials conducted under the environmental conditions of a given area. For the latest data, you can refer to the Hungarian Central Statistical Office (KSH) that reported wheat cultivation in Hungary took place on 1,053,575 hectares, resulting in a total yield of 5,933,625 tons, averaging 5.63 tons per hectare for the year 2023.

Diseases such as powdery mildew (PM), caused by the fungal pathogen Blumeria graminis f. sp. tritici, is a leaf disease that occurs worldwide annually, and have contributed to significant yield losses (Bapela et al. 2023). In Hungary, its epidemic spread was first observed in 1961 (Podhradszky and Csuti 1962), and since then, it appears on Hungarian wheat fields every year. The Blumeria genus demonstrates monophyletic characteristics, encompassing solely the species "Blumeria graminis." This species further delineates into eight forma speciales, targeting various grasses and cereal crops such as wheat, barley, oats, and rye. Notably, B. graminis f. sp. dicocci (affecting tetraploid durum wheat) and B. graminis f. sp. triticale (hybrid of wheat and rye mildew) can infect wheat, extending the host range. The challenge arises as breeding for powdery mildew (PM) resistance in wheat lacks specificity across these formae speciales, and their prevalence in different cultivars and regions remains largely unexplored. Consequently, enhancing the development of PM-resistant cultivars hinges on a nuanced comprehension of mildew populations and the dynamic interplay between adapted and non-adapted formae speciales. This knowledge could pave the way for improved strategies in identifying novel genetic sources of resistance against PM. The sluggish progress in cultivar resistance development can be attributed to multiple factors, including the complexities in PM screening, inadequate understanding of the genetic underpinnings of disease resistance, and the polygenic nature of resistance, heavily influenced by environmental conditions (Bapela et al. 2023). Analysis of volatile compounds, particularly identification and monitoring of biomarker and other BVOCs may serve as a tool to aid breeders in screening for PM resistance (Hamow et al. 2021).

Figure 1. Early symptoms of powdery mildew (*Blumeria graminis*) on wheat leaf (photo: Puskás, K.)

Figure 2. A: asci released from chasmothecium, each contains eight ascospores of *Blumeria* graminis; **B:** formation of conidiospore chain on a conidiophore (photos: Komáromi, J.)

The characteristic of the pathogen-host relationship is true parasitism, where the fungus does not destroy the attacked plant cell. It absorbs nutrients from the plant's epidermal cells through the cell membrane, inhibiting plant growth, resulting in small spikes, tiny, shriveled, and premature ripening grains. The average crop loss in typical years is 5-8%, but in cases of severe infection, it can reach up to 40% (Griffey et al. 1993, Komáromi, 2016). The name "powdery mildew fungi" comes from the powdery coating resembling flour on the surface of infected plants, which is actually the sporulating mycelium of the fungus as presented on **Figure 1.**

Within the *Ascomycota* phylum, they belong to the *Pezizomycotina* subphylum, the *Leotiomycetes* class, and the *Erysiphales* order. Powdery mildew fungi can infect more than 10,000 host plant species (Braun and Cook 2012, Komáromi, 2016). They are obligate biotrophic parasites, meaning they can only feed and grow on living plant tissues. Both conidia and ascospores, the latter developed in the sexual reproductive structure, play a role in infection. They attach to the host's surface using an appressorium, penetrate through the epidermal cell walls, and absorb nutrients from the cells using haustoria. The sexual fruiting body was initially called cleistothecium but later renamed as chasmothecium (Braun et al. 2002, Komáromi, 2016). Ascospores opening from the chasmothecium can be observed on **Figure 2.** (A) while conidiospores on a conidiospore on (B).

3.2 Description of plant and plant-related volatile organic compounds (VOCs): diversity, functions, and biosynthesis

Volatile organic compounds (VOCs) are a mixture of low molecular-weight compounds originating from different types of organisms (Maffei et al. 2011). Under biotic (insects, beneficial fungi, pathogenic fungi, bacteria) and abiotic (heat, drought, UV radiation, etc.) stresses, plants often release complex VOC bouquets. Plant VOCs are essential in communication between plants and other organisms (Dudareva et al. 2006), which has been demonstrated in the laboratory and in agricultural systems (Kessler and Baldwin, 2001; Baldwin et al. 2002; Turlings and Erb, 2018). Volatiles emitted from microorganisms such as bacteria and fungi have been investigated less than VOCs emitted from plants (Effmert et al. 2012; Junker and Tholl, 2013; Weisskopf, 2013; Penuelas et al. 2014).

Plants and their associated microorganisms produce an extensive range of VOCs, which serve as critical mediators of various physiological processes, signaling mechanisms, and ecological interactions. Plants exchange inorganic compounds with their environment (CO₂, O₂) during photosynthesis and respiration, but most of them are also capable of emitting volatile organic compounds (VOCs) through various organs, such as flowers, fruits, or leaves. The physicochemical constraints of volatility limit VOC components to small-molecule, mainly lipophilic compounds belonging to the terpenes and non-terpene aliphatic compounds (including nitrogen- and sulfur-containing compounds), phenylpropanoids, and benzoids (Duc et al. 2022). Many VOCs produced by plants have been widely used in the industry as flavorings and fragrances, with research in this area dating back in the food and perfume industries (Bicchi et al. 2004). Despite the fact that their significance in plant physiology and plant ecology began to be investigated only in the last 10-15 years, research has shed light on the role of VOCs in interactions between plants and other organisms, as well as under biotic and abiotic stresses (Dudareva et al. 2004). Plants produce a wide variety of compounds, ranging from simple molecules like ethene

and methanol to complex molecules such as terpenes and various alkaloids. Over 100,000 chemical components produced by plants are known, and among them, at least 1700 are volatile compounds that play essential roles in growth, communication, defense, and survival (Baldwin et al. 2006). The study of volatile substances was initially limited to fragrance compounds emitted by flowers, but the focus has shifted to the study of volatile organic compounds produced by other vegetative tissues nowadays (Dicke and Loreto, 2010). The most well-known volatiles are those emitted by flowers to attract pollinators (Pichersky and Gershenzon, 2002). Several plant species store mixtures of VOCs in specialized secretory structures such as glandular trichomes or resin canals (McGarvey and Croteau, 1995; Gershenzon et al. 2000). These compounds are released when tissues are damaged, which may act as repellents for pests (although it can also act as attractant for some parasitoids) or inhibiting microbial growth (Langenheim, 1994). Furthermore, recent research indicates that the consumption of plant tissues generally induces the de novo biosynthesis and emission of VOCs, including six-carbon green leaf volatiles (e.g., cis-hex-3-enal), methyl salicylate, methyl jasmonate, indole, terpenes, etc. These volatile compounds can play a direct protective role (Andersen et al. 1994; De Moraes et al. 2001) or serve as indirect defense mechanisms by attracting natural enemies of herbivores to prey upon them or parasitoids that parasitize them (Turlings et al. 1995; Kessler and Baldwin, 2001; Dicke and Hilker, 2003; Rasmann et al. 2005). Finally, chemical signals sent by damaged plants not only affect herbivores but also serve as warning signals to neighboring plants, inducing defensive responses in them (Arimura et al. 2000; Engelberth et al. 2004).

3.2.1 Chemical groups of plant VOCs

3.2.1.1 Terpenoids

Terpenoids are a prominent group of plant VOCs, characterized by their isoprene-based structures. Examples include monoterpenes (*e.g.*, limonene) and sesquiterpenes (*e.g.*, β-caryophyllene) with diverse physiological roles, such as defense and allelopathy. Terpenoids are synthesized via the methylerythritol phosphate (MEP) pathway in plastids. For instance, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) serve as building blocks for terpenoid synthesis (Gershenzon and Dudareva, 2007). Terpenoid biosynthesis KEGG (Kyoto Encyclopedia of Genes and Genomes) map presented as **Annex 9.2 Figure S1**.

3.2.1.2 Green leaf volatiles (GLVs)

GLVs are C6 compounds, including (Z)-3-hexenal and (E)-2-hexenal. These VOCs are involved in plant defense, wound signaling, and indirect defense through herbivore attraction. GLVs are derived from fatty acids through the lipoxygenase (LOX) pathway. LOX enzymes catalyze the conversion of linolenic acid to GLVs upon plant tissue damage (Scala et al. 2013).

3.2.1.3 Phenylpropanoids

Phenylpropanoids encompass compounds like benzaldehyde or eugenol. They contribute to plant defenses against herbivores, pathogens and play a role in attracting pollinators. Phenylpropanoids are synthesized via the phenylalanine ammonia lyase (PAL) pathway. PAL catalyzes the conversion of phenylalanine to cinnamic acid, a precursor for various phenolic compounds (Dixon et al. 2009). Related biosynthesis KEGG map presented in **Annex 9.3 Figure S2**.

3.3 Abiotic stress-induced volatiles in plants

Plants frequently encounter environmental stressors such as drought, heat, and salinity, which significantly impact their growth and survival. Plants respond to changes in light, temperature, or other abiotic stressors, such as floods and droughts, with emissions of volatile organic compounds (Ebel et al. 1995; Holzinger et al. 2000; Kreuzwieser et al. 2000). Abiotic stress-induced volatiles, including isoprenes, terpenes, and green leaf volatiles, have emerged as vital players in plant responses to these challenges (Peñuelas and Staudt, 2010). Drought stress induces the emission of isoprene, a volatile compound linked to stress tolerance. Isoprene helps mitigate oxidative damage, stabilize cellular membranes, and maintain photosynthetic efficiency during drought conditions (Vickers et al. 2009). Terpenes, especially monoterpenes and sesquiterpenes, are induced by heat stress. These compounds modulate heat stress responses by regulating stomatal conductance and influencing plant-microbe interactions (Llusià and Peñuelas, 2000). However, the precise physiological role of these terpenes remains not fully understood. It is hypothesized that volatile terpenes enhance the heat tolerance of photosynthetic tissues by incorporating themselves into thylakoid membranes and stabilizing them under elevated temperatures (Loreto et al. 1998; Sharkey and Yeh, 2001; Sharkey et al. 2001). There is also growing evidence suggesting that terpene fragrance compounds boost antioxidant activity in plants by neutralizing reactive oxygen species (ROS) (Loreto and Velikova, 2001; Loreto et al. 2001).

Green leaf volatiles (GLVs) such as (Z)-3-hexenal and (E)-2-hexenal, play a crucial role in plant responses to various stresses, including heat. These volatiles act as signaling molecules, triggering defense mechanisms and enhancing stress tolerance (Dixon et al. 2009). Salinity stress induces the release of methyl jasmonate (MeJA), which, in turn, triggers the production of specific volatiles. MeJA-mediated volatiles are involved in ion homeostasis, enhancing salt tolerance in plants (Song et al. 2017). The biosynthesis and emission of abiotic stress-induced volatiles are tightly regulated. Stress-responsive genes, such as those encoding terpene synthases and lipoxygenases, are activated under adverse conditions, leading to volatile production (Sharkey et al. 2013). Signaling pathways involving jasmonic acid and abscisic acid play pivotal roles in mediating these responses. Abiotic stress-induced volatiles have ecological implications, influencing plant

interactions with herbivores, pollinators, and neighboring plants. These volatiles mediate plant-plant communication, enhance indirect defenses, and facilitate ecological adaptations in natural ecosystems (Blande et al. 2014). Another important plant hormone derived volatile is methyl salicylate (MeSA) and it functions as a signaling molecule in plant defense mechanisms by inducing systematic acquired resistance (SAR) if MeSA used as a priming agent, enabling plants to respond more effectively to subsequent threats against biotic (pathogen attack) and for abiotic stress (Gondor et al. 2022).

3.4 Biotic stress-induced volatiles in plants

Plants are in a perpetual struggle against biotic stressors such as herbivores, pathogens, and parasites. As part of their sophisticated defense arsenal, plants produce and release biotic stressinduced volatiles (BSIVs) that play crucial roles in signaling, defense, and ecological interactions. Herbivore feeding activates the release of herbivore induced plant volatiles (HIPVs), from damaged plant tissues (Dicke et al. 2009). These volatiles serve as signals to neighboring plants, warning them of impending herbivore attacks (Arimura et al. 2005). HIPVs also attract natural enemies of herbivores, such as parasitoids and predators, creating a cascade of indirect defenses (Turlings and Erb, 2018). This phenomenon, known as "indirect defense," has profound ecological implications in plant-insect interactions (Dicke and Baldwin, 2010). Pathogen-Induced Volatiles (PIVs) are emitted by plants as a response to pathogen attacks by releasing specific volatiles, as part of their defense mechanisms (Kishimoto et al. 2005). These volatiles can inhibit pathogen growth or attract beneficial microorganisms (Ryu et al. 2003). PIVs play a role in priming uninfected parts of the plant, inducing systemic resistance against pathogens (Hossain et al. 2011). Plants often simultaneously emit HIPVs and PIVs in response to multiple stressors (War et al. 2011). These combined signals can enhance the plant's defense mechanisms and influence nearby plant communities and the interplay between HIPVs and PIVs can create intricate ecological networks involving herbivores, pathogens, and their respective natural enemies (D'Alessandro and Turlings, 2005). Understanding this complexity is crucial for managing pest populations in agricultural and natural systems.

3.5 Original physiological roles of plant VOCs and their significance in agroecosystems

Volatile organic compounds (VOCs) are organic chemicals that readily vaporize into the air and play a pivotal role in the functioning of agroecosystems. This scientific text explores the diverse roles of VOCs in agriculture, from plant defenses to ecological interactions, and highlights their relevance in crop management and sustainability. Agroecosystems, which encompass agricultural fields, orchards, and managed landscapes, are intricate environments where various biotic and abiotic factors interact. Among the many chemical compounds produced and released by plants,

VOCs stand out as key players in mediating these interactions. Plants emit a wide array of VOCs, including terpenoids, green leaf volatiles, and phenolic compounds. These emissions serve physiological roles and multiple purposes in agroecosystems. Examples include but not confined to (I.) Plant Defense mechanisms - Plants release VOCs as part of their defense mechanisms against herbivores and pathogens. For instance, the emission of terpenoids can deter herbivores by acting as repellents or attracting predators of herbivorous insects (Dicke et al. 1990). Moreover, green leaf volatiles, such as cis-3-hexenal, can be released upon herbivore feeding and serve as signals for neighboring plants to activate their own defense responses (Arimura et al. 2000).

(II.) Communication and signaling - VOCs like floral scents play a pivotal role in attracting pollinators and in intraspecific and interspecific communication within agroecosystems (Knudsen et al. 2006). These compounds enhance pollination and reproductive success in plants (Raguso, 2008). For example, the release of (E)-β-caryophyllene by maize plants has been shown to attract parasitoid wasps, which parasitize the eggs of herbivorous insects, thereby enhancing biological pest control (Rasmann et al. 2005).

(III.) Influence on crop health and productivity - The presence of VOCs in agroecosystems can have profound effects on crop health and productivity such as Indirect defense against pests - Many plant VOCs are integral components of defense against herbivores and pathogens. For instance, (E)-β-caryophyllene functions as attractant for natural enemies of herbivores (Arimura et al. 2009).

Indirectly, VOCs contribute to crop protection by attracting natural enemies of herbivores. Studies have shown that the presence of certain VOC-emitting plants in agroecosystems can increase the abundance and effectiveness of natural enemies, reducing the need for chemical pesticides (Landis et al. 2000). **Allelopathy and weed management** - Some VOCs, such as terpenoids and phenolic compounds, serve as allelopathic chemicals. They inhibit the growth of neighboring plants, providing a competitive advantage (Weir et al. 2004). In addition to their role in pest management, VOCs can influence weed-crop interactions. Some plant-derived VOCs exhibit allelopathic effects, inhibiting the growth of competing weed species (Bertin et al. 2003). This phenomenon has implications for weed management strategies in agriculture.

(IV.) Environmental impacts and sustainability - Understanding the ecological roles of VOCs in agroecosystems can inform sustainable agricultural practices. Reduced reliance on synthetic pesticides and herbicides can result in decreased environmental contamination and promote biodiversity (Isman, 2006). VOC-mediated communication between plants and their associated organisms can also enhance crop resilience and reduce yield losses (Kessler and Baldwin, 2001). Low-molecular-weight terpenes, including isoprene (C5), monoterpenes (C10), and

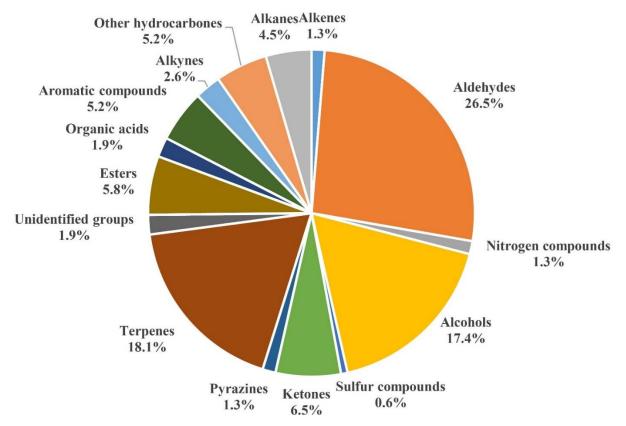
sesquiterpenes (C15), are emitted in substantial quantities by woody plants and have a notable impact on atmospheric chemistry. They contribute to the formation of ozone and secondary organic aerosols when combined with anthropogenic pollutants (Hoffmann et al. 1997; Kesselmeier and Staudt, 1999; Atkinson, 2000). Additionally, terpenoid emissions influence the levels of free radicals (·OH) and the residence time of methane in the atmosphere (Thompson, 1992; Sharkey and Yeh, 2001;). Considering the above volatile organic compounds (VOCs) are essential components of agroecosystems, influencing plant defenses, ecological interactions, and overall crop health and productivity. Recognizing the multifaceted roles of VOCs in agriculture can lead to more sustainable and environmentally friendly farming practices.

3.6 Microbial derived VOCs

Microbial VOCs are released by microorganisms such as bacteria and beneficial and pathogenic fungi (Korpi et al. 2009; Thorn and Greenman, 2012). Volatile organic compound profiles can be substantially altered by pathogen-derived VOCs, and can therefore function as biomarkers for detection, differentiation, and characterization or even forecast of early infections (Li et al. 2019; Hamow et al. 2021). More than 100 bacteria and fungi produce soil microbial VOCs (Effmert et al. 2012), and approximately 250 fungal VOCs have been described (Morath et al. 2012; Roze et al. 2012). Plants can perceive microbial VOCs from a distance and prime plant responses to microorganisms (Bailly and Weisskopf, 2012; Effmert et al. 2012; Bitas et al. 2013; Schmidt et al. 2015). Microbial VOCs can potentially mediate plant–microbe interactions (Moisan et al. 2020a; Moisan et al. 2020b; Xu et al. 2021). Microbial VOCs can diffuse through the soil environment and potentially affect plant growth and defense (Piechulla et al. 2017; Tyagi et al. 2018). Bacterial VOCs can increase plant growth and trigger systemic resistance and also influence motility and antibiotic resistance in other bacteria (Ryu et al. 2003; Ryu et al. 2004a and 2004b; Lee et al. 2012; D'Alessandro et al. 2014; Park et al. 2015). Similarly, VOCs emitted by pathogenic and beneficial microorganisms can promote plant growth (Velásquez et al. 2020b), and microbial volatiles can improve plant tolerance and sustain plant growth (Liu and Zhang, 2015; Jalali et al. 2017; Camarena-Pozos et al. 2019, Duc et al. 2022).

3.7 Volatile compounds as biomarkers of infection and diseases

The emergence of diseases and increased pest infestations significantly reduce food security and impact human health. Diagnosis of plant diseases relies on molecular biomarkers (pathogen-specific nucleic acids). However, laboratory-based molecular tests (*e.g.*, polymerase chain reaction) are complex, not accessible in open fields, not remotely controllable, and detection is only possible after the appearance of symptoms (Aksenov et al. 2013). Early identification of plant pathogens required faster and non-invasive methods to improve intervention timing and disease


spread prevention, thereby enhancing treatment effectiveness. Plant volatiles are increasingly being considered as unique diagnostic markers for plant diseases. Plants produce a wide spectrum of volatile organic compounds (VOCs) which can be excreted in significant amounts during physical damage, pest injury or pathogen infection. These VOCs are released even hours or days after the stress event (Dudareva et al. 2013). Research shows that the emission rate and composition of VOCs from infected plants differ from those of healthy control plants (Shualev et al. 1997; Jansen et al. 2009; Jansen et al. 2010a and 2010b; Jansen et al. 2011). While it can be challenging to establish a correlation between a specific VOC and disease status, there is growing evidence that a VOC panel with a specific composition can serve as an effective diagnostic tool. Collective analysis of plant volatile profiles creates a multidimensional dataset, known as a "fingerprint," which can be effectively used to differentiate between biotic and abiotic plant stresses with high confidence (Blasioli et al. 2014; Fang and Ramasamy, 2015; Khater et al. 2017). For example, three marker compounds, namely trans-hex-2-enal, 5-ethylfuran-2(5H)-one, and 2-phenylethanol, were found to be abundant in potato and tomato leaves infected with late blight (Phytophthora infestans) (Laothawornkitkul et al. 2010). Furthermore, higher concentrations of 4-ethyl guaiacol and 4-ethyl phenol were characteristic of crown rot (*Phytophthora cactorum*) in strawberries (Jelen et al. 2005). Additional studies have found significant quantities of lipogenase products and methyl salicylate in the scent samples of tomatoes infected by Botrytis cinerea (Blasioli et al. 2014). Plant diseases cause severe economic losses in agriculture worldwide. Monitoring plant health and early detection of pathogens are essential for reducing the spread of infection and developing effective coping strategies. VOC-based approaches, following initial research, enable rapid, cost-effective, and reliable pathogen detection, even before the appearance of symptoms, and can identify the simultaneous presence of multiple pathogens based on VOC profiles (Martinelli et al. 2014).

3.8 Challenges in aboveground and belowground VOC differentiation, plant belowground VOC and effects on fungal pathogens, fungal VOCs and its effect to plant host

Challenges in the differentiation of volatile organic compounds (VOCs) in both aboveground and belowground environments, as well as the impact of belowground plant VOCs on fungal pathogens and vice versa, present significant hurdles (Schulz and Dickschat, 2007; Das et al. 2012; Junker and Tholl, 2013). Distinguishing belowground VOCs from aboveground ones is particularly arduous due to the heterogeneous nature of soil environments, leading to technical constraints in VOC collection (Tholl et al. 2021). Extensive research has been conducted on VOC-mediated interactions between plants and various organisms, including both above and belowground plantinsect and plant-plant interactions, since the pioneering work of Baldwin and Schultz in 1983

(Bruce et al. 2005; Baldwin et al. 2006; Kegge and Pierik, 2010; Clavijo McCormick et al. 2012; Effah et al. 2019; Effah et al. 2022). However, our understanding of the roles played by VOCs produced by soilborne fungal pathogens and beneficial fungi, such as mycorrhizae, in influencing plant performance remains limited. Furthermore, the effects of exposure to fungal VOCs on plant resistance or tolerance to herbivory, both above and belowground, have yet to be fully explored (Duc et al. 2022). Specific methodologies, sampling techniques, and experiments needed for differentiation are discussed in section 3.10.3.

Plant belowground VOCs and their effects on fungal pathogens are gaining importance in the context of reducing chemical usage in plant protection. The analysis of VOC production patterns in root tissues is becoming increasingly crucial due to their potential roles in belowground biotic interactions, particularly with fungal pathogens. The number of identified root VOCs has surged in recent years. While only a limited number of root volatiles were known in various plant species such as maize, barley, bean, and Arabidopsis thaliana in 2015, hundreds more have been reported since then (Schenkel et al. 2015; Cordovez et al. 2017; Schenkel et al. 2018; Moisan et al. 2019). Research on the functions of root volatiles, particularly in invasive and noninvasive conditions, has predominantly focused on model plants like A. thaliana (Casarrubia et al. 2016; Cordovez et al. 2017; Schenkel et al. 2018; Moisan et al. 2019), but numerous other plant species have also been investigated. Root VOCs from various plant families, including Solanaceae, Brassicaceae, and cucurbits, as well as non-cultivated plants, have been studied for their antifungal activity or ability to enhance plant defense against pathogens and herbivores (Duc et al. 2022). These root VOCs have been grouped into 15 biosynthetic origins/chemical classes in Figure 3. and Annex **9.4 Table S1**. Volatile organic compounds are classified into different chemical groups depending on plant species, genotype, sex, development stage (Table 1. and Annex 9.4 Table S1) (Schenkel et al. 2015; Delory et al. 2016a; Delory et al. 2016b; Kihika et al. 2017; Kindlovits et al. 2018; Murungi et al. 2018; Xie et al. 2022). One of the most common groups is terpenoids, which include the sesquiterpenes (E)-β-caryophyllene, daucadiene, (E)-α-bergamotene, humulene, (E)-βfarnesene, and three putative petasitene isomers (petasitene 1-3) and the monoterpenes α -pinene and β-myrcene (Gfeller et al. 2019; Gulati et al. 2020). Other major groups of root volatiles include aldehydes, alcohols, n-alkanes, and ketones. Following strong mechanical injury in barley plants at each developmental stage, the four main volatile aldehydes were characterized and included hexanal, (E)-hex-2-enal, (E)-non-2-enal, and (E,Z)-nona-2,6-dienal (Delory et al. 2016a). The volatile organic compounds released by roots vary depending on the biotic stress agent that is causing damage to the plant. Tomato roots infected by Fusarium oxysporum emit VOCs such as benzonitrile, benzothiazol, dimethyl trisulfide, and formic acid, which have antifungal activities, and a terpene-like compound, which activates antagonistic response; whereas healthy tomato plants release n-alkanes, beclomethasone dipropionate, p-cymene, decanal, and 3-carene, which are compounds without antimicrobial activity or special role (Gulati et al. 2020). Effects of endophytic fungi on plant hosts and their VOC production can have an effect on other microorganizms and may even serve as biocontrol agents against pathogens by mycofumigation (Kaddes et al. 2019a).

Figure 3. Diversity of plant root VOCs, 155 volatile compounds from different plants collected from 2016 to 2022 (Duc et al. 2022).

Antimicrobial VOCs produced by natural hosts, though typically present at low levels, exhibit significant antagonistic activity. Furthermore, certain VOCs released by beneficial microorganisms such as *Pseudomonas putida* BP25 have shown promise in eco-friendly disease management in agriculture (Sheoran et al. 2015). For instance, pyrazine derivatives produced by *P. putida* BP25 exhibit inhibitory activity against various pathogens and pests (Kihika et al. 2017; Murungi et al. 2018). Additionally, monoterpenes like (+)-limonene and 1-octen-3-ol have been found to inhibit the growth of fungal pathogens (Simas et al. 2017; Herrero-Garcia et al. 2011). Understanding the roles of root volatiles in regulating belowground microbiomes and their effects on microbial communities is a key area of research. Despite the potential of belowground volatiles in controlling fungal diseases, further investigations are required to harness their applications in sustainable agriculture (Sharifi et al. 2022).

The impact of fungal pathogen-derived volatile organic compounds (VOCs) on plants (detailed in **Table 2.**), varies depending on the type of pathogen and its mode of nutrient acquisition, whether through biotrophic or necrotrophic means (Schenkel et al. 2015; Gulati et al. 2020). These VOCs, characterized for numerous fungal species (Fiers et al. 2013; Casarrubia et al. 2016; Werner et al. 2016; Cordovez et al. 2017; Cordovez et al. 2018; Martín-Sánchez et al. 2020; Moisan et al. 2020), exhibit low chemical diversity and likely serve as info-chemicals to attract or repel interacting organisms (Gulati et al. 2020). Some of these compounds, including 1-octen-3-ol and 2-phenylethanol, classified as phytotoxic, hinder plant growth (Werner et al. 2016). For example, 1-octen-3-ol inhibits root growth and cotyledon bleaching in A. thaliana seedlings and impairs seed germination (Splivallo et al. 2007; Lee et al. 2014). Additionally, VOCs from fungi like Serratia plymuthica and F. culmorum affect maize growth by limiting micronutrient availability in roots (Martín-Sánchez et al. 2020). Fungi like F. acuminatum hinder tomato growth, while others reduce leaf surface area and root length in barley (Fiers et al. 2013; Gulati et al. 2020). Despite their negative impact, certain fungal VOCs promote plant growth, modulating root architecture and increasing biomass (Cordovez et al. 2017; Moisan et al. 2019; Moisan et al. 2020). These VOCs, including alcohols, pyrones, phenols, sesquiterpenes, ketones, and aldehydes, influence plant growth and architecture (Casarrubia et al. 2016; Cordovez et al. 2018; Fincheira and Quiroz, 2018; Moisan et al. 2019; Duc et al. 2022). Moreover, they induce host defense mechanisms, altering ion flow and pH gradient to inhibit fungal growth (Kaddes et al. 2019b). Some, like naphthalene and monoterpenes, exhibit antibacterial effects in tomatoes (Gulati et al. 2020). Infection with fungal pathogens alters plant VOC emissions, enhancing chemical protection and deterring further fungal colonization (Schulz-Bohm et al. 2017; Gulati et al. 2020). Soilborne fungi-derived VOCs also confer resistance to above- and below-ground herbivores like cabbage root fly and cabbage white butterfly, negatively impacting their development and performance (Cordovez et al. 2017; Moisan et al. 2019; Moisan et al. 2020b). These VOCs modify root architecture, affecting plant chemistry and morphology, and can promote glucosinolate accumulation, deterring leaf caterpillar performance (Aziz et al. 2016). Additionally, they influence nematode development and behavior, inhibiting egg hatch and slowing development (Terra et al. 2018; Moisan et al. 2021). Thus, fungal VOCs not only impact plant growth but also aid in attracting disease antagonists or natural enemies of pests for defense (Duc et al. 2022).

3.9 Volatile organic compounds in mycorrhizal symbiosis

The intricate symbiotic relationship between plants and arbuscular mycorrhizal fungi (AMF) is a fundamental aspect of soil ecosystems and agricultural practices, characterized by a mutual exchange of resources. The AMF, mainly belonging to the *Glomeromycotina phylum*, forms

symbiotic associations with the majority of vascular and agricultural plants, leading to improved nutrient and water uptake for the plant (Smith and Read, 2008). This symbiosis is initiated through a precisely regulated molecular crosstalk and influenced by nutrient availability (Choi et al. 2018). Compounds such as strigolactones, released by host roots in response to inorganic phosphorus starvation, play a crucial role in the molecular signaling between fungi and plants, inducing AM spore germination, hyphae production, and branching (Ho-Plágaro and García-Garrido, 2022). Additionally, various plant compounds, including flavonoids and polyamines, actively influence hyphal elongation or branching, shaping the intricate nature of mycorrhizal fungal symbiosis (Bécard et al. 1992; Akiyama et al. 2005). The establishment of AMF involves the formation of arbuscles within the roots, facilitating the exchange of nutrients and photosynthates (Nadal and Paszkowski, 2013). AMF through extensive extraradical hyphal networks present in soil influences other organisms, root physiology, and root exudation patterns (Duc et al. 2022). While substantial progress has been made in understanding the molecular regulation of AM symbiosis, there is limited information on the role of VOCs during mycorrhization (Ho-Plágaro and García-Garrido, 2022). Sun et al. (2015) demonstrated that germinating spores of the AMF Gigaspora margarita emit unidentified volatiles, influencing lateral root density and number in non-host plants like A. thaliana and Lotus japonicus. VOCs released by fungi also modulate host root orientation, altering the branch angle of lateral roots, thereby increasing the likelihood of AM hyphae contacting roots in the rhizosphere (Sun et al. 2015). Auxins, known regulators of lateral root branch angles, can be triggered by VOCs. The gene LjCCD7, a vital component of the strigolactone synthesis pathway, is stimulated by fungal VOC signals, contributing to mycorrhizal VOCs' crucial role in increasing strigolactone biosynthesis and root proliferation (Sun et al. 2015). Another prevalent mycorrhiza–plant interaction is ectomycorrhizal (EM) symbiosis, involving various ascomycetes and basidiomycetes forming symbioses with around 6000 tree species (Brundrett, 2002; Van Der Heijden et al. 2015). In EM, volatile compounds, including terpenoids, alcohols, aldehydes, and ketones, are produced during the pre-symbiotic stage and influence the interaction between host plants and fungi (Menotta et al. 2004). Terpenoids like thujopsene released by the EM fungus Tricholoma vaccinum enhance lateral root formation and root hair length, facilitating EM establishment (Abdulsalam et al. 2021). The mycorrhizosphere effect, significantly increasing soil biological activity, is observed in both AM and EM symbioses, influencing root exudates and contributing to changes in soil microbial communities (Linderman, 1988; Schellenbaum et al. 1991). Mycorrhizal colonization significantly impacts plant hormonal homeostasis, with ethylene, influenced by mycorrhizal colonization, functioning as a phytohormone modulating volatile biosynthesis (Chen et al. 2020).

 Table 1. Plant root VOCs and its properties (Duc et al. 2022).

Plant	VOC compounds	Properties	References
Carex arenaria	γ -capro; γ -deca; γ -nonalactone	attract benefit bacteria from bulk soil	Schulz-Bohm et al. 2017
Cucumis metuliferus (CM3)	Creosol	attract and kill M. incognita	Xie et al. 2022
Poplar	salicylaldehyde	play a role as a nematicide	Lackus et al. 2018
Cucumis metuliferus (CM3)	Benzene, (methoxymethyl)	repel M. incognita	Xie et al. 2022
Pepper	Thymol	repel root-knot, cyst, and stubby root nematodes	Kihika et al. 2017
Centeaurae stoebe; tomato	(E)- β -caryophyllene; daucadiene; (E)- α -bergamotene; humulene; E- β -farnesene; petasitene 1-3; β -myrcene	effect on the germination and greowth of different sympatric neighbours	Gfeller et al. 2019; Gulati et al. 2020
Centeaurae stoebe; tomato; spinach; pepper; poplar	lpha-pinene		Kihika et al. 2017; Murungi et al, 2018; Lackus et al. 2018; Gfeller et al. 2019; Gulati et al. 2020
Cucumber line Xintaimici; tomato; spinach; pepper	Tridecane	attract second stage larvae (J2) of M. incognita	Simas et al. 2017; Kihika et al. 2017; Murungi et al. 2018
Tomato; pepper	p-cymene		Kihika et al. 2017; Gulati et al. 2020
Tomato	Sabinene		Murungi et al, 2018
Tomato; spinach; pepper	Limonene; 2-(methoxy)-3-(1-methylpropil)pyrazine		Kihika et al. 2017; Murungi et al. 2018;
Tomato; spinach	2-isopropyl-3-methoxypyrazine		Murungi et al. 2018;
Cucumis metuliferus (CM3)	2-Penten-1-ol; (Z-)		
Cucumber line Xintaimici; tomato; pepper	Methyl salicylate		Kihika et al. 2017; Murungi et al. 2018; Xie et al. 2022
Cucumis metuliferus (CM3)	1-Nonyne	improvement plant resistance of to M. incognita	Xie et al. 2022
Carex arenaria	Benzonitrile		Schulz-Bohm et al. 2017
Carex arenaria	Benzofuran		Schulz-Bohm et al. 2017
Not given	Limonene	inhibited the fungal mycelial growth and spore germination of $\textit{Botrytis}$ cinerea	Simas et al. 2017
Barley	methyl pro-2-enoate and methyl propanoate	supressed the mycelial growth and prohibited spore germination of Fusarium culmorum and C. sativus	Kaddes et al. 2019b
Tomato	benzonitrile; benzothiazol; dimethyl trisulfide	antifungal activity to Fusarium oxysporum	Gulati et al. 2020

Table 2. Fungal VOCs and its effect to plant host (Duc et al. 2022).

Plant host/fungi	VOC compounds	Properties	References
Maize/ Serratia plymuthica; Fusarium culmorum	Not given	Iimited the availability of micronutrients such as Fe, Zn, Cu, and Mo in the root	Martín- Sánchez et al. 2020
Tomato/Fusarium oxysporum	branched alcane, dodecane, eicosane, docosane, naphthalene, beclomethasone dipropionate	Prohibited plant growth and curtailed shoot length and root parameters, as well as lessened root surface and biomass	Gulati et al. 2020
Brassica rapa/R. solani, Fusarium oxysporum f.sp. raphani	3-octanol, 3-octanone	Diminished the root growth rate of Brassica rapa seedlings	Moisan et al. 2021
A. thaliana/R. solani	1-octen-3-ol, 2- phenylethanol, 3-methyl-1- butanol, 1- hexanol, 3- octanol, 3-octanone, trans-2- octenal	Inhibited plant growth	Werner et al. 2016; Cordovez et al. 2017
A. thaliana/R. solani	Unidentified	Plant growth promoted by altering root architecture and enhancing root biomass; reduced aboveground resistance to the herbivore <i>Mamestra brassicae</i>	Cordovez et al. 2017
Brassica rapa/R. solani, Fusarium oxysporum, Ulocladium atrum and Phoma leveillei	Not given	Stimulated root and plant growth, flowering, accelerating plant bolting, bud and flower production, improved reproductive success; enhanced plant resistant to cabbage root fly <i>Delia radicum</i> and large cabbage white butterfly <i>Pieris brassicae</i>	Moisan et al. 2020a
Brassica rapa / F. oxysporum	Not given	Inhibited root-knot nematode <i>M</i> . incognita egg hatching and development of cyst nematode Heterodera schachtii	Terra et al. 2018; Moisan et al. 2021
Arabidopsis/ Penicillium aurantiogriseum	Not given	modify root metabolism and architecture, and improve nutrient and water use efficiencies	García-Gómez P. et al. 2020
-/ Fusarium culmorum	α-Terpinene, β-Phellandrene, 3-Carene, and Camphene	Reduced swimming and swarming motility bacteria, <i>Collimonas pratensis</i> Ter291 and <i>Serratia plymuthica</i> PRI-2C	Schmidt et al. 2016
Tricholoma vaccinum (EM fungi)	Produced monoterpene limonene, sesquiterpene β-barbatene	Antimicrobial activity	Abdulsalam et al. 2021
Tilia americana/Tuber borchii (EM fungi)	Produced 29 volatiles including alcohols, aldehydes, and ketones	These VOCs may facilitate ectomycorrhizal fungi establishment	Menotta et al. 2004
Populus/Laccaria bicolor (EM fungi)	Released sequiterpene thujopsene	Increased Populus lateral root formation and root hair length in the pre- symbiotic phase, facilitating ectomycorrhizal fungi establishment	Ditengou et al. 2015
Tricholoma vaccinum (EM fungi)	Emitted geosmin	Improved sporulation and spore germination in AMF. This volatile may also be important in ectomycorrhizal fungi establishment	Abdulsalam et al. 2021
Rhizophagus irregulari (AMF)	Produced unknown volatiles	Directly suppressed growth and extension of fungal pathogens, F. oxysporum, F. graminearum, Verticillium dahlia, Rhizoctonia solani	Zhang et al. 2018
Gigaspora margarita (AMF)	Emitted unknown volaties	Increased density and number of lateral roots of A. thaliana (non-host plant for AMF) and <i>Lotus japonicus</i>	Sun et al. 2015

Table 2. continued - Fungal VOCs and its effect to plant host (Duc et al. 2022)

Plant host/fungi VOC compounds		Properties	References	
-/ AM genus Glomus	Not given	Improved biotic stress tolerance in an array of plants attacked by herbivores	Dowarah et al. 2021	
Medicago truncatula/Rhizophag us irregularis	Specifically released limonene	This volatile may help plant recognize the symbiotic mycorrhizal fungi	Dreher et al. 2019	
Tomato /R. irregularis	Increased methyl salicylate	Attracted the aphid parasitoid <i>Aphidius</i> ervi	Volpe et al. 2018	
Asclepias curassavica /Funneliformis mosseae	Increased 3-hexenyl acetate, hexyl acetate, methyl salicylate	modified plant attractiveness to insect behavior	Meier and Hunter, 2019	
Grapevine/F. mosseae	Increased benzaldehyde, geraniol, 2–hexenal, 3– hexenal	Improved plant defenses against pathogen/herbivore attack	Velásquez et al. 2020b	
Elymus nutans/ F. mosseae	Increased D-Limonene, p- Xylene, 1,3-Diethylbenzene	- paulogen/herolvore attack	Zhang et al. 2022	
Grapevine/ F mosseae	C13–norisoprenoid β –ionone decline	Improved plant resistance to water stress	Ju et al. 2018	
Medicago sativa /Rhizophagus irregularis	Volatization of inorganic Asenic	Decreased As toxicity in the host plant	Li et al. 2021	

AMF, arbuscular mycorrhizal fungi; EM fungi, ectomycorrhizal fungi

The salicylic acid (SA) signaling pathway, activated by mycorrhization, modifies root exudate profiles, influencing soil microbiomes (Martínez-Medina et al. 2017a and 2017b). Pons et al. (2020) revealed that phytohormones, including cytokinin, auxin, gibberellin, and ethylene, are produced by the AM fungus Rhizophagus irregularis. Similarly, the EM fungus Tricholoma vaccinum emits ethylene and excretes ABA (abscisic acid), SA, jasmonates, and indole-3-acetic acid (Abdulsalam et al. 2021). Root VOC emissions, influenced by the mycorrhizosphere effect and mycorrhiza-induced changes in phytohormone homeostasis during colonization, have broadspectrum and long-term fungistatic efficacy (Zhang et al. 2018). Mycorrhizae-induced plant volatiles play a crucial role in responding to abiotic and biotic stresses. Mycorrhizae exert significant influence on the concentrations and composition of root VOCs in various plant species, including Sorghum bicolor, Medicago truncatula, and Vitis vinifera (Sun and Tang, 2013; Dreher et al. 2019; Velásquez et al. 2020a). Mycorrhiza-induced volatiles, such as methyl salicylate, benzaldehyde, geraniol, and terpenoids, play a crucial role in modulating plant defenses. These volatiles increase under stress conditions, affecting aphid attraction and enhancing resistance against fungal pathogens (Raskin, 1992; Tang et al. 2015; Velásquez et al. 2020b). Terpenoids, vital in above- and belowground tritrophic interactions, serve as attractants for parasitoids and predators of herbivorous insects (Palma et al. 2012; Penuelas et al. 2014).

In conclusion, the symbiotic relationship between plants and mycorrhizal fungi involves intricate molecular signaling, nutrient dynamics, and the release of specific VOCs. It significantly impacts the rhizosphere microbiome, alters root exudates, contributes to plant resilience against abiotic and biotic stresses, playing a crucial role in shaping ecological interactions and overall ecosystem health. Nevertheless, mechanisms associated with fluxes of volatile terpenoids with different roles in mycorrhizal symbiosis remain unknown (Duc et al. 2022).

3.10 Options for collecting and analyzing volatile compounds

The growing scientific interest in the fields of biochemistry, plant physiology, ecology, and atmospheric chemistry has led to the development of systems for the sampling and analysis of volatile compounds (Millar and Sims, 1998; Tholl et al. 2006; Tholl et al. 2021). In the past decade, the analysis of volatile compounds has advanced significantly, thanks to relatively inexpensive and sensitive compact instruments, especially those coupled with gas chromatography-mass spectrometry (GC-MS). Advanced headspace analysis techniques provide more representative volatile compound profiles compared to traditional solvent extraction or steam distillation methods. In addition to manual headspace sampling methods, high-resolution, online, automated VOC analysis systems have become essential for monitoring rapidly changing volatile compound profiles in response to plant growth or stress. The demand for real-time measurements has increased interest in non-chromatographic methods, most commonly based on techniques like chemiluminescence, photoacoustic spectroscopy (PAS), or mass spectrometry (e.g., proton transfer reaction (PTR-MS)). The latest technological advancements and applications in VOC sampling and analysis are represented by miniaturized air sampling devices, sub-surface sampling of VOCs, VOC-based phenotyping, and fast, portable VOC sensors. The advantages and disadvantages of these techniques compared to previous methods have been summarized and compared by Tholl et al. (2021), as illustrated in **Table 3.** VOCs are collected either from detached plant parts or, preferably, in situ from a well-defined plant area, avoiding additional VOC emissions caused by damage. Depending on the type of plant being studied, the rate of VOC emission can vary significantly, which determines the type of instrument needed to achieve the appropriate sampling efficiency and sensitivity. While trace amounts of trapped volatile compounds are sufficient for analytical purposes, larger quantities are required for NMR studies or biological investigations. Additionally, a decision must be made regarding whether to create a "snapshot" in terms of quality (static sampling) or to investigate quantitative, developmental, or stress-induced changes in VOC emissions with appropriate temporal resolution (dynamic sampling).

Table 3. Advantages / disadvantages of VOC sampling and detection methods (Tholl et al. 2021)

Method/				
Application	Advantages	Disadvantages		
Static Sampling GC-MS, GC-FID SPME, SBSE, PDMS tubes	Small sampling devicesSensitiveCost-effectiveNo organic solvent use	- Separation of sampling and analysis in time - Single sample analysis due to thermal desorption (SPME) - Limited quantitative analysis - Adsorbent preference for analytes - SBSE, PDMS tube: Requires specialized desorption unit		
Dynamic Sampling GC-MS, GC-FID Pull/push–pull systems adsorbent traps (TDU - thermal desorption or SPE like solvent desorbtion by elution)	- Controlled VOC sampling and preconcentration - Qualitative and quantitative analysis - Applicable in both above and below-ground environments - Repeatable sample analysis - Suitable for miniature devices (needle trap, dynamic SPME)	- Separation of sampling and analysis in time - Additional equipment required for sampling (pumps, flow meters, partial or complete packaging of plant parts, carbon filters for ambient air purification) - Adsorbent preference for analytes - Use of organic solvents		
Real-Time PTR- MS - Real-time, untargeted monitoring of VOC emissions - Qualitative and quantitative analysis - High resolution with low detection limits (PTR-ToF-MS) - Applicable for VOC phenotyping, combined with simultaneous physiological measurements		- Expensive - More challenging for field use - Limited ability to distinguish certain isomers; additional GC-MS analysis may be needed - Requires special cuvette system and controlled conditions for phenotyping		
Portable Miniaturized GC- detection by iontrap MS or DMS (Dynamic VOC sampling and endrichment on sorbent)	- In situ VOC fingerprinting in the field - Portable device - Fast operational time - Combined examination of the plant and its microenvironment	- Limited separation and resolution due to reduced GC column length (compared to non-portable, benchtop instruments) - Requires a specialized mass spectral library for compound identification		
- <i>In situ</i> VOC observation in outdoor conditions - Portable device - Fast operational time		- Low sensitivity and limited chemical specificity - Inability to identify unknown components - Signal stability distortions, shifts due to environmental interferences, and complicated data processing		
Smartphone-Based VOC Sensors - In situ VOC fingerprinting in the field - Wireless connection and on-site data analysis - Fast operational time, small, highly cost-effective, user-friendly - Better specificity and fewer environmental interferences compared to electronic noses		- Preconcentration step required - Unable to identify unknown components - Real-time monitoring not yet available		

DMS – Differential Ion Mobility Spectrometry; FID – Flame Ionization Detector/Detection; GC – Gas Chromatography; PTR-MS – Proton Transfer Reaction-Mass Spectrometry; SPME – Solid Phase Microextraction; SBSE – Stir Bar Sorptive Extraction; PDMS – Dimethyl Polysiloxane; ToF – Time-of-Flight Analyzer; VOCs – Volatile Organic Compounds.

3.10.1 Sampling VOCs with static headspace analysis methods

During static headspace analysis, the plant or a part of it is placed in a closed chamber, and the emitted volatile compounds are captured by an adsorbent material. The air surrounding the plant remains "static," meaning there is no circulation within the chamber/system. The odorants accumulate on the adsorbent or a direct sampling of the headspace with a gastight syringe and injection of the gas sample can be utilized without capturing pollutants from the flowing air, which could interfere with the detection of less significant VOCs. Therefore, this method is even more advantageous for studying plants with low VOC emissions. Despite recent developments in solid-phase microextraction (SPME), static headspace analysis has its drawbacks. In the motionless environment, moisture accumulates along with heat, especially if sampling is conducted under illumination (there are some exceptions like LED illumination), which can disrupt normal physiological processes and affect the emission of volatile compounds. Since not all emitted odorants are trapped during a single sampling event, it is challenging to determine the temporal changes in emissions. In summary, static headspace analysis is suitable for qualitative VOC analysis and comprehensive profiling of VOCs in various plant species at a specific moment rather than for quantitative assessment of variable VOC emissions.

3.10.1.1 Solid-Phase Microextraction (SPME)

A significant innovation in static headspace analysis is the introduction of solid-phase microextraction (SPME), which offers a fast and simple way to collect volatile compounds in the ppbv (parts per billion by volume) range. The core of SPME is the extraction fiber, often a small glass rod coated with a film or a similarly sized sorbent material affixed to the end of the glass. The fiber is situated within a modified syringe needle, which is inserted through the gas-tight septum of a sample container used for vapor analysis and extended into the sample space. After an appropriate extraction time (several minutes to half an hour), the fiber is retracted into the sheath and subjected to thermal desorption for subsequent gas chromatographic analysis. SPME fibers can typically be used around a hundred times. Since thermal desorption from the SPME fiber eliminates the need for solvents that might contain contaminants, it is a solvent-free method. However, desorption involves the entire sample, therefore the injection cannot be repeated from a single collected sample. The quantity of compound adsorbed onto the SPME fiber depends not only on its thickness but also on the analyte's distribution coefficient, which generally increases with molecular weight and boiling point. Quantitative determination in SPME is usually possible with internal or external calibration. To achieve reproducible quantitative results, it is essential to establish equilibrium between the fiber and the analyte, where the amount of analyte desorbed from the fiber is proportional to the compound's quantity in the sample. The time required to establish this equilibrium depends on the analyte's volatility, polarity, and the sorbent's properties. If an autosampler with very punctual and reproducible event timing executes SPME based VOC sampling, waiting for the total equilibrium can be skipped to increase throughput and reduce analysis time. However this requires a total validation and ongoing quality control samples and procedures during analysis to establish reliable quantitation (appropriate standard calibration mixtures are essential). However, for analytes with significantly different distribution coefficients, quantitative analysis using the SPME technique can be cumbersome or unfeasible. SPME has been applied in various studies related to food, air, soil, and water samples, and there is an increasing number of publications on its use in biological research as well (Flamini et al. 2002; Shen et al. 2004; Rohloff and Bones, 2005; Tomova et al. 2005).

3.10.1.2 Direct headspace sampling

Direct vapor analysis is an alternative for trapping VOCs is direct vapor analysis, in which the entire vapor phase is transferred into a gas-tight syringe and directly injected into a gas chromatograph. This process can be automated with commercially available automatic vapor headspace samplers. However, this method requires relatively high VOC concentrations in the sample space for effective application. Therefore, it is only usable when adequate sensitivity is achieved and only the most abundant VOC-s with high concentration in the gas sample are likely to be detected and quantitated.

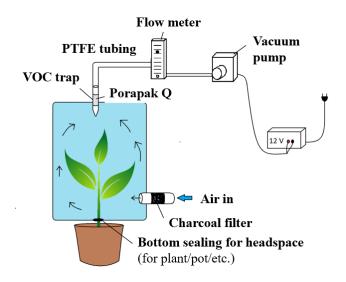
3.10.2 Possibilities of Dynamic Headspace Analysis (DHS)

Dynamic headspace analysis (DHS) is one of the most commonly used techniques for studying plant volatile compounds. In this sampling method, a continuous airflow circulates through the sample container, acting as a carrier gas, thereby increasing the absolute amount of the vapor phase. While the analytes are adsorbed onto the adsorbent, the carrier gas circulates around or leaves the sample container, promoting the trapping of numerous volatile compounds, resulting in more efficient detection. In the case of open dynamic headspace systems, some problems similar to those observed in static headspace analysis may arise, such as increasing temperature and humidity or the release of accumulated hazardous VOCs into the environment due to the airflow. To avoid the disruptive effects of potential contaminants, it is crucial to ensure that the incoming air is clean, often by filtering it, for example, through activated carbon. In dynamic headspace analysis, volatile compounds are usually trapped on an adsorbent and enriched before GC analysis. It is a good idea to apply Teflon (PTFE) tubes and connections before airflow reaches the adsorbent(s) - for closed-loop systems wherever it is possible PTFE should be used - to avoid phthalates (used for flexibility increment of polimers) as a contamination originating from the systems plastic (silicone tubing for example) parts. Adsorbent materials are available in a wide

variety, and many studies provide comprehensive information on their selection and application (Raguso and Pellmyr, 1998). **Table 4.** summarizes the most commonly used adsorbents, including carbon-based materials and organic polymers, with information on thermal stability, affinity, and related studies. The adsorbent material is typically packed into thin glass or metal tubes, separated by glass wool or Teflon (PTFE) plugs or metal grids. During sampling, the air containing VOCs passes through the adsorbent bed at a precisely controlled flow rate. The captured compounds can be eluted from the adsorbent with a suitable clean solvent or a low-boiling-point solvent mixture, essentially performing solid-phase extraction (SPE). The elution solvent must contain a specified amount of standard compound (e.g., 1-bromodecane or 1-bromododecane ideally since bromine ever so rarely appears in samples collected from headspaces of plants, fungi or ecosystems) for semi-quantitative analysis. Adsorbent materials suitable for thermal desorption, which exhibit high thermal stability (e.g., Tenax, carbon molecular sieves, or activated carbon), can be used to avoid solvent extraction. During thermal desorption, VOCs are desorbed from the adsorbent under hightemperature conditions and are typically focused using cryofocusing before GC separation begins (see chapter 3.10.4). Compared to solvent extraction, thermal desorption provides increased desorption efficiency, and sample dilution does not occur. These factors contribute to enhanced analytical sensitivity. Additional benefits include reduced manual sample preparation time and the absence of contaminants that may be present in organic solvents. However, this method also has its limitations. Repeated sample injection is not feasible, and artifacts, thermal decomposition of thermally unstable compounds, or reactions of the trapping medium may occur (Table 4.). The primary issue with any trapping material is the incomplete adsorption of VOCs. Carbon-based adsorbents are highly specific and may only capture certain VOCs. When sampling complex VOC mixtures, careful consideration and the use of multiple adsorbent materials may be required for qualitative and quantitative representativeness of the measurement. This problem is addressed through "multi-bed adsorption," where adsorbents with different retention capabilities are placed in sequence. This allows the incoming air to first pass through an adsorbent capable of capturing highly volatile VOCs (e.g., Carbograph and Carbotrap C). A comprehensive overview of the theory and practical application of multi-bed traps is provided by Ciccioli (2002). Multi-bed traps are commercially available (e.g., Carbotrap/Carbosieve SIII beds, Markes International, Pontyclun, UK) or can be assembled manually (Schnitzler et al. 2004). In "push/pull" type DHS sampling, the studied plants can be non-invasively sampled, making it possible to repeat the sampling from the same plant at all stages of disease in the case of infected plants (Jansen et al. 2011). Consequently, dynamic headspace trapping is a frequently used method in chemical ecology (Conchou et al. 2017), especially when combined with SPE and liquid injection, as the resulting liquid sample can be suitable for various GC-based analyses. However, during dynamic sampling, the desorption of adsorbed volatile organic compounds may occur over time due to the continuous suction effect, and desorption is primarily affected by flow rate and residence time, in addition to temperature for a specific adsorbent (Mirzaie et al. 2021). Furthermore, when solvent elution is used to transfer the adsorbed VOCs into the liquid phase, the efficiency of the applied SPE procedure(s) must also be characterized.

Table 4. Comparison of sorbents used for plant VOC trapping (Mátyus, 2023).

Adsorbents	Туре	Particle Size (mesh)	Specific Surface Area (m2 g-1)	Max. Temp. (°C)	Approximate Range of Capturable Compounds (Boiling point)	Adsorption Properties	By-products, Pollutants
Porapak Q Super Q (very high purity version)	Ethyl-vinyl-benzene- divinyl-benzene	80/100	500-600	250	C5 - C12 bp:50°C-200°C	High affinity for lipophilic substances to moderately polar organic compounds, for medium molecular weight compounds. Applicable to a wide range of VOCs, including oxygenated compounds. Low affinity for polar and/or low molecular weight compounds (H2O). Frequently used in VOC analysis.	Aromatic ketones, alcohols
AePorapak N	Divinyl-benzene - vinyl- pyrrolidone	80/100	250-350	190	C5 - C8 bp: 50°C- 150°C	Specifically applicable to volatile nitriles and volatile alcohols.	No data/reference
Tenax TA	Poly-(2,6-diphenyl-p- phenylene-oxide)	60/80	35	350	C7 - C26 bp: 100°C-400°C	High affinity for lipophilic substances to moderately polar organic compounds, for medium molecular weight compounds. Not suitable for very volatile organic compounds. Low affinity for polar and/or low molecular weight compounds (H2O). Preferred for terpenes and frequently used in VOC analysis.	The degradation of benzaldehyde, acetophenone, and higher molecular weight aldehydes occurs under the influence of sunlight, with interference from ozone, e.g., with terpenes
Chromosorb 102	Styrene-divinylbenzene copolymer	60/80	350	250	bp: 50°C-200°C	Applicable to a wide range of VOCs, including oxygenated compounds.	No data/reference
Carbotrap	Graphitized carbon	20/40	100	>400	C5 - C12	Applicable to a wide range of VOCs; ketones, aldehydes, alcohols (bp>75°C), apolar compounds.	Decomposition of terpenes (a- pinene, b-pinene) due to thermal desorption [62].
Carbosieve SIII / Carboxen 100	Carbon molecular sieve	60/80	820	1200	>400	bp:-60°C-80°C	Suitable for small hydrocarbons. Not suitable for reactive hydrocarbons (1,3-butadiene, isoprene).
Activated Carbon		>1000	>400	C5 to C16	Less effective than Tenax for trapping aromatic aldehydes on CSLA traps	Rarely used for thermal desorption	Oxidation of terpenes (ocimene) on the adsorbent's active surface
PDMS	Polydimethylsiloxane	Not specified	<300	Volatile and less volatile compoun ds, depending on the layer thickness / fiber coating	Mainly non-polar adsorbent for non- polar volatile substances	Used as an SPME fiber coating	Inadequately conditioned adsorbent
PDMS /DVB	Polydimethylsiloxane / Divinylbenzene	Not specified	<300	MW 50- 300	Bipolar adsorbent for polar volatile compounds	Used as an SPME fiber coating	Inadequately conditioned adsorbent
PDMS / Carboxen	Polydimethylsiloxane / Carboxen	Not specified	<300	MW 30- 225	Bipolar adsorbent for trace amounts of volatile compounds	Recommended for low molecular weight substances (MW<90)	Inadequately conditioned adsorbent
CW/DVB	Carbowax / Divinylbenzene	Not specified	<300	MW 40- 275	Polar adsorbent for polar alcohols and polar analytes	Inadequately conditioned adsorbent	


3.10.2.1 Closed-loop dynamic headspace analysis

The closed-loop extraction system has made the sampling of VOC emissions caused by pests/herbivores more efficient (Boland et al. 1984; Dudareva et al. 2004), as demonstrated for Lima beans and detached flowers (Koch et al. 1999). In these systems, air circulates through a closed chamber during the collection of odor compounds. The simple closed-loop extraction system was developed by Boland and Donath (1984), consisting of a 1-3 liter glass desiccator or other borosilicate/teflon-walled vapor space enclosure connected to a circulating pump. Plants or plant parts are placed in the glass chamber, and air continuously circulates through a stainless steel odor trap, allowing for quantitative trapping of emitted VOCs (Donath and Boland, 1995). Since the closed-loop air circulation minimizes the adsorption of contaminants compared to open systems (see dynamic headspace analysis systems), closed-cycle sampling is suitable for collecting odor samples from plants or other matrices with low VOC emissions. Another advantage is that the sampling unit can be easily set up in a controlled climate chamber, allowing for simultaneous sampling of multiple different plants, making it suitable for non-targeted, scanning studies. However, results from closed-cycle systems should be compared with open systems to exclude the influence of compounds that may be important due to the absence of fresh air, such as ethylene, which does not bind to adsorbent traps and can accumulate in the chamber. The relative humidity may also increase during the sampling cycle(s) without occasional venting.

3.10.2.2 'Pull' and 'push-pull' dynamic headspace analysis systems

In contrast to the closed-loop sampler, in 'pull' and 'push-pull' systems, continuously flowing air enters from the outside, passes through the sample chamber, and then exits the system through an adsorbent trap connected to a vacuum pump (Handley and Adlard, 2005). The simplest form of a pull system is when the adsorbent trap is placed directly next to the plant or plant part without being separated from the environment (Burger et al. 1988; Kaiser, 1991; Halitschke et al. 2000). It is easy to set up, inexpensive, and portable, allowing for simultaneous sampling from multiple chambers (Lockwood, 2001). Its application in open fields was demonstrated by Kessler and Baldwin (2001). This system works well for plants that emit significant amounts of VOCs. However, there is a relatively high risk that environmental pollutants may also adsorb and interfere with the detection of compounds originating from the sample during GC analysis (Marriott et al. 2001). Isolating leaves or flower parts of plants that emit a small amount of odor from the environment with a glass bell jar or oven bag can reduce the disruptive effects of these contaminants (Ragunathan et al. 1999). The schematic structure of the pull-type DHS approach we used is illustrated in **Figure 4.** Dudareva et al. (2004), as well as Raguso and Pellmyr (1998) reported similar devices in the context of vapor analysis of *Antirrhinum majus* and *Clarkia breweri*

flowers. In most of the systems mentioned above, environmental factors can be easily controlled by programming the parameters of the climate chamber and manually adjusting airflow and humidity (Jakobsen, 1997). In case of push-pull DHS sampling the air will be pumped and regulated by flowmeters from both sides (inlet/outlet) of the headspace to be sampled. Airflow is pumped towards the inlet thus pushing the flow into the headspace to be sampled while another pump and flow meter will generate a pull effect by suction from the headspace outlet. Of course push-pull systems cost almost twice as much since pumps and flow meters are the most expensive parts of these systems. A schematic representation of a push-pull system provided in **Figure 5.**

Figure 4. Schematic representation of an open-loop pull-type dynamic headspace sampling **3.10.3 Methodology on belowground research of volatile organic compounds**

The sampling of belowground volatile organic compounds (VOCs) poses unique challenges due to their release as a blend of compounds that become diluted in the plant's surrounding environment. Despite recent advancements in techniques for sampling aboveground VOCs, sampling belowground volatiles is more complex due to the nonhomogeneous trapping environment (van Dam et al. 2016; Tholl et al. 2021; Sharifi et al. 2022). While methodologies for sampling aboveground VOCs have seen progress, there is a pressing need to invest in advanced methodology and instrumentation to effectively capture and fully analyze belowground VOCs (Sharifi et al. 2022). Presently, most research on root VOCs utilizes ground root material, which allows for the analysis of the total profile of volatiles in root tissue, albeit with the limitation that it may detect chemicals not induced by major root damage (Gfeller et al. 2019; Tholl et al. 2021). Understanding the complexities of belowground VOCs, which comprise a mixture of volatiles from various sources including plant roots, bacteria, fungi, parasites, herbivores, and predators, presents a significant challenge (Delory et al. 2016a; van Dam et al. 2016). Distinguishing the origins of VOCs is essential when assessing their effects on trophic interactions, particularly in the

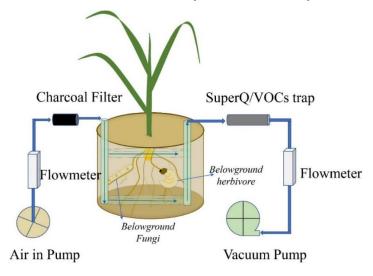
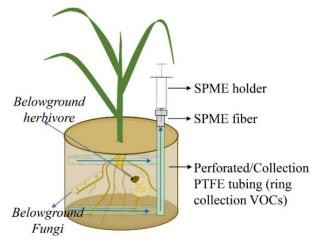

context of fungal VOCs influencing plant-root-insect interactions. Additionally, belowground VOCs are influenced not only by environmental dilution but also by microbial activity, further complicating their analysis (Raza et al. 2016; Bier et al. 2017; Schenkel et al. 2018; Abis et al. 2020; Gutiérrez-Santa et al. 2020). Given these challenges, there is a need for sampling methods capable of collecting targeted belowground VOCs in the face of a nonhomogeneous environment and must address the complexities of belowground VOCs and overcome the technical limitations posed by their sampling environment (van Dam et al. 2016; Tholl et al. 2021; Duc et al. 2022). **Table 5.** reviews sampling approaches and their advantages and drawbacks to collect belowground VOCs in the soil matrix (Gfeller et al. 2019; van Doan et al. 2021; Tholl et al. 2021).

Table 5. Advantages and disadvantages of dynamic and passive methods to collect volatile organic compounds (VOCs) in belowground environments (Duc et al. 2022).


Method to collect belowground VOCs	Advantages	Disadvantages	After sampling/pre- analysis process
Dynamic sampling (Tholl et al. 2021) Gas chromatography— mass spectrometry (GC-MS), Pull/push—pull systems (Adsorbent traps, Trapping Super-Q)	Separate sampling and analysis times Controlled collection and preconcentration of VOCs Quantitative and qualitative analyses Repeatable sample analysis Application of miniature devices (e.g., Super-Q trap)	High Cost More challenging to apply in the field or other places Sampling requires equipment (pumps, flow meters, charcoal filters, VOC traps) Use of organic solvents in solvent elution and liquid injection	Method collects volatile mixtures, need to future step to distinguish original VOCs Trap>>elute traps with solvents for liquid injection or use thermal desorption of traps>>GC-MS or Gas Chromatography—Time-of-Flight Mass Spectrometry (GCxGC-Tof MS) analysis
Passive sampling (Tholl et al. 2021) GC-MS, SPME, Polytetrafluoroethyl ene (PTFE) tubing	Low cost Miniature sampling devices, sensitive, cost effective No consumption of organic solvents, clear spectrum of VOCs without solvent background interference Sampling is a snapshot of the VOC current state rather than for a time interval	Separate sampling and analysis times One-time only sample analysis due to thermal desorption (SPME) Limited quantitative analysis Adsorbent preference for analytes	Method collects volatile mixtures>> directly measure with thermal desorption of fibers or tubing>>GC-MS or GCxGC-Tof MS analysis

Sampling is either static type by SPME as described in section 3.10.1 or dynamic type by push/pull systems discussed under section 3.10.2 (Duc et al. 2022). Dynamic methods collect all belowground VOCs (emitted from roots, soilborne organisms, and soil matrix), by using clean-air flow through the belowground system, with VOCs trapped by a Super-Q filter (**Figure 5.**) (Hiltpold et al. 2011; van Doan et al. 2021). Other sorbent materials are also frequently used to

trap VOCs and are summarized by Tholl et al. (2006); Tenax TA and Carbopack B are used even in passive methods to sample belowground VOCs (Martín-Sánchez et al. 2020). Of possible passive sampling methods, a less complex system is one in which an SPME fiber inserted into a gap of a pot and exposed to belowground VOCs at room temperature (**Figure 4.**). The fiber is immediately analyzed by GC-MS. However, using SPME is at best a semi-quantitative approach, and depending on VOC composition, different SPME fibers should be tested because of differences in fiber affinity for classes of VOC compounds. In addition, extraction times and temperatures are important and need to be optimized. High temperatures and long extraction times may cause desorption of VOCs that have relatively low fiber affinity or low boiling point.

Figure 5. VOC emissions from roots, soilborne organisms, and soil matrix are collected by a push–pull system. The VOCs are trapped by a Super-Q trap (Duc et al. 2022).

Figure 6. Volatile organic compound (VOC) emissions from roots, soilborne organisms, and soil matrix are collected by a passive system. VOCs are trapped by a solid phase micro extraction (SPME) fiber. Polytetrafluoroethylene (PTFE).

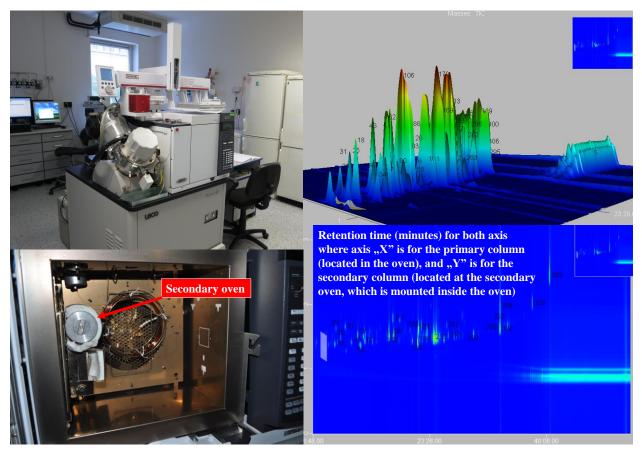
3.10.4 Gas chromatographic separation and detection possibilities for the measurement of plant volatile organic compounds (VOCs)

The analysis of plant VOCs adsorbed on different adsorbent materials using a configured GC technique is a routine task. There is a wealth of literature available describing measurement protocols and the latest technical innovations (Ragunathan et al. 1999; Lockwood, 2001; Marriott et al. 2001; Dewulf and Van Langenhove, 2002; Merfort, 2002; Handley and Adlard, 2005; Materić et al. 2015), only a small excerpt of which I present here. The GC measurement equipment includes a controlled temperature heating chamber capable of rapidly heating from room temperature to 300 °C. The column, which can be either capillary or packed, is located here. In VOC analysis, a capillary column is used, which is a thin glass capillary coated with a polyimide layer, typically 30-60 meters long. The film layer inside the column is the stationary phase, suitable for separating compounds based on their physical and chemical properties. One end of the gas chromatographic column is connected to the inlet (usually a split/splitless or programmable temperature vaporizer - PTV-type inlet or CIS inlet which is a special PTV type inlet that can be either heated or even cryocooled and it is manufactured and sold mostly by Gerstel company), and the other end is connected to the detector. The samples are introduced through the heated (or in case of special CIS inlets even cold injection is possible) inlet and then transported through the separation column by the carrier gas (usually helium). Each VOC interacts differently with the stationary phase and partitions to varying degrees between the stationary and mobile phases (carrier gas). Increasing the temperature changes the partition coefficient, and eventually, all compounds enter the mobile phase and are swept into the detector through the "transfer line" (a heated region connecting the GC and MS). Separation is based on differences in boiling points and polarities. Therefore, different VOCs leave the column at different times and can be identified and quantified using mass spectrometry or other types of detectors (Materić et al. 2015).

During VOC GC analysis, samples are either injected into the heated injector as solvent extracts or removed from the SPME fiber or other adsorbent material through thermal desorption in a special thermal desorption unit (TDU) that is mounted on a CIS type inlet - by heating the thermal desorption tube to 250-300 °C. In the two-phase thermal desorber, materials detached by heat are focused in a cryo trap (done in CIS type inlet serving below the thermal desorber apparatus as a cryo trap for focusing) before being transferred to the GC column for separation by heating up the CIS inlet in a programmable even multi stepped, and if needed a very fast (up to 12°C/s) thermal gradient after cryo trapping phase considered to be finished. Recent technological developments allow for the coupling of online systems with automated thermal desorption. Furthermore, an interesting method description has emerged for the direct thermal desorption of fragrance compounds from inflorescences, where the inflorescences were placed in quartz microfiber filters

and then placed in a modified GC injector (Jürgens and Dötterl, 2004). It is important to note that care must be taken to prevent thermal degradation of some components when sudden high temperatures are applied. For analytical purposes, packed or silica gel capillary columns with different stationary phases are generally used for the separation of VOC compounds, where the stationary phase is mostly consists of dimethyl polysiloxanes (PDMS) (*e.g.*, DB-1, DB-5, CPSil 5), and more polar polyethylene glycol polymers (PEG) (*e.g.*, Carbowax® 20M, DB-Wax, and HP-20M). Numbers indicate in the names of the columns the percentage of phenyl groups besides PDMS. Five percent phenyl containing columns are a good general choice, they are called semistandard non-polar type columns providing good retention and separation capabilities with the exeption for the most polar and low boiling point compounds of interests, for those intermediate (up to 50% phenyl even) or PEG based columns that are called polar ones are the most suitable, however these columns do not tolerate such high temperatures as non-polar or semi-standard non polar phases would do. After separation, the volatile compounds can be analyzed with various detectors.

- Flame Ionization Detectors (FID) are often used for quantitative analysis because of their wide linear range, stable response, and detection limits in the picogram to nanogram range. Additionally, chemical ecologists frequently use FID detectors in combination with electroantennographic detection (EAD) to measure antennal responses to pheromones or other VOCs in biosensor gas chromatographs (GC-EAD).
- The Photoionization Detector (PID) is another type of detector commonly used to detect volatile terpenes. It is more sensitive in the presence of reactive double bonds than FID, but it requires thorough calibration for quantitative determinations.
- Mass spectrometers (MS) are the most common detectors used in routine plant VOC GC analysis. In most standard benchtop GC-MS instruments, compounds leaving the column are ionized by electron impact (EI) ionization, leading to the formation of positively charged molecular ions or fragments, which are separated based on their mass-to-charge ratio (m/z) with a quadrupole mass analyzer unit with unit resolution, as well as ion trap analyzers, but high-resolution mass analyzers can also be used (e.g., Orbitrap). Time-of-flight (TOF) mass analyzers are also used, characterized by high resolution and mass accuracy. In scanning mode, a total ion chromatogram is obtained, providing information on compound retention times and mass spectra. The mass spectrum consists of a characteristic fragmentation ion pattern for each component, and these spectra can be matched to reference libraries, such as the Wiley and NIST or Fiehn MS databases, as well as other databases containing retention index (RI) data (e.g., the NIST 17th edition already includes Kováts RI data). Retention index calculations are crucial factors for unknown and even targeted analysis,


since independent (*e.g.*, from applied heat program and other settings) retention index can be calculated for unknown component based on for example n-alkane based retention index for a certain column phase type (*e.g.*, different for 1 % phenyl containing phases (non-polar), 5% phenyl phases (semi-standard-non-polar) and for polar phases like wax columns). Kovats index (Kováts, 1958) can be calculated by measuring n-alkane series and the retention time of the unknown compound and the n-alkane retention times eluting before and after unknown peak by using the equation:

$$RI=100*[n+(N-n)*(t_r(unknown)-t_{r(n)})/(t_{r(N)}-t_{r(n)})]$$

where **RI** - retention index calculated for unknown compound; **n** - carbon number of lower boiling point (BP) alkane (e.g., decane n=10); N - carbon number of higher BP alkane (e.g., undecane N=11); $\mathbf{t_r}(\mathbf{unknown})$ - retention time (RT) in minutes for unknown peak; $\mathbf{t_r}(\mathbf{n})$ - RT of lower BP alkane eluting before $t_r(unknown)$ and $t_r(N)$ - RT for higher BP alkane eluting after it. However, identification based solely on retention index or mass spectrum is not reliable and can often lead to misidentifications. Therefore, in addition to using multiple libraries, it is advisable to consider preliminary or tentative identifications based on the best-matching mass spectra and the closest RI value in the absence of reference material. In the ideal approach to identification, Kováts indices are determined on two different polarity columns, taking advantage of orthogonal selectivity, and the deconvoluted mass spectrum of the compound is compared or matched with a spectral database and/or a certified standard. Since plant volatile mixtures may contain numerous chemically different compounds, including isomers, a simple GC-MS analysis may not be suitable for the identification of all compounds. Tandem mass spectrometry (MS/MS) allows the separation of individual compounds within complex GC peaks and achieves lower detection limits (Ragunathan et al. 1999; Granero et al. 2004). In MS/MS measurements, the ion selected by the first mass analyzer (the parent ion or, e.g., a fragment produced by EI ionization) undergoes further fragmentation in a collision cell during collision with a neutral gas (the most common ion activation method, although there are many others). After fragmentation, the resulting fragment ions are analyzed in the second mass analyzer, providing additional structural information and better signal-to-noise chromatograms. Additionally, GC-MS analysis can be complemented with Fourier-transform infrared spectroscopy (FT-IR). This spectroscopic method was developed for distinguishing closely related isomers with highly similar EI mass spectra (Marriott et al. 2003).

• FT-IR provides information about the original molecule's structure and produces a unique spectrum even for very similar isomers. The limitations of using GC-FT-IR include cumbersome quantification and time-consuming evaluation, although the Sadler database continuously provides high-quality data (Sadler Division of Bio-Rad, Philadelphia, PA, USA).

- If it is impossible to efficiently separate a complex odor mixture on a single column, twodimensional capillary gas chromatography (GC×GC) can be used. **Figure 7.** serves as an example and display of such a system. In this approach, compounds are separated in the first column, and selected fractions (heart-cut) are transferred to the second column. This results in a fourdimensional data set (1st dimension being retention time on the first column, 2nd dimension being retention time on the second column, 3rd dimension is peak intensity, and the 4th dimension is the mass spectrum itself). This approach is used for the determination of the enantiomeric composition of monoterpene hydrocarbons in the tissues of Norway spruce (Picea abies) by combining a conventional GC column with a chiral column (Borg-Karlson et al. 1993). Recently, a comprehensive GC×GC system was developed, which, by combining columns of different polarities, increased the total separation space significantly. This method is particularly useful for the analysis of essential oils, as it improves peak resolution and enhances the qualitative and quantitative determination of odor compounds (Di et al. 2004; Marriott et al., 2004). Identification using comprehensive GC×GC can be effective in studying chemical fingerprints and achieving the best available selectivity with the advanced deconvolution capabilities of TOF mass analyzers and two-dimensional separation. Its worth mentioning that even if the TOF MS coupled to the GCxGC system is a unit mass resolution one and not a real high resolution TOF, for GCxGC fast analyzers are required due to the very small peak widths that are results of cryomodulation and refocusing to collect enough data points from narrow Gaussian peaks to accurately characterize them (12 data points, ideally 20 is required above 5% peak height for accurate quantitation).
- Proton transfer reaction mass spectrometry (PTR-MS) is an analysis technique to measure VOCs directly at a certain time, for example, to understand the mechanisms of belowground VOCs in ecosystems like Danner et al. (2012) demonstrated. Directly measured VOCs were released from root herbivore damage in cuvettes on the top of the soil at the stem and root interface. Actor et al. (2018) measured VOCs by using airflow generated in a root glass chamber filled with a potting substrate. All belowground VOCs emitted to the environment in a certain time can be measured by PTR-MS (Majchrzak et al. 2018; Tholl et al. 2021; Sharifi et al. 2022). The PTR-MS method also has disadvantages because it characterizes only the mass-to-charge ratio (m/z) of VOCs and not their exact molecular identity. In addition, one molecular formula may represent different structures, which cannot be discriminated by PTR-MS. Some small-chain alkanes are also not detected by the technique. Therefore, the PTR-MS method is generally used simultaneously with GC-MS to determine the chemical identities of volatiles from the m/z data (Sharifi et al. 2022).

Figure 7. GCxGC-TOF-MS system, of Leco Corp. Pegasus 4D model, and representations of 2D-GC separation by contour and 3D maps

3.10.5 Evaluation of methods used for VOC sampling and analysis

While various techniques exist for selecting the most appropriate method for a specific issue, comparing results from different methods is challenging due to potential variations in odor profiles depending on the measurement method. Unfortunately, few studies have compared methods. Key factors affecting odor compound collection in the sample chamber include environmental conditions like light intensity, temperature, and relative humidity, which directly impact plant odor metabolism, photosynthesis, and transpiration. Regulating airflow is crucial for controlling temperature, humidity, and achieving optimal gas exchange. Different adsorbents and desorption methods can lead to varying qualitative and quantitative results. Significant differences in VOC pattern of *C. breweri* flowers when using different adsorbents and solvents. Higher flow rates during GC analysis can result in increased background noise. Sampling time must be optimized considering circadian rhythms, with plant responses to chewing or damage potentially lasting hours or days depending on the species and plant part. Longer sampling times may be necessary for plants with low VOC emissions. Increasing the quantity of analyzed plant material, reducing surrounding air volume, and adjusting flow rates can enhance odor compound detectability, but this may lead to increased evaporation and airborne contaminants (Duc et al. 2022).

4. MATERIALS AND METHODS

4.1 Materials and methods regarding a pilot experiments for surveying different plantpathogen/pest setups and methods for VOC collection

4.1.1 Plant species and their cultivation

For our experiments, we used different crops, such as wheat and barley, corn, tomato, and button mushroom, however I will only present those experiments where I significantly contributed and at least partially evaluated the data from our work with Radványi et al. (2019). The types of plants and their cultivation conditions are summarized in **Table 6.**

Table 6. Plant species, respective genotypes and cultivation conditions for the pilot experiment for VOC sampling and analysis

Plant Species	Variety	Growth Conditions
Wheat (Triticum aestivum)	Carstens V	18-20°C, long-day
Barley (Hordeum vulgare)	Harrington (BC 52), Mv Initium (BC 5), KH Hunor (BC 168)	25°C, long-day
Tomato (Solanum lycopersicum)	Uno Rosso	25°C, Natural Light

4.1.2 VOC collection methods in the pilot experiment

Two types of sampling techniques were used in our measurements. We used SPME sampling for corn, tomato, and button mushroom samples, however I will only address tomato samples for SPME due to reasons mentioned above. During sampling, we placed the samples in a closed space (generating headspace by either PTFE bags or borosilicate apparatus) and waited at least 60 minutes to achieve equilibrium between the sample and the air above it before the start of sampling. Sampling time varied depending on the size of the plant, the sampling temperature, and the amount of air above the sample. We used a so-called "volatile collection" sampling system (essentially an open-loop pull-type DHS) to collect VOCs from wheat and barley samples. We attached filters filled with activated carbon to the lower air inlet of the covers and connected VOC collection tubes filled with 50 mg of 80-100 mesh Porapak Q adsorbent (Figure 8.) to the upper air outlet. Odor collection was carried out for 24 hours with a flow rate of one L/minute. The execution of the sampling approach and conditions are summarized in Table 7.

Table 7. Plant Species, Sampling approach type and conditions

Species	Sampling Type	Sampling Conditions	Sampling Duration	Tempe- rature	
Wheat (Triticum aestivum)	Volatile collection	50mg Porapak Q	24 hours	25-30°C	
Barley (Hordeum vulgare)	Volatile Collection	50 mg Porapak Q	24 hours	25-30°C	
Tomato (Solanum lycopersicum)	SPME	50/30 μm DVB/CAR/PDMS	30 minutes	25-30°C	

4.1.3 Pests and pathogens and sampling time

During our experiments, we examined control (healthy) and infected samples. Sampling was performed at specific days after the infection, plant species infectious agents and sampling time are summarized in **Table 8**.

Table 8. Summary of plant species, infectious agents and sampling times

Plant	Infectious agent	Sampling time
Wheat	Blumeria graminis f. sp. Tritici type 51	At the onset of symptoms (7 days after inoculation - DAI) and in advanced disease stage (14 DAI); n=8
Barley	Pyrenophora teres f. teres	Harrington: 7 DAI (n=1 for control, wounding and inoculated), and 20 DAI (n=2 for control and inoculated); Mv Initium: 8 DAI (n=1) KH Hunor: 23 and 37 DAI (n=2)
Tomato	Botrytis cinerea (B0510)	In the visibly advanced stage of the disease

4.1.4 Structure determination and relative quantitation by GC-MS for pilot experiments

In all cases, our measurements were carried out using a gas chromatograph coupled to a mass spectrometer (GC-MS). For the analysis of plant volatiles, we used an Agilent 6890 GC and 5973 MS, and for the analysis of button mushrooms, we used an Agilent 6890 GC and 5975 C MS coupled analytical system (Agilent Technologies, Santa Clara, CA, USA). During our measurements, we used an Agilent HP-5 MS (5% phenyl)-methylpolysiloxane) Ultra Inert 30 m x 0.25 mm x 0.25 μm capillary column for the separation of volatile components. After SPME sampling, the sampling fiber was placed directly into the GC injector (heated up to 250 °C), where the components were desorbed and then introduced onto the column. For plant analysis, the carrier gas was helium 6.0 (1 mL/min constant flow). After volatile collection sampling, we eluted the adsorbed VOC compounds with 300 μl of chromatography-grade *n*-hexane (VWR, Radnor, Pennsylvania, USA). The samples were stored in a freezer at -20°C until analysis in borosilicate GC injection vials with inert glass inserts sealed by PTFE septum vial caps. For analysis, 1 μl was

injected into the gas chromatograph (injector temperature: 270°C) in splitless mode. Different heating programs were developed for each plant sample to achieve optimal separation. Detection by mass spectrometry was used with electron impact positive ionization (EI+) with the standardized 70 eV energy. The ion source was heated up to 230 °C, and the quadrupole temperature was 150°C. The mass spectrometer was operated in scan mode to record 33–500 m/z. The Agilent Mass Hunter Qualitative Analysis B.08.00 program was utilized to evaluate the data, and the identification of the components was performed using the NIST 2017 MS Search mass spectral library. For identification, English common names were used, so we can easily search for them in the literature and databases (Radványi et al. 2019).

4.2 Experiments regarding open-loop-pull-type-DHS VOC collection and SPE type sample preparation

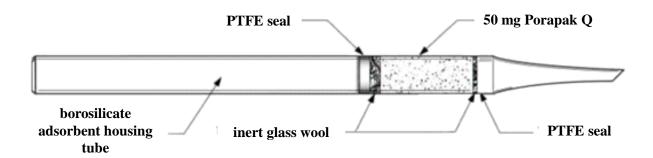
All samples and calibrations mentioned under sections 4.2 and 4.4 were analyzed by the method described in section 4.3 and evaluated according to the principles presented in section 4.4.3. Before each experimental measurement, the VOC traps were washed twice with 800 µl of n-hexane and dried and purged with nitrogen flow prior to any additioning (like spiking experiments) or VOC collection. It's important to note that the experiments were conducted on frequently used VOC traps, so the performance characteristics determined during the experiments specifically apply to regenerated adsorbents (not brand new odor traps that would provide the most optimal conditions) to test the traps under everyday experimental conditions. After VOC trapping and elution of adsorbents to produce a liquid sample (essentially a solid phase extraction, SPE), the volatile traps were washed twice with 800 µl (per solvent type) of methanol, a 3:1 (v/v%) mixture of methanol:chloroform, dichloromethane, and n-hexane, and then rinsed under a gentle nitrogen flow. This was done to ensure that any possible contamination was eliminated, allowing the sorbent tubes to be reused later. In every experiment, external solvent-based calibration was used, applying linear regression with a weight of 1/x, where R2 > 0.99, and other criteria as set by SANTE/11312/2021 (Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticide Residues Analysis). Unless indicated otherwise, this was applicable for the 0.1–2.5 µg/ml (aka ng/µl, injected on column amount) concentration range using at least three points for quantitation in the case of all experiments below. External solvent-based calibration points were produced from the appropriate submixes, the complete mixture, or other reference mixtures by diluting them with n-hexane directly into GC injection vials to be injected later into the GC-MS system and method described in Section 4.3 (Mátyus 2023). Following any addition/spiking directly onto the VOC traps, the sorbent tubes were purged with a nitrogen flow

rate of 0.4 L/min for 5 seconds to evaporate any residual solvent. Subsequently, the sorbents were eluted (after addition and/or sampling) with 300 μ l of *n*-hexane, during which the solvent was moved up and down the sorbent bed three times using a 1 ml pipette, and the solution containing the adsorbed compounds was transferred to a borosilicate injection vial under positive pressure. The samples obtained in 4.2 were placed in borosilicate injection vials (using a 250 μ l restrictor if necessary), sealed with PTFE-lined screw caps, and analyzed immediately or stored at -20°C until analysis was possible.

4.2.1 Reference solutions and mixtures, general handling of VOC traps

Solvents, such as *n*-hexane (Pestinorm Supratrace GC grade), methanol, ethanol, dichloromethane, chloroform (at least HPLC grade), as well as desilanized glass wool (GC-grade) and activated charcoal were purchased from VWR International (VWR, Radnor, Pennsylvania, USA). The reference materials were obtained from the Merck-Sigma group (Darmstadt, Germany), and (5Z)octa-1,5-dien-3-ol was purchased from Toronto Research Chemicals (Toronto, Canada). The Porapak Q adsorbent for VOC trapping was supplied by Waters Corp. (Milford, Massachusetts, USA). From the available reference materials, 1 mg/ml stock solutions were prepared in borosilicate PTFE-capped screw-top centrifuge tubes, which were stored at -20°C. Considering the retention indices of the components and their solubility properties, 9 submix reference solution mixtures (hereinafter referred to as submixes) were prepared at a concentration of 100 µg/ml. A tenth mixture included a homologous series of n-alkanes (C7-30), also at a concentration of 100 μg/ml. The annex 9.6 Table S3 provides the details about the individual components of the reference mixtures, their identifiers, properties, the retention times measured in our GC-MS methodology described in section 4.2 and 4.3, 4.4.3, and their calculated and literature-based nalkane based semi-standard non-polar retention indices and respective quantitative ions (Mátyus, 2023).

4.2.2 Spiking of reference mixture solutions to VOC traps directly for assessing SPE elution of components and effect of mixtures from porapak Q adsorbent by n-hexane with calculation of recovery (%)


4.2.2.1 Spiking of submixes and their recovery (%) without and with internal standard From the prepared submixes listed in section 4.2.1 and **Annex 9.6 Table S3**, 30 µl were added

with Hamilton syringe to the Porapak Q-filled sorbents (**Figure 6.**) with five repetitions, and then the sorbent tubes were purged as described in section 4.2 with a nitrogen to evaporate any residual solvent. Subsequently, the sorbents were eluted after addittioning and/or sampling with 300 μ l of *n*-hexane as described in section 4.2, (theoretically 10 μ g/ml eluate concentration after spiking from the prepared submixes). A volume of 100 μ l were taken from the eluted samples and

combined with 900 µl of hexane for dilution by a factor of 10 so final diluted eluate obtained corresponded to 1 µg/ml (1 ng/µl -1 ng theoretical concentration injected on column) for injection into the GC as presented in section 4.3. In the second experimental round, the above experiment was repeated (submix 6 was prepared without 1-bromodecane and submix 8 was prepared again without 1-bromododecane for the second experimental round to exclude internal standard candidates), so 30 µl from submixes of 100 µg/ml and for elution volume correction by adding the internal standard 1-bromodecane (after elution of the sorbent into a vial, before any dilution steps, 2 µl was added to the eluate from an 500 µg/ml concentration solution of 1-bromodecane in n-hexane using a Hamilton syringe that is a 1000 ng absolute added value to each eluate, therefore only eluate volume may affect the measured peak area for the internal standard in theory, so elution volumes, thus concentrations measured can be corrected yielding more accurate results). After the dilution of the IS spiked eluate (dilution factor of 10 again) the resulting diluted eluates theoretical concentration was 1 µg/ml containing 100 ng absolute value 1-bromodecane. For calibration diluting the individual submixes (submixes 1-9) and n-alkane series mix (submix 10) with nhexane directly into injection vials were applied. Recoveries assessed against the external calibration mentioned under section 4.2, and response of 1-bromododecane was used as an internal standard (IS) for obtaining correction factor for each individual samples elution volume (300 µl in theory, variable volumes ranging from 200-100 µl mostly eluted from traps depending on VOC trap condition and swelling of adsorbent packing and glass wool stoppings inside the individual traps).

4.2.2.2 Evaluation of recovery for complete mixture constituted from submixes

In the third experimental round we wanted to examine the effects on the recovery if the nine VOC submixes were combined into a mixture solution with a concentration of $10 \mu g/ml$, which contained all previously analyzed odor compounds (except the homologous series of alkanes of submix 10.). This is referred to as the complete mixture. I investigated recovery, as described under section 4.2.2.1, but in this case with an addition of $30 \mu l$ from the complete mixture ($10 \mu g/ml$) directly onto the adsorbent traps, followed by elution with $300 \mu l$ n-hexane. Eluates were spiked by adding $2 \mu l$ from $50 \mu g/ml$ concentration of 1-bromodecane in *n*-hexane as an internal standard ($100 \mu g$ absolute value added). The resulting eluate was not diluted further, (theoretical concentration of components in the eluate at $1 \mu g/ml$, thus $1 \mu g$ injection on column). A comparison of recovery results ($n=5 \mu g$) with internal standard correction) from section 4.2.2.1, and from the complete mixture ($n=2 \mu g$), with internal standard correction) were made.

Figure 8. Schematic representation of the VOC trap sorbent filled with 50 mg Porapak Q sorbent developed and applied for DHS sampling

4.2.3 Investigation of recovery in case of continuous and periodic open-loop-pull-type-DHS sampling followed by SPE elution

As described in Section 4.2.2.2, we spiked the complete mixture (10 µg/ml obtained from pooling submix 1–9 without 1-bromodecane and 1-bromododecane) and, in a separate experiment, also with submix 10 of the n-alkanes (10 μg/ml) in n-hexane by adding 30 μl of them onto the VOC traps for 8 repetitions in each case (concentration level of 1 µg/ml with respect to the elution volume). However, after spiking, the 3-3 spiked VOC traps have been inserted and used to the pull-type dynamic headspace sampling system (continuous and periodic DHS) before start of the sampling duration. The confined vapor space was created using glass chambers, and at the bottom of these chambers, we placed tubes filled with activated charcoal to reduce VOC background from external air. The adsorbent traps were connected to the outlet holes at the top of the chambers using PTFE tubing, followed by a silicone tube (after the VOC trap) that connected to a flow meter and a pump. Three VOC traps spiked as described above were inserted for continuous open-looppull-type DHS sampling, where air flowed through the sample chamber at a rate of 0.8 L/min at 26°C for 6 hours. As far as I know, in collaboration with my masters student at the time, namely Réka Mátyus, we were the first to devise and conduct what we refer to as cyclic/periodic pull-type DHS sampling with the prototype odor collector apparatus (named "nose-e," as presented in Figure 9.), developed under the e-nose project by our research group at CAR. An innovative feature of it, compared to commercially available portable VOC collection apparatuses, was its programmability to automatically switch "on" or "off" and repeat different programmed cycles. This was done to reduce expected losses due to desorption by not constantly pulling airflow from the sampled headspace but rather periodically. To achieve this, we reduced the total flow volume compared to continuous sampling by 66.66% during the sampling by operating the nose-e for 5 minutes (flow on) and then allowing it to rest for 10 minutes (flow off), repeating this sequence for the entire 6-hour duration. Three adsorbents spiked as described in 4.2.2.2 were inserted into the periodic open-loop-pull-type DHS setup, as well as a blank sample (for both DHS methods), where no compounds were added to the sorbents and connected to the DHS systems. The remaining two adsorbents spiked were eluted to obtain direct eluates as described under 4.2.2.2. After the sampling time ended for both DHS approaches, we performed elution as described in Section 4.2.2, and I applied the internal standard correction with 1-bromodecane here as well. For quantitative comparison evaluation of recovery% resulting from direct spiking (n = 2), periodic (n = 3), and continuous DHS (n = 3), sample eluates obtained and quantitated against external calibration according to Section 4.2 (Mátyus, 2023).

4.2.4 Competitive binding site investigation of odor components adsorbed on the sorbent during open-loop-pull-type DHS sampling followed by SPE elution

The experiment aimed to compare the odor profiles of two different types of fruit separately and when they were present in the same airspace to investigate competition for adsorbent binding sites. Commercially available fruits of tomatoes and pears were homogenized using a Russell Hobbs 23180–56 NutriBoost blender and chopper. Five grams from each homogenized fruit matrix were weighted into 50-ml centrifuge tubes. The sampling was carried out for 6 hours at a flow rate of 0.8 L/min at 26-27 °C. Tomato and pear fruits were chosen because they exhibited both different and common components; their quantities were present at a similar magnitude in a presurvey we conducted. Four empty centrifuge tubes were placed in one headspace chamber for creating blank samples. Three headspace chambers contained only tomato (two 50-ml tubes with tomato and two empty ones put inside the sampling chamber), three contained only pear (two 50-ml tubes with pear and two empty ones), and three HS chambers contained both tomato and pear (two 50-ml tubes filled with tomato and two with pear). A picture of the experimental setup is shown in **Figure** 9. We concluded this experiment in the GC-MS laboratory, where high background levels were expected and examined from blank samples collected to further push and test sorbent capacity towards its limit, since usually indoors a high background noise is to be expected in blanks, which is one of the biggest drawbacks for DHS techniques, especially in open-loop-pull systems. Elution from the sorbents was carried out according to section 4.2.2.2, with IS correction, and relative quantitation was done against the response of nonane, described under section 4.2 (Mátyus, 2023).

4.3 GC-MS VOC analysis method for liquid injection of eluates and samples obtained by open-loop-pull-type-DHS VOC collection and SPE elution sample preparation

Measurements of liquid samples were carried out by GC-MS on an Agilent (Agilent Technologies Inc., Santa Clara, California, USA) 7890B GC coupled to a 5977B MS system. The instrument was equipped with a Gerstel MPS CTC type autosampler and a CIS4 inlet with septumless head installed (Gerstel GmbH, Mülheim a. d. Ruhr, Germany).

Figure 9. Picture of the open-loop-pull-type DHS sampling system during the competitive binding site investigation, as described in Section 4.2.4

Injection volume was 1 μ L in splitless mode, septum purge flow was 3 mL/min, and purge flow was 50 mL/min starting at 3 min. Before each run, the CIS4 inlet was cooled with liquid CO₂ to 20 °C and the temperature equilibrated for 0.5 min. The injector temperature program was the following to minimize compound degradation during column transfer: 20 °C held for 0.25 min (initial time), then with a rate of 12 °C/s, the CIS4 inlet was heated up to 270 °C with a hold time of 6 min.

Separation was carried out on a J&W HP-5MS UI 30 m x 0.25 mm x 0.25 µm semi-standard, non-polar type capillary column (Agilent). Helium 6.0 (SIAD Macchine Impianti S.p.A., Bergamo, Italy) was used as a carrier gas with a flow rate of 1 mL/min (36.26 cm/s) in constant flow mode. The oven temperature program was set as follows: 40 °C, hold for 3.5 min, increase by 7 °C/min to 140 °C, then by 20 °C/min to 280 °C, and hold for 2 min. As a post-run function, the column was flushed by heating it up to 325 °C with a column flow of 1.5 mL/min for 2 min before returning to initial conditions. The total analysis time from injection to injection was 36 minutes. For MS detection, EI ionization was used with a standard 70 eV energy, and the MS was tuned and calibrated by perfluorotributylamine according to the manufacturer's instructions. A gain factor of two was applied for the scan and SIM events to maintain optimal sensitivity for both. The auxiliary heater was set to 250 °C, the MS source to 250 °C, and the MS quad to 150 °C. Mass spectra were collected in the Scan & SIM combined acquisition mode; the cut time was 5.2 min. For identification, the scan event was set to monitor m/z 35–600 with a scan speed of 9 scans per second and a 0.1 m/z step size. In the SIM event, m/z 93 was monitored with a dwell

time of 20 ms during the whole run, which is a characteristic fragment for most terpenoids. For the quantitation and confirmation of identified important and abundant fungus-related alcohols and a ketone m/z 57, 70, 72, 93, and 99 were acquired in SIM mode with a 20 ms dwell time during 10.05 to 11 min (Hamow et al. 2021).

4.4 Application of open-loop-pull-type-DHS for non-invasive dynamic sampling followed by untargeted quantitative GC-MS measurement in relation to wheat PM infection

All methods and materials described under this section were published in Hamow et al. (2021).

4.4.1 Plant material and inoculation treatment

4.4.1.1 Greenhouse experiments

Seeds (20-30 pieces) of the susceptible bread wheat cultivar 'Carsten V' (c and Donner 2000) were sown each into 1-liter clay pots containing garden soil and 1 cm of sand layer on the top. The bread wheat cultivar 'Carsten V' was used in all but one experiments because it does not contain any known Pm resistance genes to powdery mildew (Nover, 1958; Vida et al. 2002) and therefore it is expected to be susceptible to all Bgt. pathotypes. Plants were grown in an automated greenhouse (Global Glasshouse Ltd., Szentes, Hungary) at a humidity of 60-90% with illumination at 12 h photoperiods using Groxpress 600W E40 lamps at 2050 K color temperature (Sylvania, Budapest, Hungary). To simulate environmental temperature variations, three independent experiments were carried out in January-February of 2018 (28 days) and in February-March of 2019 (31 days) and 2020 (29 days). Temperature was continuously recorded in 10 min intervals inside as well as outside the greenhouse compartment (Annex 9.8 Figure S4.). The inoculum originated from a single colony and was maintained on 'Carsten V' plants under isolated circumstances (Annex 9.9 **Supplementary Method**). Inoculation was applied by manually shaking conidiospores of Bgt. pathotypes 51 and 71 (Frauenstein et al. 1979) onto single leaves of 7-days-old test plants (stages 11-12 at the Zadoks scale, Zadoks et al. 1974) in a closed box. Control plants without inoculation and blank control pots with identical soil composition but without plants were simultaneously included in the experiments. Each treatment consisted of four biological replicates, except for blank controls, which consisted of two individual pots. The experiments were executed three times (in 2018 with Bgt. pathotype 51 as well as in 2019 and 2020 with pathotypes 51 and 71): in each experiment two repetitions of four pots per treatment were sampled simultaneously, except for plants inoculated with pathotype 71 which were represented by two individual pots (detailed setup in Annex 9.9 Supplementary Method).

4.4.1.2 Growth chamber experiment

During May 2020 two wheat cultivars ('Mv Suba' and 'Mv Kolompos') were grown in a PGR15 reach-in plant growth chamber (Conviron, Winnipeg, Canada) according to the T2 spring program

(Tischner et al. 1997). Plants were inoculated at the beginning of flowering with a conidiospore mixture of *Fusarium graminearum/F. culmorum*, but spontaneously showed slight PM symptoms about 15 days later only on plants weakened by *Fusarium* disease (**Annex 9.7 Figure S3**). To test wider applicability and robustness of the identified VOCs in further cultivar-pathotype combinations, sampling of eight healthy control and eight *Fusarium*-inoculated and *Bgt*-infected plants for both wheat cultivars was carried out for 8 h (instead of 24 h, see below).

4.4.2 Dynamic headspace volatile collection and sample handling

Headspace of greenhouse plants was sampled in 2018 and 2020 at 7 days after inoculation (DAI) when first barely visible symptoms emerged and at 14 DAI in the full-disease development stage, but only at 14 DAI in 2019. To create a headspace, plants were covered with specially crafted 2.5-liter glass cups (55 cm x 8 cm O.D.), which were carefully inserted a few cm deep into the soil inside the circumference of the pots without damaging the plants or their roots. At the bottom of the cup, there was an inlet for air with laboratory glass wool and an active charcoal filter (mesh 4-8, Alfa Aesar, Wardhill, MA, USA), and PTFE tubing was connected to its top to serve as an air outlet (Figure 10.). Two volumes of air were sucked through the cup, which was then closed and left for one hour prior to sampling. An adsorbent tube containing a load of 50 mg Porapak Q sorbent (mesh 80-100, Waters, Milford, MA, USA) between two layers of gas chromatographic-grade deactivated glass wool and PTFE rings for fixation was connected to the PTFE tubing of the outlet. The adsorbent tube was covered with aluminum foil to prevent any photodegradation or alteration of adsorption capacity potentially caused by exposure of the sorbent to light for a prolonged period. Behind the adsorbent tube, a BA-4AR type flow meter (Kytola Instruments, Muurame, Finland) and a NMP 830 KNDC type pump (KNF-Micro AG, Reiden, Switzerland) were connected by silicone tubing. Sample collection of the headspace was done in each case for 24 hours with a sampling speed of 0.8 L/min, with each collection starting at 10 a.m. on each sampling day. Flow meters were checked regularly during sample collection. After collection, adsorbent tubes were not thermally desorbed but instead eluted with 300 µL of PESTINORM® grade *n*-hexane, then transferred into 1.5 mL GC injection vials with glass inserts closed with caps containing PTFE septum, sealed with Parafilm, and stored at -20 °C until analysis. Reproducibility and direct sorbent recovery, carryover, and stability were tested and verified. After elution with *n*-hexane, adsorbent tubes were cleaned by forced washing in 4x500 µL of each of the following solvents: methanol, methanol:chloroform 3:1, dichloromethane and finally n-hexane, followed by drying under a gentle nitrogen stream. Glassware and PTFE tubing and connections were rinsed with ultrapure water, then with acetone, and baked at 130 °C for 3–4 hours, followed by wrapping with thick aluminum foil for storage prior to use for sampling.

All solvents used were at least HPLC-grade (VWR, Radnor, PA, USA). In the growth chamber experiment, the *Fusarium*-infected and control plants' headspaces were created by the use of PTFE bags with gastight sealing (instead of the glass apparatus on **Figure 10.**), and adsorbents were handled after sampling as described above and analyzed by the GC-MS method as described previously.

4.4.3 Data evaluation, mining, quality control and statistical analysis

Mass Hunter Workstation Qualitative Navigator B.08.00 and Quantitative Analysis B.09.00 software tools (Agilent) were used for evaluation and quantitation. Identification of compounds were based on background subtracted mass spectra that were identified by the NIST MS Search program (National Institute of Standards and Technology)/EPA/NIH Mass Spectral and RI Library v17 (2017) and the Wiley Registry[®] of Mass Spectral Data, 10th edition (2014), and by utilizing *n*-alkane retention indices with a C7-30 *n*-alkanes mix (Sigma-Aldrich, St. Louis, MI, United States). The highest-ranked, consistent library hits (min. 75% similarity with reverse search for mass spectra) and retention index score matches were condsidered for the identification of volatile compounds. Integration was carried out to the most abundant unique ion for each peak (**Annex 9.10 Table S4**).

Figure 10. Sampling setup for DHS sampling consisting of eight pots of wheat plants and two blank pots under glass cups with air in- and outlets located in the bottom and the top

For unambiguous identification and quantitation commercially available reference materials were used for 1-heptanol, 1-octen-3-ol. 3-octanone (Sigma Aldrich) and (5Z)-octa-1,5-diene-3-ol (Toronto Research Chemicals Inc., North York, Canada). Reproducibility and linearity of the GC-MS method was verified by injecting the reference materials purchased from Sigma Aldrich and diluted their stock solutions as a mixture in n-hexane (Annex 9.11 Table S5). A system suitability test were also conducted with a mixture of styrene, 1,3-dimethoxy-benzene, and longifolene (Annex 9.12 Table S6). To asses chromatographic stability retention times of *n*-alkanes (C7-26) used for calculation of retention index (RI) injections from dilution of submix 10. were evaluated (Annex 9.13 Table S7). For peak areas lower than the limit of quantification (LoQ) the background was always recorded with non-zero values for reliable statistical tests. The distribution of the identified BVOCs was tested in the Metabolite Ecology database of the KNApSAcK Family databases (Afendi et al. 2012), and the mVOC 2.0 database (Lemfack et al. 2018). Genes encoding BVOC biosynthetic enzymes (dioxygenases, monooxygenases and lipoxygenases) were identified by basic local alignment search tool (BLAST) searches (Altschul et al. 1990) in B. graminis whole genome sequences maintained in the Ensembl Fungi database (release 48, August 2020) and the Joint Genome Institute Mycocosm database al. 2018; Blugr2 (Frantzeskakis et https://mycocosm.jgi.doe.gov/Blugr2/Blugr2.home.html) as well as by queries in the Universal Protein Resource (UniProt, https://www.uniprot.org/) database. Significance for differences between controls and treatments (symptomatic stages, pathotypes and years) was analyzed by twosample t-tests (IBM SPSS Statistics software version 16) as well as by multivariate PERMANOVA using the 'adonis' function in the 'vegan' package (v. 2.5-7, Oksanen et al. 2020) of the R environment (v3.6.3, R Core Team, 2020). In order to identify potential VOC biomarkers principal component analysis (PCA) was applied for unsupervised reduction of data dimensions after standardization by z-score normalization of the original data matrix. Principal components, loadings and scatter (score) plots of the observations were made using the base R function 'prcomp'. The biplot illustration was performed using the 'pca' function of the packages FactoMineR (Lê et al. 2008) and 'factoextra' (Kassambara and Mundt, 2020). To reveal systematic patterns in BVOCs across various treatments colored heat maps were generated by the R packages 'ggplot2' and 'reshape2' (Wickham, 2007). The quantitated BVOC biomarkers were also statistically explored by boxplots (BoxPlotR, http://shiny.chemgrid.org/boxplotr/ Spitzer et al. 2014) and corresponding basic parameters (Real Statistics Resource Pack software, Release 6.2) using Power Query in MS Excel.

5. RESULTS AND DISCUSSION

5.1 Results regarding pilot experiments for surveying different plant-pathogen/pest setups and methods for VOC collection

All results presented under this section were published as Radványi et al. (2019).

5.1.1 Changes in the aroma compounds of three different barley varieties due to *Pyrenophora teres f. teres* infection

Due to the nature of these pilot experiments number of parallel samples were limited or differed, therefore no analysis of significance would yield real statistical results, however peak area comparisons have been conducted to reveal trends in VOC changes. Results of all measurements and compounds are presented in **Appendix 9.5. Table S2.** Changes are summarized in **Table 10.** 5.1.1.1 Harrington aroma profile

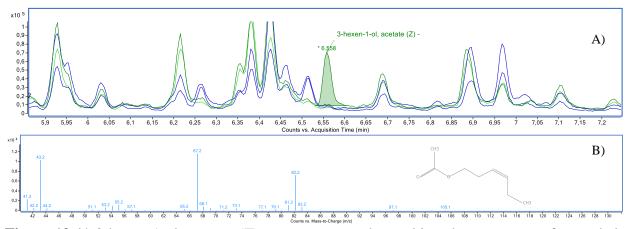
Mechanical damage to the Harrington barley variety resulted in the appearance of (Z)-3-hexenyl acetate (C8H14O2, hit value: 93%) in the aroma profile. After 20 days of *Pyrenophora teres f. teres* (*P. teres*) infection, 7 new compounds appeared in the total ion chromatogram (**Table 9.**), which may indicate the presence of infection.

Table 9. New components appearing in the VOC profile of Harrington 20 days after infection

Retention Time (min)	Compound name	Formula	CAS No.
3.61	2-hexanol	C6H14O	626-93-7
4.87	styrene	C8H8	100-42-5
4.97	heptanal	C7H14O	111-71-7
6.52	octanal	C8H16O	124-13-0
9.4	naphthalene	C10H8	91-20-3
9.56	decanal	C10H20O	112-31-2
17.39	6,10,14-trimethyl-2-pentadecanone	C18H36O	502-69-2

The newly appearing compounds could be markers of the infection. During the measurements, the intensity of several compounds showed an increasing (toluene, D-limonene, nonanal, triacetin, α -pinene, 5-hepten-2-one, 6-methyl (sulcatone)) or decreasing (6-methyl tridecane, azulene, 2,2,4,6,6-pentymethyl-heptane) trend (**Table 10.**). Based on the compounds with increasing or decreasing intensity over time, the early and late stages of infection could be recognized.

5.1.1.2 My Initium aroma profile


The total ion chromatogram (TIC) of P. teres infected Mv Initium differed from that of healthy plants in two areas: the early (RT < 7 min) and middle (15 min < RT < 20 min) sections of the chromatogram (**Figure 11.**).

11. TIC chromatogram and differences observed (circled) of healthy and *P. teres* infected Mv. Initium barley

As a result of an infection caused by a necrotrophic pathogen, four new compounds appeared in the infected plant's volatile profile, which could serve as markers of the infection: 2-hexanol, guanidine, 3-hexen-1-ol, eugenol. 2-hexanol also appeared in the Harrington variety upon infection. The infected plants began to produce 6 compounds with greater intensity (octane, 1-butoxy-2-propanol, (Z)-3-hexenyl acetate, N-butyl-benzenesulfonamide, 6,10,14-trimethyl-2-pentadecanone, dodecyl isobutyl carbonate). (Z)-3-hexenyl acetate appeared in the Harrington variety upon mechanical damage (**Figure 12.**), indicating that it is likely a marker of leaf injury in the Mv Initium variety. We defined 6,10,14-trimethyl-2-pentadecanone as a new compound appearing upon infection in the Harrington variety as well.

Probably as a result of the infection, the intensity of numerous compounds decreased in comparison to the volatile compounds of the control plant (ethylbenzene, p-xylene, (+)- α -pinene, 1-ethyl-2-methyl-benzene, and 1-ethyl-3-methyl-benzene, mesitylene, (+)-3-carene, D-limonene, indane, linalool, naphthalene).

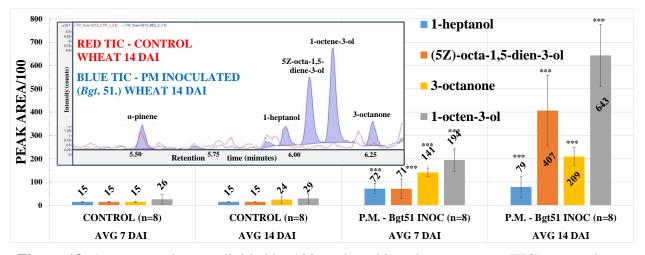
Figure 12 A) 3-hexen-1-ol, acetate, (Z)- appearance on the total ion chromatogram of wounded Harrington barley variety; **B**) 3-hexen-1-ol, acetate, (Z)- mass spectra from the sample

5.1.1.3 KH Hunor's volatile profile

Regarding KH Hunor's volatile profile, we found three compounds that increased in intensity over time $((+)-\alpha$ -pinene, sulcatone, 6,10,14-trimethyl-2-pentadecanone). By the end of the infection experiment, we also detected newly appearing compounds in the volatile profile (**Table 10.**), which are presumed to be late markers of the infection by *P. teres*.

Table 10. Changes in common compounds in the VOC profiles of three barley varieties (BC 52), (BC 5), (BC 168) due to *Pyrenophora teres* infection

Retention time (minutes)	Compound name	BC 52 (Harrington)	BC 5 (Mv. Initium)	BC 168 (KH Hunor)	Retention time (minutes)	Compound name	BC 52 (Harrington)	BC 5 (Mv. Initium)	BC 168 (KH Hunor)
3.31	toluene	1			7.635	1,2-oxolinalool			↓*
3.61	2-hexanol	New	New		7.69	6-ethyl-3-octyl ester trichloroacetic acid			New (v.)
3.63	octane		1		7.75	N-[4-bromo-n-butyl]-2-piperidinone			New (v.)
4.28	guanidine		New	↓*	7.82	1-phenyl-1-butene			New (v.)
4.32	3-hexen-1-ol		New		7.86	5-tridecane			New (v.)
4.46	ethylbenzene		1		7.94	1-ethenyl-4-ethylbenzene			New (v.)
4.57	p-xylene		†		8.01	*linalool	New	1	↓*
4.87	styrene	New			8.08	nonanal	1		↓*
4.91	1,3-dimethyl-benzene	-	1		8.21	2,6-dimethylcyclohexanol	New		New (v.)
4.98	heptanal	New			8.97	azulene	Ţ		↓*
5.52	(+)-α-pinene	1	1	1	9.02	4-ethylbenzaldehyde			New (v.)
5.57	*1-butoxy-2-propanol		j		9.03	3-ethylbenzaldehyde	Ţ		-
5.77	4,4-dimethyl-2-pentanol			New	9.34	4-tert-butylanisole			New (v.)
5.93	1-ethyl-3-methylbenzene		1		9.40	naphthalene	New	1	
5.95	1-ethyl-2-methylbenzene		1		9.59	decanal	New		
6.06	3,5,5-trimethyl 2-hexene			-	10.8	1-(4-ethylphenyl)-ethanone	Ţ		
6.13	1-octen-3-ol			↓*	11.5	triacetin	1		
6.22	*2 or 3 or 4-ethyltoluene	1	1		11.8	eugenol		New	
6.26	sulcatone-	1		1	12.2	6-methyl-tridecane	↓		
6.36	2,2,4,6,6-pentamethylheptane	1			12.4	2-dodecen-1-yl(-) succinic anhydride			New (v.)
					12.7	caryophyllene			↓*
6.43	mesitylene		1		14.0	1-iodododecane	\downarrow		
6.52	octanal	New			15.5	butyl dodecyl ether	$\downarrow\downarrow$		
6.56	(Z)-3-hexenyl acetate	New (sn)	1	↓*	16.9	N-butylbenzenesulfonamide		↓	
6.69	(+)-3-carene		1		17.2	isopropyl myristate	New		
6.97	D-limonene	1	1		17.4	6,10,14-trimethyl-2-pentadecanone	New	\downarrow	1
7.06	nona-3,5-dien-2-ol			-	17.6	phytyl acetate			New (v.)
7.1	indane		1		17.7	(Z,E)-2,13-octadecadien-1-ol			New (v.)
7.12	levomenthol			New (v.)	18.0	homosalate	1		
7.229	(Z)-β-ocimene			↓*	18.4	dodecyl isobutyl carbonate		1	↓*
			Decreasing	intensity over	time	↓* High in initial samples and c	ontrol, deci	eases with ti	me
	Legend:			intensity over		↓↓ Below the limit of d			
	Legenu.	New: Newl	y appearing c	ompounds up		sn: Compound appearin		ed plants	
		<u> </u>		*Differe	nt behavior can	be observed among the three barley var	rieties		


2-hexanol appeared as a new compound in two varieties of barley (Harrington, Mv. Initium) as a result of infection, thus it can be classified as potential biomarker. 6,10,14-trimethyl-2-pentadecanone behaves as a marker compound in Harrington and KH Hunor varieties, with its quantity increasing, while it was found in smaller amounts in the Initium variety compared to the control plant. (Z)-3-hexenyl acetate appeared in Harrington variety as a result of mechanical damage, indicating leaf injury, while it appeared in Mv Initium variety probably as a result of infection. (+)- α -pinene intensity increased in all barley varieties as a result of infection, thus it is considered a clear marker compound. Linalool and naphthalene compounds appeared in Harrington variety as a result of infection, however, they were already present in control plants of My Initium and KH Hunor varieties; their intensity decreased as a result of infection, which is contradictory in the case of the two barley varieties. Sulcatone, D-limonene, and naphthalene

compounds generally increased in intensity due to infection, while the intensity of azulene and dodecyl isobutyl carbonate decreased (**Table 10.**, and **Annex 9.5 Table S2**).

5.1.2 Changes in the odor profiles of different plants (wheat, tomato) as a result of infections

5.1.2.1 Changes in wheat odor profile due to powdery mildew infection

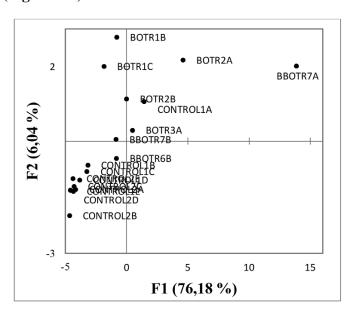

The complete VOC profile of wheat contains nearly 50 volatile compounds. Among these, the most intense were p-ethylacetophenone, p- and o-xylene, limonene, ethyl-benzaldehyde, diethyl-benzene, α-pinene, nonane, 3-carene, pseudocumene, methyl-benzene, ethyl-benzene, decanal, nonanal, dodecane, p-, m-cymene, and indane compounds. During our measurements, we successfully identified compounds that appeared only in healthy or infected plants. 1-octen-3-ol and 3-octanone may be suitable for early detection of infection since they are always more abundant in infected DHS samples from the 2018 pilot experiment (**Figure 13.**). The intensity of these compounds typically increased as the infection progressed, serving as biomarkers for detecting wheat infestations with wheat aphids. Although the literature does not yet describe biomarkers indicative of wheat aphid infection, studies by Tabata et al. (2011) revealed 1-octen-3-ol and 3-octanone as new compounds in the odor profile of aphid-infested pumpkin. In Eva-Maria Becker's doctoral thesis, both compounds are presented as variable compounds in response to *Fusarium* infection in corn (Becker, 2013). 1-octen-3-ol and 3-octanone are also considered indicators of mold infection in stored grains (Börjesson et al. 1989; Kaminski et al. 1974), and based on literary data, both compounds are emitted by the pathogenic fungus itself.

Figure 13. Average peak areas divided by 100, and total ion chromatogram (TIC) comparisons from pilot experiment 2018 for control wheat (Carsten V) and powdery mildew (*Blumeria Graminis f. sp. tritici - Bgt* pathotype 51) infected biomarker VOC candidates, at 7 and 14 days after inoculation (DAI)

5.1.2.2 Changes in the aroma compounds of tomatoes due to gray mold infection

At the beginning of the study, we compared the total ion chromatograms (TIC) of healthy and gray mold-infected tomatoes. To obtain reliable results, we conducted these tests using 10 parallel measurements for both control and infected plants. In total, we detected 78 volatile compounds that are typical for tomatoes, including hexanal, p-xylene, 3-carene, 1R-α-pinene, 2(10)-pinene, β-mycrene, α- and β-phellandrene, α- and γ-terpinene, linalool, decanal, β- and γ-elemene, caryophyllene, and cubebol. In the aroma profile of infected plants, we found 34 compounds that did not appear in the aroma profile of healthy plants. These are typically low-intensity components biomarkers for B. cinerea, such as be 3-pentanone, p-menth-2-en-1,4-diol, and dimethyl sulfone. Using principal component analysis (PCA) on the previous 78 compounds, the infected and healthy plants were separated, mainly along the second principal component (Figure 14.).

Figure 14. PCA plot of healthy and gray mold-infected tomatoes. All explained variance is 82.22%. F1: first principal component, F2: second principal component.

5.2 pull-type-DHS-SPE-GC-MS method performance tests, results and their interpretation Some of the results presented under this section are available in Hungarian (Mátyus, 2023) in the MSc thesis that were supervised by the author.

5.2.1 Performance parameters of the GC-MS analysis method for qualitative and quantitative purposes

In this section, I examined the linearity, repeatability, and robustness of the GC-MS measurement method (see section 4.3), with tests presented in section 4.4.2 using various reference mix dilutions. The detailed results are presented in **Annex 9.11. Table S5, 9.12. Table S6 and 9.13. Table S7**. A summary of the performance characteristics can be found in **Table 11., Table 12., and Table 13.**

Table 11. Monitoring of chromatographic stability and MS sensitivity, linearity, and repeatability during 2019-2020 from the injection of the powdery mildew (Bgt) BBVOC reference mix (1-heptan-ol, 1-octen-3-ol, 3-octanone) in the range of 0.05-5 μ g/ml (n=23).

1-hept	anol (S	IM - m	/z 70)	1-octe	en-3-ol ((SIM - n	n/z 72)	3-octanone (SIM - <i>m</i> / <i>z</i> 72)				
AVG RT (min)	SD of RT (min)	CV% of RT	RT drift (min) in 3 years	AVG RT	SD of RT	CV% of RT	RT drift in 3 years	AVG RT	SD of RT	CV% of RT	RT drift in 3 years	
10.15	0.019	0.19		10.38	0.018	0.17		10.57	0.019	0.18		
AVG accuracy%	SD of accuracy%	CV% of accuracy	-0.057	AVG accuracy	SD of accuracy	CV% of accuracy	-0.061	AVG accuracy	SD of accuracy	CV% of accuracy	-0.063	
103.73	6.33	6.1		103.15	7.56	7.3		98.83	9.67	9.8		

Table 12. Injections of system suitability mix in 2019-2020 for accuracy, sensitivity, and reproducibility verification for an early, a medium, and a late eluting component. Comparison of extracted ion chromatogram (EIC) and selected ion monitoring (SIM) channel data quality for longifolene (0.05-2.5 μ g/ml range, n=27).

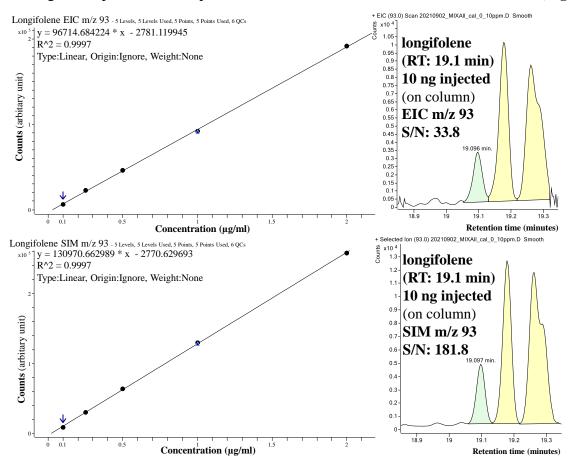
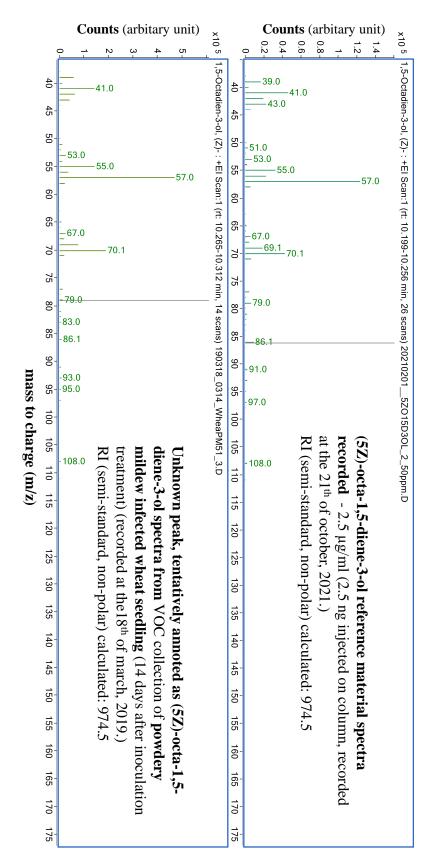

styre	ene - EI	C m/z 1	104	1,3-dimethoxybenzene - EIC m/z 138					
AVG RT (min)	SD of RT (min)	tin) CV% of RT (min) in 2 (min) (min) C (min)		CV% of RT	RT drift (min) in 2 years				
8.15	0.011	0.14		14.75	0.013	0.09			
AVG accuracy%	SD of accuracy%	CV% of accuracy	-0.017	AVG accuracy	SD of accuracy	CV% of accuracy	-0.056		
110.37	9.05	8.2		109.25	8.35	7.6			
longifo	olene - l	EIC m/2	7 161	long	ifolene	- SIM n	ı/z 93		
AVG RT (min)	SD of RT (min)	CV% of RT	RT drift (min) in 2 years	AVG RT (min)	SD of RT (min)	CV% of RT	RT drift (min) in 2 years		
19.32	0.008	0.04		19.32	0.009	0.05			
AVG accuracy	SD of accuracy	CV% of accuracy	-0.026	AVG accuracy	SD of accuracy	CV% of accuracy	-0.031		
106.51	7.38	6.9		110.03	9.74	8.8			

Table 13. Evaluation of retention times for the n-alkane mix (C7-30, C8-26 evaluated) used for Kováts retention index (RI) calculation, in years 2019-2021 (n=15).


Kováts' RI value	800	900	1000	1100	1200	1300	1400	1500	1600	1700
RT (min) AVERAGES	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17
KI (min) AVERAGES	5.9	8.4	10.9	13.2	15.4	17.5	19.1	20.2	21.1	21.8
SD of RT-s	0.009	0.016	0.021	0.025	0.027	0.029	0.022	0.018	0.016	0.015
CV% of RT-s	0.15	0.20	0.20	0.19	0.18	0.16	0.11	0.09	0.08	0.07
TOTAL RT DRIFT in 2 years: 19.03-21.02 on HP-5MS UI 30m*0.25mm*0.25um used	RT drift (min) C8	RT drift (min) C9	RT drift (min) C10	RT drift (min) C11	RT drift (min) C12	RT drift (min) C13	RT drift (min) C14	RT drift (min) C15	RT drift (min) C16	RT drift (min) C17
John Vizzhini Vizzuni useu	0.025	0.054	0.066	0.072	0.077	0.081	0.062	0.048	0.047	0.042
Kováts' RI value	1800	1900	2000	2100	2200	2300	2400	2500	2600	
RT (min) AVERAGES	C18	C19	C20	C21	C22	C23	C24	C25	C26	
KI (min) AVERAGES	22.5	23.0	23.5	24.0	24.5	24.5	24.9	25.9	26.5	
SD of RT-s	0.015	0.014	0.015	0.015	0.015	0.015	0.016	0.022	0.027	
CV% of RT-s	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.09	0.10	
TOTAL RT DRIFT in 2 years: 19.03-21.02 on HP-5MS UI	RT drift (min) C18	RT drift (min) C19	RT drift (min) C20	RT drift (min) C21	RT drift (min) C22	RT drift (min) C23	RT drift (min) C24	RT drift (min) C25	RT drift (min) C26	
30m*0.25mm*0.25um used	0.042	0.039	0.039	0.041	0.039	0.039	0.042	0.062	0.075	

As there is currently no consensus on performance parameters and their values for odor analysis, we based our methodology on the calibration and quality assurance parameters outlined in SANTE/11312/2021 (Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticide Residues Analysis). According to this guidance, individual calibration points can deviate by a maximum of 20% from the linear equation (interpreted as percent recovery or accuracy%); the concentration difference between calibration points should not exceed tenfold; and in the case of bracketing calibration, the higher concentration should be considered 100%, allowing a 20% maximum concentration difference for the lower point. Additionally, achieving an R² of at least 0.99 during fitting is mandatory, and retention time should not deviate by more than 0.1 minutes within a sequence. The results demonstrate that our analytical method complies extensively with the SANTE/11312/2021 calibration criteria. For quantification and calibration using extracted ion chromatogram (EIC) and selected ion monitoring (SIM) ion channels, the calibration of longifolene is shown as an example in Figure 15. The SIM channel exhibits a better signal-to-noise ratio (S/N) compared to the EIC, which allows for a slightly lower detection limit, especially for terpenoids. However, it is important to note that in the realm of modern single quadrupole MS instruments, the data quality difference (number of data points for better SIM channels and improved signal-to-noise ratio) between EIC and SIM quantification is minimal, and this effect is more pronounced when approaching the detection limit. Regarding identification criteria, it is essential to note that it is no longer accepted to rely solely on the spectral match of background-subtracted or deconvoluted mass spectra for qualitative analysis in the absence of a reference. This is because many components often have very similar fragmentation patterns, so using multiple mass spectral databases and comparing retention indices of compounds with literature or database values is crucial. For example, in the case of identifying an unknown component detected during a wheat powdery mildew infection, as illustrated in Figure 16, For (5Z)-octa-1,5-dien-3-ol, the compound was not present in the most popular and recent NIST 17 (NIST/EPA/NIH Mass Spectral and RI Library 17th edition) library. Therefore, the spectrum is suggested as "2-hexene-3,5,5-trimethyl-" in the NIST library (see Figure 17.). However, this compound is indeed (5Z)-octa-1,5-dien-3-ol, which is confirmed by a close match in both mass spectral data and retention index from the Wiley MS Database 10th edition.

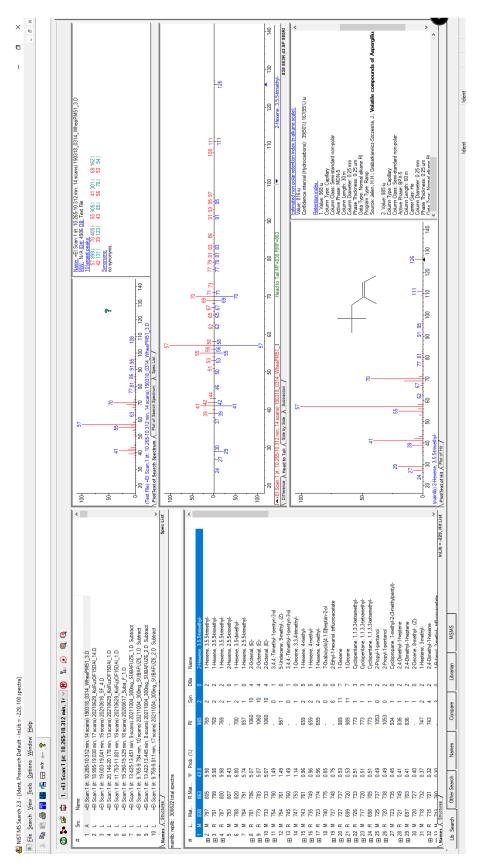

It is vital to perform a thorough analysis and, if possible, confirm the qualitative identification of the assumed component using a reference substance. However, quantification may be sufficient by performing EIC from scanning data without the need for SIM channel acquisition, especially if the target component is not present in concentrations near the detection limit (**Figure 15.**).

Figure 15. Calibration and signal to noise (S/N) of longifolene represented by extracted ion chromatogram (EIC) m/z 93 and selective ion monitoring (SIM) chromatogram m/z 93 ions in the range of $0.1-2 \mu g/ml$ injected with GC-MS method described in section 4.3

Figure 16. Spectrum of (5Z)-octa-1,5-dien-3-ol reference substance and the spectrum of the assumed (5Z)-octa-1,5-dien-3-ol component in wheat headspace sample 14 days after infection with powdery mildew (*B. Graminis*).

Figure 17. Spectrum search in the NIST 17 MS database for the spectrum of (5Z)-octa-1,5-dien-3-ol, which is not present in this database, leading to the erroneous suggestion of "2-hexene-3,5,5-trimethyl-." with a database RI of 985 (measured and calculated RI 974.5 indicating a possibly false positive match)

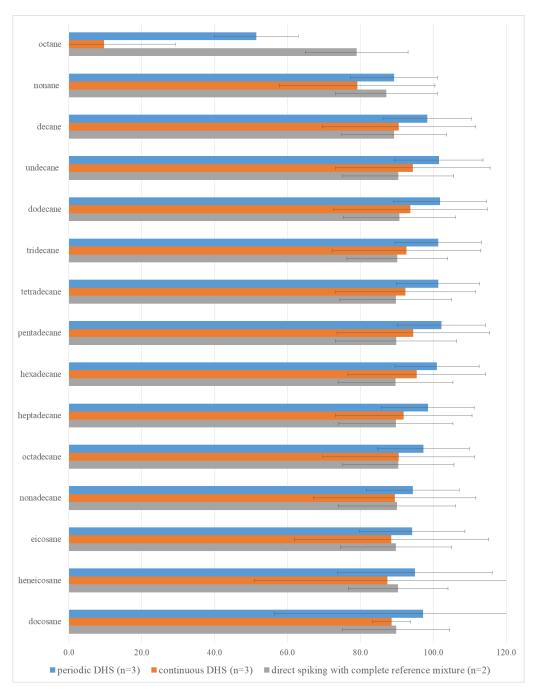
5.2.2 Recovery (%) results obtained from spiking of reference mix solutions (submixes) with and without internal standard correction for 1-bromodecane

Recoveries for the ten submixtures individually without and with the correction of the internal standard 1-bromodecane (as described in Section 4.2.2.1) are presented in **Table 14**. In general, components can be overestimated quantitatively by as much as 40–60% when external calibration is applied and when the deviation of elution volume (during odor trap elution, which can vary due to the swelling of sorbent particles) is not controlled with an appropriate internal standard, as we did in our case using 1-bromodecane. In the case of internal standard-corrected recovery results described in Materials and Methods 4.2.2.1 and as shown in Table 14., the recovery of 98 components was examined at a concentration of 1 µg/ml relative to the elution volume. Based on the principles of SANTE/11312/2021 (70–120% recovery, RSD% less than 20%, five parallels for each concentration level), we classified the average recovery into four groups: 0-20, 20-40, 40–60, and >60%. Since odor analysis is a specialized field, I consider recoveries greater than 60% to be acceptable; hence, our tolerance is slightly higher compared to the SANTE document. Based on all of this, it can be seen that using submixes of up to 10 components, we observed 60% or higher recovery in 87 cases out of 96 components when the eluted volume of *n*-hexane was with internal standard 1-bromdecane. For 2-methyltetrahydrofuran-3-one, corrected methyl benzoate, 1,3-dimethoxybenzene, α-terpineol, (S)-(+)-carvone, eugenol, and methyl eugenol, we obtained recoveries between 40 and 60%, which were lower than optimal. Only two compounds, ethyl 3-hydroxybutyrate and methyl jasmonate, performed poorly, with recoveries between 20 and 40%. Methyl jasmonate is especially significant as it is an important plant hormone, so it's crucial to be aware that significant losses can occur during SPE elution when using *n*-hexane elution, especially in the presence of strong variability.

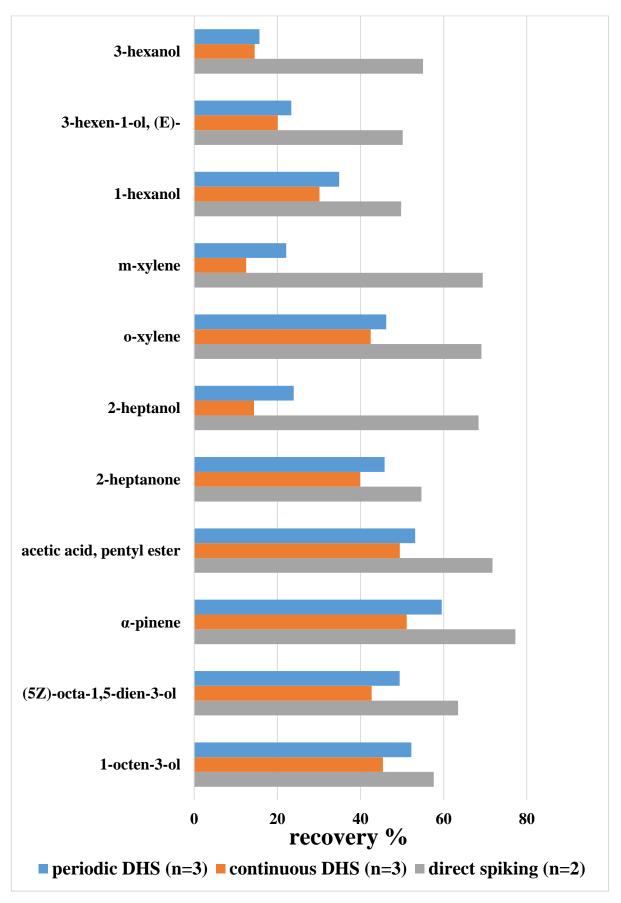
Table 14. partial mixture (submix) – Spiking to the adsorbent surface – at a concentration of 1 μ g/ml calculated for elution, characterization of the average recovery (%) and standard deviation, relative standard deviation (RSD%) and confidence interval (CI), using at least three external bracketing calibrations (linear regression, R2>0.99), with and without internal standard (1-bromdecane) correction (Legend: 0-20% - red, 20-40% - orange, 40-60% - yellow, 60% < - green)

Submix number	Retention time (min)	Component english common name	Average recovery (%)	SD	RSD %	CI	Average recovery % with internal standard correction	SD	RSD %	CI
MIX5	5.37	2-hexanone	151.3	20.3	13.4	25.2	99.0	7.3	7.4	9.1
MIX5	5.50	3-hexanol	165.7	12.3	7.4	15.3	99.6	6.8	6.8	8.4
MIX3	5.60	hexanal	151.3	7.8	5.1	9.7	93.2	11.1	11.9	13.7
MIX10	5.62	octane	154.4	13.4	8.7	16.6	92.2	15.5	16.8	19.2
MIX4	5.62	2-hexanol	103.9	10.3	9.9	12.8	66.1	5.6	8.5	6.9
MIX7	5.67	butanoic acid, ethyl ester	153.0	20.3	13.2	25.1	95.7	9.9	10.3	12.3
MIX8	5.76	3(2H)-furanone, dihydro-2-methyl-	95.2	23.4	24.6	29.0	43.2	7.4	17.2	9.2
MIX1	6.89	2-hexenal, (E)-	151.6	8.2	5.4	10.1	81.4	7.6	9.3	9.4
MIX2	6.90	3-hexen-1-ol, (E)-	140.5	10.4	7.4	12.9	73.2	6.3	8.6	7.8
MIX5	7.31	1-hexanol	167.9	15.0	8.9	18.6	77.8	3.5	4.5	4.4
MIX3	7.31	m-xylene	160.8	13.8	8.6	17.1	87.3	8.3	9.5	10.3
MIX1	7.32	p-xylene	164.7	10.0	6.1	12.5	84.0	6.6	7.8	8.1
MIX6	7.54	isopentyl acetate	150.9	15.6	10.4	19.4	97.6	14.3	14.6	17.7
MIX8	7.85	styrene	144.2	12.9	8.9	16.0	72.1	15.1	20.9	18.8
MIX2	7.90	o-xylene	147.9	5.3	3.6	6.6	93.9	5.0	5.3	6.2
MIX5	8.11	2-heptanol	167.1	12.9	7.7	16.0	92.3	6.1	6.6	7.6
MIX10	8.11	nonane	167.5	14.4	8.6	17.9	96.5	15.7	16.2	19.5
MIX4	8.12	2-heptanone	135.9	14.0	10.3	17.4	86.6	6.1	7.1	7.6
MIX9	8.34	propanoic acid, butyl ester	147.8	13.0	8.8	16.2	92.6	6.3	6.9	7.9
MIX6	8.49	acetic acid, pentyl ester	150.2	16.7	11.1	20.8	98.0	15.3	15.6	19.0
MIX9	8.52	anisole	118.6	10.9	9.2	13.5	74.2	6.6	8.9	8.2
MIX2	8.95	α-pinene	159.9	9.9	6.2	12.2	103.9	2.5	2.4	3.1
MIX8	8.96	butanoic acid, 3-hydroxy-, ethyl ester	36.3	26.1	71.8	32.4	27.9	16.9	60.5	20.9
MIX1	9.51	2-heptenal, (E)-	159.3	8.9	5.6	11.1	84.6	7.3	8.7	9.1
MIX3	9.59	benzaldehyde	124.1	2.8	2.3	3.5	66.1	7.6	11.5	9.4
MIX2	9.87	1-heptanol	140.7	3.7	2.6	4.6	75.6	2.3	3.0	2.9
MIX4	9.95	(5Z)-octa-1,5-dien-3-ol	128.6	8.3	6.4	10.3	79.7	7.3	9.2	9.1
MIX7	10.02	(-)-β-pinene	170.1	17.6	10.3	21.8	99.6	12.3	12.4	15.3
MIX1	10.10	1-octen-3-ol	148.5	7.9	5.3	9.8	71.9	8.1	11.3	10.1
MIX2	10.14	phenol	135.4	10.3	7.6	12.7	81.4	2.9	3.6	3.6
MIX3	10.28	5-hepten-2-one, 6-methyl-	160.6	8.6	5.4	10.7	88.5	9.8	11.1	12.2
MIX6	10.40	β-myrcene	168.2	14.0	8.3	17.4	107.5	15.6	14.5	19.4
MIX5	10.49	3-octanol	171.6	12.8	7.5	15.9	104.5	6.5	6.2	8.1
MIX4	10.53	3-octanone	133.5	8.4	6.3	10.4	86.4	5.8	6.7	7.2
MIX8	10.60	hexanoic acid, ethyl ester	161.1	14.7	9.1	18.2	79.2	17.9	22.6	22.2
MIX10	10.61	decane	170.9	15.0		18.7	96.3	16.0	16.6	19.9
MIX3	10.71	α-phellandrene	177.4	13.0		16.1	98.1	9.0	9.2	11.2
MIX2	10.78	3-hexen-1-ol, acetate, (Z)-	154.9	5.2	3.4	6.5	98.8	4.9	4.9	6.0
MIX1	10.85	3-carene	174.2	11.0	6.3	13.6	90.4	6.6	7.3	8.2
MIX9	10.93	acetic acid, hexyl ester	148.0	14.1	9.5	17.5	90.1	7.3	8.1	9.1
MIX3	11.20	p-cymene	168.7	11.8	7.0	14.7	94.0	8.3	8.8	10.3
MIX2	11.30	R-(+)-limonene benzyl alcohol	163.5	4.3	2.6 17.2	5.3	106.6	3.6	3.4	4.5
MIX5 MIX7	11.40	benzyl alcohol cis-β-ocimene	143.6 171.3	24.6 15.7	9.2	30.6 19.5	88.9 101.2	4.7 12.4	5.3 12.3	5.8 15.4
MIX7 MIX7				_	7.2	19.5		12.4	12.3	15.4
MIX4	11.77 11.89	trans-β-ocimene 2-methylphenol (o-cresol)	186.4 115.3	13.5	6.9	9.9	101.8 75.2	4.1	5.5	5.1
		acetophenone			24.2	25.9			19.0	14.6
MIX6 MIX4	12.17 12.37	3-methylphenol (m-cresol)	86.3 114.3	20.8	6.1	25.9 8.7	62.1 73.2	11.8 5.1	7.0	-
MIX1	12.37	3-metnyipnenoi (m-cresoi) α-terpinolene	173.0	7.0	6.6	14.1	89.5	7.0	7.0	6.4 8.6

Table 14. continued partial mixture (submix) – Spiking to the adsorbent surface – at a concentration of 1 μ g/ml calculated for elution, characterization of the average recovery (%) and standard deviation, relative standard deviation (RSD%) and confidence interval (CI), using at least three external bracketing calibrations (linear regression, R2>0.99), with and without internal standard (1-bromdecane) correction (Legend: 0-20% - red, 20-40% - orange, 40-60% - yellow, 60% < - green)


Submix number	Retention	Component english common name	Average recovery	SD	RSD	CI	Average recovery % with	SD	RSD	CI
S 40311211 110111001	time (min)		(%)	52	%	01	internal standard correction	52	%	01
MIX8	12.84	benzoic acid, methyl ester	115.8	20.6	17.8	25.6	51.5	8.5	16.5	10.5
MIX4	12.95	linalool	137.0	6.2	4.5	7.7	87.2	6.1	7.0	7.6
MIX10	12.96	undecane	172.1	14.8	8.6	18.3	96.3	16.1	16.7	20.0
MIX2	13.05	nonanal	165.7	6.7	4.1	8.3	94.4	4.9	5.2	6.1
MIX4	13.25	phenylethyl Alcohol	115.6	6.7	5.8	8.3	75.6	5.9	7.8	7.4
MIX7	13.72	cis-limonene oxide	145.3	8.2	5.7	10.2	91.7	12.3	13.4	15.3
MIX7	13.83	trans-limonene oxide	147.2	10.8	7.4	13.5	93.9	12.9	13.8	16.1
MIX1	13.99	isopulegol	162.5	7.2	4.4	9.0	86.2	9.2	10.7	11.4
MIX8	14.45	benzene, 1,3-dimethoxy-	101.3	19.6	19.4	24.4	45.0	7.7	17.1	9.5
MIX9	14.53	benzoic acid, ethyl ester	114.8	10.6	9.2	13.2	69.4	5.9	8.6	7.4
MIX5	14.83	1-nonanol	159.0	25.3	15.9	31.5	86.2	10.1	11.7	12.6
MIX7	14.97	1-dodecene	177.6	15.4	8.7	19.1	102.4	12.3	12.0	15.3
MIX8	14.99	α-terpineol	110.3	25.0	22.7	31.1	53.7	15.1	28.1	18.7
MIX9	15.06	methyl salicylate	108.2	9.5	8.8	11.8	69.0	6.7	9.8	8.3
MIX10	15.15	dodecane	174.3	15.1	8.7	18.8	96.8	16.1	16.7	20.0
MIX2	15.26	decanal	162.9	7.1	4.3	8.8	101.4	3.6	3.5	4.4
MIX4	15.72	β-citronellol	131.0	7.5	5.7	9.3	83.6	6.2	7.4	7.7
MIX1	16.01	pulegone	160.9	9.5	5.9	11.8	82.8	8.4	10.2	10.4
MIX8	16.09	(S)-(+)-carvone	123.2	24.8	20.1	30.8	56.7	11.6	20.4	14.4
MIX9	16.60	citral	107.7	10.9	10.1	13.5	66.7	6.9	10.4	8.6
MIX3	16.79	phenol, 4-ethyl-2-methoxy-	141.0	6.7	4.7	8.3	82.0	9.5	11.6	11.8
MIX6	16.97	(-)-bornyl acetate	140.4	14.7	10.5	18.3	91.9	16.3	17.8	20.3
MIX5	17.05	2-undecanone	179.9	14.1	7.8	17.5	111.6	5.7	5.1	7.1
MIX10	17.18	tridecane	173.9	14.6	8.4	18.1	97.1	14.8	15.3	18.4
MIX6	18.14	decane, 1-bromo-	165.5	14.1	8.5	17.5	internal standard (MI			l
MIX9	18.29	eugenol	86.8	7.9	9.1	9.8	58.8	7.7	13.2	9.6
MIX9	18.65	geranyl acetate	137.4	10.9	8.0	13.6	83.0	6.9	8.3	8.6
MIX10	18.89	tetradecane	175.2	14.6	8.3	18.1	99.5	13.5	13.6	16.8
MIX8	18.96	methyl eugenol	94.5	22.6	23.9	28.0	46.0	14.0	30.5	17.4
MIX2	19.09	, ,	163.0	5.8	3.5	7.2	105.1	4.1	3.9	5.1
MIX6	19.09	longifolene α-cedrene	163.8	13.7	8.4	17.0	100.0	17.1	17.1	21.3
MIX1	19.16		169.6	10.9	6.4	13.5	90.1	7.8	8.7	9.7
MIX9	19.29	caryophyllene β-cedrene	154.0	1	7.8	14.8	96.5	8.7	9.0	10.8
MIX9 MIX6	19.29	'	162.1	11.9	8.5	17.1	98.3	16.5	16.8	20.5
		α-humulene								_
MIX3	19.96	trans-β-ionone	163.5	5.7	3.5	7.1	93.4	9.9	10.6	12.3
MIX10	20.04	pentadecane	175.0	15.1	8.6	18.7	101.4	11.9	11.8	14.8
MIX7	20.08	valencene	168.0	11.7	7.0	14.6	94.5	11.1	11.7	13.8
MIX7	20.66	trans-nerolidol	134.3	5.6		7.0			12.7	14.6
MIX8	20.76	dodecane, 1-bromo-	179.2	18.3		22.7	(MIX8 redor			144
MIX10	20.93	hexadecane	175.7	14.9		18.5	101.7	11.3	11.1	14.1
MIX9	20.93	caryophyllene oxide	132.5	9.9	7.4	12.3	78.6	6.4	8.1	7.9
MIX7	21.35	methyl jasmonate	46.2	20.0		24.8	20.6	11.0	53.5	13.7
MIX10	21.66	heptadecane	174.7	15.3		18.9	103.2	10.9	10.6	13.5
MIX1	21.84	trans-farnesol	163.3	12.7	7.8	15.8	87.3	10.7	12.2	13.3
MIX10	22.30	octadecane	173.6	13.3		16.5	103.6	11.7	11.3	14.5
MIX10	22.87	nonadecane	173.9	13.0		16.2	103.7	11.8	11.4	14.7
MIX10	23.40	eicosane	171.5	13.2	7.7	16.3	104.2	11.3	10.8	14.0
MIX10	23.89	heneicosane	172.0	13.4		16.6	104.1	11.6	11.1	14.4
MIX10	24.35	docosane	170.9	13.5	7.9	16.8	104.9	12.2	11.6	15.2

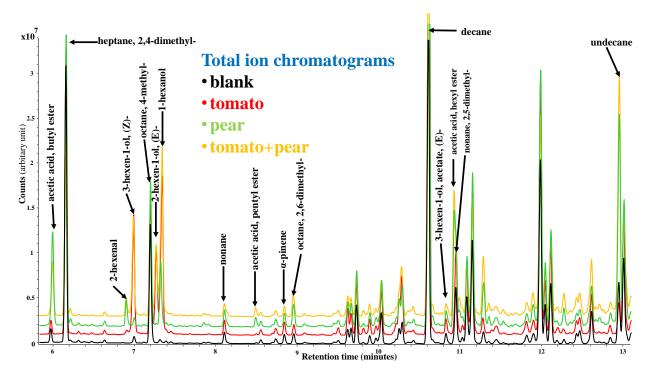
5.2.3 Recovery (%) results obtained from spiking of reference mixture solutions (submixes) and complete mixture with internal standard correction for 1-bromodecane


We also conducted experiments with the complete mixture as described in Section 4.2.2.2 and compared them to the results presented in Section 5.2.1, as shown in **Annex 9.14, Table S8**. We did not characterize the *n*-alkanes in this case, so we were able to make comparisons for 81 components. Among these, benzyl alcohol had weak recoveries (<40%), 25 components highlighted in yellow had moderate recoveries (40–60%), but 55 components performed well (>60%). In general, the complete mixture yielded slightly lower recoveries compared to submixes, especially for compounds with lower recoveries observed there. However, for example, methyl jasmonate had much better and less variable recoveries in the total mix compared to submixes. Based on all these results, it may be important to investigate the effects on quantitative accuracy by calibration mixtures in more detail in the future.

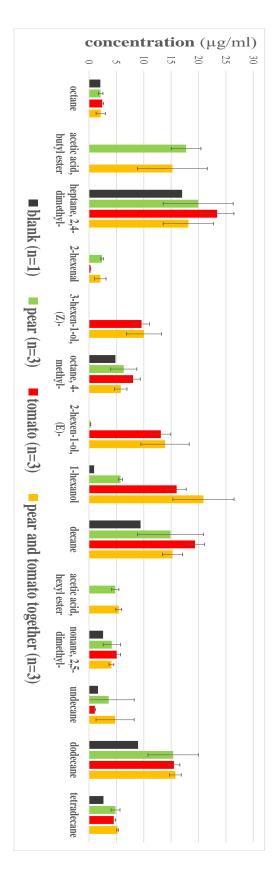
5.2.4 Recovery tests by spiking, followed by continuous and periodic DHS sampling

The determination of recovery was performed separately for the mix containing normal alkanes (submix 10) and for all other components using the complete mixture as described in Section 4.2.3. To assess the effect of boiling point (as shown in Figure 18. and Annex 9.15 Table S9), the *n*-alkane series (submix 10) and to investigate the effect of material quality, the complete mixture (Figure 19. and Annex 9.16 Table S10) were used. Additionally, classification is based on the color scale applied to the spiking above and presented in the attachments. As shown in **Figure 18.** and Annex 9.15, Table S9, we observed a critical loss in recoveries for compounds with lower boiling points (BP), especially at octane (C8). This phenomenon was improved by the novel periodic DHS method we introduced, limiting the breakthrough by reducing the flow volume during sampling. For nonane (C9) and higher boiling point alkanes, the loss was within an acceptable range in all cases, but the variability of periodic sampling was consistently lower than that of continuous sampling; however, the number of parallels should be higher since CI values are high, probably due to the low number of repetitions. Since the breakthrough points and desorption of analytes depend on the applied adsorbent and its capacity, as well as primarily on temperature and the boiling point of a given component, as well as on total flow volume (total flow volume depends on sampling time and flow rate), according to the literature, it was expected that the recovery of the smallest boiling point substances would be problematic. For example, in GC x GC cryomodulation, components with boiling points close to C8 are also poorly modulated; the results are in line with the literature, as cryomodulation is also a kind of trapping associated with a breakthrough point or other desorption effects. Regarding the recovery tests presented in **Figure** 19. and in depth for all components in Annex 9.16 Table S10, which were characterized by adding the complete mix by spiking, it is also observed that there was a strong loss mainly for components with boiling points close to octane, i.e., with retention times similar to it. Periodic sampling was able to limit this loss to some extent, but only to a small extent. This loss was mainly observed for problematic components, as was in the case of direct additions; the most significant losses were observed for compounds with a hidroxyl functional group belonging to the chemical class of alcohols.

Figure 18. Comparison of average IS (1-bromodecane) corrected recovery (%) for n-alkanes C8-22 in case of periodic and continuous DHS method and spiking at 1 μg/ml (with respect to elution volume)


Figure 19. Examples for comparison of average IS (1-bromodecane) corrected recovery (%) for some of the complete mixture compounds in case of periodic and continuous DHS method and direct spiking at 1 μ g/ml (with respect to elution volume)

According to the results, different components showed differences in terms of material quality regarding the loss due to desorption. Therefore, in the future, by involving the analysis of additional components, quantitative accuracy can be improved by determining the limitations of DHS sampling for even more compounds. Additionally, periodic DHS sampling can reduce desorption losses and potentially decrease variability in sampling between parallel samples, possibly causing less disturbance to plant emissions in plant studies compared to continuous sampling. In the future, it would be worthwhile to optimize the conditions for periodic sampling, including flow rate, sampling time, and active collection stage, at different temperatures, cooling the VOC traps in combination with periodic sampling.


5.3 Results and evaluation of binding site competition tests

In the binding site competition tests described under Section 4.2.4, we obtained a high overall background due to sampling taking place in a closed room with a high environmental temperature. In general, our research at CAR has shown that sampling in buildings yields higher backgrounds compared to outdoor sampling (except for certain flowering periods in nature) because odorants associated with objects in artificial environments (furniture, wall paint, etc.) accumulate in the confined spaces of rooms. In the case of greenhouse measurements, where the surface of the confined area is mainly made of glass, the odor background is less pronounced. In nature, external air comes from an unrestricted space, and instead of accumulating, volatile organic compounds (VOCs) emitted mix continuously and leave the external, unconfined natural air. Despite the high background levels, we conducted sample collection from two strongly scented fruit matrices. In preliminary experiments, we found both common and differing components in the case of tomato and pear matrices, with similar concentration ranges for each matrix. Therefore, we chose these two matrices for our study. The components found in the blank and emitted from the matrices, as well as their quantitative evaluation, are illustrated in Figure 20. The results of components found in the blank, matrices, and their combinations are shown in Figures 21. and 22., and also in detail at Annex 9.17 Table S11 (A) for qualitative and (B) quantitative results. It is also important to note that blank samples are of paramount importance for the proper interpretation of results. They play a significant role in environmental research in determining the origin of components from the background (external air, soil microbiome, if not excluded from the air space) and emissions from plants (and/or plant-pathogen/pest interactions), which unfortunately is often not detailed or omitted in many studies related to chemical ecology. According to Figures 21. and 22., it can be stated that even in the case of a high background, the quantity of odorants emitted and trapped by extremely scented but high-moisture matrices was not affected by the simultaneous presence of matrices in the vapor chamber under uniform conditions and relative surface areas. Therefore, significant competition among the evaluated VOC components was not observed during the study. If the investigated component did not occur in the blank or only to a slight extent compared to the matrix samples, and it had a lower abundance in one matrix and a higher abundance in the other matrix, then the quantity measured in the air containing both matrices was detected quantitatively, as can be observed, for example, in the case of hexan-1-ol and methyl-E,Z-2,4-decadienate. It is also crucial to note that often the background can partially or entirely mask the components from the vapor space to be investigated on total ion chromatograms. Thus, VOCs with the least abundance that are not of background origin or components masked by the most abundant blank background components become visible only through deconvolution-based data processing, contrary to those that can be determined with simple background subtraction.

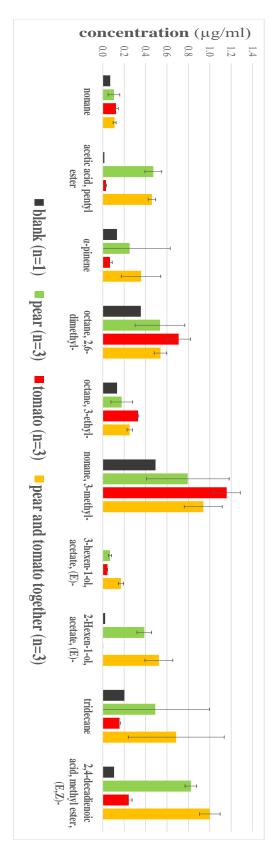

In conclusion, based on the results presented in Section 5.2.1, it is apparent that the SIM channel has a better signal-to-noise ratio compared to the EIC; however, its significance is mainly noticeable when approaching the detection or quantification limit. Therefore, quantification can be sufficient to use EIC from the scanning measurement without necessarily needing to acquire SIM channels if the component of interest is not present in concentrations near the detection limit. Obtaining sufficient data points from the peaks during scanning measurements for quantitative determination is still important for appropriate accuracy.

Figure 20. Relevant section of total ion chromatograms from DHS sampling in binding site competition tests for tomato and pear odor patterns.

Figure 21. Results of quantitative analysis (relative quantitation against nonane with correction by internal standard 1-bromdecane) of binding site competition tests for components measured up to a maximum concentration range 1.5-30 μg/ml for blank, tomato, pear, and tomato and pear matrix open-loop-pull-type-DHS sampling and SPE elution by n-hexane.

Figure 22. Results of quantitative analysis (relative quantitation against nonane with correction by internal standard 1-bromdecane) of binding site competition tests for components measured up to a maximum concentration of 1.5 μ g/ml for blank, tomato, pear, and tomato and pear matrix open-loop-pull-type-DHS sampling and SPE elution by n-hexane

From the recovery results obtained by directly adding reference solution mixtures (section 5.2.2), it can be concluded that generally we can overestimate the quantities of components by up to 40–60% when external calibration is applied, and the signal difference due to deviation in elution volume during odor trap elution is not corrected using some internal standard (in our case, 1-bromodecane). When examining the submixes, out of the 96 compounds, 87 achieved a recovery of 60% or higher with internal standard correction. For compounds like 2-methyltetrahydrofuran-3-one, methyl benzoate, 1,3-dimethoxybenzene, α-terpineol, (S)-(+)-carvone, eugenol, and methyl eugenol, recovery values between 40 and 60% were obtained, while only two compounds, ethyl 3-hydroxybutyrate and methyl jasmonate, performed poorly with recoveries between 20 and 40%. The latter is a crucial plant hormone, so it's essential to be aware that significant losses may occur during *n*-hexane elution of this component, especially with high variability. Overall, it's worth examining in more detail the effects of calibration mixtures on quantitative accuracy in the future. When characterizing the recoveries of the sampling procedure (section 5.2.4), critical losses were observed for compounds with lower boiling points than octane (C8). However, the introduced segmented DHS method improved this issue by reducing the flow volume during sampling, thus aiding in reducing desorption losses. For nonane (C9) and higher-boiling alkanes, the losses and therefore recoveries were within an acceptable range for all cases. However, periodic sampling exhibited smaller variations compared to continuous sampling. Regarding the recovery characterized using the complete mixture (sections 5.2.3 and 5.2.4), it is noticeable that primarily for early (close to octane) retention time components, significant losses were observed, presumably due to their low boiling points. The periodic DHS was somewhat capable of reducing this, but only to a limited extent. In general, it can be concluded that periodic DHS showed slightly better recoveries and lower variations for the overall set of components, but some compounds still exhibited significantly poorer recoveries despite their higher boiling points. These components mainly belonged to the group of alcohols and were typically problematic even with direct addition recovery experiments. In the case of methyl jasmonate, for example, the total mixture exhibited much better and less scattering recovery than the submixes. Based on the binding site competition tests in Section 5.2.4, it can be stated that even with a high background, the presence of extremely scented but high-moisture matrices in the vapor chamber did not influence the quantity of compounds emitted and trapped by the matrices. Thus, significant competition among the evaluated VOC components was not observed during the study.

5.4. Emission of novel volatile biomarkers of wheat powdery mildew

Results were published in Hamow et al. (2021) presented in this section.

5.4.1. Volatile profile analysis from the headspace of wheat plants

In total, 48 BVOCs were identified by GC-MS scans in 2018 and 2019 from headspace samples collected at 7 DAI and 14 DAI representing early (barely visible to the naked eye) and full symptomatic stages, respectively from experiments described in section 4.4. These BVOCs belonged to the following chemical classes: aliphatic hydrocarbons, aromatic hydrocarbons, polycyclic aromatic hydrocarbons, aldehydes, ketones, fatty alcohols, and different terpenoids (**Table 14.**). A more in-depth description of the compounds by their identifiers in various standard databases and their reported occurrences in wheat and in *B. graminis* (KNApSAcK and mVOC 2.0 databases) is presented in **Annex 9.10 Table S4**. Out of the 48 BVOCs only 13 (27%) were described previously in wheat seedlings and plants and none of them in *B. graminis*.

Significant differences between samples from uninoculated control (healthy) and *Bgt*-inoculated (diseased) plants were found for 36 compounds at some time points, however only six of them exhibited highly reproducible and statistically significant quantitative differences at all time points and samples in all years (Annex 9.18 Table S12; Annex 9.19 Table S13; Annex 9.20 TableS14). Multivariate data analysis (PCA loading plot part on Figure 23; PERMANOVA Annex 9.21 Figure S5) and heat maps (Annex 9.22 Table S6 A – for year 2018, and B – for year 2019) revealed a cluster of up to eight compounds, including the six significant ones, with strong and consistent effects as well as a highly positive correlation among each other. This observation confirmed that the six BVOCs can be considered as BBVOCs, diagnostic of PM infection.

5.4.2. Identification of diagnostic BVOCs for powdery mildew

Out of the detected BVOCs, the most evident difference between control and *Bgt*-inoculated plants could be narrowed to six compounds, which were only present in the headspace of inoculated plants. These seven- or eight-carbon (C7-C8) BVOCs were: 1,3-octadiene, 1,3(Z),5(Z)-octatriene, 1-heptanol, (5Z)-octa-1,5-dien-3-ol, 1-octen-3-ol and 3-octanone as demonstrated by the pooled extracted ion chromatogram (EIC) of a headspace sample from healthy and *Bgt*-inoculated plants (**Figure 24.**). The six BBVOCs were abundant in headspaces of *Bgt*-inoculated plants while in the blanks and uninoculated controls their presence was below or around the LoQ.

The six BVOCs represent C7-C8 fatty alcohols (3), acyclic hydrocarbons (2) and a ketone (**Annex 9.10 Table S4**). The first key step in the biosynthesis of fatty alcohols in fungi and plants is the oxidation of α -linoleic acid by several types of oxygenase enzymes (Fischer and Keller, 2016) followed by further catalysis into volatile oxylipins including various short-chain (C6-C8) fatty alcohols. As a bioinformatic proof of this pathway in our experimental setup a BLAST search in

B. graminis genome sequences confirmed that several genes encoding two groups of linoleate diol synthases (a dioxygenase) as well as numerous monooxygenases homologous to classical fungal enzymes are present in this pathogen. Further analysis revealed that all these genes are functional in two f.spp. of *B. graminis* based on evidence for their transcription as well as translation into proteins (Annex 9.23 Table S15).

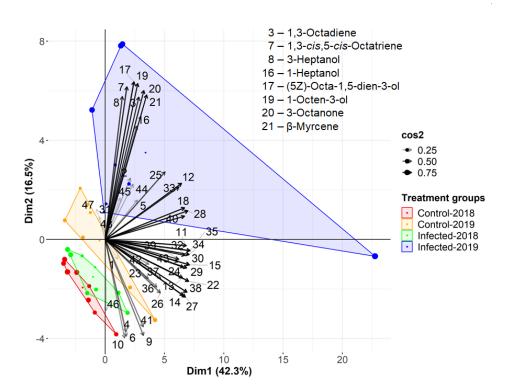
Table 14. Characterization of volatile organic compounds identified from the headspace of control and *Bgt*-inoculated wheat 'Carsten V' in 2018 and 2019.

No.	Common name ^a	CAS No.b	RT	RI	RI lit.e	m/z
			min ^c	calc.d		quant.f
1	Octane	111-65-9	5.91	800.0	800	71
2	Heptane, 2,4-dimethyl-	2213-23-2	6.45	821.2	821±1 (41)	85
3	1,3-Octadiene	1002-33-1	6.54	824.9	827±1 (9)	54
4	Ethylbenzene	100-41-4	7.43	860.3	855	91
5	Octane, 4-methyl-	2216-34-4	7.53	864.2	863	85
6	<i>m</i> -Xylene	108-38-3	7.63	868.2	866±7 (170)	91
7	1,3-cis,5-cis-Octatriene	40087-62-5	7.90	878.7	879	79
8	3-Heptanone	106-35-4	8.09	886.5	887±3 (33)	85
9	Styrene	100-42-5	8.18	890.1	893±5 (91)	104
10	o-Xylene	95-47-6	8.22	891.7	887±8 (178)	91
11	Nonane	111-84-2	8.43	900.0	900	71
12	α-Pinene	80-56-8	9.30	934.6	935±7	93
13	Benzaldehyde	100-52-7	9.95	960.5	962±3 (416)	106
14	Benzene, 1-ethyl-3-methyl-	620-14-4	9.98	961.9	957±8 (67)	105
15	Benzene, 1,3,5-trimethyl-	108-67-8	10.16	969.1	972±9	105
16	1-Heptanol	111-70-6	10.19	970.2	970±2 (68)	70
17	(5Z)-Octa-1,5-dien-3-ol	50306-18-8	10.30	974.5	975±2	57
18	β-Pinene	127-91-3	10.37	977.3	979, 974	93
19	1-Octen-3-ol	3391-86-4	10.43	979.8	980±2 (355)	72
20	3-Octanone	106-68-3	10.62	987.4	986±3 (101)	72
21	β-Myrcene	123-35-3	10.73	991.8	991	93
	Benzene, 1,2,4-trimethyl-	95-63-6	10.78	993.7	990±6 (83)	105
22	(Pseudocumene)	75 05 0	10.70		770±0 (03)	

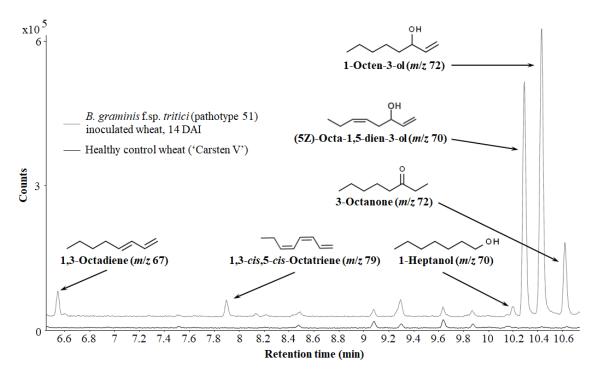
Table 14. continued

No.	Common name ^a	CAS No.b	RT	RI	RI lit. ^e	m/z
			min ^c	calc.d		quant.f
23	Decane	124-18-5	10.94	1000.0	1000	71
24	3-Carene	13466-78-9	11.21	1011.5	1011±2 (336)	93
25	p-Cymene	99-87-6	11.54	1025.6	1025±2 (820)	119
26	(+)- Limonene	138-86-3	11.63	1029.6	1030±2 (1004)	93
27	Indane	496-11-7	11.80	1036.7	1029±11 (36)	117
28	Benzene, 1,2-diethyl-	135-01-3	12.14	1050.9	1045±8 (22)	105
29	Acetophenone	98-86-2	12.51	1067.0	1065±4 (134)	105
30	Benzene, 2-ethyl-1,3-dimethyl-	2870-04-4	12.83	1080.3	1080±20 (12)	119
31	3-Octanol, 3,7-dimethyl-	78-69-3	13.25	1098.0	1100±13 (8)	73
32	Undecane	1120-21-4	13.29	1100.0	1100	71
33	Nonanal	124-19-6	13.39	1104.3	1104±2 (556)	70
34	Benzene, 1,2,3,4-tetramethyl-	488-23-3	13.68	1117.8	1116±9 (32)	119
35	Benzene, 1,2,3,5-tetramethyl-	527-53-7	13.76	1121.5	1117±9 (24)	119
36	Benzaldehyde, 3-ethyl-	34246-54-3	14.73	1165.7	1168±N/A (1)	134
37	Benzaldehyde, 4-ethyl-	4748-78-1	15.04	1180.0	1180±16 (5)	134
38	Naphthalene	91-20-3	15.18	1186.4	1182±8 (183)	128
39	Dodecane	112-40-3	15.48	1200.0	1200	71
40	Decanal	112-31-2	15.60	1206.0	1206±2 (406)	70
41	Undecane, 2,6-dimethyl-	17301-23-4	15.76	1214.1	1210±3 (18)	71
42	Ethanone, 1-(4-ethylphenyl)-	937-30-4	17.21	1284.8	1277±4 (8)	133
43	Tridecane	629-50-5	17.52	1300.0	1300	71
44	Tridecane, 3-methyl-	6418-41-3	18.72	1374.4	1371±1 (15)	71
45	Tetradecane	629-59-4	19.14	1400.0	1400	71
46	Longifolene	475-20-7	19.35	1418.7	1413±5	93
47	β-Caryophyllene	87-44-5	19.52	1434.2	1423-1442	93
48	Pentadecane	629-62-9	20.25	1500.0	1500	71

Bold, identified biomarker BVOCs; ^a according to the NIST/EPA/NIH Mass Spectral Library v17 and the Wiley Registry of Mass Spectral Data, 10th edn; ^b Chemical Abstracts Service registry number; ^c retention time in min; ^d Kováts' Retention Index calculated (Kováts, 1958), experimentally determined using *n*-alkane retention indices; ^e Retention Index literature, from corresponding data in NIST v17 and the PubChem repository (in brackets: no. of experimental records); ^f selected fragment ion (*m*/*z*) for quantitation.


All six BBVOCs showed statistically significant differences in their emitted quantities between the healthy control and inoculated wheat plants, and this irrespective of *Bgt* pathotype (51 and 71), symptomatic stage (7 DAI and 14 DAI) and experimental year (2018-2019-2020) represented on **Figure 25.** In other words, control plants exhibited for all six BBVOCs a concentration around or below LoQ, whereas *Bgt*-inoculated plants produced a massive, often magnitudes higher quantities of these BBVOCs. On the whole, there was no significant difference in the BBVOCs' emission rates between plants inoculated with the two tested *Bgt* pathotypes when compared at any identical symptomatic stage and year.

A systematic comparison of the temperature profiles during the incubation periods and the sampling days revealed striking differences over the three experimental years (**Annex 9.8 Figure S4**): the average temperature as well as its range was higher in each consecutive year for both time parameters. This seasonal or annual effect was readily confirmed by the PCA performed for inoculations with *Bgt* pathotype 51 only with the six diagnostic BVOCs according to the three years and two symptomatic stages (**Figure 23.**). Control and inoculated treatments clearly clustered separately on the scatter plot according to experimental years both at 7 DAI (**Figure 26. A**) as well as 14 DAI (**Figure 26. B**). All the above observations point to the same conclusion that the selected six BVOCs shuld be considered as BBVOCs, and they are reliable indicators of the onset and progression of PM disease in wheat (Hamow et al. 2021).


5.4.3. Confirmation of VOC biomarkers in mixed pathogen background

In an independent experiment designed to evaluate the reaction of two further cultivars to *Fusarium* spp. in a growth chamber, mild PM symptoms appeared spontaneously about 2 weeks after *Fusarium* inoculation at the beginning of flowering. This additional infection with unknown *Bgt* strain(s) provided an unexpected opportunity to test the more general utility of the diagnostic BVOCs identified above.

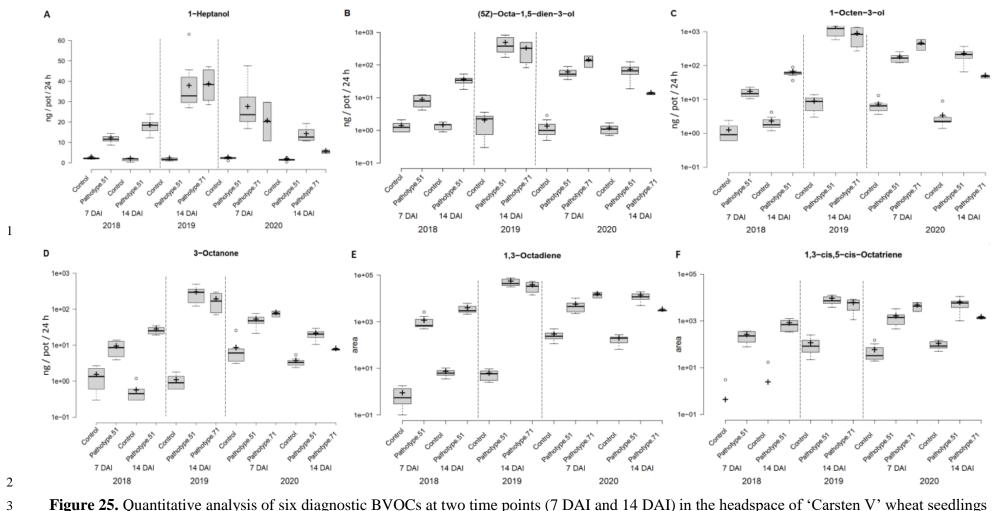

Of these six BBVOCs, the three most abundant ones, namely (5Z)-1,5-octadiene-3-ol, 1-octen-3-ol, and 3-octanone were detected above the limit of quantitation and quantitated (**Figure 27.**) in the headspace of plants with early PM symptoms (**Annex 9.7 Figure. S3**). Similarly to 'Carsten V' plants in the greenhouse (**Figure 25.**), all three major BBVOCs exhibited significantly higher emission in PM-symptomatic plants than in their parallel controls, and this in both, hitherto untested wheat cultivars (**Figure 27.**). This consistent pattern further supports that these BVOC combinations can be utilized as biomarkers of PM disease (Hamow et al. 2021).

Figure 23. PCA biplot analysis for all 48 BVOCs at 14 DAI in wheat headspace samples from 2018 and 2019 (n=16 and 20, resp.). C, healthy control; I, *Bgt*-inoculated; Table 15. for numbers of BVOCs

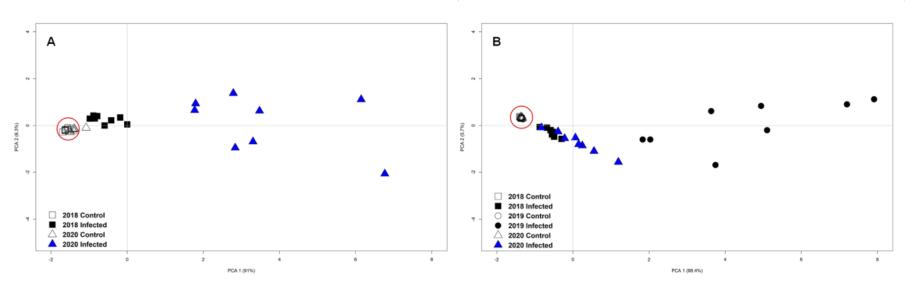


Figure 24. Pooled extracted ion chromatograms of the optimal unique mass peaks to compare the six biomarker BVOCs between samples collected from healthy (base line) and *Bgt*-inoculated (upper line) wheat plants.

Figure 25. Quantitative analysis of six diagnostic BVOCs at two time points (7 DAI and 14 DAI) in the headspace of 'Carsten V' wheat seedlings after inoculation in 2018-2020 with two pathotypes (51 and 71) of *Bgt* (powdery mildew fungus).

(A) 1-heptanol, (B) (5Z)-octa-1,3-dien-3-ol, (C) 1-octen-3-ol, (D) 3-octanone, (E) 1,3-octadiene, (F) 1,3(Z),5(Z)-octatriene. Quantitation by standards (A-D) and by area (E-F). Box=interquartile range (IQR), cross and bar within box=mean and median, whiskers=±1.5×IQR; widths of boxes are proportional to square-roots of the number of observations; n=8 (for pathotype 71 n=4); DAI, days after inoculation. All scales are logarithmic except for (A).

Figure 26. PCA scatter plot of six diagnostic BVOCs at two time points, 7 DAI (A) and 14 DAI (B) in the headspace of 'Carsten V' wheat seedlings (n=8) after inoculation in 2018-2020 with pathotype 51 of *Bgt*. Circle, all controls group in a distinct cluster.

Figure 27. Emission of three biomarker BVOCs from healthy control and spontaneously *Bgt*-infected early phase plants (n=8) of two wheat cultivars. Gray stripes in boxes indicate 95% confidence intervals for the corresponding mean values.

5.4.4. Calculation of aerial emission quantities

Based on the quantitative determination of the four most abundant biomarker BVOCs at two symptomatic stages in three consecutive years (2018-2020) Our group attempted an educated estimation about the aerial emission of biomarker BVOCs from infected wheats in the field. According to the experimental data the average release (in ng/pot/day) of Bgt-inoculated young wheat plants were: 22.2 (1-heptanol), 135.3 ((5Z)-octa-1,5-dien-3-ol), 389.0 (1-octen-3-ol) and 82.1 (3-octanone) (**Annex 9.24 Table S16**). Extrapolating these data to a density of ca. 700 developed tillers/m² results in a total daily release of 31.5 μ g/m² (or 0.5-0.6 μ g/g dry weight per day) for these four BBVOCs, which corresponds to a monthly emission of 9.4 g/ha. Assuming an annual 10 percent infection rate (Saunders and Doodson, 1970; Morgounov et al. 2012) over the global wheat production area of roughly 200 million ha, this figure amounts to 188 tons (Mg) BVOCs/month worldwide, which can be attributed to PM disease alone. It should be noted, however, that adult plants may emit significantly higher quantities (**Figure 25.** and **Figure 27.**).

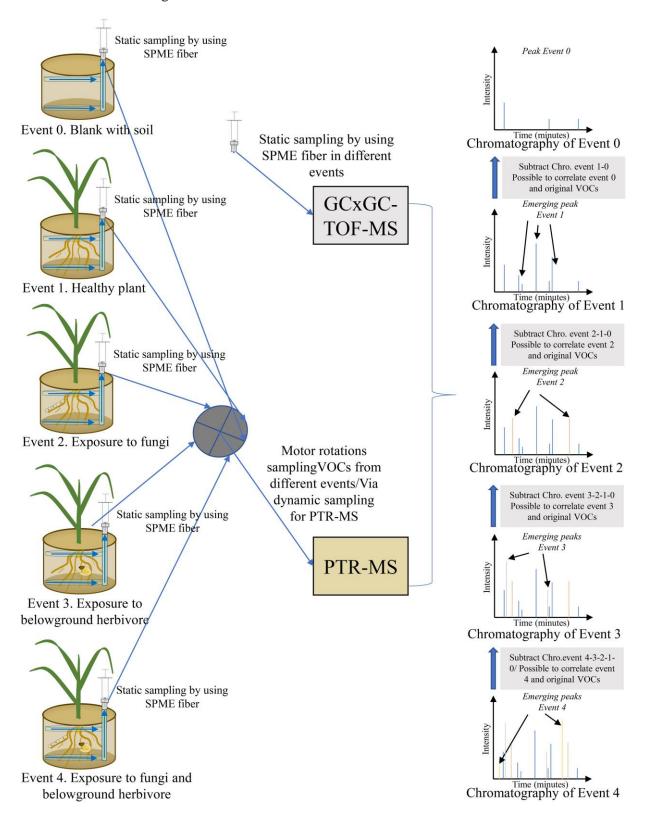
5.4.5. Aerial release of discovered BVOCs of the wheat-powdery mildew interaction, discussing associated literature about their role, other occurrences and emission origins

To the best of ourknowledge, none of the 48 BVOCs has so far been identified in *B. graminis* (**Annex 9.10 Table S4**, columns 9 and 10). Based on a comprehensive statistical analysis six BVOCs turned out to be of diagnostic value at both sampling times in two consecutive years and could thus be considered as volatile biomarkers for PM disease in wheat.

These six BVOCs are distributed in three chemical groups: three short-chain fatty alcohols (1-heptanol, (5Z)-octa-1,5-dien-3-ol and 1-octen-3-ol), two hydrocarbons (1,3-octadiene and 1,3(Z),5(Z)-octatriene) and a ketone (3-octanone). Only 1-octen-3-ol (OTL) was previously found in wheat plants (Annex 9.10 Table S4, column 9), though proper controls for the exclusion of possible contamination sources were not shown in the references (Annex 9.10 Table S4). Possibly, even this BVOC is not produced by wheat plants. On the other hand, BVOCs were already described in a broad range of non-pathogenic and phytopathogenic fungi (Darriet et al. 2002), but none of them in B. graminis. It is safe to conclude that these diagnostic BVOCs have not yet been characterized in the wheat-PM interaction. As additional preliminary proof, when three standard algorithms (an artificial neural network, Naive Bayes and Random Forest) were applied to our results as training and tester dataset, machine learning algorithms also separated three of the six identified BVOC biomarkers (1,3-octadiene, (5Z)-octa-1,5-dien-3-ol and 1-heptanol) between healthy and Bgt-inoculated wheat samples, where random forest based model yielded the best, 99.7% accuracy to decide whether a plant is infected or not by Bgt. (unpublished results, based on partner Printnet Ltd. during E-nose project). The three minor components (1,3-octadiene, 1,3(Z),5(Z)-octatriene and 1-heptanol) exhibited very limited presence in plants (Suinyuy et al. 2013) or their pathogens (Börjesson et al. 1992; Kalalian et al. 2020). It is therefore quite unique and distinctive that they occur together during PM disease development. The three major BBVOCs ((5Z)-octa-1,5-dien-3-ol, OTL and 3-octanone; Figure 25. and 27.), however, appear to be abundant in the anthropogenic biosphere. For example, OTL, also called 'mushroom alcohol' because it was first detected in an edible mushroom (Murahashi, 1936), is a characteristic component in animal breath and human sweat as the major attractant for tsetse fly (Hall et al. 1984) and mosquitoes (Kline et al. 2007), respectively, including the vector for malaria (Cork and Park, 1992). Another major urban source for the aerial emission of these major BBVOCs are abandoned or neglected housing facilities and warehouses – all due to contaminating filamentous fungi or molds (Pasanen et al. 1997; Korpi et al. 1998; Van Lancker et al. 2008; Zhao et al. 2017). The agricultural ecosystem as a whole represents essential contribution to BVOC emission into the atmosphere. The three major BBVOCs, especially OTL, have long been known to occur in the soil (Jüttner, 1990), some plants (Naves, 1943; Andersson et al. 1963; Honkanen and Moisio, 1963) and molds (Kaminski et al. 1974). I demonstrate here, for the first time, the aerial release of substantial amounts of characteristic BVOCs during the interaction of a major phytopathogenic fungus (Bgt) and wheat plants cultivated on 200 million ha or 2 million km² globally. As indicated, the advantage of Bgt as an obligate biotrophic pathogen is that only active, 'live' infections exist and can be monitored for BVOCs. On the other hand, since the process of Bgt infection requires a living host and the fungus cannot be maintained separately it is difficult to ascertain, without proper controls, whether the detected BVOCs are produced by the plant and/or the pathogen itself? Two types of controls were incorporated in the present experiments: (i) pots filled with identical soil but without wheat plants (blanks) to monitor baseline BVOC release (e.g. by aerobic and anaerobic metabolism of microbes) and (ii) pots with uninoculated, healthy wheat plants to check for background BVOC production. Both types of controls resulted in quantities at or below the detection limit of the diagnostic BVOCs and below the limit of quantification, respectively (Figure 25.), a significant difference compared to the inoculated plants, which points to the direction of Bgt as the source of these BVOCs. Theoretically, it is possible that these BVOCs are derived from the wheat plant upon induction by Bgt. However, the facts that wheat (and other) plants usually do not contain or only a very low quantity of these BVOCs (Annex 9.10 Table S4) whereas a broad range of fungi have massive quantities (Kaminski et al. 1974; Pyysalo, 1976; Börjesson et al. 1992; Mau et al. 1997; Fischer et al. 1999; Zawirska-Wojtasiak, 2004), contradict this possibility. For example, comparable levels of OTL and 3-octanone are found in wheat grain or meal only when contaminated with molds (Sinha et al. 1988; Tuma et al. 1989). In addition, the right precursor for these C8 oxylipins, 10-hydroperoxyoctadecadienoic acid (10-HPODE) is known to be present in several fungi (Wurzenberger and Grosch, 1984; Kermasha et al. 2002; Matsui et al. 2003; Akakabe et al. 2005), but not in plants. 10-HPODE might also be generated in B. graminis via a dioxygenase enzyme encoded by one of the genes identified by BLAST search (Annex 9.23 Table S15). Taken together, these arguments strongly support that the six diagnostic BVOCs are all emitted by Bgt rather than wheat (Hamow et al. 2021). Three explanations are offered here for the role some of the BVOCs may play in this or similar host-pathogen interactions. First, they can simply be the by-products of lipase- and lipoxygenase-catalyzed reactions required to degrade cellular lipid membranes during the adhesion and germination of conidiospores (Feng et al. 2009). Additionally, they may even actively be involved in the regulation of these processes. Two sources of BVOCs from the wheat-PM interaction can be considered in relation to aerial emission, i.e., spores and mycelia within the plant canopy and spores moving above the plant canopy, primarily confined to the lowest, surface boundary layer (ca. 1-50 m) of the atmosphere. The quantity of spores in and above a field can be estimated from data collected in a number of independent observations: a moderate figure of 25 colonies (pustules) per leaf (Daamen, 1986) with four functional leaves per tiller at any stage of development (Large and Doling, 1962) will result in ca. 100 colonies in a tiller. Taking a conservative three productive tillers this yields about 300 colonies per plant, which corresponds to some 10⁹ colonies per ha.

There is a consensus that a single colony can release at least 10⁵ conidiospores during its lifetime of about 20 days (Hall et al. 2000; Moriura et al. 2006), which corresponds to a total release of 10¹⁴ spores in this period from a single ha. Above the canopy (2-3 m height) the spore concentration can be in the range of 50-200/m³ of air (Cao et al. 2012; Cao et al. 2016; Gu et al. 2020). It is known that OTL (and to a lesser extent 3-octanone) is a self-inhibitor of spore germination (Chitarra et al. 2004) and mycelial growth (Okull et al. 2003) in *Penicillium* spp., Trichoderma (Nemčovič et al. 2008) and Aspergillus (Herrero-Garcia et al. 2011). OTL also inhibits mycelial growth in other fungi belonging to different genera (Chitarra et al. 2004), which indicates that it may act as a general developmental signal for many species (Eastwood et al. 2013). Finally, some of these BVOCs may function alone or in mixtures (Ndomo-Moualeu et al. 2016) as attractants for dwelling or visiting insects that can transmit the pathogen's spores (Agrios, 1980). Indeed, OTL proved to be attractive for some plant-associated mites (Ozawa et al. 2000; Brückner et al. 2018), thrips (Zhang et al. 2015), beetles (Pierce et al. 1991; Malik et al. 2016) and flies (Birkett et al. 2004; Wu and Duncan, 2020) not only in closed laboratories, but even outdoors (Stevens et al. 2019). More evidence for the potential insect-mediated transfer of powdery mildews specifically comes from the strong association of mildew-infected plants with thrips (Yarwood 1943), mites (Reding et al. 2001) and beetles (Tabata et al. 2011), in the latter case with direct involvement of OTL. It is thus plausible that OTL and other BVOCs provide a chemical cue for insects that are then used as vectors for the mildew pathogen. The source tissue of these important BVOCs can in general be both the spores (Chitarra et al. 2004; Nemčovič et al. 2008) and the mycelium (Schindler and Seipenbusch, 1990), which in our case can explain their growing concentration during the infection process (7 DAI vs. 14 DAI, Figure 25. and Annex 9.18-19-20 **Table S12-S13-S14**) as well as their massive quantities emitted (see 5.4).

6. CONCLUSIONS AND SUGGESTIONS


6.1 Conclusion and future perspectives for below ground sampling

Volatile organic compounds emitted by plant roots and pathogenic and beneficial fungi, particularly mycorrhizal fungi, can shape trophic interactions in belowground systems. Fungal VOCs mediate plant growth, metabolites, and consequences of interactions between insects, pathogens, and plants. An approach using combined methods is proposed to collect VOCs and analyze the effect of each originated VOC in real-time. With the approach, the effect of each originated VOC on belowground trophic interactions can be precisely evaluated. Because of the essential roles of VOCs in inter- and intraspecific communication, using VOCs of certain fungal species may be a promising and sustainable way to reduce the incidence of diseases derived from soil borne phytopathogens. In addition, using fungal VOCs to increase plant tolerance against abiotic stresses is an area for future research with great potential. Despite various reports on interactions between belowground VOCs derived from fungi and plants and root VOCs and fungi that result in benefits for one or both partners, the actual mechanisms involved remain unknown. Therefore, the molecular mechanisms responsible for volatile production by VOC producers (plants and fungi, including fungal symbionts), perception by VOC receivers, and genetic reprogramming of VOC receivers need to be investigated further. Moreover, there are few reports on VOCs during mycorrhization, which should be a research area with great potential interest because of the importance of AMF in agriculture and ecosystems. In addition, most knowledge on VOC emissions by fungi is based on single strains under laboratory conditions, which can differ from rhizospheric conditions with complex microbial communities. Therefore, to facilitate practical VOC application, inoculated strains should be integrated into complex rhizosphere communities in order to mimic the natural conditions in soil (Duc et al. 2022).

6.2 Proposed future *in-situ* system design for dynamic and static combined automated sampling and experimental setup for VOC origin characterization

The challenge with passive and dynamic methods is in collecting the many different original belowground VOCs and establishing emission origins. To meet the challenge, a new experimental setup and methods can be optimized to minimize the disadvantages of the two approaches (**Figure 28.**). An experimental system can be set up in which both sampling approaches are used simultaneously, and different treatments or events (blank pot with soil only, healthy plant, plant exposed to fungi, plant exposed to belowground herbivore, plant exposed to fungi and belowground herbivore) are used to compare differences in VOCs. After comparison and subtraction of VOC patterns of different events, emission origins and abundance of VOCs can be established. Sharifi et al. (2022) presented an *in-situ* design suitable for sampling belowground

VOCs that used a perforated polytetrafluoroethylene (PTFE) tube exposed to communities of plant roots and soil microorganisms.

Figure 28. Schematic illustration of an *in-situ* design to collect and analyze belowground volatile organic compounds (VOCs) by a combined technique. Original VOCs are distinguished by subtracting chromatographic peaks of certain events (Duc et al. 2022).

The tube is placed in a pot before sowing seeds to avoid disturbing the soil and rhizosphere when belowground VOCs are collected. Belowground VOCs are collected by an SPME syringe extracted *via* a network of tubing. To separate the original VOCs, an experimental setup is suggested according to Sharifi et al. (2022) that can continuously sample different treatments or events by SPME fibers inserted into PTFE tube systems. After collection of VOCs, SPME fibers are analyzed in a cyclic manner by GC-MS or GCxGC-TOF-MS. The tube systems can also be sampled by a dynamic approach in which different treatments are connected by motor rotation switch valves to a PTR-MS. With this approach, SPME collections obtained by frequent static sampling cycles can provide a good approximation of real-time resolution in emissions of individual VOCs, in addition to VOC composition and abundance. The PTR-MS can characterize actual real-time continual emissions of different events. After subtraction and comparison of different events, VOC origins and emissions can be characterized on the basis of the combined sampling and analysis methods to yield a highly accurate approximation of VOC patterns and emission origins (Figure 27.).

6.3 open-loop-pull-type-DHS-SPE-GC-MS method performance characteristics

The aim was to investigate the performance characteristics of the pull-type DHS-SPE-GC-MS methodology used for collecting and analyzing plant volatiles and further refine the methodology. Performance characteristics are scarce in the literature despite their popular use and application in many scientific fields, such as chemical ecology. Results clearly indicated quantitative inaccuracies resulting from SPE elution, calibration, and desorption effects. To control elution volume, the use of internal standards is important to improve accuracy. SPE recoveries should be checked for individual components and mixtures as well; a more thorough investigation would be desirable for the effects of calibration mixtures on quantitation, especially for those containing a large number of compounds. Desorption effects can be mitigated by the proposed novel approach of periodic DHS sampling. It would be advisable to further optimize the sampling conditions in the future, including flow rate, sampling time, active collection phase duration, and evaluation at different temperatures, as well as the cooling of VOC traps as a form of cryotrapping. By reducing the temperature at the stationary phase, desorption losses and breakthrough of components could probably be further reduced. Another good idea is to test adsorbents by thermal desorption measurements (no dilution and elution by solvents), also with SPE elution by different organic solvents could be conducted and compared in the future, not to mention testing and comparison of different stationary phases for DHS sampling, also open-loop and closed loop systems, and desorption losses, and comparisons of different SPME samplings as static method with different conditions to test volatile profiling and limits to its utmost, since a high possibility exist that total volatile fingerprints always contain more components and differing emissions in reality than based

on just one sampling and analysis method applied by many researchers. Considering these results, the non-invasive pull-type DHS-SPE-GC-MS methodology applied may be suitable for describing the volatile profile of further plant-pathogen relationships and for identifying and quantifying biomarkers associated with other infections.

6.4 Emission of novel volatile biomarkers of wheat powdery mildew

Despite the economic importance of wheat there is a clear gap in the knowledge on BVOC composition and release, especially during vegetative growth in the field, which is relevant to detect and elucidate important fungal pathogens such as the obligatory biotroph *Blumeria graminis* f.sp. *tritici* (*Bgt*) causing powdery mildew disease worldwide. The 48 different VOCs were identified and quantitatively compared, out of which six compounds, namely 1,3-octadiene, 1,3(Z),5(Z)-octatriene, 1-heptanol, (5Z)-octa-1,5-dien-3-ol, 1-octen-3-ol and 3-octanone were found to be present only in the headspace of *Bgt*-inoculated plants. These six biomarker BVOCs showed a unique and highly reproducible pattern in their presence and quantities during a three year follow-up period. The latter three and as the most abundant BBVOCs were robustly applicable for differentiation between healthy and *Bgt*-inoculated wheat plants, as early as 7 days after inoculation, in a number of wheat genotypes at various developmental phases, two symptomatic stages and even for unidentified *Bgt* strains. These BVOCs are therefore proposed as novel biomarkers, BBVOCs for chemical monitoring powdery mildew disease in wheat. To the best of my knowledge, this was the first study to systematically assess specific BVOC emission patterns during the interaction of a cereal plant with a foliar fungal pathogen.

6.4.1 The diagnostic VOCs are biomarkers of PM disease

Out of the many criteria for a good biomarker (and any marker in general) sensitivity and specificity (Yerushalmy, 1947), reproducibility and robustness are deemed here to be the most relevant in relation to the six diagnostic BVOCs identified in the wheat-PM interaction. Sensitivity (correct identification of all diseased plants) and specificity (no healthy plants are found to be false positive) has been fulfilled for the six BVOCs in all the analyzed specimens, in total 120, which were collected from 56 healthy control and 64 diseased pots. Reproducibility has been demonstrated by the consistently significant differences for all these BVOCs between 40 healthy control and 48 inoculated pots in three consecutive years representing different temperature conditions during the incubation period and sampling days. Finally, robustness, *i.e.*, the stability of detection in this BBVOC set under non-optimal conditions, could be verified in the growth chamber experiment. The spontaneous infection with *Bgt* of additional wheat genotypes originally inoculated with *Fusarium* spp. provided a serendipitous opportunity to test these BBVOCs in a complex background. Indeed, in a real-time scenario in the field detection of a pathogen should

happen in the presence of other microorganisms, pathogens and pests. The three most abundant Bgt-specific BBVOCs (C8 oxylipins) were easily detected even in the early symptomatic phase compared to the control whereas just Fusarium-positive plants did not release these BVOCs, but primarily sesquiterpenes (results yet unpublished, but submission of a related article expected in 2024 spring). Since the main potential sources, molds are associated with wheat during grain storage (section 5.4.3) these data again indicate the *Blumeria*-specificity of these biomarkers in wheat plants. Another proof of the robustness of these BBVOCs was the full-grown (flowering) stage of plants in this experiment, which is far from optimal for PM disease development (Cunfer, 2002). While in 2018 and 2019 untargeted analyses were performed in order to discover diagnostic BVOCs, in 2020 the targeted analysis of the six VOCs validated their utility in monitoring PM disease and Bgt pathotypes. According to the temperature records there was a warming trend in the consecutive years, and despite that exactly 2020 was the warmest test period, especially towards the samplings at 14 DAI the biomarkers performed as expected during these variable years. The only systematic exception appeared in 2020 at 14 DAI when inoculations with pathotype 71 resulted in significantly lower quantities released for all six BBVOCs. This reaction coincided with high extremities during the day (max. 44.2 °C) and night (min. 10.3 °C) temperatures during the incubation period between 7 DAI and 14 DAI in 2020. I also realized that quantitative results given and calculated for wheat powdery mildew infection, approximately half of the emitted concentration of the components in the article were quantified because the internal standard for 1-bromodecane was not available during the 2018-19 period, and therefore, the calculated quantities were not corrected for elution volume. Thus, based on the results obtained, the components would have been quantified to be roughly 50% higher (section 5.2.2) than their actual emitted concentrations, if we would not take into account the results from testing breakthrough and desorption (section 5.2.4) during continuous sampling, the results regarding these compounds should be correct, since loss due to breakthrough for these compounds were roughly 50 %, therefore actual emitted quantity calculations should be correct with 10-20% uncertainty. It can be concluded that the diagnostic BVOCs meet the basic requirements of reliable biomarkers, however, further confirmation is required under field conditions (confirmed for OTL, unpublished results under e-nose project). Additional follow-up experiments in the field with extension of genotypes, other cereal cultivars and years under open field conditions worldwide would be required for. Powdery mildew related BVOC biomarkers should also be useful for early disease detection in the agroecosystem for the purposes of plant protection, precision agriculture and environmental monitoring in the field (in progress). The above results are currently utilized in machine learning where random forest based model built by our partner (Printnet Ltd.) using presented datasets, where 2/3 of the data available were used for teaching and 1/3 for testing the models from the measurements conducted and presented in this thesis regarding wheat powdery mildew interaction. The random forest based model yielded a remarkable 99.7% accuracy (to distinguish between healthy and PM infected samples) as an additional proof of their diagnostic value.

6.4.2 Atmospheric release and relevance: reactivity and toxicology

Does a substantial part of the estimated 188 tons of biomarker BVOCs/month released worldwide by PM-diseased wheat plants reach the atmosphere? The detection of C6-C9 BBVOCs (including OTL) called green leaf volatiles by independent aircraft and satellite observations (Joutsensaari et al. 2015; Yli-Pirilä et al. 2016) suggests that the answer is a definite 'yes'. However, the fate and actual atmospheric concentrations of the biomarker BVOCs depend on the interaction and balanced effects of numerous factors. These factors include fluxes (Bachy et al. 2016; Bachy et al. 2020) determined by diffusion rate, stability and reactivity with atmospheric components to form secondary organic aerosols (SOA) – all largely unknown for these BBVOCs. OTL, at least, was found to be highly reactive in chamber experiments with ozone and hydroxy radical (Li et al. 2018; Fischer et al. 2020) as well as with chlorine (Grira et al. 2020), the major troposphere oxidants. Besides the internal alcoholic hydroxyl group, the terminal unsaturated double bond may be primarily responsible for this reactivity, which indicates that OTL is likely to form oxygenated products with various types of atmospheric nitrogen oxides (NO_x), too. The estimated half-life of OTL in the atmosphere appears to depend on the reaction type: due to its higher concentration reactions with the hydroxyl radical are predominant and result in a shorter half-life (about 3 h), whereas during ozonolysis it may amount to more than one day (Li et al. 2018). These data indicate that OTL and perhaps other biomarker BVOCs may definitely contribute to the formation of SOA in agroecosystems (Hamow et al. 2021). On the basis of these observations, major BVOCs released in agroecosystems and especially by phytopathogenic fungi should in the future be considered for monitoring their effects on biodiversity in these ecosystems as well as the major VOC emissions of agriculturally important cultivars ranking in the top twenty for example considering their cultivation area and extent worldwide. Also VOC emissions from these cultivation areas with a special focus related to their most important infectious agents, pests and pathogens and characterization of BVOC-s of these and average infection rates and monitoring of these emissions for consecutive years would be advisable. Important emissions of VOC-s from agri- and horticulture could be established to reveal component emissions and facilitate the monitoring of their emission and environmental fate, and impact on regarding their cultivation on the atmosphere and tropospheric ozone layer, that once again degraded as reported recently above the southern pole.

7. NEW SCIENTIFIC RESULTS

- 1. Tested and critically evaluated (based on SANTE/11312/2021 guideline) the performance of the Porapak Q adsorbent was for nearly a hundred different reference compounds using an open-loop-pull-type dynamic headspace VOC collection, n-hexane SPE elution, and GC-MS analysis method. This work has never been done to such an extent before.
- 2. Proved the value of applying 1-bromodecane as an internal standard (IS) when n-hexane is used to elute an adsorbent's SPE. Concentrations between 40 and 60 percent are the consequence of overestimating recoveries in the absence of internal standard correction. However, 90% of the 96 compounds examined showed an average recovery of 60% or above after accounting for the elution volume using 1-bromdecane.
- 3. Introduced the concept of periodic DHS (self-developed refinement of a technique). Recovery trials for both continuous and periodic DHS-VOC monitoring for 96 compounds exhibited losses for alcohols and low-boiling-point VOCs that might be minimized by periodic DHS. Desorption effects and breakthrough have been attributed to these losses.
- 4. Demonstrated by testing the adsorbent trap capacity and competition of components for adsorbent binding sites during continuous DHS sampling that even in cases of high background, no competition was observed, and the quantitative abundance of VOCs trapped from different emission sources in the sampled headspace (tomato and pear fruit) could be considered additive.
- 5. Successful BVOC-based differentiation of healthy and Bgt. powdery mildew (PM) infected wheat plants, by characterizing biomarker biogenic volatile organic compounds (BBVOC) of infection. indicators Minor **BBVOCs** discovered were 1,3-octadiene, **BBVOCs** 1,3(Z),5(Z)-octatriene and 1-heptanol. Major novel were (5Z)-octa-1,5-diene-3-ol, 1-octen-3-ol and 3-octanone. The emission of these BBVOCs increased with disease progression and severity.
- 6. Proved that BBVOCs of *Bgt* are robust in various environmental conditions, years, and even in mixed pathogen background (*Fusarium* inoculated wheat genotypes also infected by PM).
- 7. Biomarker VOC discovery and results suggested that these and possibly other BVOCs of *Bgt* were estimated to be emitted by agroecosystems in massive quantities (ca. 188 metric tons per month) possibly participating in affecting atmospheric processes significantly by forming secondary organic aerosols.

8. SUMMARY

The E-nose Laboratory (established in 2017-2018) at the Centre for Agricultural Research, Martonvásár, Hungary, aimed to develop an innovative artificial sensory system capable of discerning the odor compositions of agricultural plants. Our group established a comprehensive database of VOC patterns, deploying machine learning and AI for statistical analysis. In my thesis, I presented part of the work our group carried out that served as baseline data for the project through VOC collection and GC-MS analysis to characterize volatile organic compound biogen biomarkers (BBVOC) that serve as indicators for adverse plant states. In the introduction, emphasis is placed on the significance of VOCs in plant metabolic processes, their roles, particularly their release in response to diverse stressors, especially during fungal infections, and their utilization for differentiation between healthy and infected or sick plants based on the volatile fingerprint, especially the discovery of BBVOCs that are reliable indicators of adverse health states. The knowledge gap regarding cereals and their fungal disease-induced BBVOCs, especially in the case of wheat powdery mildew (caused by the obligatory biotroph pathogen Blumeria Graminis f. sp. tritici), interaction. An extensive literature review in this thesis covers the chemical groups of plant VOCs and their biosynthesis, abiotic and biotic stress-induced volatiles, the original physiological roles of these compounds, and the significance of VOCs in agroecosystems. The effects of plant belowground VOCs on fungal pathogens and the reciprocal influence of fungal VOCs on plants, as well as the impact of mycorrhizae, were discussed. Various methodologies for collecting and analyzing VOCs, including static and dynamic headspace sampling, possibilities of analysis methods, and focusing on gas chromatographic separation and detection, were thoroughly reviewed to select, adapt, (if possible, even refine), test, and furthermore apply a non-invasive VOC collection method for the discovery and emission characterization of BVOCs, especially BBVOCs related to wheat and PM interaction. Three main aims were set, and related main results and conclusions were drawn as described below.

The first aim sought the pre-survey and selection of a non-invasive static/dynamic sampling and analysis approach founded on pilot experiments. Investigation into various barley varieties revealed distinct aroma profiles. Mechanical damage induced the appearance of green leaf volatiles such as (Z)-3-hexenyl acetate. In the case of *P. teres*-infected barley, new compounds appeared on the chromatograms compared to controls. Varied trends in compound intensity were observed, signifying potential markers for infection stages. Similarly, the analysis of tomato odor profiles in relation to gray rot and especially wheat powdery mildew interaction that our group focused on identified promising biomarker BVOC candidates.

The second aim involved adaptation, implementation, performance testing, and, if possible, development by refinements for the open-loop pull-type DHS-SPE-GC-MS methodology. The approach proved to be a non-invasive, robust dynamic sampling methodology where SPE elution by n-hexane enabled storage and reanalysis of samples collected by GC-MS and other techniques. This approach has been used by many experts worldwide, but little is known about its performance characteristics, especially for Porapak Q-based adsorbents. The methodological approach that was adopted and tested for compliance with the qualitative and quantitative analytical requirements was in conformity with the SANTE/11312/2021 guidelines that are used for pesticide residue analysis. Adsorbent SPE elution recovery with (IS 1-bromdecane) and without internal standard correction have been tested. Findings about the direct spiking of VOC traps by reference mixes, SPE elution, and recovery assessment suggested that recovery may have been overestimated. Recovery meant that if IS correction was not applied to the elution volume, the quantitative accuracy of concentration was overstated by 40-60%. 87 VOCs' average recovery in the IS correction scenario involving 96 chemicals was categorized as being over 60%. Recovery ranged from 40 to 60% for 2-methyltetrahydrofuran-3-one, methyl benzoate, 1,3-dimethoxybenzene, α-terpineol, (S)-(+)-carvone, eugenol, and methyl eugenol. Recovery for methyl jasmonate and ethyl 3-hydroxybutyrate was between 20 and 40 percent.

Regarding the second aim set, additional tests included characterizing the effects of sorbent breakthrough and desorption through recovery experiments by comparing continuous and novel periodic DHS-VOC sampling. This could be a potential improvement to the approach that aimed to reduce total flow volume by periodically starting and stopping flow, thereby mitigating potential breakthrough and desorption losses. These were observed primarily in the case of low-boiling-point compounds that are early eluters in the C8-C9 elution region and compounds containing hydroxyl groups, such as alcohols. Periodic DHS displayed a trend of slightly higher recoveries with less deviation, but further optimization (sampling duration, cycle times, flow rates, adsorbent quality and quantity, temperature of VOC traps, and elution solvent type for SPE) would be advisable in the future. As a final test, it was determined that even at high background levels, the VOC traps applied have adequate capacity for trapping and can even additively semi-quantify different strong smells coming from various sources in the closed headspaces sampled. This is in line with the second aim-set evaluation of sorbent trap capacity and the competition of VOCs for the volatile trap binding sites for continuous DHS sampling.

The third aim involved the application of this methodology to explore the interaction and discovery of BVOCs in wheat powdery mildew (*Blumeria Graminis* f. sp. *tritici*). Six BVOCs proposed as novel BBVOCs as indicators of infection in early and advanced states have been identified.

Three minor (1,3-octadiene, 1,3(Z),5(Z)-octatriene, 1-heptanol), and three major BBVOCs (1-octen-3-ol, 5Z-octa-1,5-diene-3-ol, and 3-octanone) were identified. BBVOC emissions (in various abiotic conditions, genotypes, mixed pathogen backgrounds, and different plant growth stages and years) increased with disease severity from early (7 DAI) to advanced stages (14 DAI). To sum up, the pull-type DHS-SPE-GC-MS methodology has proven to be a flexible way for differentiating between wheat plants that are healthy and those that have powdery mildew. The creation of VOC databases for machine learning-based prediction model development made use of collected datasets. With an amazing 99.7% accuracy, a random forest-based model produced the best results for VOC-based distinction between healthy plants and those affected by powdery mildew. This provides additional support for pathotyping and prediction; using VOC fingerprinting, early disease identification can be accomplished.

Hundreds of tons of these BVOCs with variable half-lives may have been released into the atmosphere based just on the projected BBVOC emission from the wheat-powder-mildew interaction. The identified BBVOCs may have aided in the creation of SOA by taking part in atmospheric processes such as the catalytic breakdown of tropospheric ozone. Therefore, the scientific community should give it top priority to reevaluate and carry out research to determine the precise composition, geographic distribution, impact, and fluxes associated with BVOC emissions from the agri-environment for the most significant diseases and BBVOCs related to fungal pathogens of cultivars grown in large areas of the world.

My thesis and research work show the advantages and limitations of the open-loop pull-type DHS-SPE-GC-MS methodology to non-invasively collect and analyze VOCs; it introduces concepts such as periodic DHS sampling; it proposes innovative *in-situ* system designs by combining static and dynamic VOC collection, sampling, and different analysis methods; and it is the first comprehensive and extensive description of this approach and method setup tested in its performance and reliability for hundreds of compounds. Thus, it is a reliable tool for non-invasive VOC characterization and BVOC and BBVOC discovery that establishes a robust foundation for prediction by VOC fingerprints, especially BBVOCs useful for pathotyping, early disease detection, and differentiation, and hopefully contributes to future BVOC utilization in precision agriculture. The fragrant language of VOCs has the potential to revolutionize how we perceive and manage agricultural ecosystems; for me, at least BBVOC discovery and their utilization in agriculture and food safety have been fully developed into the utmost enthusiasm that I aim to pursue as a lifelong immersion.

8. ÖSSZEFOGLALÁS

A HUN-REN Agrártudományi Kutatóközpontban, Martonvásáron az E-orr projekt 2017-2018-as alapítása óta innovatív mesterséges szenzoros rendszer kifejlesztését célozta, amely képes felismerni a mezőgazdasági növények illatmintázatát. Ennek egyik alapja a biogén illékony szerves vegyületek (BVOC) közül a biomarker (BBVOC) jellegűek gyűjtése és nem-célzott GC-MS analízise egészséges és fertőzött növények illat alapú megkülönböztetéséhez. Az illatmintázatokból átfogó adatbázist hoztunk létre, gépi tanulást és mesterséges intelligenciát is alkalmazva a statisztikai elemzéshez és predikciós modellépítéshez a differenciáldiagnosztikára. E munka egy része szolgált doktori munkám témájaként. A tézis bevezetésében ismertettem a VOC-k növényi anyagcsere-folyamatokban betöltött jelentőségét, különféle stresszhatásokra, különösen a gombapatogének általi fertőzésekre. A szakirodalmi áttekintés során kitértem a növényi VOC-k kémiai csoportjaira és bioszintézisére, az abiotikus és biotikus stressz által kiváltott illékony anyagokra, e vegyületek eredeti fiziológiai szerepére. Továbbá VOC-k jelentőségére az agroökoszisztémákban, hangsúlyozva növény-patogén gombák kölcsönhatásában és a mikorrhiza szimbiózisban betöltött szerepüket. A növények által termelt föld alatti VOC-k gombakórokozókra gyakorolt hatásaival, illetve a fordított eset, a gomba eredetű VOC-k hatását a növényekre külön taglaltam, ahogy a mikorrhiza gombák hatását a rizoszféra mikrobiomára, valamint a mikorrhizák által kiváltott növényi illékony anyagok szerepét az abiotikus és biotikus stressz leküzdésében. A VOC-k gyűjtésének és elemzésének különböző módszerei, beleértve a statikus és dinamikus gőztéranalízis mintavételi eljárások és a szóba jövő elemzési módszerek lehetőségeit, különös tekintettel a gázkromatográfiás elválasztási és detektálási lehetőségekre alaposan ismertettem. Az irodalmi áttekintés kulcsfontosságú volt a VOC mintavételezés és mintakezelés, illetve az analitikai módszertan kiválasztásának és tesztelésének, valamint a búza lisztharmat kölcsönhatásának vizsgálatára vonatkozó kísérletek előkészítésében. A következő három fő célt tűztem ki, amelyekhez a kapcsolódó fő eredményeket és következtetéseket a továbbiakban foglalom össze és ismertetem.

Az első cél egy nem-invazív statikus/dinamikus mintavételi és elemzési megközelítés kiválasztása és kipróbálása volt. Ezt pilot kísérleteken alapulva végeztem. Így például különböző árpafajták vizsgálata során eltérő aromaprofilokat tártam fel. Mechanikai sérülés indukálása esetén specifikusan megjelenő zöld levél alkohol (GLV), a (Z) -3-hexenil-acetát megjelenését észleltem a szakirodalommal összhangban. A *P. teres* által okozott levélrozsda (előrehaladott időszakában) új vegyületek megjelenését eredményezte az illatprofilban. Változatos tendenciákat figyeltem meg az illékony vegyületek intenzitásában, a fertőzés hatására különböző árpa genotípusok esetén, ami potenciális BBVOC-kat jelez a fertőzési stádiumokban.

Hasonlóképpen, a búza és kórokozója a *Bgt*. által okozott lisztharmat, illetve a paradicsom esetén a szürkepenészt okozó *B. cineare* illatprofiljának elemzése számos VOC vegyület változását hozta kórokozóikkal való mesterséges fertőzés esetén. A búza lisztharmat betegségének relációjában az illékony komponensek közül több, például az okt-1-én-3-ol ígéretes jelöltnek mutatkozott az előkísérletek során, mint illékony biomarkerek.

A második cél a végül kiválasztott open-loop pull-type-dinamikus légtércsapdázást követő n-hexános SPE elúció és GC-MS analízis megközelítés adaptálása, esetleges fejlesztése és tesztelése volt. Annak terepre vihető, könnyen kivitelezhető és olcsó, dinamikus és non-invazív volta és analízisismételhetősége miatt választottuk e megközelítést. Népszerűsége és frekventált alkalmazása ellenére e megközelítésnek, (különösen Porapak Q adszorbens esetén) teljesítményparamétereiről a szakirodalom legjobb esetben is szórványosnak tekinthető. Az adaptált megközelítés tesztelése során kimutattuk, hogy minőségi és mennyiségi analízis céljára (retenciós időstabilitás, érzékenység, linearitás, ismételhetőség) megfeleltek a SANTE/11312/2021 irányelv szerinti követelményeknek. Az adszorbens VOC illatcsapdákra referencia keverékoldatok (más néven mixek, közel 100 VOC komponens) direkt hozzáadásával és az adszorbens (Porapak Q) n-hexánnal történő szilárd fázisú extrakció (SPE) elúciója és GC-MS analízise során tapasztalt visszanyerés százalékok meghatározásával végeztünk teszteket. Az elúciós térfogat kontrolljához 1-brómdekán belső standard (IS) pontosságra gyakorolt hatását vizsgáltuk. Adszorbens SPE elúció n-hexánnal belső standard korrekció nélkül, és 98 vegyületet tartalmazó referenciakeverékek közvetlen hozzáadása esetén az adszorbenshez 40-60%-kal túlbecsülte visszanyerést, így a mért koncentrációt is. Azonban az 1-brómdekánnal végzett elúciós térfogatra vonatkozó IS korrekció a 96 vizsgált vegyület 90%-a 60%-os vagy magasabb átlagos visszanyerést mutatott, így az IS korrekció az eredmények pontosságát javítja, használata fontos tényező a pontosabb kvantálás érdekében. Több tucat komponenst tartalmazó keverékek használata és hatásai a kapott mennyiségi eredményre további vizsgálatokat indokolna.

A második cél kapcsán további törekvés volt a módszer finomítása, fejlesztése, a szakaszos dinamikus illatanyaggyűjtés koncepciójának bevezetése és tesztelése. A komponensek áttörési pontjához, vagy más deszorpciós jelenségekkel összefüggő veszteségeinek jellemzésére az alkalmazott, szakirodalomban ismertetett folyamatos DHS, illetve az általam koncepcionált és az E-orr csoport által épített prototípus "nose-e" programozható hordozható illatmintavevő egység segítségével elsőként alkalmaztam szakaszos DHS mintavételt. A folyamatossal szemben a szakaszos mintavételnél a rendszer (tetszőlegesen programozható) ciklikusan ismételve képes az áramlás ki- (kísérletünkben 10 perc) illetve bekapcsolására (5 perc). Kísérleteink során 66,66%-ban csökkentve a teljes áramlási térfogatot a mintavétel ideje alatt, ezáltal trendszerűen tompítva

VOC-k deszorpciós veszteségeit. A deszorpció a hőmérséklet, áramlási sebesség, mintavétel hosszának és alkalmazott álló fázisnak (Porapak Q) a függvénye. Veszteséget a 96 VOC-ból főleg hidroxil csoportot tartalmazó vegyületek (alkoholok), valamint az alacsony forráspontú vegyületek (C8-C9 alkánok régiójában eluálódók) mutattak. A veszteséget a szakaszos mintavétel akár jelentősen mérsékelheti, valamint tendenciózusan jobb átlagos visszanyeréseket és szórást eredményezett. A jövőben érdemes optimálni a mintavétel körülményeit, áramlási sebesség, mintavételi idő, aktív gyűjtési szakasz ideje szerint. Fejlesztési lehetőség a VOC csapdák hűtése is lehet a jövőben, hiszen a megkötődést segítené ez és deszorpciót gátolná.

A második célon belül további kísérlet volt az adszorbensek kapacitásának értékelése és a VOC-k versengése kötőhelyeikért folyamatos DHS-mintavétel során. Az eredmények szerint még magas háttérszintnél is megfelelő kapacitással rendelkeznek a csapdák, kompetíció nem volt megfigyelhető, sőt a háttér és a kétféle mátrixból eredő (paradicsom és körte) illatkomponensek csapdázása additív mennyiségi eredményt szolgáltatott.

A harmadik cél a búza lisztharmat betegsége, amelyet a Bgt. okoz, és e kölcsönhatás feltárása volt, ahogy a hozzá köthető BVOC-k közül a BBVOC-k meghatározása is a DHS-SPE-GC-MS módszer akalmazásával. A Bgt obligált biotróf kórokozó, azaz csak élő növények levelein nő. Korábban e fontos kölcsönhatás VOC mintázatait senki sem vizsgálta. A búza (valamint a kalászos gabonák és egyszikűeké általában) VOC-kibocsátása kevésbé összetettnek tűnik a többi növényhez képest (Gomez et al. 2019; Bachy et al. 2020). Ez a viszonylag "zajszegény" illatháttér egy eddig észrevétlen előnyt biztosít, és kiváló kísérleti rendszert jelent a specifikus gombafertőzésekhez köthető BVOC-k kiszűrésére. A gombapatogének ugyanis igen erős illatemisszióval jellemezhetőek, specifikus és sajátos illékony másodlagos anyagcsereterméket állítva elő a növény-patogén kölcsönhatás során. A búza és Bgt. kölcsönhatás során robusztus biogén illékony biomarker molekulákat (BBVOC) fedezhettünk fel. Ezek a fertőzés indikátoraira korai (7 DAI) és előrehaladott (14 DAI) állapotban. Elsőként azonosítottunk így három mellék markert, (okta-1,3-dién, (3Z,5Z)-okta-1,3,5-trién, heptán-1-ol) valamint három fő markert (okt-1-én-3-ol, (5Z)-okta-1,5-dién-3-ol, oktán-3-on). Kibocsátásuk (különböző abiotikus körülmények, genotípusok, vegyes patogén háttér, különböző növényi növekedési stádiumokban és évek esetén) a betegség súlyosságával a korai stádiumtól az előrehaladott stádiumig növekedést mutatott ezen BBVOC-knak. Az általam alkalmazott, nem-invazív open-loop pull-type-DHS-SPE-GC-MS módszertan alkalmas volt a fenti esetben BVOC-k detektálására és monitorozására, így ígéretes további növény-patogén kapcsolatok illékony profiljának leírására, BBVOC-k felfedezésére. Csak a búza lisztharmat kölcsönhatás fő BBVOC-iből származó becsült kibocsátás kapcsán több száz tonna kerül a légkörbe változó felezési idővel e vegyületekből olyan hónapok alatt, amikor ez az obligált biotróf patogén világszerte megjelenik a búzanövények 200 millió hektárra tehető vetésterületén. További szakirodalmi kutatással kiderült, hogy a Bgt. BVOC marker vegyületei, különösen az okt-1-én-3-ol más kutatók által végzett vizsgálatokban másodlagos szerves aeroszolok képződésében vesz részt és egyéb légkörkémiai reakciókban, például a troposzférikus ózon katalitikus lebontásában is. Ilyen módon az agrárkörnyezetből származó BVOC-kibocsátások pontos összetételének, időbeli, földrajzi eloszlásának és fluxusainak feltárására fontos feladat (különösen a legfontosabb betegségek és gombapatogének esetében, amelyek fertőzik a hatalmas vetésterületű haszonnövényeink). Ezen patogének BBVOC karakterizálása és emmissziómonitorozása, légköri sorsuk és hatásaik kutatása kiemelten fontos atmoszférikus folyamatokban jó eséllyel szignifikáns impaktjuk miatt. Az E-orr Laboratórium partnereivel és munkatársaival való együttműködés eredményeként létrejöttek a VOC adatbázisok melyeket gépi tanuláson alapuló modellek, köztük a legjobban teljesítő random forest megközelítésű modell (Printnet Kft.) algoritmus tanítására és tesztelésére használtunk elérve a kimagasló 99,7%-os pontosságot az egészséges és a lisztharmattal fertőzött növények VOC alapú megkülönböztetésében. Ez további megerősítésként szolgál a VOC ujjlenyomat és mintázat, különösen a biomarker és más BVOC-k hasznosításán alapuló korai betegségdetektálás, előrejelzés lehetőségeinek és azok potenciáljának bemutatása kapcsán.

Doktori dolgozatom és kutatási munkám reményeim szerint hozzájárulhat idővel a precíziós mezőgazdaság innovatív megoldásaihoz. Munkám leírja az open-loop pull-type-DHS-SPE-GC-MS módszer előnyeit és korlátait a VOC-k non-invazív gyűjtésére és elemzésére. Olyan eljárásokat is bevezetve, mint például a szakaszos DHS-mintavétel, valamint javaslatokat *in-situ* rendszer dizájnra, amelyben kombinálnám a statikus és dinamikus mintavételezést és különböző analízis technikákat, a jövőbeli minél teljesebb VOC karakterizálás érdekében. Véleményem szerint a VOC-k változatos világa és azok kutatása, hasznosítása képes forradalmasítani, hogyan tekintünk és manageljük mezőgazdasági ökoszisztémáink, számomra legalábbis a BBVOC felfedezése és hasznosítása a mezőgazdaságban és az élelmiszer-biztonságban olyan lelkes kíváncsisággá fejlődött, amelyet élethosszig tartó elmélyülésként kívánok folytatni kutatásaim során.

9. ANNEXES

9.1 List of references

- (All records in this list where accessibility should be checked, such as electronic publications, links, and doi linkings, were checked and accessed on February 25–26, 2024.)
- 1. Abdulsalam, O., Wagner, K., Wirth, S., Kunert, M., David, A., Kallenbach, M., Boland, W., Kothe, E., Krause, K. (2021): Phytohormones and volatile organic compounds, like geosmin, in the ectomycorrhiza of tricholoma vaccinum and Norway spruce (Picea abies). *Mycorrhiza* 31(2), *pp.* 173–188. doi: 10.1007/s00572-020-01005-2
- 2. Abis, L., Loubet, B., Ciuraru, R., Lafouge, F., Houot, S., Nowak, V., Tripied, J., Dequiedt, S., Maron, P. A., Sadet-Bourgeteau, S. (2020): Reduced microbial diversity induces larger volatile organic compound emissions from soils. *Sci. Rep.* 10, *pp.* 6104. doi: 10.1038/s41598-020-63091-8
- 3. Acton, W. J. F., Jud, W., Ghirardo, A., Wohlfahrt, G., Hewitt, C. N., Taylor, Hansel, A. (2018): The effect of ozone fumigation on the biogenic volatile organic compounds (BVOCs) emitted from *brassica napus* above- and below-ground. *PloS One* 13, e0208825. doi: 10.1371/journal.pone.0208825
- 4. Afendi, F.M., Okada, T., Yamazaki, M., Hirai-Morita, A., Nakamura, Y., Nakamura, K., Ikeda, S., Takahashi, H., Altaf-UI-Amin, M.D., Ikeda, Hiroki Takahashi, Md. Altaf-Ul-Amin, Darusman, L. K., Saito, K., Kanaya, S. (2012): KNApSAcK family databases: integrated metabolite-plant species databases for multifaceted plant research. *Plant and Cell Physiology*, Volume 53(2), doi: 10.1093/pcp/pcr165
- 5. Agrios, G.N., 1980. Insect involvement in the transmission of fungal pathogens. In: Harris, K.F., Maramorosch, K. (Eds.), *Vectors of Plant Pathogens*. Academic Press, USA: New York, *pp.* 293–324.
- Akakabe, Y., Matsui, K., Kajiwara, T. (2005): Stereochemical correlation between 10-hydroperoxyoctadecadienoic acid and 1-octen-3-ol in *Lentinula edodes* and *Tricholoma matsutake* mushrooms. *Biosci. Biotechnol. Biochem.* 69(8), pp. 1539–1544. doi: 10.1271/bbb.69.1539
- 7. Aksenov, A.A., Novillo, A., Sankaran, S., Fung, A.G., Pasamontes, A., Martinelli, F., Cheung, W. H. K., Ehsani, R., Dandekar, A. M., Davis, C. E. (2013): Volatile Organic Compounds (VOCs) for Noninvasive Plant Diagnostics. [In ACS Symposium Series.], (*Pest Management with Natural Products*) Vol. 1141, pp. 73–95. doi: 10.1021/bk-2013-1141.ch006
- 8. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J. (1990): Basic local alignment search tool. *J. Mol. Biol.* 215(3), *pp.* 403–410. doi: 10.1016/S0022-2836(05)80360-2.
- 9. Andersen, R. A., Hamilton-kemp, J. T. R., Hildebrand, D. F., Mccracken, C. T., Collins, R. W., and Fleming, P. D. (1994): Structure-Antifungal Activity Relationships among Volatile C6 and C9 Aliphatic Aldehydes, Ketones, and Alcohols. *J. Agric. Food Chem.*, 42(7), *pp.* 1563–1568. doi: 10.1021/jf00043a033
- 10. Andersson, J., Bosvik, R., Sydow, E.V. (1963): The composition of the essential oil of black currant leaves (*Ribes nigrum L.*). *J. Sci. Food Agr.* 14, *pp.* 834–840. doi: 10.1002/jsfa.2740141110.
- 11. Arimura, G., Ozawa, R., Shimoda, T., Nishioka, T., Boland, W., Takabayashi, J. (2000): Herbivory-induced volatiles elicit defence genes in lima bean leaves. *Nature*, 406(6795), *pp.* 512-515. doi: 10.1038/35020072
- 12. Arimura, G., Kost, C., Boland, W. (2005): Herbivore-induced, indirect plant defences. *Biochimica et Biophysica Acta (BBA)* Molecular and Cell Biology of Lipids, 1734(2), 91-111. doi: 10.1016/j.bbalip.2005.03.001
- 13. Arimura, G., Matsui, K., Takabayashi, J. (2009): Chemical and Molecular Ecology of Herbivore-Induced Plant Volatiles: Proximate Factors and Their Ultimate Functions, *Plant and Cell Physiology*, 50(5), *pp.* 911–923. doi: 10.1093/pcp/pcp030

- 14. Arthur, C. L. and Pawliszyn, J. (1990): Solid phase microextraction with thermal desorption using fused silica optical fibers. *Analytical Chemistry*, 62(19), *pp.* 2145–2148. doi: 10.1021/ac00218a019
- 15. Arzani, A.; Ashraf, M. (2017): Cultivated ancient wheats (*Triticum* spp.): A potential source of health-beneficial food products. *Comp. Rev. Food Sci. Food Saf.*, 16(3), pp. 477–488. doi: 10.1111/1541-4337.12262
- 16. Atkinson, R. (2000): Atmospheric chemistry of VOCs and NO. *Atmospheric Environment*, 34(12-14), pp. 2063–2101. doi: 10.1016/S1352-2310(99)00460-4
- 17. Aziz, M., Nadipalli, R. K., Xie, X., Sun, Y., Surowiec, K., Zhang, J. L., et al. (2016): Augmenting sulfur metabolism and herbivore defense in arabidopsis by bacterial volatile signaling. *Front. Plant Sci.* 7. doi: 10.3389/fpls.2016.00458
- 18. Bachy, A., Aubinet, M., Amelynck, C., Schoon, N., Bodson, B., Delaplace P., et al. (2020): Dynamics and mechanisms of volatile organic compound exchanges in a winter wheat field. *Atmos. Environ.* 221, 117105. doi: 10.1016/j.atmosenv.2019.117105
- 19. Bachy, A., Aubinet, M., Schoon, N., Amelynck, C., Bodson, B., Moureaux, C., Heinesch, B. (2016): Are BVOC exchanges in agricultural ecosystems overestimated? Insights from fluxes measured in a maize field over a whole growing season. *Atmos. Chem. Phys.* 16, *pp.* 5343–5356. doi: 10.5194/acp-16-5343-2016
- 20. Bailly, A., Weisskopf, L. (2012): The modulating effect of bacterial volatiles on plant growth: current knowledge and future challenges. *Plant Signal. Behav.* 7, *pp.* 79–85. doi: 10.4161/psb.7.1.18418
- 21. Baldwin, I. T., Halitschke, R., Paschold, A., Von Dahl, C. C., Preston, C. A. (2006): Volatile signaling in plant-plant interactions: 'Talking trees' in the genomics era. *Science*, vol. 311, no. 5762, pp. 812–815, 2006. doi: 10.1126/science.1118446
- 22. Baldwin, I. T., Kessler, A., Halitschke, R. (2002): Volatile signaling in plant—plant—herbivore interactions: what is real? *Curr. Opin. Plant Biol.* 5, *pp.* 351–354. doi: 10.1016/S1369-5266(02)00263-7
- 23. Baldwin, I. T., Schultz, J. C. (1983): Rapid changes in tree leaf chemistry induced by damage: evidence for communication between plants. *Science*, vol. 221, *pp.* 277–279. doi: 10.1126/science.221.4607.277
- 24. Bapela, T.; Shimelis, H.; Terefe, T.; Bourras, S.; Sánchez-Martín, J.; Douchkov, D.; Desiderio, F.; Tsilo, T.J. (2023): Breeding Wheat for Powdery Mildew Resistance: Genetic Resources and Methodologies—A Review. *Agronomy*, 13, *pp*. 1173. https://doi.org/10.3390/agronomy13041173
- 25. Basandrai, A.K., Basandrai, D. (2018): Powdery mildew of wheat and its management. In: Singh, D.P. (Ed.), *Management of Wheat and Barley Diseases*. Apple Academic Press, USA: Waretown, pp. 133–182.
- 26. Becker, E.M. (2013): New strategies for the detection of Fusarium infection and mycotoxin contamination of cereals and maize, Doctoral (PhD) dissertation, Georg-August-Universität Göttingen
- 27. Bertin, C., Yang, X., Weston, L.A. (2003): The role of root exudates and allelochemicals in the rhizosphere, *Plant and Soil* 256: pp. 67–83.
- 28. Bianchi, G., Falcinelli, B., Tosti, G., Bocci, L., Benincasa, P. (2019): Taste quality traits and volatile profiles of sprouts and wheatgrass from hulled and non-hulled *Triticum* species. *J. Food Biochem.* 43(7), e12869. doi: 10.1111/jfbc.12869
- 29. Bicchi, C., Cordero, C., Liberto, E., Rubiolo, P., and Sgorbini, B. (2004): Automated headspace solid-phase dynamic extraction to analyze the volatile fraction of food matrices. *J. Chromatogr. A*, vol. 1024, no. 1–2, pp. 217–226, 2004. doi: 10.1016/j.chroma.2003.10.009
- 30. Bier, M. C., Medeiros, A. B., Soccol, C. R. (2017): Biotransformation of limonene by an endophytic fungus using synthetic and orange residue-based media. *Fungal Biol.* 121, *pp.* 137–144. doi: 10.1016/j.funbio.2016.11.003

- 31. Bindschedler, L.V., McGuffin, L.J., Burgis, T.A., Spanu, P.D., Cramer, R. (2011): Proteogenomics and *in silico* structural and functional annotation of the barley powdery mildew *Blumeria graminis* f. sp. *hordei*. *Methods* 54 (4), *pp*. 432–441. doi: 10.1016/j.ymeth.2011.03.006
- 32. Birkett, M.A., Bruce, T.J.A., Martin, J.L., Smart, L.E., Oakley, J., Wadhams, L.J. (2004): Responses of female orange wheat blossom midge, Sitodiplosis mosellana, to wheat panicle volatiles. *J. Chem. Ecol.* 30, pp. 1319–1328. doi:10.1023/B:JOEC.0000037742.05022.9f
- 33. Bitas, V., Kim, H. S., Bennett, J. W., Kang, S. (2013): Sniffing on microbes: diverse roles of microbial volatile organic compounds in plant health. *Mol. Plant Microbe Interact*. 26, *pp*. 835–843. doi: 10.1094/MPMI-10-12-0249-CR
- 34. Blande, J. D., Holopainen, J. K., Niinemets, Ü. (2014): Plant volatiles in polluted atmospheres: stress responses and signal degradation. *Plant, Cell & Environment*, 37(8), pp.1892-1904. doi: 10.1111/pce.12352
- 35. Blasioli, S., Biondi, E., Samudrala, D., Spinelli, F., Cellini, A., Bertaccini, A., Cristescu, S.M., Braschi, I. (2014): Identification of Volatile Markers in Potato Brown Rot and Ring Rot by Combined GC-MS and PTR-MS Techniques: Study on *in Vitro* and *in Vivo* Samples. *Journal of Agricultural and Food Chemistry*, 62(2), pp. 337–347. doi: 10.1021/jf403436t
- 36. Boland, W., Ney, P., Jaenicke, L., and Gassmann, G. (1984): A 'closed-loop-stripping' technique as a versatile tool for metabolic studies of volatiles. In *Analysis of Volatiles*, P. Schreier (Ed.), pp. 371–373. Berlin: Walter de Guyter.
- 37. Börjesson, T., Stöllman, U., Adamek, P., Kaspersson, A. (1989): Analysis of volatile compounds for detection of molds in stored cereals. *Cereal Chem.*. 66(4). pp. 300-304.
- 38. Börjesson, T., Stöllman, U., Schnürer, J., (1992): Volatile metabolites produced by six fungal species compared with other indicators of fungal growth on cereal grains. *Appl. Environ. Microbiol.* 58, pp. 2599–2605. doi: 10.1128/aem.58.8.2599-2605.1992
- 39. War, A.R., Sharma, H.C., Paulraj, M.G., War, M.Y., Ignacimuthu, S. (2011): Herbivore. induced plant volatiles: their role in plant defense for pest management. *Plant Signal Behav.* 6(12) *pp.* 1973-8. doi: 10.4161/psb.6.12.18053
- 40. Braun U., Cook R.T.A. (2012): Taxonomic manual of the *Erysiphales* (powdery mildews). CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands. 707 p.
- 41. Braun, U., Cook, R. T. A., Inman, A. J., H.-D. Shin (2002): The taxonomy of the powdery mildew fungi (*pp.* 13-54). In Bélanger, R., Dik, A. J. & Bushnell, W. R. (Eds.): *The powdery mildews: a comprehensive treatise*. APS Press, USA, St. Paul.
- 42. Bruce, T. J., Wadhams, L. J., Woodcock, C.M. (2005): Insect host location: A volatile situation. Trends Plant Sci. 10, pp. 269–274. doi: 10.1016/j.tplants.2005.04.003
- 43. Brückner, A., Schuster, R., Smit, T., Pollierer, M.M., Schäffler, I., Heethoff, M. (2018): Track the snack olfactory cues shape foraging behaviour of decomposing soil mites (Oribatida). *Pedobiol.* 66, *pp.*74–80. doi: 10.1016/j.pedobi.2017.10.004
- 44. Brundrett, M. C (2002): Coevolution of roots and mycorrhizas of land plants. *New Phytologist*, 154(2), pp. 275-304. doi: 10.1046/j.1469-8137.2002.00397.x
- 45. Burger, B. V., Munro, Z. M., Visser, J. H. (1988): Determination of plant volatiles 1: analysis of the insect-attracting allomone of the parasitic plant *Hydnora africana* using Grob-Habich activated charcoal traps. *J. High Resol. Chromatogr.*, 11 *pp.* 496-499. doi:10.1002/jhrc.1240110613
- 46. Buttery, R.G., Ling, L.C., Wellso, S.G. (1982): Oat leaf volatiles: Possible insect attractants. *J. Agric. Food Chem.* 30, *pp.*791–792. doi: 10.1021/jf00112a045
- 47. Buttery, R.G., Xu, C., Ling, L.C. (1985): Volatile components of wheat leaves (and stems): Possible insect attractants. *J. Agric. Food Chem.* 33, *pp.*115–117. doi: 10.1021/jf00061a033
- 48. Camarena-Pozos, D. A., Flores-Núñez, V. M., López, M. G., López-Bucio, J., Partida-Martínez, L. P. (2019): Smells from the desert: Microbial volatiles that affect plant growth and development of native and non-native plant species. *Plant Cell Environ.* 42 (4), *pp.* 1368–1380. doi: 10.1111/pce.13476

- 49. Cao, X.R., Duan, X.Y., Zhou, Y.L., Luo, Y. (2012): Dynamics in concentrations of *Blumeria* graminis f. sp. tritici conidia and its relationship to local weather conditions and disease index in wheat. *Eur. J. Plant Pathol.* 132, pp. 525–535. doi: 10.1007/s10658-011-9898-8
- 50. Cao, X.R., Yao, D.R., Zhou, Y.L., West, J.S., Xu, X.M., Luo, Y., et al. (2016): Detection and quantification of airborne inoculum of *Blumeria graminis* f. sp. *tritici* using quantitative PCR. *Eur. J. Plant Pathol.* 146, *pp.*225–229. doi: 10.1007/s10658-016-0908-8
- 51. Casarrubia, S., Sapienza, S., Fritz, H., Daghino, S., Rosenkranz, M., Schnitzler, J. P., et al. (2016): Ecologically different fungi affect arabidopsis development: Contribution of soluble and volatile compounds. *PloS One* 11 (12), e0168236. doi: 10.1371/journal.pone.0168236
- 52. Chen, Y., Bonkowski, M., Shen, Y., Griffiths, B. S., Jiang, Y., Wang, X., et al. (2020): Root ethylene mediates rhizosphere microbial community reconstruction when chemically detecting cyanide produced by neighbouring plants. *Microbiome* 8, 4. doi: 10.1186/s40168-019-0775-6
- 53. Chitarra, G.S., Abee, T., Rombouts, F.M., Posthumus, M.A., Dijksterhuis, J. (2004): Germination of *Penicillium paneum conidia* is regulated by 1-octen-3-ol, a volatile self-inhibitor. *Appl. Environ. Microbiol.* 70, pp. 2823–2829. doi: 10.1128/aem.70.5.2823-2829.2004
- 54. Choi, J., Summers, W., Paszkowski, U. (2018): Mechanisms underlying establishment of arbuscular mycorrhizal symbioses. *Annual Review of Phytopathology*, 56, pp. 135-160. doi: 10.1146/annurev-phyto-080516-035521
- 55. Ciccioli, P., Brancaleoni, E., Frattoni, M., Maris, C. (2002): Sampling of atmospheric volatile organic compounds (VOCs) with sorbent tubes and their analysis by GC-MS. In Environmental Monitoring Handbook, F. R. Burden (Ed.). New York: McGraw-Hill Publisher, pp. 21.1-21.85.
- 56. Clavijo McCormick, A., Unsicker, S. B., Gershenzon, J. (2012): The specificity of herbivore-induced plant volatiles in attracting herbivore enemies. *Trends Plant Sci.* 17, *pp.*303–310. doi: 10.1016/j.tplants.2012.03.012
- 57. Colquhoun, T.A., Schwieterman, M.L., Gilbert, J.L., Jaworski, E.A., Langer, K.M., Jones, C.R., Rushing, G.V., Hunter, T.M., Olmstead, J., Clark, D.G. and Folta, K.M. (2013): Light modulation of volatile organic compounds from petunia flowers and select fruits. *Postharvest Biology and Technology*, 86: *pp.* 37–44.
- 58. Conchou, L., Anderson, P., Birgersson, G. (2017): Host Plant Species Differentiation in a Polyphagous Moth: Olfaction is Enough. *J. Chem. Ecol.*, 43, pp. 794–805. doi: 10.1007/s10886-017-0876-2
- 59. Cordovez, V., Mommer, L., Moisan, K., Lucas-Barbosa, D., Pierik, R., Mumm, R., et al. (2017): Plant phenotypic and transcriptional changes induced by volatiles from the fungal root pathogen Rhizoctonia solani. *Front. Plant Sci.* 8. doi: 10.3389/fpls.2017.01262
- 60. Cordovez, V., Schop, S., Hordijk, K., de Boulois, H. D., Coppens, F., Hanssen, I., et al. (2018): Priming of plant growth promotion by volatiles of root-associated microbacterium spp. *Appl. Environ. Microbiol.* 84, e01865-18. doi: 10.1128/AEM.01865-18
- 61. Cork, A., Park, K.C. (1996): Identification of electrophysiologically-active compounds for the malaria mosquito, *Anopheles gambiae*, in human sweat extracts. *Med. Vet. Entomol.* 10, pp. 269–276. doi: 10.1111/j.1365-2915.1996.tb00742.x.
- 62. Crespo, E., Hordijk, C. A., De Graaf, R. M., Samudrala, D., Cristescu, S. M., Harren, F. J. M. and Van Dam, N. M. (2012): On-line detection of root-induced volatiles in *Brassica nigra* plants infested with *Delia radicum* L. root fly larvae. *Phytochemistry*, 84: *pp.* 68–77. doi: 10.1016/j.phytochem.2012.08.013
- 63. Cruz, A.F., Hamel, C., Yang, C., Matsuhara, T., Gan, Y., Singh, A.K., et al. (2012): Phytochemicals to suppress *Fusarium* head blight in wheat–chickpea rotation. *Phytochemistry* 78, *pp.* 72–80. doi: 10.1016/j.phytochem.2012.03.003.

- 64. D'Alessandro, M., Erb, M., Ton, J., Brandenburg, A., Karlen, D., Zopfi, J. (2014): Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions. *Plant Cell Environ*. 37, pp. 813–826. doi: 10.1111/pce.12220
- 65. Daamen, R.A. (1986): Measures of disease intensity in powdery mildew (*Erysiphe graminis*) of winter wheat. 1. Errors in estimating pustule number. *Neth. J. Plant Pathol.* 92, pp.197–206. doi: 10.1007/BF01977686.
- 66. D'Alessandro, M., Turlings, T. C. (2005): *In situ* modification of herbivore-induced plant odors: a novel approach to study the attractiveness of volatile organic compounds to parasitic wasps. *Chemical Senses*, 30(9), 739-753. doi: 10.1093/chemse/bji066
- 67. Danner, H., Samudrala, D., Cristescu, S. M., Van Dam, N. M. (2012): Tracing hidden herbivores: time-resolved non-invasive analysis of belowground volatiles by proton-transfer-reaction mass spectrometry (PTR-MS). *J. Chem. Ecol.* 38, *pp.* 785–794. doi: 10.1007/s10886-012-0129-3
- 68. Darriet P, Pons M, Henry R, Dumont O, Findeling V, Cartolaro P, Calonnec A, Dubourdieu D. (2002): Impact odorants contributing to the fungus type aroma from grape berries contaminated by powdery mildew (*Uncinula necator*); incidence of enzymatic activities of the yeast *Saccharomyces cerevisiae*. *J Agric Food Chem.* 50(11) pp. 3277-82. doi: 10.1021/jf011527d.
- 69. Das, A., Lee, S. H., Hyun, T. K., Kim, S. W., Kim, J. Y. (2012): Plant volatiles as method of communication. *Plant Biotechnol. Rep.* 7, 9–26. doi: 10.1007/s11816-012-0236-1
- 70. De Moraes, C. M., Mescher, M. C., and Tumlinson, J. H. (2001): Caterpillar-induced nocturnal plant volatiles repel conspecific females. *Nature*, 410 pp. 577–580. doi: 10.1038/35069058
- 71. Delaney, K.J., Wawrzyniak, M., Lemańczyk, G., Wrzesińska, D., Piesik, D. (2013): Synthetic cis-jasmone exposure induces wheat and barley volatiles that repel the pest cereal leaf beetle, *Oulema melanopus* L. J. *Chem. Ecol.* 9, pp. 620–629. doi:10.1007/s10886-013-0281-4.
- 72. Delory, B. M., Delaplace, P., du Jardin, P., Fauconnier, M. L. (2016a): Barley (*Hordeum distichon* 1.) roots synthesise volatile aldehydes with a strong age-dependent pattern and release (E)-non-2-enal and (E, z)-nona-2,6-dienal after mechanical injury. *Plant Physiol. Biochem.* 104, pp. 134–145. doi: 10.1016/j.plaphy.2016.03.028
- 73. Delory, B. M., Delaplace, P., Fauconnier, M. L., du Jardin, P. (2016b): Root-emitted volatile organic compounds: can they mediate belowground plant-plant interactions? *Plant Soil* 402, *pp.* 1–26. doi: 10.1007/s11104-016-2823-3
- 74. Dewulf, J., and Van Langenhove, H. (2002): Analysis of volatile organic compounds using gas chromatography. *Trends in Analytical Chemistry*, 21, pp. 637–646.
- 75. Di, X., Shellie, R. A., Marriott, P. J., Huie, C. W. (2004): Application of headspace solid-phase microextraction (HS-SPME) and comprehensive two-dimensional gas chromatography (GC × GC) for the chemical profiling of volatile oils in complex herbal mixtures. *J. Sep. Sci.*, 27, pp. 451–458. doi: 10.1002/jssc.200301642
- 76. Dicke, M., Baldwin, I. T. (2010): The evolutionary context for herbivore-induced plant volatiles: beyond the 'cry for help'. *Trends in Plant Science*, 15(3), *pp*.167-175. doi: 10.1016/j.tplants.2009.12.002
- 77. Dicke, M., Hilker, M. (2003): Induced plant defences: from molecular biology to evolutionary ecology. *Basic Appl. Ecol.*, 4, *pp.* 3–14. doi: 10.1078/1439-1791-00129
- 78. Dicke, M., Loreto, F. (2010): Induced plant volatiles: from genes to climate change. *Trends Plant Sci.*, vol. 15, no. 3, pp. 115–117. doi: 10.1016/j.tplants.2010.01.007
- 79. Dicke, M., Sabelis, M. W., Takabayashi, J., Bruin, J., Posthumus, M. A. (1990): Plant strategies of manipulating predator-prey interactions through allelochemicals: prospects for application in pest control. *Journal of Chemical Ecology*, 16(11), *pp.* 3091-3118. doi: 10.1007/BF00979614

- 80. Ditengou, F. A., Müller, A., Rosenkranz, M., Felten, J., Lasok, H., van Doorn, M. M., et al. (2015): Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture. *Nat. Commun.* 6 (1), *pp.* 6279. doi: 10.1038/ncomms7279
- 81. Dixon, R. A., Achnine, L., Kota, P., Liu, C. J., Reddy, M. S. S., Wang, L. (2009): The phenylpropanoid pathway and plant defence—a genomics perspective. *Molecular Plant Pathology*, 3(5), pp. 371-390.
- 82. Donath, J., Boland, W. (1995): Biosynthesis of acyclic homoterpenes enzyme selectivity and absolute configuration of nerolidol precursor. *Phytochemistry*, 39(4), *pp*.785–790.
- 83. Dowarah, B., Gill, S. S., Agarwala, N. (2021): Arbuscular mycorrhizal fungi in conferring tolerance to biotic stresses in plants. *J. Plant Growth Regul.* 110, *pp.* 999. doi: 10.1007/s00344-021-10392-5
- 84. Dreher, D., Baldermann, S., Schreiner, M., Hause, B. (2019): An arbuscular mycorrhizal fungus and a root pathogen induce different volatiles emitted by *Medicago truncatula* roots. *J. Advanced Res.* 19, pp.85–90. doi: 10.1016/j.jare.2019.03.002
- 85. Duc, N.H., Vo, H.T. N., Cong, v.D., Hamow, K.Á., Le, K.H., Posta, K. (2022): Volatile organic compounds shape belowground plant–fungi interactions. *Frontiers in Plant Science*, Vol 13. doi: 10.3389/fpls.2022.1046685
- 86. Dudareva, N., Klempien, A., Muhlemann, J.K., Kaplan, I., (2013): Biosynthesis, function and metabolic engineering of plant volatile organic compounds. *New Phytol.* 198, *pp.*16–32. doi: 10.1111/nph.12145.
- 87. Dudareva, N., Negre, F., Nagegowda, D. A., Orlova, I. (2006): Plant volatiles: recent advances and future perspectives. *Crit. Rev. Plant Sci* 25, *pp.* 417–440. doi: 10.1080/07352680600899973
- 88. Dudareva, N., Pichersky, E., & Gershenzon, J. (2004): Biochemistry of Plant Volatiles. Plant Physiology, 135(4), *pp*.1893–1902. doi: 10.1104/pp.104.049981.1.
- 89. Dudareva, N., Pichersky, E., Gershenzon, J. (2004): Biochemistry of plant volatiles. Plant Physiol. 135, *pp*.1893–1902. doi: 10.1104/pp.104.049981
- 90. Eastwood, D.C., Herman, B., Noble, R., Dobrovin-Pennington, A., Sreenivasaprasad, S., Burton, K.S. (2013): Environmental regulation of reproductive phase change in *Agaricus bisporus* by 1-octen-3-ol, temperature and CO2. *Fungal Genet. Biol.* 55, *pp.*54–66. doi: 10.1016/j.fgb.2013.01.001.
- 91. Ebel, R. C., Mattheis, J. P., Buchanan, D. A. (1995): Drought stress of apple trees alters leaf emissions of volatile compounds. *Physiol. Plant.*, 93, pp.709–712.
- 92. Effah, E., Holopainen, J. K., McCormick, A. C. (2019): Potential roles of volatile organic compounds in plant competition. *Perspect. Plant Ecol. Evol. Syst.* 38, pp.58–63. doi: 10.1016/j.ppees.2019.04.003
- 93. Effah, E., Svendsen, L., Barrett, D. P., McCormick, A. C. (2022): Exploring plant volatile-mediated interactions between native and introduced plants and insects. *Sci Rep* 12, 15450. doi: 10.1038/s41598-022-18479-z
- 94. Effmert, U., Kalderas, J., Warnke, R., Piechulla, B. (2012): Volatile mediated interactions between bacteria and fungi in the soil. *J. Chem. Ecol.* 38, pp.665–703. doi: 10.1007/s10886-012-0135-5
- 95. Elad, Y., Pertot, I., Cotes Prado, A. M. Stewart, A. (2016): Plant Hosts of *Botrytis spp.* In S. Fillinger, Y. Elad (Eds.), *Botrytis* -- the *Fungus*, the Pathogen and its Management in Agricultural Systems (pp.413–486).
- 96. Engelberth, J., Alborn, H. T., Schmelz, E. A., Tumlinson, J. H. (2004): Airborne signals prime plants against insect herbivore attack. *Proc. Natl. Acad. Sci.*, vol. 101, no. 6, pp. 1781–1785.
- 97. Fang, Y., Ramasamy, R. P. (2015): Current and Prospective Methods for Plant Disease Detection. *Biosensors*, 5(3), pp. 537–561. doi: 10.3390/bios5030537
- 98. FAO, 2020. FAOSTAT statistical database. FAO, Italy: Rome. http://www.fao.org/faostat/en/.

- 99. Feng, J., Wang, F., Liu, G., Greenshields, D., Shen, W., Kaminskyj, S. et al. (2009): Analysis of a *Blumeria graminis*-secreted lipase reveals the importance of host epicuticular wax components for fungal adhesion and development. *Mol. Plant–Microbe Interact.* 22, *pp.*1601–1610. doi: 10.1094/MPMI-22-12-1601
- 100. Fiers, M., Lognay, G., Fauconnier, M. L., Jijakli, M. H. (2013): Volatile compound-mediated interactions between barley and pathogenic fungi in the soil. *PloS One* 8 (6), e66805. doi: 10.1371/journal.pone.0066805
- 101. Fincheira, P., Quiroz, A. (2018): Microbial volatiles as plant growth inducers. *Microbiol. Res.* 208, pp. 63–75. doi: 10.1016/j.micres.2018.01.002
- 102. Fischer, G., Schwalbe, R., Möller, M., Ostrowski, R., Dott, W. (1999): Species-specific production of microbial volatile organic compounds (MVOC) by airborne fungi from a compost facility. *Chemosphere* 39, *pp.* 779–810. doi: 10.1016/s0045-6535(99)00015-6.
- 103. Fischer, G.J., Keller, N.P. (2016): Production of cross-kingdom oxylipins by pathogenic fungi: An update on their role in development and pathogenicity. *J. Microbiol.* 54, *pp.* 254–264. doi: 10.1007/s12275-016-5620-z
- 104. Fischer, K.B., Gold, C.M., Harvey, R., Petrucci, A.N., Petrucci, G.A. (2020): The ozonolysis chemistry and phase behavior of 1-octen-3-ol derived secondary organic aerosol. *ACS Earth Space Chem.* 4, pp. 1298–1308. doi: 10.1021/acsearthspacechem.0c00092.
- 105. Flamini, G., Cioni, P. L., Morielli, I., Macchia, M., Ceccarini, L. (2002): Main Agronomic Productive Characteristics of Two Ecotypes of *Rosmarinus officinalis L.* and Chemical Composition of Their Essential Oils. *J. Agric. Food Chem.*, 50, 3512–3517. doi: 10.1021/jf011138j
- 106. Frantzeskakis, L., Kracher, B., Kusch, S., Yoshikawa-Maekawa, M., Bauer, S., Pedersen, C., et al. (2018): Signatures of host specialization and a recent transposable element burst in the dynamic one-speed genome of the fungal barley powdery mildew pathogen. *BMC Genomics* 22, *pp.* 381. doi: 10.1186/s12864-018-4750-6.
- 107. Frauenstein, K., Meyer, H., Wolfram, H. (1979): Pathotypen von *Erysiphe graminis* DC.f.sp. *tritici Marchal* und *E. graminis* DC.f.sp. *hordei Marchal* in Europa. *Arch. Phytopathol. Plant Protect.* 15, pp. 391–399. doi: 10.1080/03235407909437497.
- 108. Gao, H., Niu, J., Li, S. (2018): Impacts of wheat powdery mildew on grain yield & quality and its prevention and control methods. *Am. J. Agricult. Forest.* 6, *pp.* 141–147. 10.11648/j.ajaf.20180605.14.
- 109. Gershenzon J, & Dudareva N. (2007): The function of terpene natural products in the natural world. *Nat Chem Biol.*;3(7) *pp.* 408-14. doi: 10.1038/nchembio.2007.5.
- 110. Gershenzon, J., Mcconkey, M. E., Croteau, R. B. (2000): Regulation of Monoterpene Accumulation in Leaves of Peppermint. Plant Physiol., 122, pp. 205–213. doi: 10.1104/pp.122.1.205
- 111. Gfeller, A., Laloux, M., Barsics, F., Kati, D.E., Haubruge E., Jardin, P., et al. (2013): Characterization of volatile organic compounds emitted by barley (*Hordeum vulgare L.*) roots and their attractiveness to wireworms. *J. Chem. Ecol.* 39, *pp.* 1129–1139. doi: 10.1007/s10886-013-0302-3.
- 112. Gfeller, V., Huber, M., Förster, C., Huang, W., Köllner, T. G., Erb., M. (2019): Root volatiles in plant–plant interactions I: High root sesquiterpene release is associated with increased germination and growth of plant neighbours. *Plant Cell Environ*. 42, *pp*. 1950–1963. doi: 10.1111/pce.13532
- 113. Gomez, G.L., Loubet, B., Lafouge, F., Ciuraru, R., Buysse, P., Durand, B., et al. (2019): Comparative study of biogenic volatile organic compounds fluxes by wheat, maize and rapeseed with dynamic chambers over a short period in northern France. *Atmos. Environ.* 214, 116855. doi: 10.1016/j.atmosenv.2019.116855.
- 114. Gondor, O.K., Pál, M., Janda, T., Szalai, G. (2022): The role of methyl salicylate in plant growth under stress conditions, Journal of Plant Physiology, Volume 277, 2022, 153809, ISSN 0176-1617, doi: 10.1016/j.jplph.2022.153809.

- 115. Griffey C.A., Das M.K., Stromberg (1993): Effectiveness of adult-plant resistance in reducing grain yield loss to powdery mildew in winter wheat. *Plant Dis.* 77 pp. 618–622.
- 116. Grira, A., Amarandei, C., Romanias, M.N., El Dib, G., Canosa, A., Arsene, C., et al. (2020): Kinetic measurements of Cl atom reactions with C5–C8 unsaturated alcohols. Atmosphere 11, *pp.* 256. doi: 10.3390/atmos11030256.
- 117. Gu, Y., Chu, B., Wang, C., Li, L., Zhou, Y., Luo, Y., Ma, Z. (2020): Spore concentrations of *Blumeria graminis* f. sp. *tritici* in relation to weather factors and disease development in Gansu, China. *Can. J. Plant Pathol.* 42, 52–61. *pp.* 10.1080/07060661.2019.1630011.
- 118. Guenther, A. (2013): Biological and chemical diversity of biogenic volatile organic emissions into the atmosphere. Intl. Schol. Res. Notices 2013, 786290. https://doi.org/10.1155/2013/786290.
- 119. Guinness World Records, 2020. Highest wheat yield. Available at https://www.guinnessworldrecords.com/world-records/highest-wheat-yield.Accessed 28 October 2020.
- 120. Gulati, S., Ballhausen, M. B., Kulkarni, P., Grosch, R., Garbeva, P. (2020): A non-invasive soil-based setup to study tomato root volatiles released by healthy and infected roots. *Sci. Rep.* 10, *pp.* 12704. doi: 10.1038/s41598-020-69468-z
- 121. Gutiérrez-Santa, A. A., Carrillo-Cerda, H. A., Rodriguez-Campos, J., Velázquez-Fernández, J. B., Patrón-Soberano, O. A., Contreras-Ramos, S. M. (2020): Dynamics of volatilomes emitted during cross-talking of plantgrowth-promoting bacteria and the phytopathogen, *Fusarium solani*. *World J. Microbiol*. *Biotechnol*. 36, pp. 152. doi: 10.1007/s11274-020-02928-w
- 122. Hacquard, S., Kracher, B., Maekawa, T., Vernaldi, S., Schulze-Lefert, P., Ver Loren van Themaat, E., (2013): Mosaic genome structure of the barley powdery mildew pathogen and conservation of transcriptional programs in divergent hosts. *Proc. Natl. Acad. Sci. USA* 110, pp. 2219–2228. Description: "RNA-seq during early pathogenesis (6-24 h post inoculation: conidiospore germination,haustorium formation)"
- 123. Halitschke, R., Keßler, A., Kahl, J., Lorenz, A., Baldwin, I. T. (2000): Ecophysiological comparison of direct and indirect defenses in *Nicotiana attenuata*. *Oecologia*, 124, pp. 408–417.
- 124. Hall, A.A., Zhang, Z., Gurr, S.J., Carver, T.L.W., (2000): Powdery mildews. In: Lederberg, J. (Ed.), Encyclopedia of Microbiology, Vol. 3, 2nd edn, Academic Press, USA: San Diego, pp. 801–808.
- 125. Hall, D.R., Beevor, P.S., Cork, A., Nesbitt, B.F., Vale, G.A. (1984): 1-Octen-3-ol: a potent olfactory stimulant and attractant for tsetse isolated from cattle odours. *Insect Sci. Applic.* 5, 335–339. 10.1017/S1742758400008626.
- 126. Hamow, K. Á., Ambrózy, Z., Puskás, K., Majláth, I., Cséplő, M., Mátyus, R., et al. (2021): Emission of novel volatile biomarkers for wheat powdery mildew. *Sci. Total Environ*. 781, 146767. doi: 10.1016/j.scitotenv.2021.146767
- 127. Handley, A. J., Adlard, E. R. (2001): Gas Chromatographic Techniques and Applications. Boca Raton, FL: CRC Press. *pp.* .1-337
- 128. Hartikainen, K., Kivimäenpää, M., Nerg, A.-M., Holopainen, T. (2012): Significance of leaf structure and emission of volatile organic compounds in ozone tolerance of oat and wheat. *Botany* 90, *pp.* 121–135. doi: 10.1139/b11-090.
- 129. Herrero-Garcia, E., Garzia, A., Cordobés, S., Espeso, E. A., Ugalde, U. (2011): 8-Carbon oxylipins inhibit germination and growth, and stimulate aerial conidiation in *Aspergillus nidulans. Fungal Biol.* 115, 4-5. pp. 393–400. doi: 10.1016/j.funbio.2011.02.005
- 130. Hiltpold, I., Erb, M., Robert, C. A. M., Turlings, T. C. J. (2011): Systemic root signalling in a belowground, volatile-mediated tritrophic interaction. *Plant Cell Environ.* 34, *pp.* 1267–1275. doi: 10.1111/j.1365-3040.2011.02327.x
- 131. Hoffmann, T., et al. (1997): Formation of Organic Aerosols from the Oxidation of Biogenic Hydrocarbons. *Journal of Atmospheric Chemistry* 26, pp. 189–222.

- 132. Holzinger, R., Rottenberger, S., Crutzen, P. J., Kesselmeier, J. (2000): Emissions of volatile organic compounds from *Quercus ilex* L. measured by Proton Transfer Reaction Mass Spectrometry under different environmental conditions. *J. Geophys. Res.* 105, 573–pp. 579.
- 133. Honkanen, E., Moisio, T., (1963): On the occurrence of oct-1-en-3-ol in clover plants. *Acta Chem. Scand.* 17, pp. 858.
- 134. Ho-Plágaro, T., García-Garrido, J. M. (2022a): Molecular regulation of arbuscular mycorrhizal symbiosis. *Int. J. Mol. Sci.* 23, pp. 5960. doi: 10.3390/ijms23115960
- 135. Hossain, M. A., Nakano, Y., Asada, K., Nishihara, H. (2011): Molecular characterization of the glutathione-dependent dehydroascorbate reductase gene in *Vigna aconitifolia* (moth bean). *Journal of Plant Physiology*, 168(16), pp. 1917-1926.
- 136. Hungarian Central Statistical Office (KSH); https://www.ksh.hu/stadat_files/mez/hu/mez0071.html.
- 137. Isman, M. B. (2006): Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. *Annual Review of Entomology* 51, *pp.* 45-66. doi: 10.1146/annurev.ento.51.110104.151146
- 138. Jakobsen, H. B. (1997): The preisolation phase of in situ headspace analysis: methods and perspectives. *Modern Methods of Plant Analysis* 19, *pp.* 1–22. Springer.
- 139. Jalali, F., Zafari, D., Salari, H. (2017): Volatile organic compounds of some *Trichoderma* spp. increase growth and induce salt tolerance in *Arabidopsis thaliana*. *Fungal Ecol.* 29, pp. 67–75. doi: 10.1016/j.funeco.2017.06.007
- 140. Jansen, R. M. C., et al. (2009): Induced plant volatiles allow sensitive monitoring of plant health status in greenhouses. *Plant Signaling & Behavior* 4(9), *pp.* 824–829. doi: 10.4161/psb.4.9.9431
- 141. Jansen, R. M. C., Wildt, J., Hofstee, J. W., Bouwmeester, H. J., Van Henten, E. J. (2010a): Plant volatiles: useful signals to monitor crop health status in greenhouses. *Plant Communication from an Ecological Perspective, pp.* 229–247. Springer.
- 142. Jansen, R. M. C., Wildt, J., Kappers, I. F., Bouwmeester, H. J., Hofstee, J. W., Van Henten, E. J. (2011): Detection of Diseased Plants by Analysis of Volatile Organic Compound Emission. *Annu. Rev. Phytopathol.* 49, *pp.* 157–174. doi: 10.1146/annurev-phyto-072910-095227
- 143. Jansen, R. M. C., Hofstee, J. W., Wildt, J., Vanthoor, B. H. E., Verstappen, F. W. A., Takayama, K., Bouwmeester, H. J., Van Henten, E. J. (2010b): Health monitoring of plants by their emitted volatiles: A model to predict the effect of *Botrytis cinerea* on the concentration of volatiles in a large-scale greenhouse. *Biosystems Engineering* 106(1), *pp.* 37–47. doi: 10.1016/j.biosystemseng.2010.01.009
- 144. Jelen, H. H., Krawczyk, J., Larsen, T. O., Jarosz, A., Gołebniak, B. (2005): Main compounds responsible for off-odour of strawberries infected by *Phytophthora cactorum*. *Letters in Applied Microbiology* 40(4), pp. 255–259. doi: 10.1111/j.1472-765X.2005.01668.x.
- 145. Ju, Y., Yue, X., Zhao, X., Zhao, H., Fang, Y. (2018): Physiological, micro-morphological and metabolomic analysis of grapevine (*Vitis vinifera* 1.) leaf of plants under water stress. *Plant Physiol. Biochem.* 130, pp. 501–510. doi: 10.1016/j.plaphy.2018.07.036
- 146. Junker, R. R., Tholl, D. (2013): Volatile organic compound mediated interactions at the plant-microbe interface. *J. Chem. Ecol.* 39, pp. 810–825. doi: 10.1007/s10886-013-0325-9
- 147. Jürgens, A., Dötterl, S. (2004): Chemical Composition of Anther Volatiles in Ranunculaceae: Genera Specific Profiles in *Anemone*, *Aquilegia*, *Caltha*, *Pulsatilla*, *Ranunculus*, and *Trollus* Species. *Am. J. Bot.* 91(12), 1969–1980.
- 148. Jüttner, F., (1990): Monoterpenes and microbial metabolites in the soil. *Environ. Poll.* 68, pp. 377–382. doi: 10.1016/0269-7491(90)90039-F.
- 149. Kaddes, A., Fauconnier, M. L., Sassi, K., Nasraoui, B., Jijakli, M. H. (2019a): Endophytic fungal volatile compounds as solution for sustainable agriculture. *Molecules* 24(6), *pp.* 1065. doi: 10.3390/molecules24061065

- 150. Kaddes, A., Fauconnier, M. L., Sassi, K., Nasraoui, B., Jijakli, M. H. (2019b): Antifungal properties of two volatile organic compounds on barley pathogens and introduction to their mechanism of action. *Int. J. Environ. Res. Public Health* 16, *pp.* 2866. doi: 10.3390/ijerph16162866
- 151. Kaiser, R. (1991): New Volatile Constituents of the Flower Concrete of *Michelia champaca* L. *Journal of Essential Oil Research* 3, pp. 129–146. doi: 10.1080/10412905.1991.9700493.
- 152. Kalalian, C., Abis, L., Depoorter, A., Lunardelli, B., Perrier, S., George, C. (2020): Influence of indoor chemistry on the emission of mVOCs from *Aspergillus niger* molds. *Sci. Total Environ.* 741, pp. 140148. doi: 10.1016/j.scitotenv.2020.140148.
- 153. Kaminski, E., Stawicki, S., Wasowicz, E., (1974): Volatile flavor compounds produced by molds of *Aspergillus, Penicillium*, and *Fungi imperfecti*. *Appl. Microbiol*. 27, *pp*. 1001–1004. doi: 10.1128/AM.27.6.1001-1004.1974.
- 154. Kasal-Slavik, T., Eschweiler, J., Kleist, E., Mumm, R., Goldbach, H. E., Schouten, A., Wildt, J. (2017): Early biotic stress detection in tomato (*Solanum lycopersicum*) by BVOC emissions. *Phytochemistry* 144, *pp.* 180–188. doi: 10.1016/j.phytochem.2017.09.006
- 155. KEGG (Kyoto Encyclopedia of Genes and Genomes) https://www.genome.jp/kegg/
- 156. Kegge, W., Pierik, R. (2010): Biogenic volatile organic compounds and plant competition. *Trends Plant Sci.* 15, pp. 126–132. doi: 10.1016/j.tplants.2009.11.007
- 157. Kermasha, S., Perraud, X., Bisakowski, B., Husson, F. (2002): Production of flavor compounds by hydroperoxide lyase from enzymatic extracts of *Penicillium* sp. *J. Mol. Catal. B: Enz.* 19–20, *pp.* 479–487. doi: 10.1016/S1381-1177(02)00202-3.
- 158. Kesselmeier, J., Staudt, M. (1999): Biogenic Volatile Organic Compounds (VOC): An Overview on Emission, Physiology, and Ecology. Journal of Atmospheric Chemistry 33, *pp*. 23–88.
- 159. Kessler, A., Baldwin, I. T. (2001): Defensive Function of Herbivore-Induced Plant Volatile Emissions. *Nature* 291, *pp.* 2141–2144. doi: 10.1126/science.291.5511.2141
- 160. Khater, M., De Escosura-Muñiz, A., Merkoçi, A. (2017): Biosensors for plant pathogen detection. *Biosensors and Bioelectronics* 93, pp. 72–86. doi: 10.1016/j.bios.2016.09.091.
- 161. Kihara, H. (1924): Cytologische und genetische Studien bei wichtigen Getreidearten mit besonderer Rücksicht auf das Verhalten der Chromosomen und die Sterilität in den Bastarden. *Memoirs of the College of Science, Kyoto Imperial University, Series B* 1, pp. 1-200.
- 162. Kihika, R., Murungi, L. K., Coyne, D., Ng'ang'a, M., Hassanali, A., Teal, P. E. A., et al. (2017): Parasitic nematode *Meloidogyne incognita* interactions with different capsicum annum cultivars reveal the chemical constituents modulating root herbivory. *Sci. Rep.* 7 (1), 2903. doi: 10.1038/s41598-017-02379-8
- 163. Kindlovits, S., Sárosi, Sz., Inotai, K., Petrović, G., Stojanović, G., Németh, É. (2018): Phytochemical characteristics of root volatiles and extracts of achillea collina becker genotypes. *J. Essential Oil Res.* 30(5), pp. 330–340. doi: 10.1080/10412905.2018.1470581
- 164. Kishimoto, K., Matsui, K., Ozawa, R., Takabayashi, J. (2007): Volatile 1-octen-3-ol induces a defensive response in *Arabidopsis thaliana*. *Journal of General Plant Pathology* 73, pp. 35-37. doi: 10.1007/s10327-006-0314-8
- 165. Kiss, T. (2016): A Kenyérbúza (*Triticum Aestivum* L.) Környezeti Adaptációját Meghatározó Genetikai Komponensek Vizsgálata, Doctoral (PhD thesis) dissertation *Szent István Egyetem (renamed Hungarian University of Agricultural and Life Sciences)*
- 166. Kline, D. L., Allan, S. A., Bernier, U. R., Welch, C. H. (2007): Evaluation of the enantiomers of 1-octen-3-ol and 1-octyn-3-ol as attractants for mosquitoes associated with a freshwater swamp in Florida, U.S.A. *Med. Vet. Entomol.* 21, *pp.* 323–331. doi: 10.1111/j.1365-2915.2007.00697.x.
- 167. Knudsen, J. T., Eriksson, R., Gershenzon, J., Ståhl, B. (2006): Diversity and distribution of floral scent. *The Botanical Review* **72**, 1. doi: 10.1663/0006-8101(2006)72[1:DADOFS]2.0.CO;2

- 168. Koch, T., Krumm, T., Jung, V., Boland, W. (1999): Differential Induction of Plant Volatile Biosynthesis in the Lima Bean by Early and Late Intermediates of the Octadecanoid-Signaling Pathway. *Plant Physiology* 121(1), *pp.* 153–162. doi: 10.1104/pp.121.1.153.
- 169. Köllner, T. G., Schnee, C., Gershenzon, J., Degenhardt, J. (2004): The sesquiterpene hydrocarbons of maize (Zea mays) form five groups with distinct developmental and organ-specific distributions. *Phytochemistry* 65(13), *pp.* 1895–1902. doi: 10.1016/j.phytochem.2004.05.021.
- 170. Komáromi, J. (2016): Lisztharmat-Rezisztenciatípusok és a Gazdagnövény–Kórokozó Kapcsolat Vizsgálata Búzában Doctoral (PhD thesis) dissertation Szent István University (renamed Hungarian University of Agricultural and Life Sciences)
- 171. König, G., Brunda, M., Puxbaum, H., Hewitt, C. N., Duckham, S. C., Rudolph, J. (1995): Relative contribution of oxygenated hydrocarbons to the total biogenic VOC emissions of selected Mid-European agricultural and natural plant species. *Atm. Env.* 29, *pp.* 861–874. doi: 10.1016/1352-2310(95)00026-U
- 172. Korpi, A., Järnberg, J., Pasanen, A.-L., (2009): Microbial volatile organic compounds. *Crit. Rev. Toxicol.* 39, pp. 139–193. doi: 10.1080/10408440802291497.
- 173. Korpi, A., Pasanen, A.-L., Pasanen, P. (1998): Volatile compounds originating from mixed microbial cultures on building materials under various humidity conditions. *Appl. Environ. Microbiol.* 64, pp. 2914–2919. doi: 10.1128/AEM.64.8.2914-2919.1998.
- 174. Kováts, E. (1958): Gas-chromatographische Charakterisierung organischer Verbindungen. Teil 1: Retentionsindices aliphatischer Halogenide, Alkohole, Aldehyde und Ketone. *Helv. Chim. Acta* 41, *pp.* 1915–1932. doi: 10.1002/hlca.19580410703.
- 175. Kreuzwieser, J., Kühnemann, F., Martis, A., Rennenberg, H., Urban, W. (2000): Diurnal pattern of acetaldehyde emission by flooded poplar trees. *Physiol. Plant.* 108(1), *pp.* 79–86. doi: 10.1034/j.1399-3054.2000.108001079.x
- 176. Lackus, N. D., Lackner, S., Gershenzon, J., Unsicker, S. B., Köllner, T. G. (2018): The occurrence and formation of monoterpenes in herbivore-damaged popular roots. *Sci. Rep.* 8, pp. 17936. doi: 10.1038/s41598-018-36302-6
- 177. Landis, D. A., Wratten S. D., Gurr G. M. (2000): Habitat management to conserve natural enemies of arthropod pests in agriculture. *Annual Review of Entomology* 45(1), *pp.* 175-201. doi: 10.1146/annurev.ento.45.1.175.
- 178. Láng, L., Bedő, Z. (2006): A hazai búzanemesítés stratégiai jelentősége. p. 19-25 In: Dudits, D. (Ed.): A búza nemesbítésének tudománya: a funkcionális genomikától a vetőmagig. Szeged: MTA Szegedi Biológiai Központ–Winter Fair, pp. 334.
- 179. Langenheim, J. H. (1994): Higher plant terpenoids: A phytocentric overview of their ecological roles. *J. Chem. Ecol.* 20(6), pp. 1223–1280. doi: 10.1007/BF02059809.
- 180. Laothawornkitkul, J., Jansen, R. M. C., Smid, H. M., Bouwmeester, H. J., Müller, J., Van Bruggen, A. H. C. (2010): Volatile organic compounds as a diagnostic marker of late blight infected potato plants: A pilot study. *Crop Protection* 29(8), *pp.* 872–878.
- 181. Laothawornkitkul, J., Taylor, J. E., Paul, N. D., Hewitt, C. N. (2009): Biogenic volatile organic compounds in the Earth system. *New Phytologist* 183(1), *pp.* 27–51. doi: 10.1111/j.1469-8137.2009.02859.x
- 182. Large, E. C., Doling, D. A., (1962): The measurement of cereal mildew and its effect on yield. *Plant Pathol.* 11, pp. 47–57. doi: 10.1111/j.1365-3059.1962.tb00165.x.
- 183. Last, F. T., (1953): Some effects of temperature and nitrogen supply on wheat powdery mildew. *Ann. Appl. Biol.* 40, *pp.* 312–322. doi: 10.1111/j.1744-7348.1953.tb01085.x.
- 184. Laur, J., Ramakrishnan, G. B., Labbe, C., Lefebvre, F., Spanu, P. D., Belanger, R. R., (2018): Effectors involved in fungal–fungal interaction lead to a rare phenomenon of hyperbiotrophy in the tritrophic system biocontrol agent–powdery mildew–plant. *New Phytol.* 217, pp. 713–725. Description: RNA-seq during early pathogenesis (4-5 days post infection with *Blumeria graminis*)

- 185. Lê, S., Josse, J., Husson, F., (2008): FactoMineR: An R package for multivariate analysis. *J. Stat. Softw.* 25, *pp.* 1–18. doi: 10.18637/jss.v025.i01.
- 186. Lee, B., Farag, M. A., Park, H. B., Kloepper, J. W., Lee, S. H., Ryu, C. M. (2012): Induced resistance by a long-chain bacterial volatile: Elicitation of plant systemic defense by a C13 volatile produced by *Paenibacillus polymyxa*. *PloS One* 7, e48744. doi: 10.1371/journal.pone.0048744
- 187. Lee, S., Hung, R., Schink, A., Mauro, J., Bennett, J. W. (2014): *Arabidopsis thaliana* for testing the phytotoxicity of volatile organic compounds. *Plant Growth Regul.* 74, pp. 177–186. doi: 10.1007/s10725-014-9909-9
- 188. Lemfack, M. C., Gohlke, B. O., Toguem, S. M. T., Preissner, S., Piechulla, B., Preissner, R., (2018): mVOC 2.0: a database of microbial volatiles. *Nucleic Acids Res.* 46, *pp.* D1261–D1265. doi: 10.1093/nar/gkx1016.
- 189. Lev-Yadun, S., Gopher, A., Abbo, S. (2000): The cradle of agriculture. *Science* 288, *pp.* 1602-1603. doi: 10.1126/science.288.5471.1602
- 190. Li, J., Chen, B., Zhang, X., Hao, Z., Zhang, X., Zhu, Y. (2021): Arsenic transformation and volatilization by arbuscular mycorrhizal symbiosis under axenic conditions. *J. Hazard Mater.* 413, *pp.* 125390. doi: 10.1016/j.jhazmat.2021.125390
- 191. Li, W., Chen, Y., Tong, S., Guo, Y., Zhang, Y., Ge, M., (2018): Kinetic study of the gasphase reaction of O3 with three unsaturated alcohols. *J. Environ. Sci.* 30, pp. 292–299. doi: 10.1016/j.jes.2018.04.009.
- 192. Li, Z., Paul, R., Tis, T.B., Saville, A.C., Hansel, J.C., Yu, T., et al. (2019): Non-invasive plant disease diagnostics enabled by smartphone-based fingerprinting of leaf volatiles. *Nat. Plants* 5, *pp.* 856–866. doi: 10.1038/s41477-019-0476-y.
- 193. Liang, P., Liu, S., Xu, F., Jiang, S., Yan, J., He, Q., et al. (2018): Powdery mildews are characterized by contracted carbohydrate metabolism and diverse effectors to adapt to obligate biotrophic lifestyle. *Front. Microbiol.* 9, 3160. doi: 10.3389/fmicb.2018.03160.
- 194. Linderman, R. G. (1988): Mycorrhizal interactions with the rhizosphere microflora the mycorrhizosphere effect. *Phytopathology* 78, *pp.* 366–371.
- 195. Liu, X. M., Zhang, H. (2015): The effects of bacterial volatile emissions on plant abiotic stress tolerance. *Front. Plant Sci.* 6. doi: 10.3389/fpls.2015.00774
- 196. Llusià, J., Peñuelas, J. (2000): Emission of volatile organic compounds by apple trees under spider mite attack and attraction of predatory mites. *Experimental & Applied Acarology* 24(4), pp. 287-302.
- 197. Lockwood, G. B. (2001): Techniques for gas chromatography of volatile terpenoids from a range of matrices. *Journal of Chromatography A* 936, *pp.* 23–31. doi: 10.1016/s0021-9673(01)01151-7.
- 198. Loreto, F., Schnitzler, J. P., (2010): Abiotic stresses and induced BVOCs. *Trends in Plant Science* 15(3), *pp.* 154–166. doi: 10.1016/j.tplants.2009.12.006.
- 199. Loreto, F., Velikova, V. (2001): Isoprene Produced by Leaves Protects the Photosynthetic Apparatus against Ozone Damage, Quenches Ozone Products, and Reduces Lipid Peroxidation of Cellular Membranes. *Plant Physiology* 127, *pp.* 1781–1787. doi: 10.1104/pp.010497.
- 200. Loreto, F., Barta, C., Brilli, F., Nogues, I. (2006): On the induction of volatile organic compound emissions by plants as consequence of wounding or fluctuations of light and temperature. *Plant Cell Environment* 29(9), *pp.* 1820–1828. doi: 10.1111/j.1365-3040.2006.01561.x.
- 201. Loreto, F., Förster, A., Dürr, M., Csiky, O., Seufert, G. (1998): On the monoterpene emission under heat stress and on the increased thermotolerance of leaves of *Quercus ilex* L. fumigated with selected monoterpenes. *Plant, Cell & Environment* 21, *pp.* 101–107. doi: 10.1046/j.1365-3040.1998.00268.x

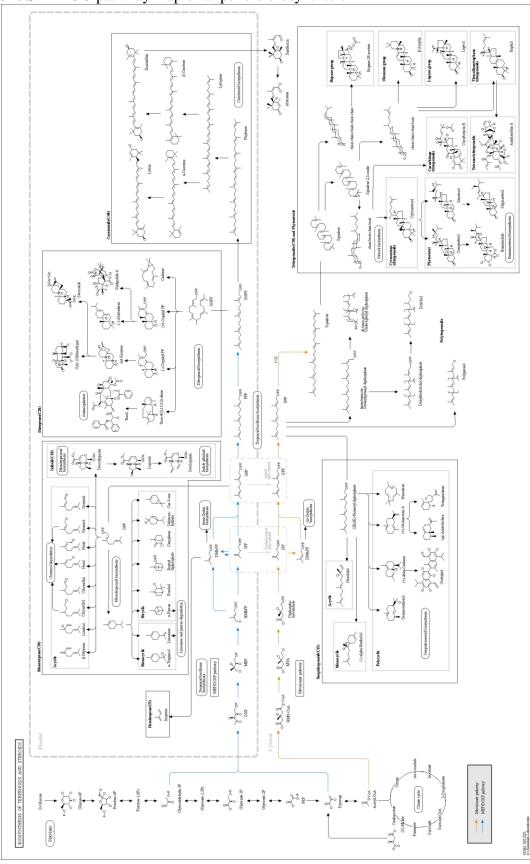
- 202. Loreto, F., Mannozzi, M., Maris, C., Nascetti, P., Ferranti, F., Pasqualini, S. (2001): Ozone Quenching Properties of Isoprene and Its Antioxidant Role in Leaves. *Plant Physiology* 126, pp. 993–1000. doi: 10.1104/pp.126.3.993
- 203. Maffei, M. E., Gertsch, J., Appendino, G. (2011): Plant volatiles: production, function and pharmacology. *Nat. Prod. Rep.* 28, *pp.* 1359–1380. doi: 10.1039/c1np00021g
- 204. Magan N., Evans P. (2000): Volatiles as an indicator of fungal activity and differentiation between species, and the potential use of electronic nose technology for early detection of grain spoilage. *J Stored Prod Res.* 36(4), pp. 319-340. doi: 10.1016/s0022-474x(99)00057-0
- 205. Majchrzak, T., Wojnowski, W., Lubinska- Szczygeł, M., Różańska, A., Namieśnik, J., et al. (2018): PTR-MS and GC-MS as complementary techniques for analysis of volatiles. A tutorial Rev. *Analytica Chimica Acta*. 1035, pp. 1–13. doi: 10.1016/j.aca.2018.06.056
- 206. Malik, U., Karmakar, A., Barik, A. (2016): Attraction of the potential biocontrol agent *Galerucella placida* (Coleoptera: Chrysomelidae) to the volatiles of *Polygonum orientale* (Polygonaceae) weed leaves. *Chemoecology* 26, pp. 45–58. doi: 10.1007/s00049-015-0206-5
- 207. Marriott, P. J., Shellie, R., Cornwell, C. (2001): Gas chromatographic technologies for the analysis of essential oils. *Journal of Chromatography A*. 936, *pp.* 1–22. doi: 10.1016/s0021-9673(01)01314-0.
- 208. Martinelli, F., Scalenghe, R., Davino, S., Panno, S., Scuderi, G., Ruisi, P., Villa, P., Stroppiana, D., Boschetti, M., Goulart, L. R., Davis, C. E. Dandekar, A. M. (2015): Advanced methods of plant disease detection. *Agron. Sustain. Dev.* 35. *pp.* 1-25. doi: 10.1007/s13593-014-0246-1.
- 209. Martínez-Medina, A., Appels, F. V. W., van Wees, S. C. M. (2017b): Impact of salicylic acid- and jasmonic acid-regulated defences on root colonization by *Trichoderma harzianum* T-78. *Plant Signaling Behav.* 12, e1345404. doi: 10.1080/15592324.2017.1345404
- 210. Martínez-Medina, A., Van Wees, S. C. M., Pieterse, C. M. J. (2017a): Airborne signals from *Trichoderma* fungi stimulate iron uptake responses in roots resulting in priming of jasmonic acid-dependent defences in shoots of *Arabidopsis thaliana* and *Solanum lycopersicum*: fungal volatiles trigger iron uptake responses and ISR. *Plant Cell Environ.* 40, *pp.* 2691–2705. doi: 10.1111/pce.13016
- 211. Martín-Sánchez, L., Cristiana, A., Paolina, G., Gianpiero, V. (2020): Investigating the effect of belowground microbial volatiles on plant nutrient status: perspective and limitations. *J. Plant Interact.* 15(1), pp. 188–195. doi: 10.1080/17429145.2020.1776408
- 212. Materić, D., Bruhn, D., Turner, C., Morgan, G., Mason, N., Gauci, V. (2015): Methods in plant foliar volatile organic compounds research. *Appl. Plant Sci.* 3, doi: 10.3732/apps.1500044
- 213. Matsui, K., Sasahara, S., Akakabe, Y., Kajiwara, T. (2003): Linoleic acid 10-hydroperoxide as an intermediate during formation of 1-octen-3-ol from linoleic acid in *Lentinus decadetes*. *Biosci. Biotechnol. Biochem.* 67, pp. 2280–2282. doi: 10.1271/bbb.67.2280.
- 214. Mátyus, R. (2023): Növények és patogénjeik non-invazív illatanyag-vizsgálatának kritikai aspektusai, Debreceni Egyetem, TTK Alkalmazott Kémiai Tanszék, Diplomamunka
- 215. Mau, J. J., Chyau, C. C., Li, J. Y., Tseng, Y. H. (1997): Flavor compounds in straw mushroom *Volvariella volvaceae* harvested at different stages of maturity. *J. Agric. Food Chem.* 45, pp. 4726–4729. doi: 10.1021/jf9703314.
- 216. Mcgarvey, D. J., Croteau, R. (1995): Terpenoid Metabolism. *Plant Cell* 7, *pp.* 1015–1026. doi: 10.1105/tpc.7.7.1015
- 217. Meier, A. R., Hunter, M. D. (2019): Mycorrhizae alter constitutive and herbivore-induced volatile emissions by milkweeds. *J. Chem. Ecol.* 45, pp. 610–625. doi: 10.1007/s10886-019-01080-6
- 218. Menotta, M., Gioacchini, A., Amicucci, A., Buffalini, M., Sisti, D., Stocchi, V., et al. (2004): Headspace solidphase microextraction with gas chromatography and mass spectrometry in the

- investigation of volatile organic compounds in an ectomycorrhizae synthesis system. *Rapid Commun. Mass Spectrom* 18, pp. 206–210. doi: 10.1002/rcm.1314
- 219. Merfort, I. (2002): Review of the analytical techniques for sesquiterpenes and sesquiterpene lactones. *Journal of Chromatography A* 967, pp. 115–130.
- 220. Mesdag, J., Donner, D. A. (2000): Breeding for bread-making quality in Europe. In: Donner, D. A. (Ed.), Bread-Making Quality of Wheat: A Century of Breeding in Europe. *Kluwer, the Netherlands: Dordrecht, pp.* 416.
- 221. Millar, J. G., Sims, J. J. (1998): Preparation, cleanup, and preliminary fractionation of extracts. In Millar, J. G., Hanes, K. F., (Eds.), Methods in Chemical Ecology. *Boston: Kluwer Academic Publishers*, pp. 1–37.
- 222. Mirzaie, M., Talebizadeh, A. R., Hashemipour, H. (2021): Mathematical modeling and experimental study of VOC adsorption by Pistachio shell–based activated carbon. *Environ. Sci. Pollut. Res.* 28(3), pp. 3737–3747. doi: 10.1007/s11356-020-10634-1
- 223. Moisan, K., Aragón, M., Gort, G., Dicke, M., Cordovez, V., Raaijmakers, et al. (2020b): Fungal volatiles influence plant defence against aboveground and belowground herbivory. *Funct. Ecol.* 34, pp. 2259–2269. doi: 10.1111/1365-2435.13633
- 224. Moisan, K., Cordovez, V., van de Zande, E. M., Raaijmakers, J. M., Dicke, M., Lucas-Barbosa, D. (2019): Volatiles of pathogenic and non-pathogenic soil-borne fungi affect plant development and resistance to insects. *Oecologia* 190, *pp.* 589–604. doi: 10.1007/s00442-019-04433-w
- 225. Moisan, K., Dicke, M., Raaijmakers, J. M., Rachmawati, E., Cordovez, V. (2021): Volatiles from the fungus *Fusarium oxysporum* affect interactions of brassica rapa plants with root herbivores. *Ecol. Entomol.* 46, pp. 240–248. doi: 10.1111/een.12956
- 226. Moisan, K., Raaijmakers, J. M., Dicke, M., Lucas-Barbosa, D., Cordovez, V. (2020a): Volatiles from soil-borne fungi affect directional growth of roots. *Plant Cell Environ*. 202144, *pp.* 339–345. doi: 10.1111/pce.13890
- 227. Morath, S. U., Hung, R., Bennett, J. W. (2012): Fungal volatile organic compounds: a review with emphasis on their biotechnological potential. *Fungal Biol.* 26, *pp.* 73–83. doi: 10.1016/j.fbr.2012.07.001
- 228. Morgounov, A., Tufan, H. A., Sharma, R., Akin, B., Bagci, A., Braun, H.-J., et al. (2012): Global incidence of wheat rusts and powdery mildew during 1969–2010 and durability of resistance of winter wheat variety *Bezostaya* 1. *Eur. J. Plant Pathol.* 132, *pp.* 323–340. doi: 10.1007/s10658-011-9879-y.
- 229. Moriura, N., Matsuda, Y., Oichi, W., Nakashima, S., Hirai, T., Nonomura, T., et al. (2006): An apparatus for collecting total conidia of *Blumeria graminis* f.sp. *hordei* from leaf colonies using electrostatic attraction. *Plant Pathol.* 55, *pp.* 367–374. doi: 10.1111/j.1365-3059.2006.01356.x.
- 230. Murahashi, S. (1936) About the fragrances of matsutake. *Bull. Inst. Phys. Chem. Res.* 30, *pp.* 263–271.
- 231. Murray, G. M., Brennan, J. P. (2009): The Current and Potential Costs from Diseases of Wheat in Australia. *Grains Research and Development Corporation, Australia: Kingston, pp.* 69. ISBN 978-1-875477-92-0
- 232. Murungi, L. K., Kirwa, H., Coyne, D., Teal, P. E. A., Beck, J. J., Torto, B. (2018): Identification of key root volatiles signaling preference of tomato over spinach by the root knot nematode *Meloidogyne incognita*. *J. Agric. Food Chem.* 66(28), *pp.* 7328–7336. doi: 10.1021/acs.jafc.8b03257
- 233. Nadal, M., Paszkowski, U. (2013): Polyphony in the rhizosphere: presymbiotic communication in arbuscular mycorrhizal symbiosis. *Curr. Opin. Plant Biol.* 16(4), *pp.* 473-479. doi: 10.1016/j.pbi.2013.06.005
- 234. Naves, Y. (1943): Etudes sur les matières végétales volatiles XXV. Sur la présence de l'alcool de Matsutake (n-octène-1-ol-(3)) et du méthyl-1-cyclohexanol-(3) dans l'essence de

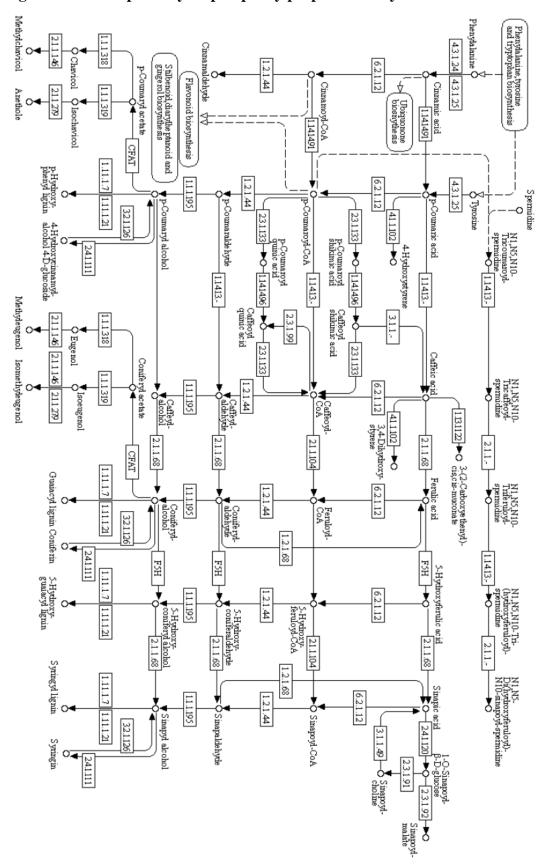
- menthe pouliot (Mentha Pulegium L.). *Helvet. Chim. Acta* 26, pp. 1992–2001. doi: 10.1002/hlca.19430260625.
- 235. Ndomo-Moualeu, A. F., Ulrichs, C., Adler, C. (2016): Behavioral responses of *Callosobruchus maculatus* to volatile organic compounds found in the headspace of dried green pea seeds. *J. Pest Sci.* 89, pp. 107–116. doi: 10.1007/s10340-015-0652-4.
- 236. Nemčovič, M., Jakubikova, J., Víden, I., Farka, V. (2008): Induction of conidiation by endogenous volatile compounds in *Trichoderma* spp. *FEMS Microbiol. Lett.* 284, *pp.* 231–236. doi: 10.1111/j.1574-6968.2008.01202.x.
- 237. Nover, I. (1958): Sechsjährige Beobachtungen über die physiologische Spezialisierung des echten Mehltaus (*Erysiphe graminis* DC.) von Weizen und Gerste in Deutschland. *J. Phytopathol.* 31, pp. 85–107. doi: 10.1111/j.1439-0434.1958.tb01766.x.
- 238. Oerke, E.-C. (2006): Crop losses to pests. *J. Agric. Sci.* 144, *pp.* 31–43. doi: 10.1017/S0021859605005708.
- 239. Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., et al. (2020): vegan: Community Ecology Package. *R package version* 2.5-7. https://CRAN.R-project.org/package=vegan.
- 240. Okull, D. O., Beelman, R. B., Gourama, H. (2003): Antifungal activity of 10-oxo-trans-8-decenoic acid and 1-octen-3-ol against *Penicillium expansum* in potato dextrose agar medium. *J. Food Prot.* 66, pp. 1503–1505
- 241. Ozawa, R., Shimoda, T., Kawaguchi, M., Arimura, G. I., Horiuchi, J. I., Nishioka, T., Takabayashi, J. (2000): Lotus japonicus infested with herbivorous mites emits volatile compounds that attract predatory mites. *J. Plant Res.* 113, *pp.* 427–433. doi: 10.1007/PL00013951.
- 242. Palma, R., Mutis, A., Manosalva, L., Ceballos, R., Quiroz, A. (2012): Behavioral and electrophysiological responses of *Hylastinus obscurus* to volatiles released from the roots of *Trifolium pratense* 1. *J. Soil Sci. Plant Nutr.* 12, pp. 183–193. doi: 10.4067/S0718-95162012000100015
- 243. Park, Y. S., Dutta, S., Ann, M., Raaijmakers, J. M., Park, K. (2015): Promotion of plant growth by *Pseudomonas fluorescens* strain SS101 via novel volatile organic compounds. *Biochem. Biophys. Res. Commun.* 461, pp. 361–365. doi: 10.1016/j.bbrc.2015.04.039
- 244. Pasanen, P., Korpi, A., Kalliokoski, P., Pasanen, A.-L., (1997): Growth and volatile metabolite production of *Aspergillus versicolor* in house dust. *Environ. Int.* 23, 425–432. doi: 10.1016/S0160-4120(97)00027-5.
- 245. Peñuelas, J., Staudt, M. (2010): BVOCs and global change. *Trends in Plant Science* 15(3), pp. 133-144.
- 246. Penuelas, J., Asensio, D., Tholl, D., Wenke, K., Rosenkranz, M., Piechulla, B. (2014): Biogenic volatile emissions from the soil. *Plant Cell Environ*. 37, pp. 1866–1891. doi: 10.1111/pce.12340
- 247. Pichersky, E., and Gershenzon, J. (2002): The formation and function of plant volatiles: perfumes for pollinator attraction and defense. *Plant Biol.* 5, *pp.* 237–243. doi: 10.1016/s1369-5266(02)00251-0.
- 248. Piechulla, B., Lemfack, M. C., Kai, M. (2017): Effects of discrete bioactive microbial volatiles on plants and fungi. *Plant Cell Environ.* 40, pp. 2042–2067. doi: 10.1111/pce.13011
- 249. Pierce, A. M., Pierce, H.D., Oehlschlager, A. C., Borden, J. H. (1991): 1-Octen-3-ol, attractive semiochemical for foreign grain beetle, *Ahasverus advena* (Waltl) (Coleoptera: Cucujidae). *J. Chem. Ecol.* 17, pp. 567–580. doi: 10.1007/BF00982127.
- 250. Piesik, D., Łyszczarz, A., Tabaka, P., Lamparski, R., Bocianowski, J., Delaney, K. J. (2010) Volatile induction of three cereals: influence of mechanical injury and insect herbivory on injured plants and neighbouring uninjured plants. *Ann. Appl. Biol.* 157, *pp.* 425–434. doi: 10.1111/j.1744-7348.2010.00432.x.
- 251. Podhradszky J., Csuti I.-né (1962): Búza- és árpa-lisztharmatjárvány 1961. évben Magyarországon. *Növénytermelés* 11 pp. 249–256.

- 252. Pons, S., Fournier, S., Chervin, C., Be'card, G., Rochange, S., Frey, et al. (2020): Phytohormone production by the arbuscular mycorrhizal fungus *Rhizophagus irregularis*. *PloS One* 15(10), e0240886. doi: 10.1371/journal.pone.0240886
- 253. Pusztahelyi, T., Holb, I. J., Pócs, I. (2017): Plant-fungal interactions: special secondary metabolites of the biotrophic, necrotrophic, and other specific interactions. In: Mérillon, J.-M., Ramawat, K.G. (Eds.), *Fungal Metabolites. Springer, Cham, pp.* 133–190. https://doi.org/10.1007/978-3-319-19456-1_39-1.
- 254. Pyysalo, H. (1976): Identification of volatile compounds in seven edible mushrooms. *Acta Chem. Scand. B* 30, *pp.* 235–244. doi: 10.3891/acta.chem.scand.30b-0235.
- 255. R Core Team (2020): R: A language and environment for statistical computing. *R ver.* 3.6.3. R Foundation for Statistical Computing, Austria: Vienna. https://www.R-project.org/.
- 256. Radványi D., Szelényi, M. O., Hamow, K. Á., Ambrózy, Zs., Lukács, P., Puskás, K., Cséplő, M., Molnár, B. P. (2019): Egészséges és fertőzött mezőgazdasági növények, valamint agaricus bisporus illatanyagprofiljának feltérképezése előtanulmány, *NÖVÉNYVÉDELEM 2019* 80 [N. S. 55]: 8. *pp.* 333-342.
- 257. Ragunathan, N., Krock, K. A., Klawun, C., Sasaki, T. A., Wilkins, C. L. (1999): Gas chromatography with spectroscopic detectors. *Journal of Chromatography A* 856, *pp.* 349–397. doi: 10.1016/s0021-9673(99)00819-5.
- 258. Raguso, R. A. (2008): Wake up and smell the roses: the ecology and evolution of floral scent. *Annual Review of Ecology, Evolution, and Systematics* 39, pp. 549-569.
- 259. Raguso, R. A., Pellmyr, O. (1998): Dynamic Headspace Analysis of Floral Volatiles: A Comparison of Methods. *Oikos* 81(2), *pp.* 238–254. doi: 10.2307/3547045.
- 260. Raskin, I. (1992): Role of salicylic acid in plants. *Annu. Rev. Plant Biol.* 43, *pp.* 439–463. doi: 10.1146/annurev.pp.43.060192.002255
- 261. Rasmann, S., Köllner, T.G., Degenhardt, J., Hiltpold, I., Toepfer, S., Kuhlmann, U., Gershenzon, J. (2005): Recruitment of entomopathogenic nematodes by insect-damaged maize roots. *Nature* 434, *pp.* 732–737.
- 262. Raza, W., Ling, N., Liu, D., Wei, Z., Huang, Q., Shen, Q. (2016): Volatile organic compounds produced by pseudomonas fluorescens WR-1 restrict the growth and virulence traits of ralstonia solanacearum. *Microbiol. Res.* 192, 103–113. doi: 10.1016/j.micres.2016.05.014
- 263. Reding, M. E., Alston, D. G., Thomson, S. V., Stark, A. V. (2001): Association of powdery mildew and spider mite populations in apple and cherry orchards. *Agr. Ecosyst. Environ.* 84, pp. 177–186. doi: 10.1016/S0167-8809(00)00204-8.
- 264. Rohloff, J., Bones, A. M. (2005): Volatile profiling of Arabidopsis thaliana Putative olfactory compounds in plant communication. Phytochemistry 66, *pp.* 1941–1955. doi: 10.1016/j.phytochem.2005.06.021
- 265. Rowaished, A. K. (1980): Effect of NPK fertilizer on powdery mildew incidence in winter wheat. *Cereal Res. Commun.* 8, pp. 559–566.
- 266. Roze, L. V., Beaudry, R. M., Linz, J. E. (2012): Analysis of volatile compounds emitted by filamentous fungi using solid-phase microextraction-gas chromatography/mass spectrometry. *Methods Mol. Biol.* 944, *pp.* 133–142. doi: 10.1007/978-1-62703-122-6_9
- 267. Ryu, C.-M., Farag, M. A., Hu, C. H., Reddy, M. S., Kloepper, J. W., Pare, et al. (2004a): Bacterial volatiles induce systemic resistance in 115rabidopsis. *Plant Physiol.* 134, *pp.* 1017–1026. doi: 10.1104/pp.103.026583
- 268. Ryu, C.-M., Farag, M. A., Hu, C. H., Reddy, M. S., Wei, H. X., Pare, P. W. (2003): Bacterial volatiles promote growth in *Arabidopsis. Proc. Natl. Acad. Sci. U.S.A.* 100, pp. 4927–4932. doi: 10.1073/pnas.0730845100
- 269. Ryu, C.-M., Murphy, J. F., Mysore, K. S., Kloepper, J. W. (2004b): Plant growth-promoting rhizobacteria systemically protect Arabidopsis thaliana against Cucumber mosaic virus by a salicylic acid and NPR1-independent and jasmonic acid-dependent signaling pathway. *Plant Journal* 39(3), *pp.* 381-392. doi: 10.1111/j.1365-313X.2004.02142.x.

- 270. SANTE/11312/2021 (Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticide Residues Analysis) https://food.ec.europa.eu/system/files/2023-11/pesticides_mrl_guidelines_wrkdoc_2021-11312.pdf
- 271. Saunders, P. J. W., Doodson, J. K., (1970): Periodic fluctuations in mildew intensity in cereal cultivar trials. *Trans. Brit. Mycol. Soc.* 55, *pp.* 318–321. doi: 10.1016/S0007-1536(70)80019-5.
- 272. Savary, S., Willocquet, L., Pethybridge, S.J., Esker, P., McRoberts, N., Nelson, A. (2019): The global burden of pathogens and pests on major food crops. *Nat. Ecol. Evol.* 3, *pp.* 430–439. doi: 10.1038/s41559-018-0793-y.
- 273. Scala, A., Allmann, S., Mirabella, R., Haring, M. A., Schuurink, R. C. (2013): Green leaf volatiles: a plant's multifunctional weapon against herbivores and pathogens. *International Journal of Molecular Sciences* 14(9), pp. 17781-17811. doi: 0.3390/ijms140917781
- 274. Schellenbaum, L., Berta, G., Ravolanirina, F., Tisserant, B., Gianinazzi, S., Fitter, A. H. (1991): Influence of endomycorrhizal infection on root morphology in a micropropagated woody plant species (*Vitis vinifera* 1.). *Biol. J. Linne Soc.* 68(2), *pp.* 135–141. doi: 10.1093/oxfordjournals.aob.a088231
- 275. Schenkel, D., Lemfack, M. C., Piechulla, B., Splivallo, R. (2015): A meta-analysis approach for assessing the diversity and specificity of belowground root and microbial volatiles. *Front. Plant Sci.* 6. doi: 10.3389/fpls.2015.00707
- 276. Schenkel, D., Maciá-Vicente, J. G., Bissell, A., Splivallo, R. (2018): Fungi indirectly affect plant root architecture by modulating soil volatile organic compounds. *Front. Microbiol.* 9. doi: 10.3389/fmicb.2018.01847
- 277. Schindler, F., Seipenbusch, R. (1990): Fungal flavour by fermentation. *Food Biotechnol.* 4, *pp.* 77–85. doi: 10.1080/08905439009549724.
- 278. Schmidt, R., Cordovez, V., De Boer, W., Raaijmakers, J., Garbeva, P. (2015): Volatile affairs in microbial interactions. *ISME J.* 9, pp. 2329–2335. doi: 10.1038/ismej.2015.42
- 279. Schuh, G., Heiden, A. C., Hoffmann, T., Kahl, J., Rockel, P., Rudolph, J., Wildt, J. (1997): Emissions of Volatile Organic Compounds from Sunflower and Beech: Dependence on Temperature and Light Intensity. *Journal of Atmospheric Chemistry* 27(3), pp. 291–318. doi: 10.1023/A:1005850710257
- 280. Schulz, S., Dickschat, J. S. (2007): Bacterial volatiles: the smell of small organisms. *Nat. Prod. Rep.* 24, *pp.* 814–842. doi: 10.1039/b507392h
- 281. Schulz-Bohm, G. K. S., Hundscheid, M., Melenhorst, J., De Boer, W., Garbeva, P. (2017): Calling from distance: attraction of soil bacteria by plant root volatiles. *ISME J* 12(5), *pp.* 1252–1262. doi: 10.1038/s41396-017-0035-3
- 282. Sharifi, R., Jeon, J. S., Ryu, C. M. (2022): Belowground plant–microbe communications via volatile compounds. *J. Exp. Bot.* 73(2), *pp.* 463–486. doi: 10.1093/jxb/erab465
- 283. Sharkey, T. D., Yeh, S. (2001): Isoprene Emission from Plants. Annual Review of Plant Physiology and Plant Molecular Biology, *Annual Reviews* 52, pp. 407–436. doi: 10.1146/annurev.arplant.52.1.407
- 284. Sharkey, T. D., Chen, X., Yeh, S. (2001): Isoprene Increases Thermotolerance of Fosmidomycin-Fed Leaves. *Plant Physiology* 125(4), *pp.* 2001–2006. doi: 10.1104/pp.125.4.2001
- 285. Sharkey, T. D., Wiberley, A. E., Donohue, A. R. (2008): Isoprene emission from plants: why and how. *Annals of Botany* 101(1), *pp.* 5-18. doi: 10.1093/aob/mcm240.
- 286. Shen, S., Sha, Y., Deng, C., Zhang, X., Fu, D., Chen, J. (2004): Quality assessment of *Flos Chrysanthemi Indici* from different growing areas in China by solid-phase microextractiongas chromatography-mass spectrometry. *J. Chromatogr. A.* 1047, *pp.* 281–287. doi: 10.1016/j.chroma.2004.06.129


- 287. Sheoran, N., Nadakkakath, A. V., Munjal, V., Kundu, A., Subaharan, K., Venugopal, V., et al. (2015): Genetic analysis of plant endophytic *Pseudomonas putida* BP25 and chemoprofiling of its antimicrobial volatile organic compounds. *Microbiol. Res.* 173, pp. 66–78. doi: 10.1016/j.micres.2015.02.001
- 288. Shualev, V., Silverman, P., Raskin, I. (1997): Airborne signaling by methyl salicylate in plant pathogen resistance. *Nature* 385(6618), *pp.* 718–721. doi: 10.1038/386738a0
- 289. Simas, D. L. R., Silésia, H. B. M., de Amorim, F. R. V., Goulart, C. S., Alviano, D. S., Alviano, A. J. R., et al. (2017): Citrus species essential oils and their components can inhibit or stimulate fungal growth in fruit. *Industrial Crops and Products* 98, pp. 108–115. doi: 10.1016/j.indcrop.2017.01.026
- 290. Sinha, R. N., Tuma, D., Abramson, D., Muir, W. E. (1988): Fungal volatiles associated with moldy grain in ventilated and non-ventilated bin-stored wheat. *Mycopathol* 101, *pp.* 53–60. doi: 10.1007/BF00455669.
- 291. Song, G. C., Choi, H. K., Ryu, C. M. (2017): Gaseous 3-pentanol primes plant immunity against a bacterial speck pathogen, *Pseudomonas syringae* pv. tomato via salicylic acid and jasmonic acid-dependent signaling pathways in *Arabidopsis*. *Frontiers in Plant Science* 8, *pp*. 1807. doi: 10.3389/fpls.2015.00821.
- 292. Spinelli, F., Cellini, A., Marchetti, L., Nagesh, K. M., Piovene, C. (2011): Emission and function of volatile organic compounds in response to abiotic stress. In: Eds. Shanker, A. K., Venkateswarlu, B., Abiotic Stress in Plants Mechanisms and Adaptations. *InTech, Croatia: Rijeka, pp.* 367–394. doi: 10.5772/24155.
- 293. Spitzer, M., Wildenhain, J., Rappsilber, J., Tyers, M., (2014): BoxPlotR: a web tool for generation of box plots. *Nat. Methods* 11, *pp.* 121–122. doi: 10.1038/nmeth.2811.
- 294. Splivallo, R., Novero, M., Bertea, C. M., Bossi, S., Bonfante, P. (2007): Truffle volatiles inhibit growth and induce an oxidative burst in *Arabidopsis thaliana*. *New Phytol.* 175, *pp.* 417–424. doi: 10.1111/j.14698137.2007.02141.x
- 295. Stevens, M. M., Wood, R. M., Mo, J. (2019): Monitoring flight activity of *Cryptolestes ferrugineus* (Coleoptera: Laemophloeidae) in outdoor environments using a commercial pheromone lure and the kairomone 1-octen-3-ol. *J. Stored Prod. Res.* 83, *pp.* 227–235. doi: 10.1016/j.jspr.2019.07.005.
- 296. Suinyuy, T. N., Donaldson, J. S., Johnson, S. S., (2013): Variation in the chemical composition of cone volatiles within the African cycad genus Encephalartos. Phytochemistry 85, pp. 82–91. doi: 10.1016/j.phytochem.2012.09.016.
- 297. Sun, X. G., Bonfante, P., Tang, M. (2015): Effect of volatiles versus exudates released by germinating spores of *Gigaspora margarita* on lateral root formation. *Plant Physiol. Biochem.* 97, pp. 1–10. doi: 10.1016/j.plaphy.2015.09.010
- 298. Sun, X. G., Tang, M. (2013): Effect of arbuscular mycorrhizal fungi inoculation on root traits and root volatile organic compound emissions of sorghum bicolor. *South Afr. J. Bot.* 88, *pp.* 373–379. doi: 10.1016/j.sajb.2013.09.007
- 299. Tabata, J., De Moraes, C.M., Mescher, M.C., (2011): Olfactory cues from plants infected by powdery mildew guide foraging by a mycophagous ladybird beetle. *PLoS ONE* 6, e23799. doi: 10.1371/journal.pone.0023799.
- 300. Terra, W. C., Campos, V. P., Martins, S. J., Costa, L. S. A. S., da Silva, J. C. P., Barros, A. F., et al. (2018): Volatile organic molecules from *Fusarium oxysporum* strain 21 with nematicidal activity against *Meloidogyne incognita*. *Crop Prot.* 106, *pp.* 125–131. doi: 10.1016/j.cropro.2017.12.022
- 301. Tholl, D., Boland, W., Hansel, A., Loreto, F., Röse, U. S. R., Schnitzler, J. P. (2006): Practical approaches to plant volatile analysis. *Plant J.* 45, *pp.* 540–560. doi: 10.1111/j.1365-313X.2005.02612.x
- 302. Tholl, D., Hossain, O., Weinhold, A., Röse, U. S. R., Wei, Q. (2021): Trends and applications in plant volatile sampling and analysis. *Plant J.* 106, *pp.* 314–325. doi: 10.1111/tpj.15176

- 303. Thompson, A. M. (1992): The Oxidizing Capacity of the Earth's Atmosphere: Probable Past and Future Changes. *Science* 256(5060), *pp.* 1157–1164.
- 304. Thorn, R. M. S., Greenman, J. (2012): Microbial volatile compounds in health and disease conditions. *J. Breath Res.* 6, pp. 24001. doi: 10.1088/1752-7155/6/2/024001
- 305. Timmusk, S., El-Daim, I. A. A., Copolovici, L., Tanilas, T., Kännaste, A., Behers, L., et al. (2014): Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. *PLOS ONE* 9, e96086. doi: 10.1371/journal.pone.0096086.
- 306. Tischner, T., Kőszegi, B., Veisz, O. (1997): Climatic programmes used in the Martonvásár phytotron most frequently in recent years. *Acta Agron. Hung.* 45, *pp.* 85–104.
- 307. Tomova, B. S., Waterhouse, J. S., Doberski, J. (2005): The effect of fractionated Tagetes oil volatiles on aphid reproduction. *Entomol. Exp. Appl.*, pp. 115, 153–159.
- 308. Tompkins, D. K., Wright, A. T., Fowler, D. B. (1992): Foliar disease development in no-till winter wheat: influence of agronomic practices on powdery mildew development. *Can. J. Plant Sci.* 72, pp. 965–972. doi: 10.4141/cjps92-121.
- 309. Tuma, D., Sinha, R. N., Muir, W. E., Abramson, D. (1989): Odor volatiles associated with microflora in damp ventilated and non-ventilated bin-stored bulk wheat. *Int. J. Food Microbiol.* 8, pp. 103–119. doi: 10.1016/0168-1605(89)90065-2.
- 310. Turlings, T. C., Erb, M. (2018): Tritrophic interactions mediated by herbivore-induced plant volatiles: mechanisms, ecological relevance, and application potential. *Annual Review of Entomology* 63, pp. 433-452. doi: 10.1146/annurev-ento-020117-043507
- 311. Turlings, T. C., Loughrin, J. H., McCall, P. J., Röse, P. J., Lewis, P. J., Tumlinson, J. H. (1995): How caterpillar-damaged plants protect themselves by attracting. *Proc. Natl. Acad. Sci. U. S. A* 92, no. May, pp. 4169–4174, 1995.
- 312. Tyagi, S., Mulla, S. I., Lee, K. J., Chae, J. C., Shukla, P. (2018): VOCs-mediated hormonal signaling and crosstalk with plant growth promoting microbes. *Crit. Rev. Biotechnol.* 38(8), pp. 1277–1296. doi: 10.1080/07388551.2018.1472551
- 313. van Dam, N. M., Weinhold, A., Garbeva, P. (2016): "Calling in the dark: The role of volatiles for communication in the rhizosphere,": *Deciphering chemical language of plant communication*. Eds. Blande, J. D., Glinwood, R. (Cham: Springer International Publishing), *pp.* 175–210.
- 314. Van Der Heijden, M. G. A., Martin, F., Selosse, M. A., Sanders, I. R. (2015): Mycorrhizal ecology and evolution: the past, the present, and the future. *New Phytol.* 205, *pp.* 1406–1423. doi: 10.1111/nph.13288
- 315. van Doan, C., Züst, T., Maurer, C., Zhang, X., Machado, R. A. R., Mateo, P., et al. (2021): Herbivore-induced plant volatiles mediate defense regulation in maize leaves but not in maize roots. *Plant Cell Environ.* 44(8), *pp.* 2672–2686. doi: 10.1111/pce.14052
- 316. Van Lancker, F., Adams, A., Delmulle, B., De Saeger, S., Moretti, A., Van Peteghem, C., De Kimpe, N. (2008): Use of headspace SPME-GC-MS for the analysis of the volatiles produced by indoor molds grown on different substrates. *J. Environ. Monit.* 10, *pp.* 1127–1133. doi: 10.1039/b808608g.
- 317. Velásquez, A., Valenzuela, M., Carvajal, M., Fiaschi, G., Avio, L., Giovannetti, M., et al. (2020b): The arbuscular mycorrhizal fungus *Funneliformis mosseae* induces changes and increases the concentration of volatile organic compounds in *Vitis vinifera* cv. sangiovese leaf tissue. *Plant Physiol. Biochem.* 155, pp. 437–443. doi: 10.1016/j.plaphy.2020.06.048
- 318. Velásquez, A., Vega-Celedón, P., Fiaschi, G., Agnolucci, M., Avio, L., Giovannetti, M., et al. (2020a): Responses of *Vitis vinifera* cv. Cabernet sauvignon roots to the arbuscular mycorrhizal fungus *Funneliformis mosseae* and the plant growth-promoting rhizobacterium *Ensifer meliloti* include changes in volatile organic compounds. *Mycorrhiza* 30(1), pp. 161–170. doi: 10.1007/s00572-020-00933-3


- 319. Vickers, C. E., Gershenzon, J., Lerdau, M. T., Loreto, F. (2009): A unified mechanism of action for volatile isoprenoids in plant abiotic stress. *Nature Chemical Biology*, 5(5), *pp.* 283-291.
- 320. Gershenzon, J., Dudareva, N. (2007): The function of terpene natural products in the natural world. *Nature Chemical Biology* 3(7), *pp.* 408-414.
- 321. Vida, G., Szunics, L., Gál, M., Veisz, O., Bedő, Z. (2002.) Comparison of two wheat powdery mildew differential sets in seedling tests. *Plant Protect. Sci.* 38(Special Issue 2), *pp.* 417–420. doi: 10.17221/10510-PPS.
- 322. Volpe, V., Chitarra, W., Cascone, P., Volpe, M. G., Bartolini, P., Moneti, G., et al. (2018): The association with two different arbuscular mycorrhizal fungi differently affects water stress tolerance in tomato. *Front. Plant Sci.* 9. doi: 10.3389/fpls.2018.01480
- 323. Vuts, J., Konczor, S., Imrei, Z., Jósvai, J. K., Lohonyai, Z., Molnár, B. P., Kárpáti, Z., Szocs, G., Tóth, M. (2018): Módszerek a kémiai ökológiában. *Növényvédelem* 79 (54)(3), *pp.* 89–109.
- 324. Weir, T. L., Park, S. W., Vivanco, J. M. (2004): Biochemical and physiological mechanisms mediated by allelochemicals. *Current Opinion in Plant Biology* 7(4), pp. 472-479.
- 325. Weisskopf, L. (2013): "The potential of bacterial volatiles for crop protection against phytophathogenic fungi," in Microbial pathogens and strategies for combating them: *Science, technology and education*. Ed. Méndez-Vilas, A. (Badajoz: Formatex Research Center), *pp.* 1352–1363.
- 326. Wenda-Piesik, A. (2011): Volatile organic compound emissions by winter wheat plants (*Triticum aestivum L.*) under *Fusarium* spp. infestation and various abiotic conditions. *Pol. J. Environ. Stud.* 20, pp. 1335–1342.
- 327. Wenda-Piesik, A., Piesik, D., Ligor, T., Buszewski, B. (2010): Volatile organic compounds (VOCs) from cereal plants infested with crown rot: their identity and their capacity for inducing production of VOCs in uninfested plants. *Int. J. Pest Management* 56, *pp.* 377–383. doi: 10.1080/09670874.2010.505668.
- 328. Werner, S., Andrea, P., Nicole, B. (2016): Belowground communication: impacts of volatile organic compounds (VOCs) from soil fungi on other soil-inhabiting organisms. *Appl. Microbiol. Biotechnol.* 100(20). doi: 10.1007/s00253-016-7792-1
- 329. Wickham, H. (2007): Reshaping Data with the reshape Package. *J. Stat. Softw.* 21, *pp.* 1–20. doi: 10.18637/jss.v021.i12.
- 330. Wu, S.-Y., Duncan, L. W. (2020) Recruitment of an insect and its nematode natural enemy by olfactory cues from a saprophytic fungus. *Soil Biol. Biochem.* 144, *pp.* 107781. doi: 10.1016/j.soilbio.2020.107781.
- 331. Wurzenberger, M., Grosch, W. (1984): The formation of 1-octen-3-ol from the 10-hydroperoxide isomer of linoleic acid by a hydroperoxide lyase in mushrooms (*Psalliota bispora*). *Biochim. Biophys. Acta* 794, pp. 25–30. doi: 10.1016/0005-2760(84)90293-5.
- 332. Xie, X., Ling, J., Mao, Z., Li, Y., Zhao, J., Yang, Y., et al. (2022): Negative regulation of root-knot nematode parasitic behavior by root-derived volatiles of wild relatives of *Cucumis metuliferus* CM3. *Horticulture Res.* 9, uhac051. doi: 10.1093/hr/uhac051
- 333. Xu, Y., Tong, Z., Zhang, X., Zhang, X., Luo, Z., Shao, W., et al. (2021): Plant volatile organic compound (E)-2-hexenal facilitates *Botrytis cinerea* infection of fruits by inducing sulfate assimilation. *New Phytol.* 231, pp. 432–446. doi: 10.1111/nph.17378
- 334. Yarwood, C. E. (1943): Association of thrips with powdery mildews. *Mycologia* 35, *pp.* 189–191. doi: 10.1080/00275514.1943.12017475.
- 335. Yerushalmy, J. (1947): Statistical problems in assessing methods of medical diagnosis, with special reference to X-ray techniques. *Public Health Rep.* 62, *pp.* 1432–1449. doi: 10.2307/4586294.
- 336. Zadoks, J. C., Chang, T. T., Konzak, C. F. (1974): A decimal code for the growth stages of cereals. *Weed Res.* 14, *pp.* 415–421. doi: 10.1111/j.1365-3180.1974.tb01084.x.

- 337. Zawirska-Wojtasiak, R. (2004): Optical purity of (R)-(-)-1-octen-3-ol in the aroma of various species of edible mushrooms. *Food Chem.* 86, *pp.* 113–118. doi: 10.1016/j.foodchem.2003.08.016.
- 338. Zeng, F.-S., Menardo, F., Xue, M.-F., Zhang, X.-J., Gong, S.-J., Yang, L.-J., Shi, W.-Q., Yu, D.-Z. (2017): Transcriptome analyses shed new insights into primary metabolism and regulation of *Blumeria graminis* f. sp. *tritici* during conidiation. *Front. Plant Sci.* 8, *pp.* 1146. doi: 10.3389/fpls.2017.01146
- 339. Zhang, J., Zhi, J.-R., Yang, G.-M. (2015): Behavioral responses of *Frankliniella occidentalis* to kidney bean plants and their volatiles under different treatments. *Chinese J. Ecol.* 34, *pp.* 425–430.
- 340. Zhang, Q., Gao, X., Ren, Y., Ding, X., Qiu, J., Li, N., et al. (2018): Improvement of *Verticillium* wilt resistance by applying arbuscular mycorrhizal fungi to a cotton variety with high symbiotic efficiency under field conditions. *Int. J. Mol. Sci.* 19(1), 241. doi: 10.3390/ijms19010241
- 341. Zhang, W., Yu, L., Han, B., Liu, K., Shao, X. (2022): Mycorrhizal inoculation enhances nutrient absorption and induces insect-resistant defense of *Elymus nutans*. *Front. Plant Sci.* 13, doi: 10.3389/fpls.2022.898969
- 342. Zhao, G., Yin, G., Inamdar, A.A., Luo, J., Zhang, N., Yang, I., Buckley, B., Bennett, J.W. (2017): Volatile organic compounds emitted by filamentous fungi isolated from flooded homes after Hurricane Sandy show toxicity in a *Drosophila* bioassay. *Indoor Air* 27, *pp.* 518–528. doi: 10.1111/ina.12350.

9.2 Figure S1 KEGG pathway map of terpenoid biosynthesis

9.3 Figure S2 KEGG pathway map of phenylpropanoid biosynthesis

PHENYLPROPANOID BIOSYNTHESIS

9.4 Table S1 Chemical compounds of plant root VOCs, collected in cited literature published between 2016-2022

		Chemical con	pound	s of plant root VOCs, co	llected d	uring 2016-	2022 yy.
Plant	Functional groups	VOC compounds	Molecular Formula	InChIKey	CAS	Properties	References
Barley	groups	(2E)-hex-2-enal			6728-26-3	not given	Delory et al., 2016a
Barley		(2E,6Z)-nona-2,6-dienal	C ₆ H ₁₀ O C9H14O	MBDOYVRWFFCFHM-SNAWJCMRSA-N HZYHMHHBBBSGHB-ODYTWBPASA-N	557-48-2	not given	Delory et al., 2016a
Barley		(E)-non-2-enal	C9H16O	BSAIUMLZVGUGKX-BQYQJAHWSA-N	18829-56-6	not given	Delory et al., 2016a
Cucumber line Xintaimici		2,6-Octadienal, 3,7-	C10H16O	WTEVQBCEXWBHNA-JXMROGBWSA-N	141-27-5	not given	Xie at al., 2022
Cucumber line Xintaimici		dimethyl-, (E)- 1-Cyclohexene-1-	C10H14O	RUMOYJJNUMEFDD-UHFFFAOYSA-N	2111-75-3	not given	Xie at al., 2022
		carboxaldehyde, 4-(1-					
Arabidopsis thaliana		Furfural	C5H4O2	HYBBIBNJHNGZAN-UHFFFAOYSA-N	98-01-1	not given	Schenkel et al., 2018
Arabidopsis thaliana		5-methyl-2- furancarboxaldehyde	C6H6O2	OUDFNZMQXZILJD-UHFFFAOYSA-N	620-02-0	not given	Schenkel et al., 2018
Arabidopsis thaliana		Octanal	C8H16O	NUJGJRNETVAIRJ-UHFFFAOYSA-N	124-13-0	not given	Schenkel et al., 2018
Arabidopsis thaliana, Cucumber line Xintaimici,		Nonanal	C9H18O	GYHFUZHODSMOHU-UHFFFAOYSA-N	124-19-6	not given	Schenkel et al., 2018; Xie et al., 2022
Arabidopsis thaliana, Cucumber line Xintaimici,		Decanal	C10H20O	KSMVZQYAVGTKIV-UHFFFAOYSA-N	112-31-2	not given	Schenkel et al., 2018; Gulati et al., 2020; Xie et al., 2022
Arabidopsis thaliana		Benzaldehyde	C7H6O	HUMNYLRZRPPJDN-UHFFFAOYSA-N	100-52-7	not given	Schenkel et al., 2018
Arabidopsis thaliana		Benzeneactealdehyde	C8H8O	DTUQWGWMVIHBKE-UHFFFAOYSA-N	122-78-1	not given	Schenkel et al., 2018
Cucumis metuliferus CM3		Butanal, 3-methyl-	C5H10O	YGHRJJRRZDOVPD-UHFFFAOYSA-N	590-86-3	not given	Xie at al., 2022
Cucumis metuliferus CM3		2-Isopropylidene-3-	C10H14O	NIEPGDUXTWPJLS-RMKNXTFCSA-N	1000191-76-5	not given	Xie at al., 2022
Cucumber line Xintaimici,		methylhexa-3,5-dienal Pentadecanal-	C15H30O	XGQJZNCFDLXSIJ-UHFFFAOYSA-N	2765-11-9	not given	Xie at al., 2022
Cucumis metuliferus CM3							
Cucumber line Xintaimici, Cucumis metuliferus CM3		Hexadecanal	C16H32O	NIOYUNMRJMEDGI-UHFFFAOYSA-N	629-80-1	not given	Xie at al., 2022
Cucumber line Xintaimici, Cucumis metuliferus CM3		cis,cis-7,10,- Hexadecadienal	C16H28O	WIWVOAOSGQCJSL-HZJYTTRNSA-N	56829-23-3	not given	Xie at al., 2022
Cucumber line Xintaimici, Cucumis metuliferus CM3		cis-9-Hexadecenal	C16H30O	QFPVVMKZTVQDTL-FPLPWBNLSA-N	56219-04-6	not given	Xie at al., 2022
Cucumber line Xintaimici, Cucumis metuliferus CM3		Heptadecanal	C17H34O	PIYDVAYKYBWPPY-UHFFFAOYSA-N	1000376-70-0	not given	Xie at al., 2022
Cucumber line Xintaimici, Cucumis metuliferus CM3		2-Dodecenal, (E)-	C12H22O	SSNZFFBDIMUILS-ZHACJKMWSA-N	20407-84-5	not given	Xie at al., 2022
Cucumber line Xintaimici,	Aldehydes	Tridecanal	C13H26O	BGEHHAVMRVXCGR-UHFFFAOYSA-N	10486-19-8	not given	Xie at al., 2022
Cucumis metuliferus CM3 Cucumber line Xintaimici,		(E)-Tetradec-2-enal	C14H26O	WHOZNOZYMBRCBL-OUKQBFOZSA-N	51534-36-2	not given	Xie at al., 2022
Cucumis metuliferus CM3 Cucumber line Xintaimici,		Tetradecanal	C14H28O	UHUFTBALEZWWIH-UHFFFAOYSA-N	124-25-4	not given	Xie at al., 2022
Cucumis metuliferus CM3 Cucumber line Xintaimici,		2-Tridecenal, (E)-	C13H24O	VMUNAKQXJLHODT-VAWYXSNFSA-N	7069-41-2	not given	Xie at al., 2022
Cucumis metuliferus CM3 Cucumber line Xintaimici,		Dodecanal	C12H24O	HFJRKMMYBMWEAD-UHFFFAOYSA-N	112-54-9	not given	Xie at al., 2022
Cucumis metuliferus CM3 Cucumber line Xintaimici.		2-Undecenal	C11H20O	PANBRUWVURLWGY-MDZDMXLPSA-N	2463-77-6	not given	Xie at al., 2022
Cucumis metuliferus CM3 Cucumber line Xintaimici.		Undecanal	C11H22O		112-44-7	not given	Xie at al., 2022
Cucumis metuliferus CM3						_	
Cucumber line Xintaimici, Cucumis metuliferus CM3		Formamide, N,N-dibutyl-	C9H19NO	NZMAJUHVSZBJHL-UHFFFAOYSA-N	761-65-9	not given	Xie at al., 2022
Cucumber line Xintaimici, Cucumis metuliferus CM3		Benzaldehyde, 4-methoxy-	C8H8O2	ZRSNZINYAWTAHE-UHFFFAOYSA-N	123-11-5	not given	Xie at al., 2022
Cucumber line Xintaimici, Cucumis metuliferus CM3		2,6-Nonadienal, (E,Z)-	C9H14O	HZYHMHHBBBSGHB-ODYTWBPASA-N	557-48-2	not given	Xie at al., 2022
Cucumber line Xintaimici, Cucumis metuliferus CM3		6-Nonenal, (Z)-	C9H16O	RTNPCOBSXBGDMO-ARJAWSKDSA-N	2277-19-2	not given	Xie at al., 2022
Cucumber line Xintaimici, Cucumis metuliferus CM3		2,4-Heptadienal, (E,E)-	C7H10O	SATICYYAWWYRAM-VNKDHWASSA-N	4313-03-5	not given	Xie at al., 2022
Cucumber line Xintaimici,		Benzaldehyde	C7H6O	HUMNYLRZRPPJDN-UHFFFAOYSA-N	100-52-7	not given	Xie at al., 2022; Schenkel et al., 2018; Lackus et al., 2018
Cucumis metuliferus CM3; Cucumber line Xintaimici,		Heptanal	C7H14O	FXHGMKSSBGDXIY-UHFFFAOYSA-N	111-71-7	not given	Xie at al., 2022
Cucumis metuliferus CM3 Cucumber line Xintaimici,		2-Hexenal, (E)-	C6H10O	MBDOYVRWFFCFHM-SNAWJCMRSA-N	6728-26-3	not given	Xie at al., 2022
Cucumis metuliferus CM3 Cucumber line Xintaimici,		2-Hexenal	C6H10O	MBDOYVRWFFCFHM-UHFFFAOYSA-N	505-57-7	not given	Xie at al., 2022
Cucumis metuliferus CM3 Cucumber line Xintaimici,		Hexanal	C6H12O	JARKCYVAAOWBJS-UHFFFAOYSA-N	66-25-1	not given	Delory et al., 2016a; Xie at al., 2022
Cucumis metuliferus CM3 Cucumber line Xintaimici,		2-Pentenal, (E)-	C5H8O	DTCCTIQRPGSLPT-ONEGZZNKSA-N	1576-87-0	not given	Xie at al., 2022
Cucumis metuliferus CM3 Cucumber line Xintaimici,		Pentanal	C5H10O	HGBOYTHUEUWSSQ-UHFFFAOYSA-N	110-62-3	not given	Xie at al., 2022
Cucumis metuliferus CM3						-	
Cucumber line Xintaimici, Cucumis metuliferus CM3		Acetaldehyde	C2H4O	IKHGUXGNUITLKF-UHFFFAOYSA-N	75-07-0	not given	Xie at al., 2022
Cucumber line Xintaimici,		Methacrolein	C4H6O	STNJBCKSHOAVAJ-UHFFFAOYSA-N	78-85-3	not given	Xie at al., 2022

9.4 Table S1 continued Chemical compounds of plant root VOCs, collected in cited literature published between 2016-2022

published be			pound	s of plant root VOCs, col	lected d	uring 2016-	2022 vv.
	Functional		Molecular				
Plant	groups	VOC compounds	Formula	InChIKey	CAS	Properties	References
Cucumis metuliferus CM3		2(3H)-Benzofuranone, 3a,4,5,7a-tetrahydro-3a,6-	C10H14O2	NQWBFQXRASPNLB-UHFFFAOYSA-N	33722-72-4	not given	Xie at al., 2022
Cucumis metuliferus CM3			C18H36O	WHWDWIHXSPCOKZ-UHFFFAOYSA-N	502-69-2	not given	Xie at al., 2022
Cucumber line Xintaimici, Cucumis metuliferus CM3		transbetaIonone	C13H20O	PSQYTAPXSHCGMF-BQYQJAHWSA-N	79-77-6	not given	Xie at al., 2022
Cucumber line Xintaimici, Cucumis metuliferus CM3		2,5-Cyclohexadiene-1,4- dione, 2,6-bis(1,1-	C14H20O2	RDQSIADLBQFVMY-UHFFFAOYSA-N	719-22-2	not given	Xie at al., 2022
Cucumber line Xintaimici,		5,9-Undecadien-2-one, 6,10-dimethyl-, (Z)-	C13H22O	HNZUNIKWNYHEJJ-XFXZXTDPSA-N	3879-26-3	not given	Xie at al., 2022
Cucumis metuliferus CM3 Cucumber line Xintaimici,	Ketones	Ethanone, 1-(4-hydroxy-	C10H12O4	OJOBTAOGJIWAGB-UHFFFAOYSA-N	2478-38-8	not given	Xie at al., 2022
Cucumis metuliferus CM3 Cucumber line Xintaimici,		3,5-dimethoxyphenyl)- (R,S)-5-Ethyl-6-methyl-	C10H18O	BCYUENXUQILNAA-VOTSOKGWSA-N	57283-79-1	not given	Xie at al., 2022
Cucumis metuliferus CM3 Cucumber line Xintaimici,		3E-hepten-2-one 3,5-Octadien-2-one	C8H12O	LWRKMRFJEUFXIB-UHFFFAOYSA-N	38284-27-4	not given	Xie at al., 2022
Cucumis metuliferus CM3 Cucumber line Xintaimici,		1-Penten-3-one	C5H8O		1629-58-9	not given	Xie at al., 2022
Cucumis metuliferus CM3				JLIDVCMBCGBIEY-UHFFFAOYSA-N		_	
Arabidopsis thaliana; pepper		camphor	C10H16O	DSSYKIVIOFKYAU-UHFFFAOYSA-N	21368-68-3	not given	Schenkel et al., 2018; Kihika et al., 2017
Arabidopsis thaliana		2-ethylhexan-1-ol	C8H18O	YIWUKEYIRIRTPP-UHFFFAOYSA-N	104-76-7	not given	Schenkel et al., 2018
Cucumis metuliferus CM3		2-Propanol, 1,1,1-trichloro-	СЗН5СІЗО	HCMBPASAOZIEDZ-UHFFFAOYSA-N	76-00-6	not given	Xie at al., 2022
Cucumis metuliferus CM3		2-Penten-1-ol, (Z)-	C5H10O	BTSIZIIPFNVMHF-ARJAWSKDSA-N	1576-95-0	attract and kill M. inc	Xie at al., 2022
Cucumis metuliferus CM3		hexan-1-ol	C6H14O	ZSIAUFGUXNUGDI-UHFFFAOYSA-N	111-27-3	not given	Xie at al., 2022
Cucumber line Xintaimici; poplar		Benzyl alcohol	C7H8O	WVDDGKGOMKODPV-UHFFFAOYSA-N	100-51-6	not given	Xie at al., 2022; Lackus et al., 2018
Cucumber line Xintaimici		Bicyclo[3.1.1]hept-2-ene- 2-methanol, 6,6-dimethyl-	C10H16O	RXBQNMWIQKOSCS-UHFFFAOYSA-N	515-00-4	not given	Xie at al., 2022
Cucumber line Xintaimici			C10H16O	LCYXQUIDODZYIJ-HACHORDNSA-N	547-61-5	not given	Xie at al., 2022
Cucumber line Xintaimici		4,8-Decadien-3-ol, 5,9-	C12H22O		67845-54-9	not given	Xie at al., 2022
Cucumber line Xintaimici		dimethyl- 2-Octyn-1-ol	C8H14O	PQUSMVMWVMGVGN-UHFFFAOYSA-N	20739-58-6	not given	Xie at al., 2022
Cucumber line Xintaimici		Bicyclo[2.2.1]heptane-2,5-	C10H18O2	TTWYFVOMGMBZCF-UHFFFAOYSA-N HLVIHBJQDKVEAL-LCFZEIEZSA-N	10359-41-8	not given	Xie at al., 2022
Cucumber line Xintaimici		diol, 1,7,7-trimethyl-, (2- Bicyclo[2.1.1]hexan-2-ol,	C8H12O	Vaccination of the second of t	1000221-37-2	not given	Xie at al., 2022
Cucumber line Xintaimici		2-ethenyl- endo-Borneol	C10H18O	YSGFFYIGUOYNID-UHFFFAOYSA-N	507-70-0	not given	Xie at al., 2022
Cucumber line Xintaimici		Cyclohexanol, 2,2-	C8H16O	DTGKSKDOIYIVQL-CCNFQMFXSA-N	1193-46-0	not given	Xie at al., 2022
Cucumber line Xintaimici	Alcohols	dimethyl- 11-Tridecyn-1-ol	C13H24O	BYBYZPFVXFPCND-UHFFFAOYSA-N	33925-75-6	not given	Xie at al., 2022
Cucumber line Xintaimici,		2-Pentadecyn-1-ol	C15H28O	QBYUWRZJJAYBJR-UHFFFAOYSA-N	2834-00-6	not given	Xie at al., 2022
Cucumis metuliferus CM3 Cucumber line Xintaimici,		p-Mentha-1(7),8(10)-dien-	C10H16O	PFHRFJSUAGQBFE-UHFFFAOYSA-N	29548-13-8	not given	Xie at al., 2022
Cucumis metuliferus CM3 Cucumber line Xintaimici,		9-ol Neral	C10H16O	SDDQNZKSVASSFO-UHFFFAOYSA-N	106-26-3	not given	Xie at al., 2022
Cucumis metuliferus CM3 Cucumber line Xintaimici,		alpha -Terpineol	C10H18O	WTEVQBCEXWBHNA-YFHOEESVSA-N	98-55-5	not given	Xie at al., 2022
Cucumis metuliferus CM3				WUOACPNHFRMFPN-SECBINFHSA-N			
Cucumber line Xintaimici, Cucumis metuliferus CM3			C10H16O	DHAPUKCAOFQTIT-UHFFFAOYSA-N	55373-76-7	not given	Xie at al., 2022
Cucumber line Xintaimici, Cucumis metuliferus CM3		1-Hexanol, 2-ethyl-	C8H18O	YIWUKEYIRIRTPP-UHFFFAOYSA-N	104-76-7	not given	Xie at al., 2022
Cucumber line Xintaimici, Cucumis metuliferus CM3		Eucalyptol	C10H18O	WEEGYLXZBRQIMU-UHFFFAOYSA-N	470-82-6	not given	Xie at al., 2022
Cucumber line Xintaimici, Cucumis metuliferus CM3		4-Ethylcyclohexanol	C8H16O	RVTKUJWGFBADIN-UHFFFAOYSA-N	4534-74-1	not given	Xie at al., 2022
Cucumber line Xintaimici, Cucumis metuliferus CM3		4-Penten-1-ol, 3-methyl-	C6H12O	VTCQTYOGWYLVES-UHFFFAOYSA-N	51174-44-8	not given	Xie at al., 2022
Cucumber line Xintaimici,		1-Butanol, 3-methyl-	C5H12O		123-51-3	not given	Xie at al., 2022
Cucumis metuliferus CM3 Cucumber line Xintaimici,		1-Penten-3-ol	C5H10O	PHTQWCKDNZKARW-UHFFFAOYSA-N	616-25-1	not given	Xie at al., 2022
Cucumis metuliferus CM3 Cucumber line Xintaimici,		4-Penten-1-ol	C5H10O	VHVMXWZXFBOANQ-UHFFFAOYSA-N	821-09-0	not given	Xie at al., 2022
Cucumis metuliferus CM3 Achillea collina		sterols	C17H28O	LQAVWYMTUMSFBE-UHFFFAOYSA-N FPXSXMFOYWRHDX-UHFFFAOYSA-N		not given	Kindlovits et al., 2018
Tomato		formic acid	CH2O2	BDAGIHXWWSANSR-UHFFFAOYSA-N	64-18-6	not given	Gulati et al., 2020
Arabidopsis thaliana		1-methyl ester		UQDUPQYQJKYHQI-UHFFFAOYSA-N	111-82-0	not given	Schenkel et al., 2018
Cucumber line Xintaimici,	Organic acid	dodecanoic acid Hexadecanoic acid,			112-39-0	not given	Xie at al., 2022
Cucumis metuliferus CM3		methyl ester	C17H34O2 FLIACVVOZYBSBS-UHFFFAOYSA-N 112			5	

9.4 Table S1 continued Chemical compounds of plant root VOCs, collected in cited literature published between 2016-2022

		Chemical con		s of plant root VOCs, col	llected d	luring 2016-	2022 yy.
Plant	Functional groups	VOC compounds	Molecular Formula	InChIKey	CAS	Properties	References
Cucumber line Xintaimici, Cucumis metuliferus CM3		1,2-Benzenedicarboxylic acid, bis(2-methylpropyl)	C16H22O4	MGWAVDBGNNKXQV-UHFFFAOYSA-N	84-69-5	not given	Xie at al., 2022
Cucumber line Xintaimici,		Propanoic acid, 2-methyl-,	C12H24O3	DAFHKNAQFPVRKR-UHFFFAOYSA-N	77-68-9	not given	Xie at al., 2022
Cucumis metuliferus CM3 Cucumber line Xintaimici,		3-hydroxy-2,2,4- 2,2,4-Trimethyl-1,3-	C16H30O4	OMVSWZDEEGIJI-UHFFFAOYSA-N	6846-50-0	not given	Xie at al., 2022
Cucumis metuliferus CM3 Cucumber line Xintaimici;		pentanediol diisobutyrate Methyl salicylate	C8H8O3	OSWPMRLSEDHDFF-UHFFFAOYSA-N	119-36-8	attract second-stage	Xie at al., 2022; Murungi et at., 2018; Kihika et al., 2017
pepper; tomato Cucumis metuliferus CM3		11-Dodecyn-1-ol acetate	C14H24O2	ANBOMSJGDBBKMR-UHFFFAOYSA-N	53596-78-4	larvae (J2) of M. undetected	Xie at al., 2022
-	Esters						
Carex arenaria		γ-capro	not given	not given	not given	attract benefit bacteria from bulk soil	Schulz-Bohm et al., 2017
Carex arenaria		γ-deca	not given	not given	not given		Schulz-Bohm et al., 2017
Carex arenaria		γ-nonalactone	C9H16O2	OALYTRUKMRCXNH-UHFFFAOYSA-N	104-61-0	1	Schulz-Bohm et al., 2017
Achillea collina		Neryl esters	C ₁₂ H ₂₀ O ₂	HIGQPQRQIQDZMP-FLIBITNWSA-N	141-12-8	not given	Kindlovits et al., 2018
Tomato		Benzothiazol	C7H5NS	IOJUPLGTWVMSFF-UHFFFAOYSA-N	95-16-9	antifungal activity	Gulati et al., 2020
Cucumber line Xintaimici,		Dibutyl phthalate	C16H22O4	DOIRQSBPFJWKBE-UHFFFAOYSA-N	84-74-2		Xie at al., 2022
Cucumis metuliferus CM3 Cucumis metuliferus CM3		Creosol	C8H10O2	PETRWTHZSKVLRE-UHFFFAOYSA-N	93-51-6	attract and kill M. ince	·
-							
Poplar	Aromatic	salicylaldehyde	C7H6O2	SMQUZDBALVYZAC-UHFFFAOYSA-N	90-02-8	play a role as a nemati	
Cucumber line Xintaimici	compounds	Benzene, 1-ethenyl-4- methoxy-	C9H10O	UAJRSHJHFRVGMG-UHFFFAOYSA-N	637-69-4	not given	Xie at al., 2022
Cucumis metuliferus CM3		Benzene, (methoxymethyl)-	C8H10O	GQKZBCPTCWJTAS-UHFFFAOYSA-N	538-86-3	repel M. incognita	Xie at al., 2022
Carex arenaria		(metnoxymetnyi)- Benzofuran	C8H6O	IANQTJSKSUMEQM-UHFFFAOYSA-N	25086-73-1	antifungal activity	Schulz-Bohm et al., 2017
Pepper		Thymol	C10H14O	MGSRCZKZVOBKFT-UHFFFAOYSA-N	89-83-8	repel root-knot, cyst,	Kihika et al., 2017
Centaurea stoebe; tomato		(E)-β-caryophyllene	C15H24	NPNUFJAVOOONJE-IOMPXFEGSA-N	87-44-5	and stubby root effect on the	Gfeller et al., 2019; Gulati et al., 2020
Centaurea stoebe; tomato		daucadiene	C15H24	CSLLMNDHZGLWRB-ZRNAQANOSA-N	not given	germination and growth of different	Gfeller et al., 2019; Gulati et al., 2020
					-	sympatric	
Centaurea stoebe; tomato		(E)-α-bergamotene	C15H24	YMBFCQPIMVLNIU-GRKKQISMSA-N	not given	neighbours	Gfeller et al., 2019; Gulati et al., 2020
Centaurea stoebe; tomato		humulene	C15H24	FAMPSKZZVDUYOS-HRGUGZIWSA-N	6753-98-6		Gfeller et al., 2019; Gulati et al., 2020
Centaurea stoebe; tomato		(E)-β-farnesene	C15H24	JSNRRGGBADWTMC-NTCAYCPXSA-N			Gfeller et al., 2019; Gulati et al., 2020
Centaurea stoebe; tomato		petasitene 1-3	C15H24	ZGKPBXWQOYDEMA-UHFFFAOYSA-N	443124-67-2		Gfeller et al., 2019; Gulati et al., 2020
Centaurea stoebe; tomato;		α-pinene	C10H16	GRWFGVWFFZKLTI-UHFFFAOYSA-N	80-56-8		Gfeller et al., 2019; Gulati et al., 2020; Murungi et at.,
spinach; pepper; poplar Centaurea stoebe; tomato		β-тугсепе	C10H16	UAHWPYUMFXYFJY-UHFFFAOYSA-N	123-35-3		2018; Lackus et al., 2018; Kihika et al., 2017 Gfeller et al., 2019; Gulati et al., 2020
Achillea collina		β-sesquiphellandrene	C15H24	PHWISBHSBNDZDX-YSSOQSIOSA-N	20307-83-9	not given	Kindlovits et al., 2018
				-		_	·
Achillea collina		albene	C12H18	HKLBEHRJWPWLOB-UHFFFAOYSA-N	38451-64-8	not given	Kindlovits et al., 2018
Achillea collina; poplar		β –pinene	C10H16	WTARULDDTDQWMU-UHFFFAOYSA-N	127-91-3	not given	Kindlovits et al., 2018; Lackus et al., 2018
Tomato; Pepper		p-cymene	C10H14	HFPZCAJZSCWRBC-UHFFFAOYSA-N	99-87-6	attract second-stage larvae (J2) of M.	Gulati et al., 2020; Kihika et al., 2017
Tomato		3-carene	C10H16	BQOFWKZOCNGFEC-DTWKUNHWSA-N	13466-78-9	not given	Gulati et al., 2020
Tomato		δ-3-carene	C10H16	BQOFWKZOCNGFEC-DTWKUNHWSA-N	13466-78-9	not given	Murungi et at., 2018
Tomato	Terpenes	Sabinene	C10H16	NDVASEGYNIMXJL-UHFFFAOYSA-N	3387-41-5	attract second-stage	Murungi et at., 2018
Tomato, spinach, poplar		Camphene	C10H16	CRPUJAZIXJMDBK-UHFFFAOYSA-N	79-92-5	larvae (J2) of M. not given	Murungi et at., 2018; Lackus et al., 2018
Tomato, spinach		Myrcene				not given	Murungi et at., 2018
-		-	C10H16	UAHWPYUMFXYFJY-UHFFFAOYSA-N	123-35-3		_
Tomato, spinach; pepper		β-ocimene	C10H16	IHPKGUQCSIINRJ-UHFFFAOYSA-N	13877-91-3	not given	Murungi et at., 2018; Kihika et al., 2017
Tomato, spinach		α-cedrene	C15H24	IRAQOCYXUMOFCW-YKURLNKLSA-N	11028-42-5	not given	Murungi et at., 2018
Tomato, spinach		β-cedrene	C15H24	DYLPEFGBWGEFBB-OSFYFWSMSA-N	546-28-1	not given	Murungi et at., 2018
Tomato, spinach; pepper		limonene	C10H16	XMGQYMWWDOXHJM-UHFFFAOYSA-N	138-86-3	attract second-stage	Murungi et at., 2018; Kihika et al., 2017
Cucumber line Xintaimici,		D-limonene	C10H16	XMGQYMWWDOXHJM-SNVBAGLBSA-N	5989-27-5	larvae (J2) of M. not given	Xie at al., 2022; Kihika et al., 2017;
Cucumis metuliferus CM3; Pepper		γ - Himachalene	C15H24	PUWNTRHCKNHSAT-UHFFFAOYSA-N	53111-25-4	not given	Kihika et al., 2017
			C15H24	ITYNGVSTWVVPIC-OOAQSJESSA-N			·
Pepper		Allo-aromadendrene		-	25246-27-9	not given	Kihika et al., 2017
Pepper		Alpha-Muurolene	C15H24	QMAYBMKBYCGXDH-ZNMIVQPWSA-N	31983-22-9	not given	Kihika et al., 2017
Pepper		4,5-Di-epi-aristolochene	C15H24	YONHOSLUBQJXPR-JHIQODARSA-N		not given	Kihika et al., 2017
Pepper		γ - Gurjunene	C15H24	DUYRYUZIBGFLDD-UHFFFAOYSA-N	22567-17-5	not given	Kihika et al., 2017
Poplar		1,8- cineole	C10H18O	WEEGYLXZBRQIMU-UHFFFAOYSA-N	470-82-6		Lackus et al., 2018
					L		

9.4 Table S1 continued Chemical compounds of plant root VOCs, collected in cited literature published between 2016-2022

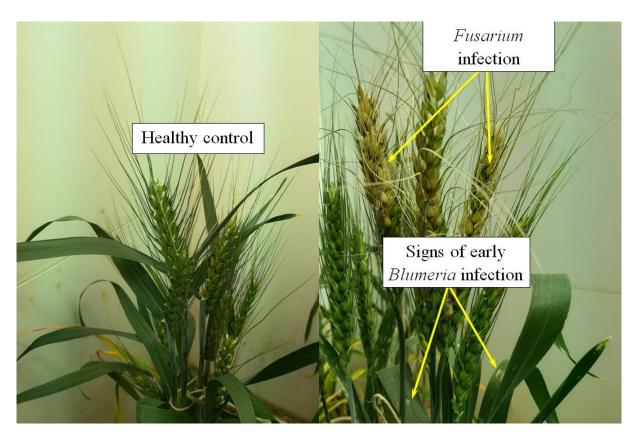
		Chemical con	npound	s of plant root VOCs, co	llected d	uring 2016-	2022 yy.
Plant	Functional groups	VOC compounds	Molecular Formula	InChIKey	CAS	Properties	References
Tomato, spinach	Drumanimaa	2-isopropyl-3- methoxypyrazine	C8H12N2O	NTOPKICPEQUPPH-UHFFFAOYSA-N	25773-40-4	attract second-stage larvae (J2) of M.	Murungi et at., 2018
Tomato, spinach; pepper; pepper	Pyrazines	2-(methoxy)-3-(1- methylpropyl)pyrazine	C9H14N2O	QMQDJVIJVPEQHE-UHFFFAOYSA-N	24168-70-5	attract second-stage larvae (J2) of M.	Murungi et at., 2018; Kihika et al., 2017
Cucumis metuliferus CM3		1-Nonyne	C9H16	OSSQSXOTMIGBCF-UHFFFAOYSA-N	3452-09-3	might have ability of improvement plant	Xie at al., 2022
Cucumis metuliferus CM3		1-Octadecyne	C18H34	IYDNQWWOZQLMRH-UHFFFAOYSA-N	629-89-0	not given	Xie at al., 2022
Cucumber line Xintaimici, Cucumis metuliferus CM3	Alkynes	9-Eicosyne	C20H38	ARULVMGJDAAVBD-UHFFFAOYSA-N	71899-38-2	not given	Xie at al., 2022
Cucumis metuliferus CM3		4-Tetradecyne	C14H26	QWZXVDGVISCHQH-UHFFFAOYSA-N	60212-33-1	not given	Xie at al., 2022
Cucumis metuliferus CM3		Cyclohexene, 2,4- dimethyl-1-(1-	C11H18	DJNBXADZJNAMQR-UHFFFAOYSA-N	56763-60-1	not given	Xie at al., 2022
Cucumis metuliferus CM3		Cyclooctene, 3-(1- methylethenyl)-	C11H18	MZCVHZHOSLNLTO-VURMDHGXSA-N	61233-78-1	not given	Xie at al., 2022
Cucumis metuliferus CM3	-	Trans-β-ocimene	C10H16	IHPKGUQCSIINRJ-CSKARUKUSA-N	3779-61-1	not given	Xie at al., 2022
Cucumber line Xintaimici, Cucumis metuliferus CM3	Other	1,1'-Biphenyl, 3,4-diethyl-	C16H18	ZTLWBQOFTIFRHI-UHFFFAOYSA-N	61141-66-0	not given	Xie at al., 2022
Cucumber line Xintaimici, Cucumis metuliferus CM3	hydrocarbone s	(S,1Z,6Z)-8-Isopropyl-1- methyl-5-	C15H24	GAIBLDCXCZKKJE-ACWLMNNXSA-N	317819-80-0	not given	Xie at al., 2022
Cucumber line Xintaimici, Cucumis metuliferus CM3		3-Undecen-5-yne, (Z)-	C11H18	RVNPFAOWVMGBBF-ALCCZGGFSA-N	74744-27-7	not given	Xie at al., 2022
Cucumber line Xintaimici, Cucumis metuliferus CM3		exo-7-(trans-1- Propenyl)bicyclo[4.2.0]oc	C11H16		107983-42-6	not given	Xie at al., 2022
Cucumber line Xintaimici, Cucumis metuliferus CM3		p-Xylene	C8H10	URLKBWYHVLBVBO-UHFFFAOYSA-N	106-42-3	attractant to natural enemies of	Xie at al., 2022; Li et al., 2022
Cucumber line Xintaimici, Cucumis metuliferus CM3		Cyclohexane, 2-ethenyl- 1,1-dimethyl-3-methylene-	C11H18	YRBXRKRLOGXJAN-UHFFFAOYSA-N	95452-08-7	not given	Xie at al., 2022
Cucumber line Xintaimici, Cucumis metuliferus CM3		1-Tetradecene	C14H28	HFDVRLIODXPAHB-UHFFFAOYSA-N	1120-36-1	not given	Xie at al., 2022
Cucumber line Xintaimici, Cucumis metuliferus CM3	Alkenes	Cyclohexane, 1,1,3- trimethyl-2-(3-	C15H30	UDBAOHWDISNFAQ-UHFFFAOYSA-N	54965-05-8	not given	Xie at al., 2022
Cucumber line Xintaimici, Cucumis metuliferus CM3		Hexane, 2,3,4-trimethyl-	C9H20	RUTNOQHQISEBGT-UHFFFAOYSA-N	921-47-1	not given	Xie at al., 2022
Cucumber line Xintaimici, Cucumis metuliferus CM3,		Tetradecane	C14H30	BGHCVCJVXZWKCC-UHFFFAOYSA-N	629-59-4	not given	Xie at al., 2022; Kihika et al., 2017
Tomato		n-alkanes	(CH4)n	-	-	not given	Gulati et al., 2020
Cucumber line Xintaimici, Tomato, spinach; pepper	Alkanes	Tridecane	C13H28	IIYFAKIEWZDVMP-UHFFFAOYSA-N	629-50-5	attract second-stage larvae (J2) of M.	Murungi et at., 2018; Xie at al., 2022; Kihika et al., 2017
Pepper		Decane	C10H22	DIOQZVSQGTUSAI-UHFFFAOYSA-N	124-18-5	not given	Kihika et al., 2017
Pepper		Undecane	C11H24	RSJKGSCJYJTIGS-UHFFFAOYSA-N	1120-21-4	not given	Kihika et al., 2017
Pepper		Dodecane	C12H26	SNRUBQQJIBEYMU-UHFFFAOYSA-N	112-40-3	not given	Kihika et al., 2017
Cucumber line Xintaimici, Cucumis metuliferus CM3		7- Oxabicyclo[4.1.0]heptane	C8H12O2	AVROMNDRDNRBOK-UHFFFAOYSA-N	106-87-6	not given	Xie at al., 2022
Cucumber line Xintaimici, Cucumis metuliferus CM3	Unidentify groups	Oxime-, methoxy-phenyl	C8H9NO2	HUYDCTLGGLCUTE-HJWRWDBZSA-N	1000222-86-6	not given	Xie at al., 2022
Cucumber line Xintaimici, Cucumis metuliferus CM3] .	Borane, compd. with dimethylamine (1:1)	C2H10BN	RUOMFVPJBOADHA-UHFFFAOYSA-N	74-94-2	not given	Xie at al., 2022
omato Sulfur compour		dimethyl trisulfide	C2H6S3	YWHLKYXPLRWGSE-UHFFFAOYSA-N	3658-80-8	antifungal activity	Gulati et al., 2020
Cucumber line Xintaimici, Cucumis metuliferus CM3	Nitrogen	Cyclohexene, 1-(2-nitro-2- propenyl)-	C9H13NO2	QOKFSIOIZAOVBW-UHFFFAOYSA-N	80255-20-5	not given	Xie at al., 2022
Tomato; Carex arenaria	compounds	Benzonitrile	C6H5(CN)	JFDZBHWFFUWGJE-UHFFFAOYSA-N	100-47-0	antifungal activity	Gulati et al., 2020; Schulz-Bohm et al., 2017
Cucumber line Xintaimici, Cucumis metuliferus CM3	Chloro	Hexane, 1-chloro-5- methyl-	C7H15Cl	YESHSLGUAPTMLI-UHFFFAOYSA-N	33240-56-1	not given	Xie at al., 2022
Tomato	compounds	beclomethasone dipropionate	C28H37ClO7	KUVIULQEHSCUHY-XYWKZLDCSA-N	5534_09_8	not given	Gulati et al., 2020

9.5 Table S2 – VOC components in healthy and P. teres infected barley samples

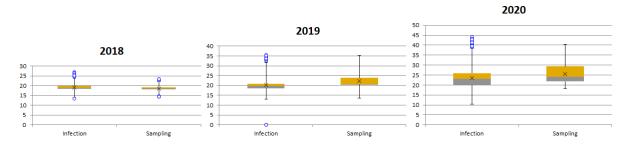
	•••	Fable S2 – VOC con		ems			and P			ectea	bar	iey	sam	pies				
Part	~	T.	~	~	star	. ▲		after 1	2 days	7			start	_		after 1	4 days	
Martin M						0307Harring												
Part			0309 marna	0309 ma	0307 Harringto				0322Harna		0322árn	0322árn	0322árna c				0405Árna	
March Marc							0320Harpa1	0320Harpa2		0322Harpak2				(soil+pot)				(soil+po
Part Company					Harrington_tre						Hunor_							
Processor Proc											treated							
1.00	T/min)	Component name									2002							blank area
1.20 1.20				_					-			-	-					212
1.50 Personne 1.75 1.7									15384			-	4661		-	-	-	-
1965 Prince of 1965 1965 1965 1966 1966 1966 1968 19	3.459	3-hexanone	7134	28132	10325	3582	29266	23538	14246	13770	5272	1633	3098	13295	3143	3092	-	203
Section 100 200																		232
All-Security 1371-1298						4957										2922	-	-
A 2 A 2 A 2 A 2 A 2 A 3						220000										120107	101921	1091
4.4 March 10 1980 5880 5880 5880 5880 5880 5890 5890 5890 5990				121300	- 251534	- 233000	- 142315.11	- 143030	- 53001.74	- 0/122		101032		- 40120				
1.34 All Parties, 2.4 All Parties, 2.				4940.62	4182	5634.65	14661	18690	8438	35552				1500				
Add Character 1940 195	4.324	3-hexen-1-ol	108178	14688	15167	18333	11819.24		-	-	36743	31748	-	-			-	-
Add Carbon Carb			-	-	-	-	-		-	-	-	-	-	-			12783	818
1509 1500				120584	97750	90244	156536	95460	26267	95580	-	-	16083	16816	17721	16379	-	-
AGE Control A France Control				257526	222406	102621	256535	240245	72050	- 256200	24452	17067	25024	21206	25000	16561	26562	1279
AZP Control A. De Agrees 20		1																
## APP Genome 1.5-Interlight																	1297	
## # # # # # # # # # # # # # # # # # #				19720.3	-	-	56844.97	26566.55	8739.41		-	-	-	-	-	-	-	-
4979 Paper 1977 1978 1977 1978 1977 1978																		6:
1.11 1.17															17094	15106	12181	1258
3.2712 Desembly-cycle-spectationes									2125.1			3564	2659		-	-		-
5.45 Conference methyl-2-proper 6857.6 3878 981.7 806.0 3878 395.6 3878 395.6 385.0									1781.92			1412 06	-			-	-	-
Company Comp												-				2545.92	6488	-
5.5 17 (interhylleryce) (1.1) [1962 2-666] 3000 2 3000 2 3000 2 3000 2 3000 2 3000 2 3000 2 3000 2 3000 3 30																		
5.57) pergeamyl, bibdowy	5.52	Trimethylbicyclo[3.1.1]hept-2-ene))							1451.86		-	-		1454			26461.32	
S.B.1] Bestenee, prospix	5.57	2-propanol, 1-butoxy-	3339312.5						-					-	460575.8		5070.88	-
\$7.50 Description \$1.50			-								8326.8	15384.4		-	19798.27	29927.46	5478.24	-
5.50 Sentence, Leftyl-3-enterph* 5952.40 6737.5 15888.40 10590.55 13784.44 70598.5 1772.20 4090.71 1796.575 2000 5514 318 4001 275 250 2			- 04053.40	42857.3	37735.88	25922.1	45082.78	21965.82	2632.5	13555.88	- 2556	- 0220			46747	- 20440	- E 470	1426.9
Solid Part				67227.5	152692.40	104700 55	127464 44	70208 3	17721 20	40000 72								1420.5
Good Lecters 1555 Friendly 99224-61 17832 1785 17			- 3232.43								- 1704	-			-	- 4201		
6.12] - Octoo 5585 77 9616.2 4881.3 3867.31 466.5 37.24 241.0 250.5 862.9 940.7 12465.6			-	8432.81	29496.95						-	-	-	-	-	-	-	-
\$2.00 February \$2.00 Feb						-	-		-	-				-			31301	
6.255 leleptent 2-0ne, 6-methyl- 7.256 leleptent 2-0ne, 6-methyl-									-		88292	99403.7	124655.05	-	53164.42	64698.56	23916.12	-
6.375 (April Performance 1990 199											- 42674	- 40700	- 44476.0	-	- 74044	- 00000	- 40460	-
6.477 (Nestlylene 150022 17975.74 10766.3 14865.65 80703.0 1313.79 7851.166									2822.74		126/4	19788	141/6.8	-	/1811	88882	18162	-
6.5538] 476cent 6677.5 4056.19 556.09 42180.0 34748.3 3848.7 392.99 880.45 1077.1 1268.9 5712.0 1059.75 1056.5 372.0 346.6 667.9 372.0 346.6 667.9 372.0 346.6 346.6 347.0 347			-						13139.79		-	-	-	-	-	-	-	-
6.699 [Penteng, 1,5 trimethyl* 4.183.88 282.17 1053.07 4.106.47 5.359.08 327.37 1352.01 4.911 1.761 4.941 4.900 8.911 1.0393 1.227.7. 6.697 [Dumonene 2488.88 1.1700 22741.57 34669.93 92.244.95 5.250.64 5.764.22 1.058.16 6.185 6.18			6637.35								10471	12689	8713	10659	7932	11707	6379.84	1011
6892 Benzene, 1,3-5-timethyl-*			708151.96			-			-		116696	129267	86057.24	-				-
6-077 Col-Immonene											_		_					
7.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.0																		
7.124 Incomented			24888.83	- 11//00	32/41.5/	34869.93	92244.93	52505.41	5/84.23	19633.63				3382				
7.123 Southwest South So			-	21740.1	42638.01	30095.36	24722.84	13161.72	1386.9	8479.64	-	-	- 7333.30	-	- 7711.50	-	- 033.14	-
7.565 Peritatriacontane 4576.01 18883 825.4 11036.99 7299.92 2255.33 538.89 3039.16 2999.8 8333.33 21749.88 1463.84 18327 14532 15384 17.655 peritangloid (alpha-Methyl-alpha-(emethyl-2) 3405 4885 1540 3145 617 376			-	-	-	-	-	-	-	-	-	-	-	-	8434.08	11146.35	-	-
1.2-coolinatool (alpha-Methyl-alpha-(methyl-3) 3405 4895 1540 3145 617 378	7.229	β-ocimene (Z)- (1,3,6-Octatriene, 3,7-dimethyl-, (Z)-)	9135.39	15002.7	15834.14		3986.67		-	1516.49	25565	216766		-	60873.9	8624.44	13497.3	-
7.639 Frich(proacet): add, 6 cethyl-3-octyl ester - - - - - - - - -	7.365		4576.01	18983	8525.4	11036.99	7290.92	2255.33	538.89	3039.16	2939.5	8533.33	21749.83	14163.84	18327	14532	15384	10728.8
7.75 2.Piperdinone, NIbrown - butyl]	7 625		2/105	4805	1540	21/15	617	279	_	_	28505	22579	92029 1	_	12007 57	17560 97	L	3588
7.75 2 Pjperfillrone, N/4-bromon-buryl}			-	-	- 1540	- 3143	- 017	-	-	-	-	-	- 03330.1	-			-	-
7.82 Phenyl - I-butnee 9240.68 9943.5 22910.68 16900.53 16182.02 7753.65 1106.44 4118.27 12500.29 33314 2154.77 785 1466care 14666 2714.8 795 795 8 enzene, 1-ethenyl-4-ethyl- - 3518.86 6392.8 3281.74 1598.69 41544.32 1941.661 8653 1779 1469 3404 16055 30533 2077.7 8.01 Unalond (1,6-Octadien-3-ol, 3,7-dimethyl-)* 13518.86 5980.12 8072.83 14668 2714.8 795 795 185				-	-					-		-	-	-	-	-	-	-
1.794			9240.68	19943.5	22910.68	16900.53	16182.02	7753.65	1106.44	4118.27	-	-	-	-				832
8.01 Linalool (1,6-Otzadien-3-ol, 3,7-dimethyl-)* 13518 96 6392.8 1 3281.7 1896.8 5980.1 8072.8			-	-	-	-	-	-	-	-	-	-	-	-				1890
8.08 -Octanol, 2-butyl-			-	-	-	-	-		-	-				3404				1133
8.08 nonanal 17932.77 25015.7 19754.83 13645.3 201558.95 252540.6 8966.25 21291.37 46235 41381.5 55349.7 12511.12 28263.9 13320.85 13820.85 13							41544.32	19416.61	-	-	389102	228579	2737866.6	8222.40	24911.03	19399.78	11532.31	!
8.1881 -Butroxy-2-propanol acetate							201558.95	252540 6	8966.25	21291.37	46235	41381 5	55349 7	- 0232.48	12511.12	28263 9	13320.83	
8.20 Cyclohexanol, 2,6-dimethyl- 15620.07 1528.83 1741_25	0.00								-	-	-	-	-		-		-	-
8.32 Benzene, 1,2,3-4-tetramethyl-* - 8605.23 11400.75 8293.25 12212.74 49919 2.299.75 3213 2524 4925 8.973 Azulene 3897.5 52762.8 40777.9 47091.29 7289.94 9175.93 1530.04 11995.99 10195 915.16 13345 1991 22083 33377.77 21414.47 9.013 benzaldehyde, 4-ethyl				_	1741.25	-			-	1024.85	-	12237.7	-	-			-	-
8.973 Azulene 38972.5 52762.8 40777.9 47091.29 7289.94 9175.93 1530.04 11995.93 10195 9151.16 13345 1991 2003 33377.7 12414.47.9 19.019 benzaldehyde, 4-ethyl	8.32	Benzene, 1,2,3,4-tetramethyl- *	-	10712.1	16786.75				-		-	-	-	-				-
9.019 benzaldehyde, 4-ethyl			-						-		4615	-	-	-				
9.32 Ethylbenzaldehyde 51534.31 5770.4 66616.07 58163.53 47705.76 20421.5 7517.05 14219.1 827 1173 554 671 15783 24515 - 15783 2			38972.5	52762.8	40777.9	4/091.29	7289.94	9175.93	1530.04	11995.93								
4-tert-Butylanisole (senzene,1-(1,1-dimethylethyl)-4 9.4 Naphthalene 7443.92 57157.9 15440.64 11535.01 294366.55 123210.9 25312.58 18146.7 2.5 36418.7 2555.7 36418.8 1924 5503 6819.24 8611 13348 14607 11555. 9488 letradecane* (5810.4) 16505.5 14885.55 18995.87 189			51534.31	57700 4	60616.07	58163.53	47705.76	20421 5	7517.05	14219 1								- 521
9.4 Maphthalene 7443.92 57157.9 15440.64 11535.01 294366.55 12399.3 25312.58 18146.7 80412.21 48549.14 - 9.48 letradecane* 5810.43 16562.5 14885.55 12399.3 3867.88 181248.7 2255.27 3541.88 1924 5503 6819.24 6611 13348 14607 15552 19.58 14840.64 11535.01 294366.55 12399.3 148248.7 2255.27 3541.88 1924 5503 6819.24 6611 13348 14607 15552 19.58 14840.64 11535.01 294366.55 12399.3 148248.7 2255.27 3541.88 1924 5503 6819.24 6611 13348 14607 15552 12.58 14840.64 11536.8 1924 14.58 19.58			22334.31	2.700.4	00020.07		,05.70		. 327.03		527	11/3	334	5/1				
9.4881 teradecane* \$810.43 16652.5 14885.55 1299.32 3867.85 18248.7 2255.27 3541.88 1924 5503 6819.24 8611 13348 14607 15552 15553 155			-	-	-	-	-	-	-	-	-	-	-	-	80412.21	48549.14	-	-
9.585 decanal 20895.25 38582 39010.99 19537.62 18995.47 274224.9 6769.02 16822.51 63614 52391 37629.8 8376 9095.94 69763.54 8735 2-Pinen-4-one (bicyclo(3.1.1)hept-3-en-2-one, 9.73 4,6,6-trimethyl-) 16309.25 36216.5 44109.91 19437.46 21583.47 16033.49 3202.07 21441.56							294366.55				- 400	-		- 000	- 4007-	-	-	-
2-Pinen-4-one (bloyclo[3.1.1]hept-3-en-2-one, 9.75 4_6,6-trimethyl-) 1639.25 36216.5 4410.91 19437.46 21583.47 16033.49 320.20 21441.56																		
9.72 (Activimethyl-) 16308 25 36216.5 44109.91 19437.46 21583.47 16033.49 3020.07 21441.56			20073.23	30362	33010.99	1,007.02	10,733,47	214224.9	0705.02	10022.51	03014	24331	3/023.8	03/0	2023.34	05705.34	0/35	001
9.902 2evo-2-hydroxycleole 23782.04 18996 18991.01 15396.23 15450.54 10764.8 1766.13 9482.86 937 8155 2824 9707 15113 17718 5666 272.6-Dimethyldecalin (Naphthalene, decahydro-2,6-9.91) 47879.3 41997.91 3394.87 17239.7 9749.15 3786.53 412.44 1538.3 1.783 1.4783 1			16309.25	36216.5	44109.91	19437.46	21583.47	16033.49	3202.07	21441.56		-	-	-	-	-		-
9.991 dimethyl- 1* 9363 6 19783.9 13994.87 17239.7 9749.15 3786.53 412.44 1538.3 1 16836 1554.649 27281 13372 10.206 3,5-Heptadienal, 2-ethylidene-6-methyl- 43870.19 47879.3 41097.91 30231.07 105071.78 68649.3 142.44 1538.3 1478 14159 10.540 13336 50389.71 7062.66 42038.93 10.489 n-ethylacetophenone* 21446.278 242212 217447.67 23310.80 105071.78 68649.3 14244.08 6501.66 9 56783 48151 49054 31705 178412 27980 161500 10.041 n-ethylacetophenone* 14758.79 48901.6 39330.03 33309.27 32655.71 28053.47 2030.1 848.29 9061 10784.3 34752 30881 22548 38888 27966 10.759 (Ethylopenyl)- 10.075.04 116989 10.0564.85 10.0333.05 4789.879 17871.7 4478 21461.22 17256 11568.5 17103 14318 73222 4779 5700.1 10.599 (Ethylopenyl)- 10.750 (S. 10.206.20.20.20.20.20.20.20.20.20.20.20.20.20.	9.902	?exo-2-Hydroxycineole									937	8155	2824	9707	15113	17718	5664	64
10.206 3.5-Heptadienal, 2-ethylidene-6-methyl-* 43870.19 47879.3 41097.91 30231.07 20440.5 12768.48 3777.3 15859.39 14783 14159 10540 13336 50389.71 70629.68 42208.93 10.489 m-Ethylacetophenone* 214462.78 242212 217447.67 233108.01 105971.78 68649.3 14244.08 65016.69 56783 48151 49064 31705 178412 279805 161501 10641 m-1478.79 4890.6 33303.03 33039.71 32655.71 28053.47 2030.1 8482.93 9061 10783.3 34752 30881 22548 3888 29568 10.796 10.795 10.																	1	
10.489 m-Ethylacetophenone* 214462.78 242122 217447.67 233108.01 105071.78 68649.3 12444.08 65106.69 56783 48151 49064 31705 178412 279805 161501 10.0441 Pentatriacontane* 41758.79 48901.6 39330.03 33039.27 32655.71 28053.47 2030.1 8482.99 9061 10784.3 34752 30881 22548 3888 29968 10759 10759 10759 10759 10789 10708.45 10759 10789											-	-	-					
10.641 Pentatriacontane* 14758.79 48901.6 39330.03 33039.27 32655.71 28053.47 2030.1 842.93 9061 10794.3 34752 30881 225.48 38888 2966 10.759 Ethanone, 1-(4-ethylphenyl)- 100753.04 116989 100608.45 105330.36 47859.87 23778.71 4478 21461.22 17256 11968.5 17103 14318 73222 94729 67002 10.899 1704cane 61270.06 6340.7 54282.27 66958.7 10362.20 65671.24 4529.81 29119.35 13036 32274 21141 3458 120178 243451 167274 11.532																		
10.759 Ethanone, 1-(4-ethylphenyl)- 100753.04 116989 100608.45 105330.36 47859.87 23778.71 4478 21461.22 17256 11968.5 17103 14318 73232 94729 67002 10.899 fridecane 61270.06 86340.7 5428.29 76598.74 103632.04 65671.24 4529.81 2911.93 1306 32274 21141 9458 120178 234351 106722 11.532 triacetin 17505.65 23979.6 32917.41 15465.51 107536.44 98445.53 3156.22 12388.2 4139.8 2229 3763.99 19817 3190 105019 35646 175018 10387.5 6650.54 9780.31 2981.29 3321.97 0 2874.44 40110 15179.69 14018																		
10.899/fridecane 61270.06 85340.7 5428.297 6698.74 103632.04 65671.24 4529.81 2911.35 1036 3274 21141 9458 12078 234351 10572C 11.532 friacetin 17505.65 29379.6 32917.41 15465.51 10756.44 984.5 3 3156.22 123882.2 4139.8 2229 3768.39 19817 3190 105019 35646 11.76 [ugenol 175517.88 10387.5 660.54 9780.31 2981.29 3321.97 0 2874.44							47859.87											
11.532 triacetin 17505.65 2937.6 2937.6 3291.741 15465.51 107536.44 98445.53 3156.22 12388.22 413.8 2229 37683.99 19817 31900 105019 35646 11.76 eugenol 175517.88 10387.5 6650.54 9780.31 2981.29 3321.97 0 2874.44 40110 15179.69 14018	10.899	Tridecane																
11.76 eugenol 175517.88 10387.5 6650.54 9780.31 2981.29 3321.97 0 2874.44 40110 15179.69 14018	11.532	triacetin	17505.65	29379.6	32917.41	15465.51	107536.44	98445.53		123882.2							35646	3586
12.233ltridecane, 6-methyl- 66545,27 126104 126843,43 111551,2 64971,47 65467,44 7992,86 34916,71 15079 37787 69208 42515,42 156503 282304 14617a	11.76	eugenol	175517.88	10387.5							-	-	-	-				
			66545.27	126104	126843.43	111551.2	64971.47	65467.44	7992.86	34916.71	15079	37787	69208	42515.43		282304		

9.5 Table S2 continued – VOC components in healthy and *P. teres* infected barley samples

RT (min)				start		after 12 days				start			a	fter 14 day	5		
RT (min)														,	_		
₹T (min) C					0307Harring									0405	0405		
RT (min) C				0307_Harringto				0322Harpa				0322árpa_c		Árpa	Árpa	0405Árpa	
RT (min)		_kez	rpa_Ctr	n_kez_seb	act	0320Harpa1	0320Harpa2	k1	0322Harpak2	akez1	akez2	ontrol1	(soil+pot)	Hunor1	Hunor3	_Ctr	(soil+pot)
RT (min) C				Harrington_tre						Hunor_							
RT (min)		Initium_tre	Initium_	ated0_WOUND	Harrington_	Harrington_	Harrington_	Harrington	Harrington_c	treated	Hunor_t	Hunor_		Hunor_tr	Hunor_tr	Hunor_	
RT (min) C		ated	control	ED	treated0	treated1	treated2	_control1	ontrol2	1	reated2	kontrol1	blank	eated1	eated2	control2	blank
		area	area	area	area	area	area	area	area	area	area	area	area	area	area	area	area
12.554 J	unipene*	6782.88			28716.71	27928.01	15573.54	1134.08	10168.89	_				12321	25144	11789.54	16211
	aryophyllene	24830.21	40032.5		-	-	-	-	-	29619	102401	95974.71	-	-	-	-	-
14.015 1	l-lodododecane	21945.32	16300.2	38368.39	21102.13	12009.21	10238.78	1582.19	9638.46	8979	18579.7	29809.94	11527	19531	17409.53	23106	
14.25 h	nexadecane, 2-methyl-*	6391.43	7561.87	12475.67	7734.35	6424.77	6654.21	1077.45	2175.49	1809	1774	7586	-	10013.61	14705	9983	9116.98
14.69 h	nexacosane*	26624.11	40376.3	42748.62	25839.19	27767.7	30351.84	2743.8	10589.96	11573	39394	44071	14497	47646	55962	83631	59721.72
P	Propanoic acid, 2-methyl-, 2-(hydroxymethyl)-1-																1
14.745 p	propylbutyl ester*	30167.67	27458.2	43279.48	21677.92	58295.54	45822	10362.46	35529.01	6997	152929	84760	5017	17649.53	46765.65	12785	36436
4	I,4-Dimethyl-1,1-bis(1-methyl-1H-imidazol-2-																
14.939 y	rl)pentan-3-one	8872.39	9860.22	11168.84	6514.16	5814.01	5097.6	-	3655.08	1812	4419	7673	-	-	-	-	- 1
15.433 (Octane, 1,1'-oxybis-	-	31926	-	-	4405.46	-	-	-	6167	-	-	-	657	-	-	-
15.526 b	outyl dodecyl ether	59473.55	37283.1	95586.35	46813.01	4342.4	2866.27	-	2261.39	-	-	-		-	-	-	-
?	??1-(4-ISOPROPYLPHENYL)-2-METHYLPROPYL																
15.632 A	ACETATE	26072.06	14601.9	11639.42	4435.99	7842.63	4669.67	1044.81	4967.55	-	7717	8732	-	-	-	-	
15.817 P	entadecane*	23466.17	18530.8	21353.54	16928.86	27956.37	18536.9	3129.76	8646.07	19202	31957	26594	1902	22228	34169	30041	38163
15.885 ?	n-cetyl thiocyanate	6796.9	4875.18	8359.52	7119.91	9690.66	11839.89	1930.82	3308.15	-	-			-			-
15.969 ?	Ptricosane	14466.76	6874.81	17679.22	13936.91	9071.37	7099.19	0	6053.05	6324	5480	7321	5031	9095	12225	27541	3468
16.012 ?	pentadecanal	2530.16	8562.97	3292.06	2208.8	1682.49	2095.5	971.84	1975.4	-	-		-	-	-	-	-
16.434 t	ricosane	19879.16	14480.5	22189.54	17525.03	10493.46	12830.45	1941.4	15029.28	5729	12709	9456	4530	21659.97	14355	36691	6922
16.856 B	Benzenesulfonamide, N-butyl-	729576.37	353645	342772.31	252619.99	444453.53	417271.6	201953.1	225920.11	27388	21832.5	148209.86	122632	389315	260242	267726	279199
17.164	sopropyl myristate	7474.71	6139.26	8843.59	3771.61	71210.08	50204.44		66803.64	26570	1402428	723376	13852	18851	43211	8012	11757
17.392 2	2-Pentadecanone, 6,10,14-trimethyl-	616255.1	28225.3	12311.24	11808.63	259353.56	104518.35	8456.76	10813.83	130866	255286	31542.08		9864090	10335639	50665.17	-
	P-Hexadecen-1-ol, 3,7,11,15-tetramethyl-, acetate,																-
	R-[R*,R*-(E)]]- (??phytol, acetate)	_	-	-	-			-	-	-	-	-	-	109888	162046.4	-	
	,E-2,13-Octadecadien-1-ol	9691.85	2844.85	3668.48	2000.44	4313.53	3034.24		2753.21	-	-	-		17976	19606.54	-	-
	nomosalate	4971.03	1388.17	4557.97	1268.03	20143.68	21837.98	677.9	17515.59	2702	31500	2626314	21558	-			-
	Methyl 3-[[(1,1-																
	Dimethylethoxy)carbonyl]methylamino]methyl]-6-																
	hloro-2-hexenoate	8841.69	3863.32	6984.06	3742.76	4128.02	4925	2689.44	4215.76						_		
	Oodecyl isobutyl carbonate	118927.12	36908.4	28737.44	19277.1	19580.09	18374.62	-	17263.84	29922	81819	122248		439	620		t
	,2-Benzenedicarboxylic acid, dibutyl ester*	94000.18		43239.57	33636.46	58239.46	46250.96	10436.22	53044.45	27279	72789.1	83913	11510.17		50391.94	27891	32553
	Neopentyl 2,2-dimethylpropanoate	8440.02	8059.01	10791.56		9280.93	4607.79	905.74	3776.85	3386	13448	6657	-	-	-	-	-
	Neopentyl 2,2-dimethylpropanoate*	11180.75	5800.56	6742.53		7188.43	7676.13	2434.75	22478.77	2797	42613	25165	2083	5655	9244	3264	3264
	??Octadecanoic acid	18216.62	11406.9	4967.39		5857.29	2782.74	1867.29	35674.48	7696	98188.4	46740.43	3453	4100	15339	11312	
	??1,2-Benzenedicarboxylic acid, bis(2-ethylhexyl)	10210.02	11-100.5	-307.33	13111.33	3037.23	2702.74	1007.23	3307-4.40	,,,,,	10100.4	107-10.43	3-33	-1200	13333	11012	- 5547
23.308 e		45601.04	1367.11	72609.2	66416.89	157725.9	161546.72	101759	72554.21		_	_	51501	432679.8	251009	256622.5	321728


9.6 Table S3 English common names, retention times, calculated and literature retention index for semi-standard non-polar column, CAS numbers and InCHI keys, quantitative ion m/z, compound class and solvent used for stock solutions (1 mg/ml) of components and their

submixtures (100 µg/ml)


MIX1	2-Hexenal, (E)- p-Xylene 2-Heptenal, (E)- 1-Octen-3-ol 3-Carene a-Terpinolene Isopulegol Pulegone Caryophyllene trans-Farnesol 3-Hexen-1-ol, (E)- o-Xylene a-Pinene 1-Heptanol Phenol 3-Hexen-1-ol, acetate, (Z)- R-(+)-Limonene	6.894 7.319 9.506 10.095 10.851 12.709 13.993 16.011 19.258 21.844 6.899 7.901 8.952 9.866 10.141	851.69 868.67 956.16 979.30 1010.86 1089.91 1148.62 1243.98 1423.78 1726.75 850.80 892.02	851±5 (53) 865±7 (178) 958±4 (74) 980±2 (355) 1011±2 (336) 1088±2 (607) 1146±3 (32) 1237±3 (81) 1419±13 (983) 1432 on HP-5MS 1722±3 (76) 852±3 (41) 887±8 (178)	6728-26-3 106-42-3 18829-55-5 3391-86-4 13466-78-9 586-62-9 89-79-2 89-82-7 87-44-5 106-28-5	MBDOYVRWFFCFHM-SNAWJCMRSA-N URLKBWYHVLBVBO-UHFFFAOYSA-N NDFKTBCGKNOHPJ-AATRIKPKSA-N VSMOENVRRABVKN-UHFFFAOYSA-N BQOFWKZOCNGFEC-UHFFFAOYSA-N MOYAFQVGZZPNRA-UHFFFAOYSA-N ZYTMANIQRDEHIO-UHFFFAOYSA-N NZGWDASTMWDZIW-UHFFFAOYSA-N NPNUFJAVOOONJE-WDZFZDKYSA-N CRDAMVZIKSXKFV-YFVJMOTDSA-N	83 106 83 72 93 93 93 152 93 81	Aldehyde Aromatic hydrocarbon Aldehyde Alcohol Terpene Terpene Terpene Terpene Sesquiterpene Sesquiterpene	Ethanol
MIY2	2-Heptenal, (E)- 1-Octen-3-ol 3-Carene a-Terpinolene Isopulegol Pulegone Caryophyllene trans-Farnesol 3-Hexen-1-ol, (E)- o-Xylene a-Pinene 1-Heptanol Phenol 3-Hexen-1-ol, acetate, (Z)- R-(+)-Limonene	9.506 10.095 10.851 12.709 13.993 16.011 19.258 21.844 6.899 7.901 8.952 9.866	956.16 979.30 1010.86 1089.91 1148.62 1243.98 1423.78 1726.75 850.80 892.02	958±4 (74) 980±2 (355) 1011±2 (336) 1088±2 (607) 1146±3 (32) 1237±3 (81) 1419±13 (983) 1432 on HP-5MS 1722±3 (76) 852±3 (41)	18829-55-5 3391-86-4 13466-78-9 586-62-9 89-79-2 89-82-7 87-44-5 106-28-5	NDFKTBCGKNOHPJ-AATRIKPKSA-N VSMOENVRRABVKN-UHFFAOYSA-N BQOFWKZOCNGFEC-UHFFAOYSA-N MOYAFQVGZZPNRA-UHFFFAOYSA-N ZYTMANIQRDEHIO-UHFFAOYSA-N NZGWDASTMWDZIW-UHFFAOYSA-N NPNUFJAVOOONJE-WDZFZDKYSA-N CRDAMVZIKSXKFV-YFVJMOTDSA-N	83 72 93 93 93 152 93	Aklehyde Akohol Terpene Terpene Terpene Terpene Sesquiterpene	Ethanol
MIY2	I-Octen-3-ol 3-Carene a-Terpinolene Isopulegol Pulegone Caryophyllene trans-Farnesol 3-Hexen-1-ol, (E)- o-Xylene a-Pinene 1-Heptanol Phenol 3-Hexen-1-ol, acetate, (Z)- R-(+)-Linnonene	10.095 10.851 12.709 13.993 16.011 19.258 21.844 6.899 7.901 8.952 9.866	979.30 1010.86 1089.91 1148.62 1243.98 1423.78 1726.75 850.80 892.02	980±2 (355) 1011±2 (336) 1088±2 (607) 1146±3 (32) 1237±3 (81) 1419±13 (983) 1432 on HP-5MS 1722±3 (76) 852±3 (41)	3391-86-4 13466-78-9 586-62-9 89-79-2 89-82-7 87-44-5 106-28-5	VSMOENVRRABVKN-UHFFFAOYSA-N BQOFWKZOCNGFEC-UHFFFAOYSA-N MOYAFQVGZZPNRA-UHFFFAOYSA-N ZYTMANIQRDEHIO-UHFFFAOYSA-N NZGWDASTMWDZIW-UHFFFAOYSA-N NPNUFJAVOOONJE-WDZFZDKYSA-N CRDAMVZIKSXKFV-YFVJMOTDSA-N	72 93 93 93 152 93	Akohol Terpene Terpene Terpene Terpene Sesquiterpene	Ethanol
MIY2	3-Carene α-Terpinolene Isopulegol Pulegone Caryophyllene trans-Farnesol 3-Hexen-I-ol, (Ε)- ο-Xylene α-Pinene 1-Heptanol Phenol 3-Hexen-I-ol, acetate, (Z)- R-(+)-Limonene	10.851 12.709 13.993 16.011 19.258 21.844 6.899 7.901 8.952 9.866	1010.86 1089.91 1148.62 1243.98 1423.78 1726.75 850.80 892.02	1011±2 (336) 1088±2 (607) 1146±3 (32) 1237±3 (81) 1419±13 (983) 1432 on HP-5MS 1722±3 (76) 852±3 (41)	13466-78-9 586-62-9 89-79-2 89-82-7 87-44-5 106-28-5	BQOFWKZOCNGFEC-UHFFFAOYSA-N MOYAFQVGZZPNRA-UHFFFAOYSA-N ZYTMANIQRDEHIO-UHFFFAOYSA-N NZGWDASTMWDZIW-UHFFFAOYSA-N NPNUFIAVOOONJE-WDZFZDKYSA-N CRDAMVZIKSXKFV-YFVJMOTDSA-N	93 93 93 152 93	Terpene Terpene Terpene Terpene Terpene Sesquiterpene	Ethanol
MIY2	α-Terpinolene Isopulegol Pulegone Caryophyllene trans-Farnesol 3-Hexen-1-ol, (Ε)- ο-Xylene α-Pinene 1-Heptanol Phenol 3-Hexen-1-ol, acetate, (Z)- R-(+)-Limonene	12.709 13.993 16.011 19.258 21.844 6.899 7.901 8.952 9.866	1089.91 1148.62 1243.98 1423.78 1726.75 850.80 892.02	1088±2 (607) 1146±3 (32) 1237±3 (81) 1419±13 (983) 1432 on HP-5MS 1722±3 (76) 852±3 (41)	586-62-9 89-79-2 89-82-7 87-44-5 106-28-5	MOYAFQVGZZPNRA-UHFFFAOYSA-N ZYTMANIQRDEHIO-UHFFFAOYSA-N NZGWDASTMWDZIW-UHFFFAOYSA-N NPNUFIAVOOONJE-WDZFZDKYSA-N CRDAMVZIKSXKFV-YFVJMOTDSA-N	93 93 152 93	Terpene Terpene Terpene Sesquiterpene	Ethanol
MIY2	Isopulegol Pulegone Caryophyllene trans-Farnesol 3-Hexen-1-ol, (E)- o-Xylene α-Pinene 1-Heptanol Phenol 3-Hexen-1-ol, acetate, (Z)- R-(+)-Limonene	13.993 16.011 19.258 21.844 6.899 7.901 8.952 9.866	1148.62 1243.98 1423.78 1726.75 850.80 892.02	1146±3 (32) 1237±3 (81) 1419±13 (983) 1432 on HP-5MS 1722±3 (76) 852±3 (41)	89-79-2 89-82-7 87-44-5 106-28-5	ZYTMANIQRDEHIO-UHFFFAOYSA-N NZGWDASTMWDZIW-UHFFFAOYSA-N NPNUFIAVOOONJE-WDZFZDKYSA-N CRDAMVZIKSXKFV-YFVJMOTDSA-N	93 152 93	Terpene Terpene Sesquiterpene	Ethanol
MIX2	Pulegone Caryophyllene trans-Farnesol 3-Hexen-I-ol, (E)- o-Xylene α-Pinene 1-Heptanol Phenol 3-Hexen-I-ol, acetate, (Z)- R-(+)-Limonene	16.011 19.258 21.844 6.899 7.901 8.952 9.866	1243.98 1423.78 1726.75 850.80 892.02	1237±3 (81) 1419±13 (983) 1432 on HP-5MS 1722±3 (76) 852±3 (41)	89-82-7 87-44-5 106-28-5	NZGWDASTMWDZIW-UHFFFAOYSA-N NPNUFJAVOOONJE-WDZFZDKYSA-N CRDAMVZIKSXKFV-YFVJMOTDSA-N	152 93	Terpene Sesquiterpene	
MIX2	Caryophyllene trans-Farnesol 3-Hexen-I-ol, (E)- o-Xylene α-Pinene 1-Heptanol Phenol 3-Hexen-I-ol, acetate, (Z)- R-(+)-Limonene	19.258 21.844 6.899 7.901 8.952 9.866	1423.78 1726.75 850.80 892.02	1419±13 (983) 1432 on HP-5MS 1722±3 (76) 852±3 (41)	87-44-5 106-28-5	NPNUFJAVOOONJE-WDZFZDKYSA-N CRDAMVZIKSXKFV-YFVJMOTDSA-N	93	Sesquiterpene	
MIX2	trans-Farnesol 3-Hexen-1-ol, (E)- o-Xylene α-Pinene 1-Heptanol Phenol 3-Hexen-1-ol, acetate, (Z)- R-(+)-Limonene	21.844 6.899 7.901 8.952 9.866	1726.75 850.80 892.02	1722±3 (76) 852±3 (41)	106-28-5	CRDAMVZIKSXKFV-YFVJMOTDSA-N			
MIX2	3-Hexen-1-ol, (E)- o-Xylene a-Pinene 1-Heptanol Phenol 3-Hexen-1-ol, acetate, (Z)- R-(+)-Limonene	6.899 7.901 8.952 9.866	850.80 892.02	852±3 (41)			81	Sesquiterpene	<u> </u>
MIX2	o-Xylene a-Pinene 1-Heptanol Phenol 3-Hexen-1-ol, acetate, (Z)- R-(+)-Limonene	7.901 8.952 9.866	892.02		028 07 2		_		=
MIX2	o-Xylene a-Pinene 1-Heptanol Phenol 3-Hexen-1-ol, acetate, (Z)- R-(+)-Limonene	7.901 8.952 9.866	892.02			UFLHIIWVXFIJGU-ONEGZZNKSA-N	82	Alcohol	1
MIX2	α-Pinene 1-Heptanol Phenol 3-Hexen-1-ol, acetate, (Z)- R-(+)-Limonene	8.952 9.866			95-47-6	CTQNGGLPUBDAKN-UHFFFAOYSA-N	91	Aromatic hydrocarbon	-
MIX2	1-Heptanol Phenol 3-Hexen-1-ol, acetate, (Z)- R-(+)-Limonene	9.866	734.12	937±3 (995)	80-56-8	GRWFGVWFFZKLTI-UHFFFAOYSA-N	93	Terpene	-
MIX2	Phenol 3-Hexen-1-ol, acetate, (Z)- R-(+)-Limonene		969.89	970±2 (68)	111-70-6	BBMCTIGTTCKYKF-UHFFFAOYSA-N	70	Alcohol	+
MIX2	3-Hexen-1-ol, acetate, (Z)- R-(+)-Limonene	10.141	980.47	980±4 (94)	108-95-2	ISWSIDIOOBJBQZ-UHFFFAOYSA-N	94	Phenol	-
	R-(+)-Limonene	10.776	1007.05	980±4 (94) 1005±2 (74)	3681-71-8	NPFVOOAXDOBMCE-PLNGDYQASA-N	82	Ester	Ethanol
		11.297	1007.03	1003±2 (74) 1030±2 (1004)	138-86-3	XMGQYMWWDOXHJM-UHFFFAOYSA-N	93	Terpene	+
	Nonanal	13.046	1029.85		124-19-6	`	70	Aldehyde	-
		15.264	1206.09	1104±2 (556)	112-31-2	GYHFUZHODSMOHU-UHFFFAOYSA-N	82		-
-	Decanal			1206±2 (406)		KSMVZQYAVGTKIV-UHFFFAOYSA-N	-	Aldehyde	-
	Longifolene	19.093	1420.69	1405±5 (89) 1413.4 on HP-5MS	475-20-7	PDSNLYSELAIEBU-UHFFFAOYSA-N	93	Sesquiterpene	
	Hexanal	5.602	797.71	800±2 (453)	66-25-1	JARKCYVAAOWBJS-UHFFFAOYSA-N	82	Aldehyde	
	m-Xylene	7.313	867.26	866±7 (170)	108-38-3	IVSZLXZYQVIEFR-UHFFFAOYSA-N	91	Aromatic hydrocarbon	
	Benzaldehyde	9.592	959.33	962±3 (416)	100-52-7	HUMNYLRZRPPJDN-UHFFFAOYSA-N	105	Aldehyde	
MIX3	5-Hepten-2-one, 6-methyl-	10.279	986.79	986±2 (222)	110-93-0	UHEPJGULSIKKTP-UHFFFAOYSA-N	108	Ketone	Ethanol
	α-Phellandrene	10.709	1004.74	1005±2 (509)	99-83-2	OGLDWXZKYODSOB-UHFFFAOYSA-N	93	Terpene	
	p-Cymene	11.204	1025.52	1025±2 (820)	99-87-6	HFPZCAJZSCWRBC-UHFFFAOYSA-N	119	Aromatic hydrocarbon	
	Phenol, 4-ethyl-2-methoxy-	16.788	1281.67	1282±4 (46)	2785-89-9	CHWNEIVBYREQRF-UHFFFAOYSA-N	137	Phenol/Ether	
	trans-β-Ionone	19.962	1494.76	1486±4 (211)	79-77-6	PSQYTAPXSHCGMF-BQYQJAHWSA-N	177	Sesquiterpene	
	2-Hexanol	5.624	798.91	801±10 (19)	626-93-7	QNVRIHYSUZMSGM-UHFFFAOYSA-N	69	Alcohol	
	2-Heptanone	7.855	889.80	891±2 (212)	110-43-0	CATSNJVOTSVZJV-UHFFFAOYSA-N	71	Ketone	7
	(5Z)-Octa-1,5-dien-3-ol	9.952	973.83	975+-2 PUBCHEM	50306-18-8	APFBWMGEGSELQP-WAYWQWQTSA-N	57	Alcohol	7
	3-Octanone	10.27	986.58	986±3 (101)	106-68-3	RHLVCLIPMVJYKS-UHFFFAOYSA-N	72	Ketone	٦
MIX4	2-methylphenol (o-cresol)	11.886	1054.13	1054±9 (53)	95-48-7	QWVGKYWNOKOFNN-UHFFFAOYSA-N	108	Phenol	Ethanol
	3-methylphenol (m-cresol)	12.371	1074.96	1075±5 (40)	108-39-4	RLSSMJSEOOYNOY-UHFFFAOYSA-N	108	Phenol	7
	Linalool	12.951	1099.62	1099±2 (976)	78-70-6	CDOSHBSSFJOMGT-UHFFFAOYSA-N	93	Terpene alcohol	7
	Phenylethyl Alcohol	13.245	1113.30	1116±5 (262)	60-12-8	WRMNZCZEMHIOCP-UHFFFAOYSA-N	91	Alcohol	7
	β-Citronellol	15.717	1228.52	1228±3 (181)	106-22-9	QMVPMAAFGQKVCJ-UHFFFAOYSA-N	69	Terpene	7
	2-Hexanone	5.372	789.93	790±3 (106)	591-78-6	QQZOPKMRPOGIEB-UHFFFAOYSA-N	58	Ketone	_
	3-Hexanol	5.496	794.86	797±7 (12)	623-37-0	ZOCHHNOQOHDWHG-UHFFFAOYSA-N	59	Alcohol	+
-	1-Hexanol	7.31	868.02	868±4 (223)	111-27-3	ZSIAUFGUXNUGDI-UHFFFAOYSA-N	56	Alcohol	+
	2-Heptanol	8.105	899.48	900±4 (53)	543-49-7	CETWDUZRCINIHU-UHFFFAOYSA-N	45	Alcohol	+
MIX5	3-Octanol	10.487	995.14	994±3 (124)	589-98-0	NMRPBPVERJPACX-UHFFFAOYSA-N	83	Alcohol	Ethanol
<u> </u>	Benzyl alcohol	11.397	1033.70	994±3 (124) 1036±4 (174)	100-51-6	WVDDGKGOMKODPV-UHFFFAOYSA-N	79	Aromatic alcohol	⊢ .
⊢	1-Nonanol	14.832	1033.70	1036±4 (174) 1173±2 (61)	143-08-8	ZWRUINPWMLAQRD-UHFFFAOYSA-N	79	Aromatic aiconol Alcohol	+
⊢	2-Undecanone	17.05	1294.01	1173±2 (61) 1294±2 (160)	112-12-9	KYWIYKKSMDLRDC-UHFFFAOYSA-N	71	Ketone	Ⅎ

9.6 Table S3 continued English common names, retention times, calculated and literature retention index for semi-standard non-polar column, CAS numbers and InCHI keys, quantitative ion m/z, compound class and solvent used for stock solutions (1 mg/ml) of components and their submixtures (100 μ g/ml)

Submix number	English common name	Retention time (minutes)	Retention index calculated	Retention index from NIST17 library or other sources as indicated (values in parentheses indicates number of records)	CAS number	InchiKey	quant. m/z	Compound class	Solvent used
	Isopentyl acetate	7.539	877.31	876±2 (100)	123-92-2	MLFHJEHSLIIPHL-UHFFFAOYSA-N	70	Ester	
	Acetic acid, pentyl ester	8.486	915.33	911±6 (40)	628-63-7	PGMYKACGEOXYJE-UHFFFAOYSA-N	70	Ester]
	β-Myrcene	10.395	991.59	991±2 (840)	123-35-3	UAHWPYUMFXYFJY-UHFFFAOYSA-N	93	Terpene	
MIX6	Acetophenone	12.165	1066.26	1065±4 (134)	98-86-2	KWOLFJPFCHCOCG-UHFFFAOYSA-N	105	Aromatic ketone	n-Hexane
MIAO	(-)-Bornyl acetate	16.968	1289.48	1284±2 (8)	5655-61-8	KGEKLUUHTZCSIP-UHFFFAOYSA-N	93	Ester	II-riexane
	Decane, 1-bromo-	18.142	1356.25	1337±3 (3)	112-29-8	MYMSJFSOOQERIO-UHFFFAOYSA-N	135	Halogenated hydrocarbon	1
	α-Cedrene	19.177	1425.48	1411±3 (93)	469-61-4	IRAQOCYXUMOFCW-UHFFFAOYSA-N	93	Sesquiterpene	
	α-Humulene	19.663	1467.76	1454±3 (792)	6753-98-6	FAMPSKZZVDUYOS-HRGUGZIWSA-N	93	Sesquiterpene	
	Butanoic acid, ethyl ester	5.668	802.57	802±2 (154)	105-54-4	OBNCKNCVKJNDBV-UHFFFAOYSA-N	88	Ester	
	(-)-β-Pinene	10.022	976.82	N/A	18172-67-3	WTARULDDTDQWMU-UHFFFAOYSA-N	93	Terpene	1
	cis-β-Ocimene	11.519	1039.02	1037±7 (20)	13877-91-3	IHPKGUQCSIINRJ-CSKARUKUSA-N	93	Aromatic hydrocarbon	1
	trans-β-Ocimene	11.765	1049.51	1037±7 (20)	13877-91-3	IHPKGUQCSIINRJ-CSKARUKUSA-N	93	Aromatic hydrocarbon	1
MIX7	cis-Limonene oxide	13.722	1135.35	1136±N/A (1)	13837-75-7	CCEFMUBVSUDRLG-AEJSXWLSSA-N	93	Terpene] ,,,
MIA/	trans-Limonene oxide	13.825	1140.06	1138±3 (36)	203719-54-4	CCEFMUBVSUDRLG-BBBLOLIVSA-N	93	Terpene	n-Hexane
	1-Dodecene	14.966	1192.12	1190±3 (40)	112-41-4	CRSBERNSMYQZNG-UHFFFAOYSA-N	83	Unsaturated hydrocarbon	
	Valencene	20.081	1504.34	1492±3 (152)	4630-07-3	QEBNYNLSCGVZOH-UHFFFAOYSA-N	93	Sesquiterpene	
	trans-Nerolidol	20.664	1554.12	1564±2 (277)	40716-66-3	FQTLCLSUCSAZDY-SDNWHVSQSA-N	93	Sesquiterpene alcohol	
	Methyl jasmonate	21.351	1648.20	1638±17 (7)	1211-29-6	GEWDNTWNSAZUDX-SNAWJCMRSA-N	83	Ester	
	3(2H)-Furanone, dihydro-2-methyl-	5.755	805.99	809±3 (22)	3188-00-9	FCWYQRVIQDNGBI-UHFFFAOYSA-N	72	Oxygen-containing heterocyclic compound	
	Styrene	7.852	889.75	893±5 (91)	100-42-5	PPBRXRYQALVLMV-UHFFFAOYSA-N	104	Aromatic hydrocarbon with an unsaturated side chain	
	Butanoic acid, 3-hydroxy-, ethyl ester	8.961	933.97	944±6 (22)	5405-41-4	OMSUIQOIVADKIM-UHFFFAOYSA-N	88	Ester	1
MIX8	Hexanoic acid, ethyl ester	10.598	1007.89	1000±2 (157)	123-66-0	SHZIWNPUGXLXDT-UHFFFAOYSA-N	88	Ester	n-Hexane
	Benzoic acid, methyl ester	12.844	1095.37	1094±3 (86)	93-58-3	QPJVMBTYPHYUOC-UHFFFAOYSA-N	105	Ester	4
	Benzene, 1,3-dimethoxy-	14.448	1168.47	1166±13 (8)	151-10-0	DPZNOMCNRMUKPS-UHFFFAOYSA-N	138	Ether	4
	α-Terpineol	14.986	1192.68	1189±2 (811)	98-55-5	WUOACPNHFRMFPN-UHFFFAOYSA-N	93	Terpene	4
	(S)-(+)-Carvone	16.092	1247.08	1246±7 (14)	2244-16-8	ULDHMXUKGWMISQ-VIFPVBQESA-N	82	Terpene	4
	Methyl eugenol	18.956	1406.33	1402±2 (165)	93-15-2	ZYEMGPIYFIJGTP-UHFFFAOYSA-N	178	Ether	4
	Dodecane, 1-bromo-	20.757	1549.73	1549±N/A (1)	143-15-7	PBLNBZIONSLZBU-UHFFFAOYSA-N	135	Halogenated hydrocarbon	
	Propanoic acid, butyl ester	8.343	909.58	908±4 (28)	590-01-2	BTMVHUNTONAYDX-UHFFFAOYSA-N	75	Ester	1
	Anisole	8.520	916.75	920±4 (26)	100-66-3	RDOXTESZEPMUJZ-UHFFFAOYSA-N	108	Ether	1
	Acetic acid, hexyl ester	10.933	1013.90	1011±4 (112)	142-92-7	AOGQPLXWSUTHQB-UHFFFAOYSA-N	61	Ester	1
	Benzoic acid, ethyl ester	14.533	1172.39	1171±2 (58)	93-89-0	MTZQAGJQAFMTAQ-UHFFFAOYSA-N	105	Ester	4
MIX9	Methyl salicylate	15.062	1196.48	1192±2 (145)	119-36-8	OSWPMRLSEDHDFF-UHFFFAOYSA-N	120	Ester	n-Hexane
	Citral	16.603	1272.06	1276±N/A (1)	5392-40-5	WTEVQBCEXWBHNA-JXMROGBWSA-N	84	Terpene	4
	Eugenol	18.287	1365.38	1357±3 (355)	97-53-0	RRAFCDWBNXTKKO-UHFFFAOYSA-N	164	Allylbenzene	4
	Geranyl acetate	18.653	1386.62	1382±3 (206)	105-87-3	HIGQPQRQIQDZMP-DHZHZOJOSA-N	93	Ester	-
	β-Cedrene	19.286 20.933	1435.27 1601.24	1421±3 (63) 1581±2 (669) 1593 on HP-5MS	546-28-1 1139-30-6	DYLPEFGBWGEFBB-UHFFFAOYSA-N	93 93	Sesquiterpene	4
	Caryophyllene oxide			` ′		NVEQFIOZRFFVFW-UHFFFAOYSA-N		Sesquiterpene oxide	
	Octane	5.619	800.00	800	111-65-9	TVMXDCGIABBOFY-UHFFFAOYSA-N	71	<u>e</u>	
	Nonane	8.110	900.00	900	111-84-2	BKIMMITUMNQMOS-UHFFFAOYSA-N	71	<u>j</u>	
	Decane	10.607	1000.00	1000	124-18-5	DIOQZVSQGTUSAI-UHFFFAOYSA-N	71		
	Undecane	12.960	1100.00	1100	1120-21-4	RSJKGSCJYJTIGS-UHFFFAOYSA-N	71	l ha	
	Dodecane	15.145	1200.00	1200	112-40-3	SNRUBQQJIBEYMU-UHFFFAOYSA-N	71	j ji	
	Tridecane	17.179	1300.00	1300	629-50-5	IIYFAKIEWZDVMP-UHFFFAOYSA-N	71	<u> 8</u>	
	Tetradecane	18.885	1400.00	1400	629-59-4	BGHCVCJVXZWKCC-UHFFFAOYSA-N	71	Ê	1
MIX10	Pentadecane	20.039	1500.00	1500	629-62-9	YCOZIPAWZNQLMR-UHFFFAOYSA-N	71	- Fat	n-Hexane
	Hexadecane	20.925	1600.00	1600	544-76-3	DCAYPVUWAIABOU-UHFFFAOYSA-N	71	<u>8</u>	
	Heptadecane	21.660	1700.00	1700	629-78-7	NDJKXXJCMXVBJW-UHFFFAOYSA-N	85	Ę.	
	Octadecane	22.296	1800.00	1800	593-45-3	RZJRJXONCZWCBN-UHFFFAOYSA-N	85	ě	
	Nonadecane	22.870	1900.00	1900	629-92-5	LQERIDTXQFOHKA-UHFFFAOYSA-N	85	j õ	
	Eicosane	23.395	2000.00	2000	112-95-8	CBFCDTFDPHXCNY-UHFFFAOYSA-N	85	¥	1
	Heneicosane	23.886	2100.00	2100	629-94-7	FNAZRRHPUDJQCJ-UHFFFAOYSA-N	85	open-chain, saturated hydrocarbon	
ı I	Docosane	24.352	2200.00	2200	629-97-0	HOWGUJZVBDQJKV-UHFFFAOYSA-N	85	Ē	

9.7 Figure S3 Powdery mildew symptoms on wheat plants weakened by *Fusarium* disease.

9.8 Figure S4 Comparative boxplots of temperature conditions during the incubation period (left) and the sampling day (right) in three experimental years.

9.9 Supplementary Method Artificial inoculation and pathotype determination of *Blumeria graminis* f.sp. *tritici* (Hamow et al. 2021).

The systematic study of pathotype specification of the wheat powdery mildew pathogen (*Blumeria graminis* f.sp. *tritici*) population in Hungary goes back to almost 50 years. The survey inspects the alterations in the composition of pathotypes and their corresponding virulence genes in this dynamically changing fungal pathogen. The collection and propagation of monosporic cultures on seedlings differ from year to year, depending on weather conditions, with an average number of tested monosporic isolates of 190-200 in a winter season.

For the initial collection step, 14 susceptible 'trap' wheat cultivars with different genetic backgrounds are sown in outdoor pots. Monosporic colonies still growing separately are picked and inoculated on 7-days-old susceptible plants of 'Carsten V' (no known *Pm* resistance gene). The plants serving for the propagation of monosporic inocula are grown from sowing until application in a greenhouse (16 °C, 14 h light) under isolated circumstances in pots covered with glass bells. During the 3 weeks of propagation occasional gentle hitting ensures that the quantity of conidiospores becomes sufficient for artificial inoculation of a differential genotype set based on the description of Frauenstein et al. (1979).

The differential set (see Table below) consists of genotypes carrying the following *Pm* resistance genes: *Pm1a*, *Pm2*, *Pm2+Mld*, *Pm3b*, *Pm4b*, *Pm5a* and *Pm8*. The genotypes are arranged in rows containing approximately 12 seedlings each and grown under isolated circumstances in wooden cases covered with glass boxes. When the first leaves of plants are about 8 cm in size, the glass lid is opened for the time of inoculation and spores are scattered over the leaves. Each pot covered with glass bell serves as inoculum for one box only. In 7-10 days, the reaction type and severity of infection is evaluated based on visible powdery mildew symptoms on the leaves. Information is gained about the composition of the collected population according to the pathotype reactions described by Frauenstein et al. (1979). Selected isolates are maintained on plants under glass bell for further examination.

In the present study, prevalent pathotypes of the powdery mildew population were chosen in each greenhouse season (2018-2020). Pathotype 51 is the most aggressive one as it is virulent on all eight wheat genotypes of the differential set, the colonies on the leaves are abundant and spore production is not hampered by plant defence mechanisms. The presence of pathotype 51 was expected, as it has had the highest incidence in Martonvásár throughout 30 years (an average of 21.6% in the period of 1990-2020), with an increasing tendency. In the last five years, the mean frequency of pathotype 51 was 41.6%, with values of 37.7%, 37.4% and 61.7% in the three consecutive greenhouse seasons of the present study. Although pathotype 71 occurred only sporadically in the past, it had precipitous emergence in the last two years with frequencies of

59.2% and 35.2%, respectively. Pathotype 71 is avirulent on wheat genotypes carrying the *Pm3b* allele (see Figure below). These two pathotypes were the most abundant, altogether representing approximately 97% in the powdery mildew population during the seasons 2018/2019 and 2019/2020.

Differential set of cultivars with corresponding powdery mildew (*Pm*) resistance genes (adapted from Frauenstein et al. 1979)

No.	Test cultivar	Pm gene
1	'Carsten V'	none
2	'Salzmünde 14/44'	Pm8
3	'Red Fern'	Pm2
4	'Axminster'	Pmla
5	Halle Stamm 13471	Pm2+Mld
6	'Weihenstephaner M1'	Pm4b
7	'Hope'	Pm5a
8	'Chul'	Pm3b

Representative reaction of the differential tester set to inoculation of *Blumeria graminis* f.sp. *tritici*. Inoculation was applied by manually shaking conidiospores of pathotype 71 onto single leaves of 7-days-old tester plants (stages 11-12 at the Zadoks scale, Zadoks et al. 1974).

Experimental setup and numbers of independent replicate samples from headspaces of *Bgt*-inoculated wheat plants in the greenhouse ('Carsten V') in three consecutive years (2018-2020) and in a growth chamber ('Mv Suba' and 'Mv Kolompos', 2020)

				Greenho	use		Growth chamber	Grand
Treatment	DAI	2018	2019	2020	Subtotal	Treatment total	2020	total
Control	7	4+4	1	4+4	16	40	8+8	56
Control	14	4+4	4+4	4+4	24	40	0+0	50
Inoculated	7	4+4	-	4+6*	18	48	8+8	61
mocurated	14	4+4	6*+6*	4+6*	30		0+0	64
Subtotal		16+16	10+10	16+20	88	88	16+16	120
Total (Year)		32	20	36			32	
Analysis type		untargeted	untargeted	targeted			untargeted	
(VOC no.)		(48)	(48)	(6)				

DAI: days after inoculation; *four replicate inoculations by pathotype 51 + two replicates by pathotype 71

References

Frauenstein, K., Meyer, H., Wolfram, H., (1979): Pathotypen von *Erysiphe graminis* DC.f.sp. *tritici* Marchal und *E. graminis* DC.f.sp. *hordei* Marchal in Europa. Arch. Phytopathol. Plant Protect. 15, 391–399. https://doi.org/10.1080/03235407909437497.

Zadoks, J.C., Chang, T.T., Konzak, C.F., (1974): A decimal code for the growth stages of cereals. Weed Res. 14, 415–421. https://doi.org/10.1111/j.1365-3180.1974.tb01084.x.

9.10 Table S4 Detailed characterization and reported occurrence of the identified VOCs

					PubChem		KNApSAcK	Wheat					RI lit. (NIST17 /	m/z		
No.	NAME ^a	CAS No.b	InChIKey ^c	ChEBI ^d	CIDe	KEGG ^f	8	plant ^h	Blumeria ^b	Literature	RT mini	RI calc. ^j	PubChem)k	quant 1	Scan event	Compound class
1	Octane	111-65-9	TVMXDCGIABBOFY-UHFFFAOYSA-N	17590	356	C01387	C00035857	ND	ND		5.91	800	800	71	Scan	aliphatic hydrocarbon
	Heptane, 2,4-dimethyl-	2213-23-2	AUKVIBNBLXQNIZ-UHFFFAOYSA-N	1/390	16656	C01367	C00033637	ND	ND	-	6.45	821.2	821±1 (41)	85	Scan	acyclic hydrocarbon
	1.3-Octadiene	1002-33-1	OTYUSOHYEPOHLV-FNORWONLSA-	89638	517653			ND ND	ND	-	6.54	824.9	827±1 (41)	54	Scan	acyclic hydrocarbon
	Ethylbenzene	1002-33-1	YNQLUTRBYVCPMQ-UHFFFAOYSA-N	16101	7500	C07111		ND	ND	-	7.43	860.3	855 855	91	Scan	aromatic hydrocarbon
-	Octane, 4-methyl-	2216-34-4	DOGIHOCMZJUJNR-UHFFFAOYSA-N	10101	16665	C0/111		ND	ND	-	7.53	864.2	863	85	Scan	acyclic hydrocarbon
-	m-Xylene	108-38-3	IVSZLXZYOVIEFR-UHFFFAOYSA-N	28488	7929	C07208	C00035778	ND	ND	-	7.63	868.2	866±7 (170	91	Scan	aromatic hydrocarbon
	1,3-cis ,5-cis -Octatrie ne	40087-62-5	HOXGZVUCAYFWGR-SFECMWDFSA-		5367394	C07200	C00033770	ND	ND		7.9	878.7	879	79	Scan	acyclic hydrocarbon
	3-Heptanone	106-35-4	NGAZZOYFWWSOGK-UHFFFAOYSA-N	50139	7802			ND	ND	-	8.09	886.5	887±3 (33)	85	Scan	ketone.
9	Styrene	100-42-5	PPBRXRYQALVLMV-UHFFFAOYSA-N	27452	7501	C07083	C00037855	ND	ND	-	8.18	890.1	893±5 (91)	104	Scan	aromatic hydrocarbon
10	o-Xylene	95-47-6	CTQNGGLPUBDAKN-UHFFFAOYSA-N	28063	7237	C07212		ND	ND	-	8.22	891.7	887±8 (178)	91	Scan	aromatic hydrocarbon
11	Nonane	111-84-2	BKIMMITUMNQMOS-UHFFFAOYSA-N	32892	8141		C00034882	ND	ND	-	8,43	900	900	71	Scan	aliphatic hydrocarbon
12	α-Pinene	80-56-8	GRWFGVWFFZKLTI-UHFFFAOYSA-N	36740	440968	C06308	C00035786	+	ND	3,9,12	9.3	934.6	935+-7	93	SIM	monoterpene
13	Benzaldehyde	100-52-7	HUMNYLRZRPPJDN-UHFFFAOYSA-N	17169	240	D02314	C00034452	+	ND	1,12	9.95	960.5	962±3 (416)	106	Scan	aldehyde
14	Benzene, 1-ethyl-3-methyl-	620-14-4	ZLCSFXXPPANWQY-UHFFFAOYSA-N	77512	12100	C14522		ND	ND	-	9.98	961.9	957±8 (67)	105	Scan	aromatic hydrocarbon
	Benzene, 1.3.5-trimethyl- (Mesytilene)	108-67-8	AUHZEENZYGFFBO-UHFFFAOYSA-N	34833	7947	C14508		ND	ND	-	10.16	969.1	972±9	105	Scan	aromatic hydrocarbon
	1-He ptanol	111-70-6	BBMCTIGTTCKYKF-UHFFFAOYSA-		8129		C00035700	ND	ND		10.19	970.2	970±2 (68)	70	SIM	alcohol/ fatty alcohol
17	(5Z)-Octa-1,5-die n-3-ol	50306-18-8	APFBWMGEGSELQP-WAYWQWQTS/		6430307			ND	ND		10.3	974.5	975±2	57	SIM	alcohol/ fatty alcohol
18	β-Pinene	127-91-3	WTARULDDTDQWMU-UHFFFAOYSA-	50025	14896	C09882	C00000816	+	ND	5,12	10.37	977.3	979, 974	93	SIM	monoterpene
	1-Octen-3-ol	3391-86-4	VSMOENVRRABVKN-UHFFFAOYSA-	34118	18827	C14272	C00029423	+	ND	1,3,4,9,11,13	10.43	979.8	980±2 (355)	72	SIM	alcohol/ fatty alcohol
20	3-Octanone	106-68-3	RHLVCLIPMVJYKS-UHFFFAOYSA-N	80946	246728	C17145	C00034765	ND	ND	-	10.62	987.4	986±3 (101)	72	SIM	ketone
21	β-Myrcene	123-35-3	UAHWPYUMFXYFIY-UHFFFAOYSA-N	17221	31253	C06074	C00000853	+	ND	1,3,5,9	10.73	991.8	991	93	SIM	monoterpene
	Benzene, 1,2,4-trimethyl- (pseudo-Cumene	95-63-6	GWHJZXXIDMPWGX-UHFFFAOYSA-N	34039	7247	C14533		ND	ND	-	10.78	993.7	990±6 (83)	105	Scan	aromatic hydrocarbon
	Decane	124-18-5	DIOQZVSQGTUSAI-UHFFFAOYSA-N	41808	15600			ND	ND	-	10.94	1000	1000	71	Scan	aliphatic hydrocarbon
24	3-Carene	13466-78-9	BQOFWKZOCNGFEC-UHFFFAOYSA-N	7	26049	C11382	C00011044	+	ND	4	11.21	1011.5	1011±2 (336)	93	SIM	monoterpene
25	p-Cymene	99-87-6	HFPZCAJZSCWRBC-UHFFFAOYSA-N	28768	7463	C06575	C00003040	+	ND	12	11.54	1025.6	1025±2 (820)	119	Scan	monoterpene
26	(+)- Limonene	138-86-3	XMGQYMWWDOXHJM-UHFFFAOYSA-	15384	22311	D00194	C00000823	+	ND	1,3,9,12	11.63	1029.6	1030±2 (1004)	93	SIM	monoterpene
27	Indane	496-11-7	PONFLJBBNBOBRQ-UHFFFAOYSA-N	37911	10326			ND	ND	-,-,-,-	11.8	1036.7	1029±11 (36)	117	Scan	policyclic aromatic hydrocarbon
28	Benzene, 1,2-diethyl-	135-01-3	KVNYFPKFSJIPBJ-UHFFFAOYSA-N		8657			ND	ND	-	12.14	1050.9	1045±8 (22)	105	Scan	aromatic hydrocarbon
29	Acetophenone	98-86-2	KWOLFJPFCHCOCG-UHFFFAOYSA-N	27632	7410	C07113	C00002685	+	ND	4	12.51	1067	1065±4 (134)	105	Scan	ketone
30	Benzene, 2-ethyl-1,3-dimethyl-	2870-04-4	CHIKRULMSSADAF-UHFFFAOYSA-N		17877			ND	ND		12.83	1080.3	1080±20 (12)	119	Scan	aromatic hydrocarbon
31	3-Octanol, 3,7-dimethyl-	78-69-3	DLHQZZUEERVIGQ-UHFFFAOYSA-N	84242	6548			ND	ND	-	13.25	1098	1100±13 (8)	73	Scan	alcohol/ fatty alcohol
32	Undecane	1120-21-4	RSJKGSCJYJTIGS-UHFFFAOYSA-N	46342	14257		C00032443	ND	ND		13.29	1100	1100	71	Scan	aliphatic hydrocarbon
33	Nonanal	124-19-6	GYHFUZHODSMOHU-UHFFFAOYSA-N		31289		C00030828	+	ND	1,2,9	13.39	1104.3	1104±2 (556)	70	Scan	aldehyde/ fatty aldehyde
34	Benzene, 1,2,3,4-tetramethyl-	488-23-3	UOHMMEJUHBCKEE-UHFFFAOYSA-N		10263		C00050020	ND	ND	1,2,7	13.68	1117.8	1116±9 (32)	119	Scan	aromatic hydrocarbon
	Benzene, 1,2,3,5-tetramethyl-	527-53-7	BFIMMTCNYPIMRN-UHFFFAOYSA-N		10695			ND	ND		13.76	1121.5	1117±9 (24)	119	Scan	aromatic hydrocarbon
	Benzaldehyde, 3-ethyl-	34246-54-3	LLYXUFQXCNIGDG-UHFFFAOYSA-N		118623			ND	ND	-	14.73	1165.7	1168±N/A (1)	134	Scan	aldehyde
37	Benzaldehyde, 4-ethyl-	4748-78-1	QNGNSVIICDLXHT-UHFFFAOYSA-N		20861			ND	ND	-	15.04	1180	1180±16 (5)	134	Scan	aldehyde
38	Naphthalene	91-20-3	UFWIBTONFRDIAS-UHFFFAOYSA-N	16482	931	C00829	C00001259	+	ND	8	15.18	1186.4	1182±8 (183)	128	Scan	policyclic aromatic hydrocarbon
	Dodecane	112-40-3	SNRUBQQJIBEYMU-UHFFFAOYSA-N	28817	8182	C08374	C00001248	ND	ND	-	15.48	1200	1200	71	Scan	aliphatic hydrocarbon
40	Decanal	112-31-2	KSMVZOYAVGTKIV-UHFFFAOYSA-N	31457	8175	C12307	C00030099	ND	ND	-	15.6	1206	1206±2 (406)	70	Scan	aldehyde
41	Undecane, 2,6-dimethyl-	17301-23-4	MFUPKUZLTKVMFM-UHFFFAOYSA-N		28453			ND	ND	-	15.76	1214.1	1210±3 (18)	71	Scan	acyclic hydrocarbon
42	Ethanone, 1-(4-ethylphenyl)-	937-30-4	NODGRWCMFMEGJH-UHFFFAOYSA-N		13642			ND	ND	-	17.21	1284.8	1277±4 (8)	133	Scan	ketone
43	Tridecane	629-50-5	IIYFAKIEWZDVMP-UHFFFAOYSA-N	35998	12388	C13834	C00048561	ND	ND	-	17.52	1300	1300	71	Scan	aliphatic hydrocarbon
44	Tridecane, 3-methyl-	6418-41-3	NLHRRMKILFRDGV-UHFFFAOYSA-N		110848			ND	ND	-	18.72	1374.4	1371±1 (15)	71	Scan	acyclic hydrocarbon
	Tetradecane	629-59-4	BGHCVCJVXZWKCC-UHFFFAOYSA-N	41253	12389		C00035879	ND	ND	-	19.14	1400	1400	71	Scan	aliphatic hydrocarbon
	Longifolene	475-20-7	PDSNLYSELAIEBU-GUIRCDHDSA-N	6530	289151	C09699	C00003162	ND	ND	-	19.35	1418.7	1413±5	93	SIM	sesquiterpene
47	β-Caryophyllene	87-44-5	NPNUFJAVOOONJE-GFUGXAQUSA-N	10357	5281515	C09629	C00003110	+	ND	1,2,5.6,7,10	19.52	1434.2	1423-1442	93	SIM	sesquiterpene
	Pentadecane	629-62-9	YCOZIPAWZNQLMR-UHFFFAOYSA-N	28897	12391	C08388	C00001265	+	ND	5	20.25	1500	1500	71	Scan	aliphatic hydrocarbon
In th	e order of elution; bold, identified marker V	ос	•	•				13 +, 35 NI	48 ND							
			7 and the Wiley Registry of Mass Spectral Da	ita. 10th edn						Literature (see ne:	xt sheet)	Development				
	emical Abstracts Service registry number		,	,						Buttery et al. 198		(20-30 cm oa	*)			
		. (27. 1														
		C International Chemical Identifier format (27 characters)								² Buttery et al. 198	0	(15-20 cm wh				
	emical Entities of Biological Interest databa						³ König et al. 1995		(flowering wh							
e Pul	Chem Compound ID							⁴ Birkett et al. 2004	1	(flowering wh	neat)					
f Kyo	oto Encyclopedia of Genes and Genomes da							⁵ Piesik et al. 2010		(5-6 weeks of	ld wheat, barley, or	at)				
	ApSAcK family database identifier							⁶ Wenda-Piesik et	al. 2010	(5-6 weeks of	ld wheat)					
	ence or presence (+) in wheat plants or Bh							⁷ Wenda-Piesik 20		(6 weeks old						
	ention Time in min						8Cruz et al. 2012		(12 weeks ok							
	tention Index calculated, experimentally determined using n-alkane retention indices									⁹ Hartikainen et al.			ks old wheat and o	at)		
	Retention Index literature, from corresponding data in NIST v17 and the PubChem repository									¹⁰ Delaney et al. 20			wheat and barley)			
sele	cted fragment ion (m/z) for quantitation									11Gfeller et al. 201	3	(1 and 3 weel	ks old barley)			
										12Timmusk et al. 2	014	(2-3 weeks of	ld wheat)			

9.11 Table S5 QC data for injection PM *B. graminis* BVOC related reference mixture Two year follow up on chromatographic stability, sensitivity, linearity and reproducibility (0.05-5 µg/ml)

I wo year follow up on	CIIIOIII	atograp	ine stat	mity, se	HSTUV	ity, iiile	arity ar	iu repro	ducibili	ly (0.03	-3 μg/1	111)	
		1-hept	anol (S	IM - m	/z 70)	1-octe	en-3-ol	(SIM - 1	n/z 72)	3-octa	none (S	SIM - m	/z 72)
		AVG RT (min)	SD of RT (min)	CV% of RT	RT drift (min) in 3 years	AVG RT	SD of RT	CV% of RT	RT drift in 3 years	AVG RT	SD of RT	CV% of RT	RT drift in 3 years
		10.15	0.019	0.19	-0.057	10.38	0.018	0.17	-0.061	10.57	0.019	0.18	-0.063
		AVG accuracy%	SD of accuracy%	CV% of accuracy	ccuracy %	AVG Accuracy	SD of accuracy	CV% of accuracy	Accuracy %	AVG Accuracy	SD of accuracy	CV% of accuracy	Accuracy %
		103.73	6.33	<u>6.1</u>	Ĭ	103.15	<u>7.56</u>	7.3	ŭ	98.83	9.67	<u>9.8</u>	Ĭ
Date and concentration	Exp. Conc ng/ul	RT (min)	Response	Final Conc ng/ul	Асс	RT (min)	Response	Final Conc ng/ul	Асс	RT (min)	Response	Final Conc ng/ul	Асс
190404_2.5ng/ul	2.5	10.18	629528	2.629	105.1	10.42	275827	2.635	105.4	10.60	520750	2.100	84.0
190404_1ng/ul	1.0	10.18	224795	1.108	110.8	10.42	101997	1.115	111.5	10.60	193950	0.819	81.9
190404_0.5ng/ul	0.5	10.18	92407	0.501	100.2	10.42	37673	0.455	91.1	10.61	92369	0.406	81.2
190404_0.1ng/ul	0.1	10.19	12998	0.0943	94.3	10.42	5616	0.0977	97.7	10.61	14211	0.0832	83.2
200309_0.5ng/ul	0.5	10.15	90132	0.490	98.0	10.38	38389	0.463	92.6	10.57	103275	0.451	90.1
200309_1ng/ul	1.0	10.15	214083	1.062	106.2	10.38	92402	1.021	102.1	10.56	237896	0.995	99.5
200309_2.5ng/ul	2.5	10.14	630238	2.631	105.2	10.38	271023	2.597	103.9	10.56	620437	2.478	99.1
200309_5ng/ul	5.0	10.14	1377477	4.773	95.5	10.38	590830	4.834	96.7	10.56	1238273	4.704	94.1
2003011_0.05ng/ul	0.05	10.18	5486	0.0537	107.4	10.40	2134	0.0574	114.8	10.58	7253	0.0542	108.4
2003011_0.05ng/ul - CAL	0.05	10.18	5830	0.0556	111.1	10.40	2070	0.0567	113.3	10.58	6914	0.0528	105.6
2003011_0.5ng/ul - CAL	0.5	10.15	82373	0.452	90.3	10.38	35825	0.435	87.1	10.57	108654	0.473	94.5
2003011_1ng/ul - CAL	1.0	10.15	188060	0.947	94.7	10.38	85028	0.948	94.8	10.56	232232	0.973	97.3
2003011_2.5ng/ul - CAL	2.5	10.14	626015	2.617	104.7	10.38	276982	2.644	105.8	10.56	647896	2.581	103.3
2003011_5ng/ul - CAL	5.0	10.14	1454994	4.966	99.3	10.38	610296	4.955	99.1	10.56	1315528	4.970	99.4
2003011_1ng/ul	1.0	10.14	212559	1.055	105.5	10.38	96438	1.061	106.1	10.56	251293	1.049	104.9
2003011_1ng/ul	1.0	10.14	204711	1.021	102.1	10.38	92744	1.024	102.4	10.56	245637	1.026	102.6
2003011_1ng/ul	1.0	10.14	202360	1.010	101.0	10.38	90909	1.006	100.6	10.56	244445	1.021	102.1
2003012_1ng/ul	1.0	10.15	216711	1.073	107.3	10.38	97612	1.072	107.2	10.56	254805	1.063	106.3
2003012_1ng/ul	1.0	10.15	208220	1.036	103.6	10.38	97174	1.068	106.8	10.56	259645	1.082	108.2
2003012_1ng/ul	1.0	10.15	233669	1.146	114.6	10.38	106657	1.161	116.1	10.56	286325	1.188	118.8
2003020_1ng/ul	1.0	10.14	217921	1.078	107.8	10.38	93026	1.027	102.7	10.56	230397	0.965	96.5
20210202_1ng/ul	1.0	10.12	230659	1.133	113.3	10.36	100413	1.100	110.0	10.54	255538	1.066	106.6
20210202_1ng/ul	1.0	10.12	217500	1.076	107.6	10.36	95066	1.047	104.7	10.54	253275	1.057	105.7

9.12 Table S6 System suitability reference mix injections from year 2019-2020 for precision, sensitivity and reproducibility - an early (styrene), a mid (1,3-dimethoxy-benzene) and a late eluting (longifolene) component, for the latter comparing data quality of extracted ion chromatogram (EIC) and selective ion monitoring (SIM) channels (concentration range 0.05-2.5 $\mu g/ml$)

		Styre	ene - El	[C m /z	104	1,3-Di		ybenzer z 138	ne - EIC	Longi	folene -	EIC m	/z 161	Long	ifolene	· SIM m	ı/z 93
		AVG RT (min)	SD of RT (min)	CV% of RT	RT drift (min) in 2 years	AVG RT (min)	SD of RT (min)	CV% of RT	RT drift (min) in 2 years	AVG RT (min)	SD of RT (min)	CV% of RT	RT drift (min) in 2 years	AVG RT (min)	SD of RT (min)	CV% of RT	RT drift (min) in 2 years
		8.15	0.011	0.14	-0.017	14.75	0.013	0.09	-0.056	19.32	0.008	0.04	-0.026	19.32	0.009	0.05	-0.031
		AVG accuracy%	SD of accuracy%	CV% of accuracy	Accuracy %	AVG Accuracy	SD of accuracy	CV% of accuracy	Accuracy %	AVG Accuracy	SD of accuracy	CV% of accuracy	Accuracy %	AVG Accuracy	SD of accuracy	CV% of accuracy	Accuracy %
		110.37	9.05	8.2	E %	109.25	8.35	7.6	cm:	106.51	7.38	6.9	%	110.03	9.74	8.8	mo %
Date and concentration	Exp. Conc ng/ul	RT(min)	Response	Final Conc	Aco	RT(min)	Response	Final Conc	Aco	RT (min)	Response	Final Conc	Aco	RT(min)	Response	Final Conc	Acc
19_SST_0_05ng - CAL	0.05	8.16	3704	0.0561	112.3	14.78	5577	0.0544	108.8	19.33	2440	0.0558	111.6	19.34	2561	0.0594	118.9
19_SST_0_1ng - CAL	0.10	8.16	22112	0.119	118.8	14.77	13700	0.0983	98.3	19.34	5155	0.101	101.0	19.34	4858	0.0967	96.7
19_SST_0_5ng - CAL	0.50	8.15	122650	0.461	92.2	14.76	82676	0.469	93.7	19.33	25925	0.447	89.4	19.33	25337	0.429	85.9
19_SST_1ng - CAL	1.00	8.15	263383	0.940	94.0	14.76	176266	0.962	96.2	19.34	55364	0.937	93.7	19.34	56330	0.9325	93.3
19_SST_2_5ng - CAL	2.50	8.15	731116	2.531	101.2	14.76	494885	2.576	103.0	19.34	155771	2.609	104.4	19.34	160997	2.632	105.3
19_SST_10ng	10.00	8.16	3319639	11.34	113.4	14.76	2207813	9.989	99.9	19.34	716898	11.954	119.5	19.34	722369	11.747	117.5
20200108_SST_1ppm_1	1.00	8.15	304239	1.079	107.9	14.75	195185	1.061	106.1	19.32	58124	0.983	98.3	19.33	66529	1.098	109.8
20200108_SST_1ppm_2	1.00	8.15	314912	1.115	111.5	14.75	196656	1.069	106.9	19.32	56382	0.954	95.4	19.32	66962	1.105	110.5
20200108_SST_1ppm_3	1.00	8.15	311877	1.105	110.5	14.75	189624	1.032	103.2	19.32	56951	0.9636	96.4	19.32	66307	1.095	109.5
20200108_SST_1ppm_4	1.00	8.15	308692	1.094	109.4	14.75	199468	1.083	108.3	19.32	60700	1.026	102.6	19.32	66785	1.102	110.2
20200120_SST_1ppm_2	1.00	8.15	338014	1.194	119.4	14.74	218758	1.183	118.3	19.32	65728	1.110	111.0	19.32	72368	1.193	119.3
20200120_SST_1ppm_3	1.00	8.15	333168	1.177	117.7	14.74	211185	1.144	114.4	19.32	65357	1.104	110.4	19.32	69993	1.154	115.4
20200120_SST_1ppm_4	1.00	8.15	334152	1.180	118.0	14.74	220936	1.195	119.5	19.32	68536	1.156	115.6	19.32	71851	1.185	118.5
20200122_SST mix	1.00	8.12	297710	1.056	105.6	14.75	191498	1.042	104.2	19.32	59196	1.001	100.1	19.32	64394	1.063	106.3
20200123_SST mix2	1.00	8.14	309713	1.097	109.7	14.74	203367	1.103	110.3	19.32	61227	1.035	103.5	19.32	66691	1.101	110.1
20200124_SST 1	1.00	8.12	316303	1.120	112.0	14.74	213030	1.154	115.4	19.32	67407	1.138	113.8	19.32	69853	1.152	115.2
20200206_1ppmSST1	1.00	8.12	314085	1.112	111.2	14.74	212434	1.151	115.1	19.32	67218	1.135	113.5	19.32	70776	1.167	116.7
20200206_1ppmSST2	1.00	8.15	337182	1.191	119.1	14.74	218410	1.182	118.2	19.32	65240	1.102	110.2	19.32	72089	1.188	118.8
20200206_1ppmSST3	1.00	8.15	320886	1.135	113.5	14.74	220374	1.192	119.2	19.32	66751	1.127	112.7	19.32	71370	1.177	117.7
20200206_1ppmSST4	1.00	8.15	339816	1.200	120.0	14.74	220332	1.191	119.1	19.32	62486	1.056	105.6	19.32	71018	1.171	117.1
20200306_1ppmSST1	1.00	8.13	318323	1.127	112.7	14.74	208424	1.130	113.0	19.32	64397	1.088	108.8	19.32	70609	1.164	116.4
20200306_1ppmSST2	1.00	8.15	337588	1.192	119.2	14.74	219655	1.188	118.8	19.32	67162	1.134	113.4	19.32	71706	1.182	118.2
20200306_1ppmSST3	1.00	8.15	338529	1.195	119.5	14.74	219183	1.186	118.6	19.32	64793	1.094	109.4	19.32	70927	1.170	117.0
20200306_1ppmSSΓ4	1.00	8.15	337343	1.191	119.1	14.74	220633	1.193	119.3	19.32	66078	1.116	111.6	19.32	71298	1.176	117.6
20200604_SST_2ppm	2.00	8.14	628427	2.182	109.1	14.73	387724	2.044	102.2	19.32	128073	2.148	107.4	19.32	123164	2.018	100.9
20201120_SST_1_5ppm	1.50	8.14	394806	1.387	92.5	14.73	280305	1.500	100.0	19.30	97771	1.643	109.6	19.30	87072	1.432	95.4
20201120_SST_1_5ppm2	1.50	8.14	386834	1.360	90.6	14.72	279696	1.497	99.8	19.30	95748	1.610	107.3	19.31	84561	1.391	92.7

9.13 Table S7 retention times from year 2019-2021 for n-alkanes (C8-26) used for calculation of retention index (RI)

Kováts' RI value	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600
	RT (min)	RT (min)	RT (min)	RT (min)	RT (min)	RT (min)	RT (min)	RT (min)	RT (min) C16	RT (min)									
Date of n-alkane mix measured	C8	C9	C10	C11	C12	C13	C14	C15	K1 (IIIII) C16	C17	C18	C19	C20	C21	C22	C23	C24	C25	C26
20190318 C7-30	5.91	8.43	10.94	13.29	15.48	17.52	19.14	20.25	21.12	21.85	22.48	23.05	23.58	24.07	24.53	24.53	24.98	25.96	26.55
20190321 C7-30	5.91	8.43	10.93	13.29	15.48	17.51	19.14	20.25	21.12	21.85	22.48	23.05	23.57	24.06	24.53	24.53	24.98	25.96	26.55
190325 C7-30	5.91	8.42	10.93	13.29	15.48	17.51	19.14	20.25	21.12	21.85	22.48	23.05	23.58	24.07	24.53	24.53	24.98	25.97	26.55
20200123 C7-30	5.89	8.39	10.89	13.24	15.42	17.46	19.09	20.22	21.09	21.82	22.45	23.02	23.55	24.04	24.50	24.50	24.94	25.92	26.49
20200122 C7-30	5.92	8.41	10.90	13.24	15.43	17.46	19.10	20.22	21.09	21.82	22.45	23.02	23.55	24.04	24.50	24.50	24.94	25.92	26.50
20200309 C7-30	5.91	8.40	10.89	13.24	15.42	17.45	19.09	20.21	21.09	21.81	22.45	23.02	23.55	24.04	24.50	24.50	24.94	25.92	26.49
20200311 C7-30	5.91	8.40	10.89	13.23	15.42	17.45	19.09	20.21	21.09	21.81	22.45	23.02	23.54	24.03	24.50	24.50	24.94	25.91	26.49
20200312 C7-30	5.92	8.40	10.89	13.24	15.42	17.45	19.09	20.21	21.09	21.81	22.45	23.02	23.54	24.03	24.50	24.50	24.94	25.92	26.49
20200320 C7-30	5.91	8.40	10.89	13.24	15.42	17.45	19.09	20.21	21.09	21.81	22.45	23.02	23.54	24.03	24.50	24.50	24.94	25.91	26.49
20200323 C7-30	5.91	8.40	10.89	13.24	15.42	17.45	19.09	20.21	21.09	21.81	22.45	23.02	23.54	24.03	24.50	24.50	24.94	25.91	26.49
20200604 C7-30	5.90	8.39	10.88	13.23	15.41	17.45	19.09	20.21	21.08	21.81	22.45	23.02	23.54	24.03	24.50	24.50	24.94	25.92	26.49
20200729 C7-30	5.89	8.39	10.88	13.23	15.41	17.44	19.08	20.20	21.08	21.81	22.44	23.01	23.54	24.03	24.49	24.49	24.93	25.90	26.48
20201006 c7-30	5.90	8.38	10.88	13.22	15.40	17.44	19.08	20.20	21.08	21.81	22.44	23.01	23.53	24.02	24.49	24.49	24.93	25.90	26.48
20201120 C7-30	5.90	8.39	10.88	13.22	15.40	17.44	19.08	20.20	21.08	21.80	22.44	23.01	23.53	24.03	24.49	24.49	24.93	25.90	26.48
20210202 C7-30	5.89	8.38	10.87	13.22	15.40	17.43	19.08	20.20	21.08	21.80	22.44	23.01	23.54	24.03	24.49	24.49	24.93	25.90	26.48
RT AVERAGES	AVG C8	AVG C9	AVG C10	AVG C11	AVG C12	AVG C13	AVG C14	AVG C15	AVG C16	AVG C17	AVG C18	AVG C19	AVG C20	AVG C21	AVG C22	AVG C23	AVG C24	AVG C25	AVG C26
	5.9	8.4	10.9	13.2	15.4	17.5	19.1	20.2	21.1	21.8	22.5	23.0	23.5	24.0	24.5	24.5	24.9	25.9	26.5
CD CDE	SD C8	SD C9	SD C10	SD C11	SD C12	SD C13	SD C14	SD C15	SD C16	SD C17	SD C18	SD C19	SD C20	SD C21	SD C22	SD C23	SD C24	SD C25	SD C26
SD of RT-s	0.009	0.016	0.021	0.025	0.027	0.029	0.022	0.018	0.016	0.015	0.015	0.014	0.015	0.015	0.015	0.015	0.016	0.022	0.027
CV% of RT-s	CV% C8	CV% C9	CV% C10	CV% C11	CV% C12	CV% C13	CV% C14	CV% C15	CV% C16	CV% C17	CV% C18	CV% C19	CV% C20	CV% C21	CV% C22	CV% C23	CV% C24	CV% C25	CV% C26
2.7	0.15	0.20	0.20	0.19	0.18	0.16	0.11	0.09	0.08	0.07	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.09	0.10
TOTAL RT DRIFT in 2 years: 19.03-21.02 on HP-5MS UI 30m*0.25mm*0.25um used	RT drift (min) C8	RT drift (min) C9	RT drift (min) C10	RT drift (min) C11	RT drift (min) C12	RT drift (min) C13	RT drift (min) C14	RT drift (min) C15	RT drift (min) C16	RT drift (min) C17	RT drift (min) C18	RT drift (min) C19	RT drift (min) C20	RT drift (min) C21	RT drift (min) C22	RT drift (min) C23	RT drift (min) C24	RT drift (min) C25	RT drift (min) C26
Jan	0.025	0.054	0.066	0.072	0.077	0.081	0.062	0.048	0.047	0.042	0.042	0.039	0.039	0.041	0.039	0.039	0.042	0.062	0.075

9.14 Table S8 Comparison of binding during direct administration of submixes and the complete mix - at a concentration of 1 μ g/ml with respect to elution volume, characterization of mean recovery (%) and standard deviation, relative standard deviation (RSD%) and confidence interval (CI), with at least three-point external bracketing using calibration (linear regression, R2>0.99), using 1-bromodecane internal standard correction (Legend: 0-20% - red, 20-40% - orange, 40-60% - yellow, 60% < - green)

			recovery % fro standar		xes with ir	nternal	recovery % direct spikin s		ted for int	
Component english common name	Retention time (min)	Submix number	AVG recovery (%) at 1 µg/ml conc. level	SD	RSD%	CI	AVG recovery (%) at 1 µg/ml conc. level	Szórás	RSD%	CI
2-hexanone	5.372	MIX5	99.0	7.3	7.4	9.1	67.7	3.9	5.7	34.6
3-hexanol	5.496	MIX5	99.6	6.8	6.8	8.4	55.0	0.8	1.5	7.2
hexanal	5.602	MIX3	93.2	11.1	11.9	13.7	67.6	0.5	0.7	4.1
2-hexanol	5.624	MIX4	66.1	5.6	8.5	6.9	47.6	6.3	13.3	56.6
butanoic acid, ethyl ester	5.668	MIX7	95.7	9.9	10.3	12.3	65.0	2.8	4.3	25.0
3(2H)-furanone, dihydro-2-methyl-	5.755	MIX8	43.2	7.4	17.2	9.2	55.7	2.1	3.8	19.0
2-hexenal, (E)-	6.894	MIX1	81.4	7.6	9.3	9.4	59.7	1.1	1.8	9.8
3-hexen-1-ol, (E)-	6.899	MIX2	73.2	6.3	8.6	7.8	50.1	1.3	2.6	11.9
1-hexanol	7.31	MIX5	77.8	3.5	4.5	4.4	49.8	0.8	1.7	7.4
m-xylene	7.313	MIX3	87.3	8.3	9.5	10.3	69.4	0.2	0.2	1.4
p-xylene	7.319	MIX1	84.0	6.6	7.8	8.1	71.8	0.8	1.1	7.1
isopentyl acetate	7.539	MIX6	97.6	14.3	14.6	17.7	71.0	0.6	0.8	5.0
styrene	7.852	MIX8	72.1	15.1	20.9	18.8	68.1	0.8	1.2	7.6
o-xylene	7.901	MIX2	93.9	5.0	5.3	6.2	69.1	0.6	0.8	5.1
2-heptanol	8.105	MIX5	92.3	6.1	6.6	7.6	68.4	0.4	0.6	3.9
2-heptanone	8.124	MIX4	86.6	6.1	7.1	7.6	54.7	3.3	6.1	29.7
propanoic acid, butyl ester	8.343	MIX9	92.6	6.3	6.9	7.9	72.8	0.5	0.6	4.2
acetic acid, pentyl ester	8.486	MIX6	98.0	15.3	15.6	19.0	71.8	0.6	0.9	5.8
anisole	8.520	MIX9	74.2	6.6	8.9	8.2	62.5	1.3	2.1	11.9
α-pinene	8.952	MIX2	103.9	2.5	2.4	3.1	77.3	1.2	1.5	10.7
butanoic acid, 3-hydroxy-, ethyl ester	8.961	MIX8	27.9	16.9	60.5	20.9	55.2	0.9	1.7	8.4
2-heptenal, (E)-	9.506	MIX1	84.6	7.3	8.7	9.1	65.8	1.1	1.7	10.0
benzaldehyde	9.592	MIX3	66.1	7.6	11.5	9.4	49.6	3.5	7.1	31.5
1-heptanol	9.866	MIX2	75.6	2.3	3.0	2.9	42.2	1.6	3.9	14.8
(5Z)-octa-1,5-dien-3-ol	9.952	MIX4	79.7	7.3	9.2	9.1	63.5	1.8	2.8	16.0
(-)-β-pinene	10.022	MIX7	99.6	12.3	12.4	15.3	77.0	0.3	0.4	3.1
1-octen-3-ol	10.095	MIX1	71.9	8.1	11.3	10.1	57.6	1.4	2.5	12.9
phenol	10.141	MIX2	81.4	2.9	3.6	3.6	48.3	0.1	0.3	1.3
5-hepten-2-one, 6-methyl-	10.279	MIX3	88.5	9.8	11.1	12.2	74.2	0.3	0.5	3.1
β-myrcene	10.395	MIX6	107.5	15.6	14.5	19.4	67.9	0.8	1.2	7.6
3-octanol	10.487	MIX5	104.5	6.5	6.2	8.1	78.6	0.2	0.2	1.5
3-octanone	10.531	MIX4	86.4	5.8	6.7	7.2	54.0	0.3	0.5	2.6
hexanoic acid, ethyl ester	10.598	MIX8	79.2	17.9	22.6	22.2	74.7	0.4	0.6	3.8
α-phellandrene	10.709	MIX3	98.1	9.0	9.2	11.2	78.0	0.1	0.2	1.2
3-hexen-1-ol, acetate, (Z)-	10.776	MIX2	98.8	4.9	4.9	6.0	72.0	0.7	1.0	6.2
3-carene	10.851	MIX1	90.4	6.6	7.3	8.2	78.5	0.5	0.7	4.6
acetic acid, hexyl ester	10.933	MIX9	90.1	7.3	8.1	9.1	73.8	0.4	0.5	3.6
p-cymene	11.204	MIX3	94.0	8.3	8.8	10.3	76.9	0.6	0.8	5.7
R-(+)-limonene	11.297	MIX2	106.6	3.6	3.4	4.5	76.7	0.4	0.5	3.5
benzyl alcohol	11.397	MIX5	88.9	4.7	5.3	5.8	37.8	2.0	5.2	17.6

9.14 Table S8 continued Comparison of binding during direct administration of submixes and the complete mix at a concentration of 1 μ g/ml with respect to elution volume, characterization of mean recovery (%) and standard deviation, relative standard deviation (RSD%) and confidence interval (CI), with at least three-point external bracketing using calibration (linear regression, R2>0.99), using 1-bromodecane internal standard correction (Legend: 0-20% - red, 20-40% - orange, 40-60% - yellow, 60% < - green).

0-20% - red, 20-40% - oraı	190, 40-00	70 - yeno	recovery % from	m submix	xes with ir ion (n=5)	nternal	recovery % direct spikin s		ed for int	
Component english common name	Retention time (min)	Submix number	AVG recovery (%) at 1 μg/ml conc. level	SD	RSD%	CI	AVG recovery (%) at 1 μg/ml conc. level	Szórás	RSD%	CI
cis-β-ocimene	11.519	MIX7	101.2	12.4	12.3	15.4	78.7	0.9	1.1	8.1
trans-β-ocimene	11.765	MIX7	101.8	12.2	11.9	15.1	79.3	0.8	1.1	7.6
2-methylphenol (o-cresol)	11.886	MIX4	75.2	4.1	5.5	5.1	49.1	0.4	0.9	3.8
acetophenone	12.165	MIX6	62.1	11.8	19.0	14.6	52.1	3.4	6.6	30.7
3-methylphenol (m-cresol)	12.371	MIX4	73.2	5.1	7.0	6.4	48.8	0.4	0.8	3.7
α-terpinolene	12.709	MIX1	89.5	7.0	7.8	8.6	76.5	0.8	1.0	6.9
benzoic acid, methyl ester	12.844	MIX8	51.5	8.5	16.5	10.5	58.3	3.3	5.7	29.9
linalool	12.951	MIX4	87.2	6.1	7.0	7.6	66.7	1.6	2.4	14.4
nonanal	13.046	MIX2	94.4	4.9	5.2	6.1	70.6	0.9	1.2	7.7
phenylethyl Alcohol	13.245	MIX4	75.6	5.9	7.8	7.4	51.9	2.9	5.5	25.7
cis-limonene oxide	13.722	MIX7	91.7	12.3	13.4	15.3	71.2	1.3	1.9	11.9
trans-limonene oxide	13.825	MIX7	93.9	12.9	13.8	16.1	71.0	1.5	2.1	13.6
isopulegol	13.993	MIX1	86.2	9.2	10.7	11.4	66.3	1.2	1.8	10.8
benzene, 1,3-dimethoxy-	14.448	MIX8	45.0	7.7	17.1	9.5	50.7	4.3	8.5	38.8
benzoic acid, ethyl ester	14.533	MIX9	69.4	5.9	8.6	7.4	60.6	2.9	4.8	26.0
1-nonanol	14.832	MIX5	86.2	10.1	11.7	12.6	78.1	1.0	1.3	9.3
1-dodecene	14.966	MIX7	102.4	12.3	12.0	15.3	82.0	0.1	0.1	1.0
α-terpineol	14.986	MIX8	53.7	15.1	28.1	18.7	65.9	0.6	0.9	5.4
methyl salicylate	15.062	MIX9	69.0	6.7	9.8	8.3	57.2	3.4	5.9	30.2
decanal	15.264	MIX2	101.4	3.6	3.5	4.4	69.3	0.7	0.9	5.9
β-citronellol	15.717	MIX4	83.6	6.2	7.4	7.7	55.2	7.0	12.7	63.2
pulegone	16.011	MIX1	82.8	8.4	10.2	10.4	66.1	1.4	2.2	13.0
(S)-(+)-carvone	16.092	MIX8	56.7	11.6	20.4	14.4	61.4	1.1	1.8	9.8
citral	16.603	MIX9	66.7	6.9	10.4	8.6	60.2	1.9	3.1	17.0
phenol, 4-ethyl-2-methoxy-	16.788	MIX3	82.0	9.5	11.6	11.8	52.3	1.2	2.2	10.4
(-)-bornyl acetate	16.968	MIX6	91.9	16.3	17.8	20.3	69.7	0.6	0.8	5.2
2-undecanone	17.05	MIX5	111.6	5.7	5.1	7.1	71.7	1.2	1.6	10.5
eugenol	18.287	MIX9	58.8	7.7	13.2	9.6	55.8	1.2	2.2	11.2
geranyl acetate	18.653	MIX9	83.0	6.9	8.3	8.6	68.9	1.6	2.3	14.0
methyl eugenol	18.956	MIX8	46.0	14.0	30.5	17.4	51.4	3.3	6.4	29.3
longifolene	19.093	MIX2	105.1	4.1	3.9	5.1	75.0	0.8	1.1	7.4
α-cedrene	19.177	MIX6	100.0	17.1	17.1	21.3	76.2	1.1	1.4	9.6
caryophyllene	19.258	MIX1	90.1	7.8	8.7	9.7	76.6	0.5	0.7	4.6
β-cedrene	19.286	MIX9	96.5	8.7	9.0	10.8	67.4	1.4	2.0	12.1
α-humulene	19.663	MIX6	98.3	16.5	16.8	20.5	73.7	1.0	1.3	8.9
trans-β-Ionone	19.962	MIX3	93.4	9.9	10.6	12.3	65.3	1.3	1.9	11.4
valencene	20.081	MIX7	94.5	11.1	11.7	13.8	78.4	1.6	2.0	14.0
trans-nerolidol	20.664	MIX7	92.0	11.7	12.7	14.6	74.4	0.8	1.1	7.5
caryophyllene oxide	20.933	MIX9	78.6	6.4	8.1	7.9	70.0	1.5	2.2	13.7
methyl jasmonate	21.351	MIX7	20.6	11.0	53.5	13.7	54.1	2.5	4.6	22.2
trans-farnesol	21.844	MIX1	87.3	10.7	12.2	13.3	67.8	3.1	4.6	27.8

9.15 Table S9 Recovery test results using submix 10 containing normal alkanes (C7-30, C8-22 evaluated), in case of direct addition, followed by periodic and continuous DHS sampling – representation of the measured recovery (% - corrected by internal standard 1-bromodecane) at 1 $\mu g/ml$ concentration with repsect to elution volume (legend: 0-20% - red, 20-40% - orange , 40-60% - yellow, 60% < - green)

	DHS mode	ed	periodic DHS (n=3)	(n=3)		contir	continuous DHS (n=3)	S (n=3)					
	DHS settings	0.8 L/min, 5 min flow "on" 10 min flow "off" cyclic	low "on", " cyclic	for 6 hours, at 26°C	at 26°C	0.8 L/min		for 6 hours, at 26°C	at 26°C	direct spiking with complete reference mixture $(n\!\!=\!\!2)$	complete (n=2)	reference m	ixture
Retention time (min)	Component english common name	AVG recovery (%) at 1 µg/ml conc. level	SD	RSD %	CI	AVG recovery (%) at 1 µg/ml conc. level	S	RSD %	C	AVG recovery (%) at 1 µg/ml conc. level	SD	RSD %	CI
5.613	octane	51.4	40.9	79.5	101.6	9.6	5.2	53.6	12.8	79.0	14.7	18.5	131.6
8.101	nonane	89.2	21.2	23.7	52.6	79.1	36.6	46.2	6.06	87.2	13.7	15.7	122.8
10.602	decane	98.3	14.5	14.7	36.0	90.5	26.7	29.5	66.3	89.2	15.3	17.1	137.5
12.955	undecane	101.5	12.8	12.6	31.7	94.4	22.3	23.6	55.3	90.4	16.0	17.7	144.0
15.139	dodecane	101.9	12.6	12.4	31.3	93.7	20.9	22.3	52.0	L'06	15.3	16.9	137.4
17.175	tridecane	101.4	12.7	12.5	31.6	92.7	18.7	20.2	46.5	90.1	15.7	17.4	140.7
18.882	tetradecane	101.3	11.5	11.4	28.6	92.4	18.9	20.4	46.9	L'68	15.8	17.6	141.8
20.036	pentadecane	102.2	12.0	11.8	29.9	94.5	20.9	22.2	52.0	8.68	16.5	18.4	148.6
20.926	hexadecane	101.0	11.4	11.2	28.2	95.5	19.2	20.1	47.7	9.68	15.3	17.1	137.9
21.657	heptadecane	98.5	11.9	12.1	29.5	91.9	20.4	22.2	50.7	7.68	13.8	15.4	123.9
22.301	octadecane	97.3	12.8	13.1	31.7	90.5	21.0	23.2	52.2	90.4	15.4	17.0	138.1
22.868	nonadecane	94.4	12.1	12.9	30.2	89.4	21.2	23.7	52.6	0.06	15.2	16.9	136.5
23.395	eicosane	94.2	12.1	12.8	30.0	88.5	21.0	23.8	52.3	86.8	14.4	16.1	129.5
23.884	heneicosane	95.0	11.9	12.5	29.6	87.5	21.3	24.4	53.0	90.3	13.9	15.4	125.2
24.349	docosane	97.2	11.5	11.8	28.6	88.6	19.5	22.0	48.5	89.8	14.1	15.7	126.4

9.16 Table S10 Recovery test results using complete mixture (sum of submix 1-9), in case of direct addition, followed by periodic and continuous DHS sampling representation of the measured recovery (% - corrected by internal standard 1-bromodecane) at 1 $\mu g/ml$ concentration with repsect to elution volume (legend: 0-20% - red, 20-40% - orange , 40-60% - yellow, 60% < - green).

	DHS mode	periodio	DHS	S (n=3)		continuo	s DH	S (n=3)		3°4 11-i		1-4	
	DHS settings	0.8 L/min, 5 r flow "on", 10 r flow "off" cy	min	for 6 ho		0.8 L/min	ı	for 6 ho		direct spiking reference i	-	_	
Component english common name	Retention time (min)	AVG recovery (%) at 1 µg/ml conc. level	SD	RSD %	CI	AVG recovery (%) at 1 μg/ml conc. level	SD	RSD %	CI	AVG recovery (%) at 1 µg/ml conc. level	SD	RSD %	CI
2-hexanone	5.37	6.4	1.2	18.5	2.9	3.6	2.0	56.5	5.1	67.7	3.9	5.7	34.6
3-hexanol	5.50	15.7	2.1	13.1	5.1	14.6	14.4	98.9	35.7	55.0	0.8	1.5	7.2
hexanal	5.60	20.4	19.6	96.0	48.6	7.1	3.1	44.0	7.7	67.6	0.5	0.7	4.1
2-hexanol	5.62	20.6	1.3	6.5	3.3	18.4	15.1	82.0	37.6	47.6	6.3	13.3	56.6
butanoic acid, ethyl ester	5.67	7.4	2.7	35.9	6.6	3.5	3.5	100.0	8.7	65.0	2.8	4.3	25.0
3(2H)-furanone, dihydro-2-methyl-	5.76	1.5	0.0	3.0	0.1	1.3	0.4	27.9	0.9	55.7	2.1	3.8	19.0
2-hexenal, (E)-	6.89	13.6	2.5	18.4	6.2	10.0	9.4	94.4	23.4	59.7	1.1	1.8	9.8
3-hexen-1-ol, (E)-	6.90	23.4	1.7	7.2	4.2	20.1	12.8	63.6	31.7	50.1	1.3	2.6	11.9
1-hexanol	7.31	34.9	4.7	13.3	11.6	30.1	9.1	30.1	22.6	49.8	0.8	1.7	7.4
m-xylene	7.31	22.1	5.6	25.2	13.9	12.5	8.1	65.1	20.2	69.4	0.2	0.2	1.4
p-xylene	7.32	23.2	6.0	26.0	15.0	12.7	8.8	69.5	22.0	71.8	0.8	1.1	7.1
isopentyl acetate	7.54	47.1	5.4	11.4	13.4	44.2	11.2	25.2	27.7	71.0	0.6	0.8	5.0
styrene	7.85	26.4	7.9	29.9	19.6	15.5	10.2	65.8	25.3	68.1	0.8	1.2	7.6
o-xylene	7.86	46.2	5.1	11.1	12.8	42.4	10.0	23.5	24.8	69.1	0.6	0.8	5.1
2-heptanol	7.90	23.9	5.7	23.9	14.2	14.4	8.7	60.3	21.5	68.4	0.4	0.6	3.9
2-heptanone	8.11	45.8	6.7	14.7	16.7	39.9	5.2	12.9	12.8	54.7	3.3	6.1	29.7
propanoic acid, butyl ester	8.34	52.2	6.0	11.5	14.9	49.1	8.1	16.5	20.2	72.8	0.5	0.6	4.2
acetic acid, pentyl ester	8.49	53.1	6.2	11.6	15.4	49.4	6.5	13.1	16.0	71.8	0.6	0.9	5.8
anisole	8.52	24.3	3.9	16.1	9.7	16.0	10.6	65.8	26.2	62.5	1.3	2.1	11.9
α-pinene	8.95	59.6	18.5	31.1	46.0	51.1	11.5	22.5	28.5	77.3	1.2	1.5	10.7
butanoic acid, 3-hydroxy-, ethyl ester	8.96	16.1	5.3	33.0	13.1	14.1	7.3	51.6	18.1	55.2	0.9	1.7	8.4
2-heptenal, (E)-	9.51	49.2	6.2	12.5	15.3	43.3	4.0	9.3	10.0	65.8	1.1	1.7	10.0
benzaldehyde	9.59	29.1	4.5	15.3	11.1	23.8	9.8	41.2	24.4	49.6	3.5	7.1	31.5
1-heptanol	9.87	45.6	7.5	16.4	18.5	38.2	6.9	18.2	17.2	42.2	1.6	3.9	14.8
(5Z)-octa-1,5-dien-3-ol	9.95	49.4	6.7	13.5	16.6	42.7	6.6	15.5	16.4	63.5	1.8	2.8	16.0
(-)-β-pinene	10.02	59.3	9.5	16.0	23.5	55.2	8.1	14.6	20.0	77.0	0.3	0.4	3.1
1-octen-3-ol	10.10	52.2	7.1	13.7	17.7	45.4	6.0	13.2	14.9	57.6	1.4	2.5	12.9
phenol	10.14	10.8	2.9	27.2	7.3	7.2	1.0	13.7	2.5	48.3	0.1	0.3	1.3
5-hepten-2-one, 6-methyl-	10.27	60.3	7.7	12.7	19.0	54.4	5.0	9.2	12.5	74.2	0.3	0.5	3.1
β-myrcene	10.28	54.8	7.7	14.1	19.2	48.1	4.9	10.2	12.2	67.9	0.8	1.2	7.6
3-octanol	10.40	65.3	6.9	10.6	17.2	61.6	5.2	8.4	12.8	78.6	0.2	0.2	1.5
3-octanone	10.49	57.7	8.5	14.7	21.1	49.2	7.6	15.4	18.9	54.0	0.3	0.5	2.6
hexanoic acid, ethyl ester	10.60	62.1	7.6	12.2	18.9	56.9	4.8	8.4	11.9	74.7	0.4	0.6	3.8
α-phellandrene	10.71	58.7	4.2	7.1	10.4	56.3	4.7	8.4	11.8	78.0	0.1	0.2	1.2
3-hexen-1-ol, acetate, (Z)-	10.78	59.4	7.6	12.8	18.9	53.4	4.7	8.8	11.6	72.0	0.7	1.0	6.2
3-carene	10.85	64.6	10.1	15.7	25.2	60.6	6.8	11.2	16.9	78.5	0.5	0.7	4.6
acetic acid, hexyl ester	10.93	61.6	8.0	13.1	20.0	55.7	4.5	8.0	11.1	73.8	0.4	0.5	3.6
p-cymene	11.20	65.9	9.1	13.8	22.6	60.8	5.6	9.2	13.9	76.9	0.6	0.8	5.7
R-(+)-limonene	11.30	72.7	19.4	26.7	48.2	63.4	5.8	9.2	14.4	76.7	0.4	0.5	3.5
benzyl alcohol	11.40	22.3	5.4	24.4	13.5	16.8	5.6	33.4	13.9	37.8	2.0	5.2	17.6

9.16 Table S10 continued Recovery test results using complete mixture (sum of submix 1-9), in case of direct addition, followed by periodic and continuous DHS sampling, representation of the measured recovery (% - corrected by internal standard 1-bromodecane) at 1 μ g/ml concentration with repsect to elution volume (legend: 0-20% - red, 20-40% - orange , 40-60% - yellow, 60% < - green).

		periodio	DHS	(n=3)		continuo	s DH	S (n=3)			•		
	DHS mode	0.8 L/min, 5 r flow "on", 10 r flow "off" cyc	min	for 6 ho	,	0.8 L/min		for 6 ho	,	direct spiking reference i	•	-	e
Component english common name	Retention time (min)	AVG recovery (%) at 1 μg/ml conc. level	SD	RSD %	CI	AVG recovery (%) at 1 μg/ml conc. level	SD	RSD %	CI	AVG recovery (%) at 1 µg/ml conc. level	SD	RSD %	CI
cis-β-ocimene	11.52	63.4	5.9	9.4	14.7	59.8	4.3	7.3	10.8	78.7	0.9	1.1	8.1
trans-β-ocimene	11.77	64.0	6.1	9.5	15.0	60.1	4.5	7.4	11.1	79.3	0.8	1.1	2.1
2-methylphenol (o-cresol)	11.89	20.2	4.2	20.9	10.5	14.8	5.9	40.2	14.8	49.1	0.4	0.9	1.1
acetophenone	12.17	42.7	7.5	17.7	18.7	33.9	5.8	17.1	14.4	52.1	3.4	6.6	8.5
3-methylphenol (m-cresol)	12.37	15.6	3.7	23.5	9.1	11.0	5.0	45.1	12.4	48.8	0.4	0.8	1.0
α-terpinolene	12.71	60.5	6.1	10.0	15.0	56.4	4.6	8.1	11.4	76.5	0.8	1.0	1.9
benzoic acid, methyl ester	12.84	48.1	7.5	15.7	18.7	39.8	4.9	12.3	12.1	58.3	3.3	5.7	8.3
linalool	12.95	53.6	8.0	14.9	19.9	46.5	5.1	10.9	12.6	66.7	1.6	2.4	4.0
nonanal	13.05	59.7	13.5	22.6	33.6	50.6	3.0	6.0	7.5	70.6	0.9	1.2	2.1
phenylethyl Alcohol	13.25	27.4	6.1	22.3	15.2	19.0	8.4	44.0	20.8	51.9	2.9	5.5	7.1
cis-limonene oxide	13.72	57.3	7.9	13.7	19.6	50.3	4.1	8.2	10.2	71.2	1.3	1.9	3.3
trans-limonene oxide	13.83	58.4	7.2	12.3	17.9	52.1	4.1	7.8	10.1	71.0	1.5	2.1	3.8
isopulegol	13.99	58.2	8.8	15.2	21.9	50.7	4.9	9.6	12.1	66.3	1.2	1.8	3.0
benzene, 1,3-dimethoxy-	14.45	43,5	7.7	17.6	19.1	35.0	4.5	12.9	11.2	50.7	4.3	8.5	10.7
benzoic acid, ethyl ester	14.53	50.8	7.7	15.2	19.2	42.5	4.3	10.1	10.6	60.6	2.9	4.8	7.2
1-nonanol	14.83	63.3	10.0	15.8	24.8	61.8	5.4	8.8	13.5	78.1	1.0	1.3	2.6
1-dodecene	14.97	69.8	8.3	11.9	20.7	65.5	4.1	6.2	10.2	82.0	0.1	0.1	0.3
α-terpineol	14.98	45.8	8.0	17.4	19.8	37.5	6.5	17.3	16.1	65.9	0.6	0.9	1.5
methyl salicylate	15.06	47.9	7.8	16.2	19.3	39.5	4.2	10.6	10.4	57.2	3.4	5.9	8.4
decanal	15.26	50.7	6.6	13.0	16.4	44.6	4.2	9.3	10.3	69.3	0.7	0.9	1.6
β-citronellol	15.72	48.0	8.3	17.2	20.6	39.0	7.6	19.6	19.0	55.2	7.0	12.7	17.5
pulegone	16.01	51.3	7.7	15.0	19.1	43.1	5.0	11.5	12.3	66.1	1.4	2.2	3.6
(S)-(+)-carvone	16.09	48.4	7.8	16.1	19.3	39.5	5.5	13.9	13.7	61.4	1.1	1.8	2.7
citral	16.60	45.6	7.4	16.2	18.4	38.2	4.8	12.7	12.0	60.2	1.9	3.1	4.7
phenol, 4-ethyl-2-methoxy-	16.79	40.4	6.7	16.7	16.7	33.1	4.6	13.8	11.3	52.3	1.2	2.2	2.9
(-)-bornyl acetate	16.97	58.6	8.6	14.8	21.5	52.3	3.9	7.5	9.7	69.7	0.6	0.8	1.4
2-undecanone	17.05	60.8	8.5	14.0	21.2	53.9	3.7	6.8	9.1	71.7	1.2	1.6	2.9
eugenol	18.29	42.4	7.1	16.8	17.7	34.3	5.1	14.9	12.7	55.8	1.2	2.2	3.1
geranyl acetate	18.65	57.0	9.1	16.0	22.7	50.2	3.6	7.2	8.9	68.9	1.6	2.3	3.9
methyl eugenol	18.96	38.8	7.2	18.6	17.9	31.2	4.6	14.7	11.4	51.4	3.3	6.4	8.1
longifolene	19.09	64.5	9.0	14.0	22.4	59.7	4.6	7.7	11.5	75.0	0.8	1.1	2.0
α-cedrene	19.18	64.8	8.1	12.4	20.0	60.4	4.4	7.4	11.0	76.2	1.1	1.4	2.7
caryophyllene	19.26	62.6	7.7	12.4	19.2	56.9	3.6	6.4	9.0	76.6	0.5	0.7	1.3
β-cedrene	19.29	60.8	8.7	14.3	21.6	55.3	4.6	8.4	11.5	67.4	1.4	2.0	3.4
α-humulene	19.66	61.8	8.1	13.0	20.0	57.1	3.9	6.8	9.6	73.7	1.0	1.3	2.5
trans-β-Ionone	19.96	49.2	8.0	16.2	19.8	42.0	4.4	10.5	10.9	65.3	1.3	1.9	3.1
valencene	20.08	61.9	8.3	13.4	20.6	58.3	4.6	7.8	11.3	78.4	1.6	2.0	3.9
trans-nerolidol	20.66	56.6	9.1	16.1	22.6	51.1	4.3	8.5	10.7	74.4	0.8	1.1	2.1
caryophyllene oxide	20.93	55.2	8.6	15.6	21.3	49.3	4.3	8.7	10.7	70.0	1.5	2.2	3.8
methyl jasmonate	21.35	22.5	6.1	27.3	15.2	18.3	6.8	37.0	16.8	54.1	2.5	4.6	6.1
trans-farnesol	21.84	44.5	8.9	20.0	22.1	38.6	5.0	13.0	12.4	67.8	3.1	4.6	7.7

9.17 Table S11 Qualitative identification (A) of components from the competition tests conducted described under section 4.2.4, quantitative results (B) of the average concentration, standard deviation, relative standard deviation (RSD%) and confidence interval (CI) of the compounds detected during the competition test, using at least three external bracketing calibration points (linear regression, R2>0.99) for relative quantitation against nonane, and 1-bromodecane for internal standard correction

(A) Qualitative identification

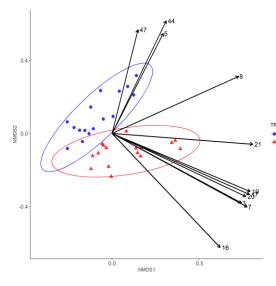
(+ =	<i>)</i>	ımıımı	ve lucii	UIIICU	*******		
m/z quant	Retention time (min)	CAS number	RI NIST17	RI calculated (HP5MS)	Component english common name as in NIST17	InChlKey	Comment
71	5.621	111-65-9	800	800	octane	TVMXDCGIABBOFY-UHFFFAOYSA-N	all
43	5.99	123-86-4	812+/-4	814.85	acetic acid, butyl ester	DKPFZGUDAPQIHT-UHFFFAOYSA-N	pear and less abundantly in blank
85	6.16	2213-23-2	821±1 (41)	821.69	heptane, 2,4-dimethyl-	AUKVIBNBLXQNIZ-UHFFFAOYSA-N	all
83	6.890	505-57-7	851	851.07	2-hexenal	MBDOYVRWFFCFHM-SNAWJCMRSA-N	pear and less abundantly in tomato
82	6.996	928-96-1	857±3 (169)	855.33	3-hexen-1-ol, (Z)-	UFLHIIWVXFIJGU-ARJAWSKDSA-N	tomato
85	7.200	2216-34-4	863±1 (36)	863.54	octane, 4-methyl-	DOGIHOCMZJUJNR-UHFFFAOYSA-N	all
57	7.275	928-95-0	862±6 (63)	866.56	2-hexen-1-ol, (E)-	ZCHHRLHTBGRGOT-SNAWJCMRSA-N	tomato
56	7.324	111-27-3	868±4 (223)	868.53	1-hexanol	ZSIAUFGUXNUGDI-UHFFFAOYSA-N	tomato and pear
71	8.106	111-84-2	900	900	nonane	BKIMMITUMNQMOS-UHFFFAOYSA-N	all
70	8.490	628-63-7	911±6 (40)	915.39	acetic acid, pentyl ester	PGMYKACGEOXYJE-UHFFFAOYSA-N	pear
93	8.957	80-56-8	937±3 (995)	934.11	α-pinene	GRWFGVWFFZKLTI-UHFFFAOYSA-N	all
71	8.961	2051-30-1	933±2 (14)	934.27	octane, 2,6-dimethyl-	ZALHPSXXQIPKTQ-UHFFFAOYSA-N	all
71	9.816	5881-17-4	965±1 (9)	968.54	octane, 3-ethyl-	OEYGTUAKNZFCDJ-UHFFFAOYSA-N	all
71	9.891	5911-04-6	971±1 (49)	971.54	nonane, 3-methyl-	PLZDDPSCZHRBOY-UHFFFAOYSA-N	all
71	10.601	124-18-5	1000	1000	decane	DIOQZVSQGTUSAI-UHFFFAOYSA-N	all
67	10.776	3681-82-1	1005±1 (19)	1007.45	3-hexen-1-ol, acetate, (E)-	NPFVOOAXDOBMCE-SNAWJCMRSA-N	all
61	10.926	142-92-7	1011±4 (112)	1013.84	acetic acid, hexyl ester	AOGQPLXWSUTHQB-UHFFFAOYSA-N	pear
85	10.948	17302-27-1	1021±6 (2)	1014.78	nonane, 2,5-dimethyl-	NQUMJENPNGXAIH-UHFFFAOYSA-N	all
82	10.994	2497-18-9	1016±3 (13)	1016.74	2-hexen-1-ol, acetate, (E)-	HRHOWZHRCRZVCU-AATRIKPKSA-N	pear
71	12.949	1120-21-4	1100	1100.00	undecane	RSJKGSCJYJTIGS-UHFFFAOYSA-N	all
71	15.134	112-40-3	1200	1200	dodecane	SNRUBQQJIBEYMU-UHFFFAOYSA-N	for RI calculation only
71	17.167	629-50-5	1300.00	1300.00	tridecane	IIYFAKIEWZDVMP-UHFFFAOYSA-N	for RI calculation only
		112-29-8		1356.06	decane, 1-bromo- (INTERNAL STANDARD)	MYMSJFSOOQERIO-UHFFFAOYSA-N	all
111	18.815	4493-42-9	1386±N/A (1)	1396.43	2,4-decadienoic acid, methyl ester, (E,Z)-	MBPMOZCKLKMNFP-UQGDGPGGSA-N	pear
71	18.876	629-59-4	1400	1400	tetradecane	BGHCVCJVXZWKCC-UHFFFAOYSA-N	for RI calculation only

(B) Quantitative results

relatively	y quantitated agains	st nonane with 1-br	omdecan	e internal st	andard co	rrection applied (0 va	alues for a	verage conce	entration	were <i mit="" of="" qua<="" th=""><th>ntification</th><th>1)</th><th></th></i>	ntification	1)	
sample and repetitions	blank (n=1)		pear (n	=3)		to	mato (n	=3)		pear and to	omato to	gether (n=	=3)
Component	concentration (μg/ml)	average concentration (µg/ml)	SD	RSD%	CI	average concentration (µg/ml)	SD	RSD%	CI	average concentration (µg/ml)	SD	RSD%	CI
octane	2.1	2.1	0.4	20.1	1.1	2.4	0.2	9.4	0.6	2.1	0.8	39.5	2.1
acetic acid, butyl ester	0.0	17.7	2.7	15.3	6.7	0.0	0.0	0.0	0.0	15.2	6.4	41.9	15.8
heptane, 2,4-dimethyl-	17.0	19.9	6.4	32.1	15.9	23.4	3.1	13.2	7.7	18.1	4.6	25.3	11.4
2-hexenal	0.0	2.4	0.2	9.2	0.5	0.3	0.0	18.6	0.1	2.1	1.1	51.1	2.6
3-hexen-1-ol, (Z)-	0.0	0.0	0.0	0.0	0.0	9.6	1.4	14.7	3.5	10.0	3.2	31.9	7.9
octane, 4-methyl-	4.8	6.3	2.4	37.9	6.0	8.0	1.3	16.4	3.3	5.8	1.2	19.9	2.9
2-hexen-1-ol, (E)-	0.0	0.3	0.0	17.6	0.1	13.1	1.8	13.9	4.5	13.9	4.4	31.8	11.0
1-hexanol	0.9	5.7	0.3	6.0	0.9	16.0	1.7	10.9	4.3	20.9	5.6	26.8	13.9
nonane	0.1	0.1	0.1	52.4	0.1	0.1	0.0	16.7	0.1	0.1	0.0	12.5	0.0
acetic acid, pentyl ester	0.0	0.5	0.1	16.7	0.2	0.0	0.0	20.2	0.0	0.5	0.0	7.5	0.1
α-pinene	0.1	0.3	0.4	150.5	0.9	0.1	0.0	30.4	0.1	0.4	0.2	51.5	0.5
octane, 2,6-dimethyl-	0.4	0.5	0.2	43.4	0.6	0.7	0.1	15.7	0.3	0.5	0.1	10.9	0.1
octane, 3-ethyl-	0.1	0.2	0.1	57.1	0.3	0.3	0.0	1.9	0.0	0.3	0.0	9.8	0.1
nonane, 3-methyl-	0.5	0.8	0.4	48.7	1.0	1.2	0.1	10.9	0.3	0.9	0.2	18.9	0.4
decane	9.4	14.9	6.0	40.4	14.9	19.3	1.7	9.0	4.3	15.2	1.8	12.1	4.6
3-hexen-1-ol, acetate, (E)-	0.0	0.1	0.0	22.4	0.0	0.0	0.0	3.8	0.0	0.2	0.0	14.4	0.1
acetic acid, hexyl ester	0.0	4.8	0.7	13.7	1.6	0.0	0.0	0.0	0.0	5.4	0.5	10.0	1.3
nonane, 2,5-dimethyl-	2.6	4.2	1.6	37.8	3.9	5.0	0.7	13.9	1.7	4.1	0.4	10.9	1.1
2-Hexen-1-ol, acetate, (E)-	0.0	0.4	0.1	17.6	0.2	0.0	0.0	0.0	0.0	0.5	0.1	24.8	0.3
undecane	1.6	3.6	4.7	129.9	11.6	1.1	0.1	13.2	0.3	4.8	3.5	73.4	8.7
dodecane	8.9	15.4	4.6	29.8	11.4	15.5	1.1	7.0	2.7	15.8	1.1	6.8	2.7
tridecane	0.2	0.5	0.5	103.1	1.3	0.2	0.0	5.8	0.0	0.7	0.4	65.4	1.1
2,4-decadienoic acid, methyl ester, (E,Z)-	0.1	0.8	0.1	6.6	0.1	0.2	0.0	12.8	0.1	1.0	0.1	9.6	0.2
tetradecane	2.6	4.8	0.8	16.8	2.0	4.5	0.3	7.2	0.8	5.2	0.2	3.2	0.4

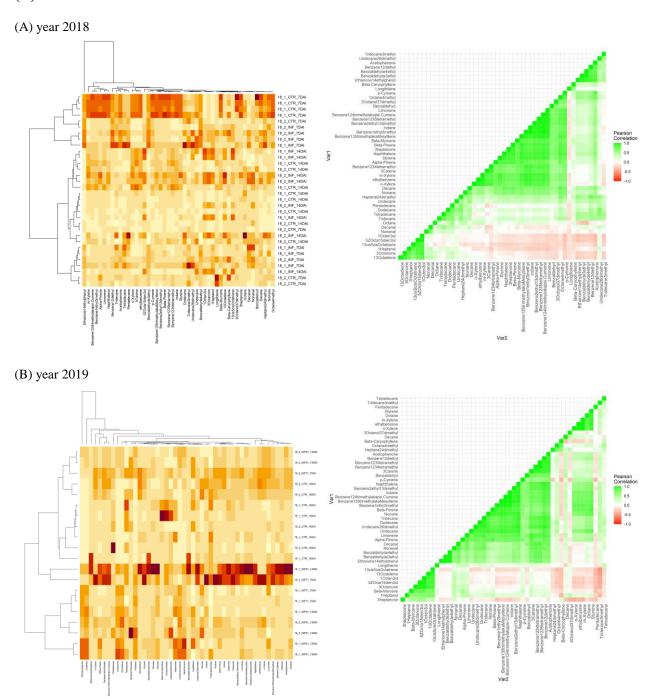
9.18 Table S12 Statistical evaluation (Stdev and t-test results) of the identified VOCs for 2018.

	valuation (Stdev and t-	test results) of the identified V		v a1	area		rea area	area	area	area	area	area	area	area	area (area	area	area	area	area	area	area	area	area	<i>,</i> .
2018.			a	tane, 2,4-dimethyl-	Octadiene	Ibenzene	une-4-methyl	m-xylene L3-cis,5-cis- Octatriene	ptanone	ane	kne	ane	nene	zaldehyd	zene, 1-ethyl-3- tyl-	zene, 1,3,5-trimethy Mesytilene	eptanol	-Octa-1,5-dien-3-	nene	cten-3-ol	ctanone	-Myrcene	zene, 1,2,4-trimethy psiCumene	nne	
Treatment	No. of samples	NOC. with Bgt. pathotype 5 18_1stEXP_CTR_7DAI_1	489		- 1 - 2		8 11561 2335.	36	3671	26251	109728	8222	155195	11322	222903	38298	1403	2661	23756	214	1172	4470	209305	14545	
	3	18_1stEXP_CTR_7DAI_2 18_1stEXP_CTR_7DAI_3 18_1stEXP_CTR_7DAI_4	609 541 803	8 9172	1	90353	12271 2420: 11641 2252: 10773 2333:	20 :	1 3966 2 4240 1 2808	26057 26041 26656	120776 107359 101048	8885 9040 6742	190633 150955 123996	6324 23372 4269	243757 223948 201003	44024 36655 34215	1135 1735 1338	3608 2686 1689	30350 24248 16670	174 213 254	722 1484 1309	3896 5144 4371	223286 213586 191043	16021 17485 10128	
Control 7 DAI	5	18_2ndEXP_CTR_7DAI_1 18_2ndEXP_CTR_7DAI_2	119:	3 6715	1	9741 7768	5047 414 1529 342	10	1 56 3 236	4067 3691	5545 4226	1487 188	14765 12775	29 777	16479 5800	3864 1622	1321 1282	1855 1691	1103 861	404 442	810 244	886 932	17104 4826	3012 445	
	7 8	18_2ndEXP_CTR_7DAI_3 18_2ndEXP_CTR_7DAI_4	1790 1884	4 5025	1	21691 14837	4358 714 3080 512	38	1 215	6825 5595	28763 19005	3291 1286	99635 64847	411 925	31761 23672	6598 5657	1132 2160	3289 4219	4714 3172	866 783	287 347	3279 2576	18980 14397	3752 6916	
	2 3	18_1stEXP_CTR_14DAI_1 18_1stEXP_CTR_14DAI_2 18_1stEXP_CTR_14DAI_3	8400 361 4360	1 3894	2	21717 21408 65510	2256 728 1747 615 3224 1682	45	1 103 1 636 2 137	6654 6075 12807	31007 23800 98257	2125 414 2436	18732 16081 49305	321 693 3782	34425 26492 130680	2817 1934 13304	1460 734 1302	3860 2945 3011	1100 873 2561	733 648 1447	222 120 656	647 652 2854	30347 19109 106257	2162 750 2877	
ontrol 14 DAI	4 5	18_1stEXP_CTR_14DAI_4 18_2ndEXP_CTR_14DAI_1	232 684	3 3852 6 3046	1	50876 55695	2913 1257 2530 1596	75 : 99 :	1 865 1 85	8524 10486	69184 90422	1497 1928	43296 48704	1915 7489	103905 70881	10008 10888	1242 1337	3241 2132	2262 3042	668 425	351 184	1823 1770	81486 62835	1733 380	ı
	7	18_2ndEXP_CTR_14DAI_2 18_2ndEXP_CTR_14DAI_3	1150 211:		2	13685 13822 27143	826 584 1207 474 2328 1071	86	7 102	3019 1250	27988 22089	2581	13927	161 560	15067 13181	2090	1152 649	2887 1630	1075	573 1017	185 345	1013 897	7900 61001	1371 552	
	1 2	18_1stEXP_INOC_7DAI_1 18_1stEXP_INOC_7DAI_2	233 148		605 642	22893 11067	7803 950 1917 461	55 14		11358 4386	30286 9453	3165 6937	27772 24225	1573 1052	56812 19533	11312 5098	6846 6694	13313 8859	4306 4139	4278 3778	3525 2193	1425 707	54888 20321	10151 8003	
ulated 7 DAI	3 4	18_1stEXP_INOC_7DAI_3 18_1stEXP_INOC_7DAI_4	2129 10	9 5672 1 2633	626 490	27935 8693	4994 953 2357 449	30 196 47 10	5 192 7 124	10406 4822	37697 7010	2099 1586	31452 19233	3329 173	56510 17663	10023 3743	8108 7671	11453 10794	4505 3332	4279 4661	2706 2630	1845 726	50365 19636	5108 5349	
unicu / D/ti	5	18_2ndEXP_INOC_7DAI_1 18_2ndEXP_INOC_7DAI_2 18_2ndEXP_INOC_7DAI_3	1770 4031	0 8939	847 716 1663	9296 11237 13942	5077 368 4526 411: 2910 597	23 35	3 444	3575 4387 6990	5374 8098 17733	5926 3114 1305	19644 26873 40341	931 5124 4201	17456 23153 21422	4708 6215 5628	5434 6980 9038	20390 26112 25454	1332 1872 2322	5780 6441 7858	6047 7380 6783	1385 1564 1844	17090 22600 19669	1993 7109 3491	
	8	18_2ndEXP_INOC_7DAI_3 18_2ndEXP_INOC_7DAI_4 18_1stEXP_INOC_14DAI_1	432r 24l	6 10127	2565 2987	15448 45268	6640 551: 3008 1167/	58 363	3 215	5664 5275	17733 17491 65244	4136 725	43071 28870	2873 2496	31189 80357	7697 11205	8227 15209	24599 110541	2382 1822	8188 31424	7688 15399	2148 1883	30872 53433	9703 5267	
	2 3	18_1stEXP_INOC_14DAI_2 18_1stEXP_INOC_14DAI_3	439 319	9 4779 3 1914	2519 2523	47352 10316	2095 1230 1562 516	71 1070 30 1020	94 5 195	7798 8052	65382 5522	1641 41	30781 24172	2086 381	78919 10361	8869 2515	11543 13325	86081 78996	1495 1925	24820 21769	12264 11558	1500 1040	52402 12008	942 1483	
alated 14 DAI	4 5	18_1stEXP_INOC_14DAI_4 18_2ndEXP_INOC_14DAI_1	96 1 1719		2917 2108	9182 13346	3276 402 1542 607	26 360	309	2546 3806	6186 19268	2916 1855	22540 22058	475 431	13438 26057	2495 5604	11820 7804	78338 38208	1746 1908	21492 12764	11227 10624	1060 1621	11080 17429	4816 2942	
	6 7 8	18_2ndEXP_INOC_14DAL_3 18_2ndEXP_INOC_14DAL_3 18_2ndEXP_INOC_14DAL_4	2 22090 3 3194 4 6229		4415 4634 6049	45984 43295 79805	4000 1290 4630 1360 7982 2174			4882 11329 24108	43957 62659 101800	8083 6254 5769	7106 115084 168455	449 4201 1282	49322 90137 115839	10293 16575 21241	9205 10925 11811	53416 66327 65724	554 9582 12546	17925 21674 20343	19180 17960 16507	2311 2484 2478	39511 74771 93609	6530 12453 7952	
S12a. Statistical of for 2018.	evaluation (Stdev and	t-test results) of the identified	area	area a	rea are	ea area	area	area	area	area a	irea	area	area	area	area	area	area	area	area	area	area	area	area	area	
						-diethyl-	hyl-1,3-	7-dimethy			3.4	12,3,5-	s, 3-ethyl-	s, 4-ethyl				6-dimethy	4		methyl-		E	ene	
			ene	шошош	*	ne, 1,2	phenon ne, 2-ei nyl-	mol, 3,	ane	e :	ne, 1,2,	ne, 1,2 ethyl-	Idehyd	ldehyd	halene	ane	ন	ane, 2,6	ne, 1-(4 henyl)-	ane	ane, 3-	ecane	IFOLE	ophyll	
atment No.	of samples INOC.	with Bgt. pathotype 51 only	p-cyn	÷	Indan	Benze	Aceto Benze dimet	3-Oct	Undex	Nona	Benze te tram	Benze te tram	Benza	Benzi	Napht	Dode	Decar	Undex	Ethan ethylp	Tride	Tride	Tetrac	LONC	B-car	
	2 18_1stE	XP_CTR_7DAI_1 XP_CTR_7DAI_2 XP_CTR_7DAI_3	59487	152729	32990 7	6412 688 4474 737 3280 703	71 42977	2816 608 4249	10835 14173 9556	5965	17145 19060 18637	20382 22171 21179	30128 26295 30730	9722	158002 159098 168519	12814 16205 10398	2981 3856 2883	10803	1005204 869614 1049797	42044 48803 37646	5396 11494 2046	49689 55751 45678	1180 1365 1140	203 384 137	
ol 7 DAI	4 18_1stE	XP_CTR_7DAI_3 XP_CTR_7DAI_4 EXP_CTR_7DAI_1			29433 10	1483 625 1638 497	21 37402	3590 170	9556 8776 5667		13740	21179 17797 2059	33358 32102		146390 32849	11841	2205 1125	4680	1049797 1096201 1059890	39683 31155	2649 14516	47638 36793	1034	87 58	
	6 18_2ndF	EXP_CTR_7DAI_2 EXP_CTR_7DAI_3	1784 15211	2562 11056	610 1	1282 123 9777 287	194 753	96 465	3242 6405	4008 3554	1069 8420	597 2885	12508 19582	5762 7608	11362 18847	7272 7159	2236 3010	2743 3528	250510 439326	23228 29798	7106 4674	26987 32378	888 18464	104 551	
	8 18_2ndE 1 18_1stE	EXP_CTR_7DAI_4 XP_CTR_14DAI_1	4881 20468	8445 14425	5264	3754 230 7559 221	60 6426	145 310	3828 2504	3954 4286	6325 6686	2673 2694	17499 10267	7124 3848	15314 18813	6692 4960	2151 2704	4283 3273	464093 118618	3439 27286	12750 5695	21465 24671	13867 1235	57 121	
	3 18_1stE	XP_CTR_14DAI_2 XP_CTR_14DAI_3 XP_CTR_14DAI_4	4781 27816 23019	11187 71879 58672	19510 2	2352 89 1055 379 0111 179	78 23802	119 205 315	2347 4288 5118		4642 17466 14498	1809 10241 8823	9153 14495 7605	4100 5997 3040	15970 52136 45768	5750 5701 5667	2676 3537 232	4223 3355 3603	111114 231262 75234	23710 21587 18470	1555 2336 118	21674 17498 17299	1109 5706 4877	28 179 88	
ol 14 DAI	5 18_2ndI	EXP_CTR_14DAI_1 EXP_CTR_14DAI_1	12028 12209	19644 3116	12017 1	0948 160 1712 234	13752	95 69	3775 4029	4774 4997	7396 3000	6281 983	8406 9352	3545 4173	43263 6737	6880 4709	5260 4062	3587 1339	61421 55097	13477 17000	2378 1630	20814 16468	654 118	31 13	Ī
	7 18_2ndF 8 18_2ndF	EXP_CTR_14DA1_3 EXP_CTR_14DA1_4	1422 10944	3418 38344	1728 10917 1	3551 120 8875 115	1963 181 12891	263 318	2172 14528	7353 7438	2245 8003	704 8886	14896 78	6471 49	10280 4984	5540 18395	3619 6201	3790 5477	232624 1900	3362 8707	404 850	16743 51631	179 2347	64 316	
	2 18_1stE	XP_INOC_7DAI_1 XP_INOC_7DAI_2	31471 21573	32569 11459	2558 2	5999 681 2750 355	82 3520	967 191	17520 6241	4521 6743	7290 2912	7614 2776	40879 25771	14853 11088	54998 27814	32260 9739	9994 8004	2897	1559591 640877	79782 34297	16982 6346	134052 65923	1077 420	84 66	
ated 7 DAI	4 18_1stE	XP_INOC_7DAI_3 XP_INOC_7DAI_4 EXP_INOC_7DAI_1	14096 16026 20043	30664 8562 7409	1696 3	4262 391 0236 373 1225 392	48 3118	1388 877 236	10056 4550 3582	8739 14070 4806	6902 2546 1476	5776 445 2622	23826 24659 30930	8524 10489 12525	32353 29014 32825	17240 9501 8232	6357 14944 2829	3866	698836 669000 1034946	51755 58487 36214	26389 7606 2956	89321 97910 43340	391 432 1788	72 74 165	
	6 18_2ndI	EXP_INOC_7DAI_2 EXP_INOC_7DAI_3	18879 22699	7081 7944	1661 12	9255 555 4443 508	88 5016	91 157	16467 6123	4288 10753	1723 4210	3314 3418	36378 25257	14176 9935	34528 26856	9010 9016	6647 8596	5810	1333555	30577 30602	11445 8390	39960 46412	3037 8302	214 451	
	1 18_1stE	XP_INOC_7DAI_4 XP_INOC_14DAI_1	27462 13741	12948 28433	10864 1	0962 696 4795 147	30 13452	302 561	6884 11638		4516 10510	4721 5942	39777 11263	15649 4717	42874 22883	16199 11386	8701 3485	9947	1301632 70758	36323 20542	4784 1225	64757 29642	8047 2372	455 53	
	3 18_1stE	XP_INOC_14DAI_2 XP_INOC_14DAI_3 XP_INOC_14DAI_4	14141 8561 5324	25494 6102 5928	1267	3463 154 3622 121 3536 235	26 1911	190 205 176	1735 2042 15348	2151 5195 3405	10413 1054 955	6158 270 1355	6287 10194 21180	2945 3960 8303	21904 15671 22547	8444 9387 7971	2242 2893 2675	11537 2487 2824	49663 128700 580370	22185 23690 21992	783 1560 2317	23372 29639 31227	2133 652 963	59 46 45	
ted 14 DAI	5 18_2ndF 6 18_2ndF	EXP_INOC_14DAI_1 EXP_INOC_14DAI_2	4771 13206	7255 23839	2933 4759	4809 84 9550 127	108 4449 187 8058	309 460	3194 8286	10061 8090	4742 4874	2326 4223	8048 112	4168 98	15415 4946	6211 22382	3406 6188	2970 6872	92600 1088	19282 66872	887 4460	18820 69769	373 1278	26 185	
		EXP_INOC_14DAI_3 EXP_INOC_14DAI_4	11117 17859	38101 41548	12308 14364 1	9115 229 7051 212	196 15114 161 15613	46 510	10827 9828	11809 11901	9226 9360	7307 8409	12566 13093	5764 5976	87691 92359	15177 13764	12326 10527	6671 5337	57634 68263	25759 34990	1982 560	35942 32589	1009 1037	36 55	
				, 2,4-dimeth)	idiene	zene	t-methyl	. is	omo					phyd	, 1-ethyl-3-	, 1,3,5-trimet ytilene	Ton.	ta-1,5-dien-3		-3-01	ome	cene	, 1,2,4-trimet Cumene		
	SUMMARY 2018		Octane	Heptane	1,3-Oct	ethy Bee	Octane-	m-xylene 1,3-cis,5-cis Octatriene	3-heptur	Styrene	o-xylen	Nonane	a-Pinen	Benzald	Benzenc methyl-	Benzene, aka Mesy	1-Hepta	(5Z)-Octa-1, ol	9-Pinen	1-Octen	3-Octar	beta-My	Benzen aka psi-	Decane	
	AVG area 2018	CTR_7DAI (n=8) CTR_14DAI (n=8)	3169.5 4380.1	3 3551 73	1.25	33731 95 21	532.38 141550. 128.98 100155.	06 314		15647.98 7005.63 6448.16							1438.31 1009.64	2712.25	13109.18 1598.20	418.69 751.51	796.84 297.59	3194.14 1420.94	111565.85 47725.78	9037.96 2114.50	2
		INOC_7DAI (n=8) INOC_14DAI (n=8)	2021.4 4759.9		3518.94	15064.04 45 36818.51 35	527.99 59293. 512.09 109381.	28 232.00 54 727.60	3 339.50 5 543.63	6448.16 8474.15	16642.75 46252.16	3533.50 3410.18	29076.41 52383.04	2407.00 1475.13	30467.29 58053.66	6803.00 9849.63	7374.75 11455.25	72203.88	3947.21	5657.81 21526.51			29430.13 44280.29		
	stdev area 2018	CTR_7DAI (n=8) CTR_14DAI (n=8)	2793.2 2566.8	2357.94 16 1254.20 12 3916.30	0.35 0.46	40896.45 44 20438.24 8	443.08 99006. 821.51 47272. 065.15 23322.	03 0.70 50 5.60	8 1915.08 5 303.09	11376.46 3744.14 2929.73	51814.33 31393.64	3721.58 1046.81	66032.08 17289.61	8045.34 2914.89	109599.18 43092.17	18361.22 4923.08	347.30 435.59	943.66 679.51	12016.61 883.69	268.67 332.11	485.51 167.81	1610.04 760.61	104942.00 35835.55	6483.19 2183.03	3
	stdev area 2018	INOC_7DAI (n=8) INOC_14DAI (n=8)	1585.6 7270.6	3916.30 3107.32	724.59 1366.67	6895.68 20 24416.59 21	065.15 23322. 120.30 57932.	59 118.0 02 402.5	3 326.34 3 912.82	2929.73 6900.14	11806.55 33972.85	2028.27 2923.89	8818.42 57420.42	1747.19 1374.44	16737.10 39035.51	2669.53 6588.97	1120.17 2284.43	7268.30 21815.13	1210.94 4485.19	1698.91 5345.98	2328.99 3335.75	519.83 590.53	14936.00 30237.76	2895.79 3762.00	2
n background:		CTR7 VS INOC7 CTR14 VS INOC14	0.33		0.005		0.114 0.0 0.119 0.7			0.058	0.043 0.842	0.384	0.017	0.262	0.052	0.060	0.000	0.001	0.049	0.000	0.001	0.019	0.063	0.313	
p≤0.06	t-tests 2018	CTR7 VSCTR14 INOC7 VS INOC14	0.38	0.005 0 0.315	0.554	0.295	0.011 0.3 0.348 0.0	11 0.41: 49 0.010	0.046 0.567	0.073	0.572 0.046	0.050 0.923	0.015 0.292	0.310 0.257	0.160 0.098	0.062 0.256	0.048	0.847	0.030 0.589	0.046 0.000	0.023	0.018	0.139 0.241	0.020	
s d * (effect size) (α=0.05) tiscovery Rate (F	34/48 ≥0.8 DR, Benjamini-Hochb	CTR_7DAI VS INOC_7DA	AI 0.50		-1.987 0.958 0.034		0.867 1.14	0.99	9		0.147	0.454	0.102	0.605	0.156	0.120	-7.159 1.000 0.000	-2.877 1.000 0.012	0.157	-4.308 1.000 0.000	0.994 0.001	0.101	0.121	0.533	
d * (a=0.05)	13/48 ≥0.8	CTR_14DAI VS INOC_14	DAI -0.07	0 -0.642	-3.640 1.000	-0.137 -4	0.860 -0.1	75 -2.545 0.99	-0.386 7	-0.265	0.102	-0.760	-0.607	0.525	-0.015	-0.526	-6.352 1.000	-4.498 1.000	-0.727	-5.485 1.000	-5.946 1.000	-0.552	0.104	-1.035	
			0.93	0.652	0.000	0.901	0.519 0.9	50 0.000	0.763	0.883	0.919	0.606	0.619	0.638	0.997	0.651	0.000	0.000	0.638	0.000	0.000	0.661	0.935	0.425	_
						1,2-diethyl-	yl-1,3-	dimethy			4	ń	3-ethyl	4-ethyl				2,6-dimethy	,		-thyl-		19	8	
			e	omene		a, 1,2-c	enone e, 2-ethyl- 1-	ol, 3,7-	9	_ :	p, 1,2,3,4 hyl-	a, 1,2,3,5.	dehyde,	saldehyde, 4-eth	lene	9		ne, 2,6	ne, 1-(4- nenyl)-	9	ne, 3-m	cane	NGIFOLENE	phylles	
SUM	MARY 2018		p-cyme	± ±	nda ne	Benzen	Acetophe Benzene, dimethyl-	3-Octar	Undeca	Nonana	Benzen	Benzen	Benzak	Benzak	Naphth	Dodeca	Decana	Undeca	Ethanor	Trideca	Trideca	Fetrade	LONGI	B-caryo	
	CTR_7	DAI (n=8) 4DAI (n=8)	32946.40 72 14085.94 27	2724.58 16- 7585.63 8	117.20 7026 781.75 1077	52.55 48676. 70.38 18773.	38 22528.08 15 9497.11 16 6768.44	1517.33 211.75	7810.15 4845.01	4875.06 107 5506.36 79 7619.53 39	798.43 1 991.89	1217.92 2 5052.63 9	5275.23 9281.41	9588.54 88 9902.93 24	8797.53 1 4743.80	0637.36 7200.19	2555.79 3536.25	5806.77 # 3581.04 #	******* 1	1974.44 6699.74	7578.92 1870.75	39547.24 23349.76	4944.71 2028.13	197.58 105.00	2
AV	G area 2018 INOC_	7DAI (n=8) 14DAI (n=8)	21531.10 14 11089.84 22	4829.50 3: 2087.50 7:	594.45 8485 263.96 1195	91.31 49442. 92.55 16410.	16 6768.44 13 8361.06	526.13 307.13	8927.71 7862.35	7619.53 39 7107.18 63	946.78 391.70	8835.75 30 1498.75 10	0934.61 1: 0342.89	2155.06 35 1491.34 35	5157.48 1 5426.96 1	3899.48 1840.24	3258.96 1 5467.80	1059.68 # 6080.45 #	###### 2	14754.75 1 19413.86	0612.25 1721.75	72709.43 33874.98	2936.75 1227.13	197.63 63.13	
	CTP 1	DAI (n=8) 4DAI (n=8)	24883.50 71	1165.58 15	866.71 3957 397.63 000	72.46 24119.	33 21461.04 20 7541.00	1736.03	3720.79 4050.05	1250.32 73 1635.44 53	333.89	896.66	7766.08	2437.23 74	4472.80 9166 12	3392.41 4568 54	812.46	2622.14 #	###### 1 02875.64	4002.07	4758.96 1753.42	12024.89	7037.13	178.72 101.48	
stde	v are a 2018 INOC_	7DAI (n=8) 14DAI (n=8)	5734.53 10 4570.16 14	0570.28 2 4276.60 5	825.25 6033 317.34 659	36.93 13885. 98.38 5564	20 7541.00 .03 4370.95 .61 5707.40	482.94 184.59	5331.04	3430.99 22 3870.92 40	216.38	2183.17	7126.62	2556.11 9	9467.77	8194.88 5215.13	3459.54 3894.41	9149.41 #	###### 1	7399.50 5896.99	7699.13 1260.43	32535.53 15464.87	3354.69 691.55	166.08 50.39	2
	CTR7	VS INOC7	0.243	0.055	0.057	0.577 0.9	39 0.078	0.158	0.635	0.063	0.034	0.075	0.151	0.059	0.082	0.324	0.002	0.156	0.254	0.129	0.362	0.025	0.483	1.000	
ackground: ≤0.06 t-4	tests 2018 CTR14	VS INOC14 VSCTR14	0.422	0.611 0.127	0.614 C	0.748 0.5 0.004 0.0	0.739 0.141	0.230 0.071	0.208 0.150	0.308 0.401	0.513	0.755	0.699	0.600	0.457 0.047	0.080 0.111	0.232	0.080	0.784	0.070 0.021	0.848 0.011	0.150 0.017	0.343 0.294	0.320	
s d * (effect 34/4		VS INOC14 DAI VS INOC_7DAI	0.001			0.011 0.0		0.261 0.778	-0.243		0.160 1.265	0.617 1.030	-0.759	0.000 -1.028	0.983 1.010	-0.520	0.152 -2.270	0.183 -0.781	-0.595	0.087 -0.809	-0.474	-1.352	0.198	0.059	
(α=0.05) hiscovery Rate (F s d * 13/4	DR, Benjam 48 ≥0.8 CTR_1	4DAI VS INOC_14DAI	0.333 0.418	0.132 0.262		0.629 0.9		0.223 -0.635	0.677		0.136 0.337	0.133 0.159	0.226	0.123 -0.268	0.136 -0.385	0.399	0.016 -0.637	0.227	0.339	0.200 -1.012	0.424	0.120 -0.765	0.539	1.000 0.523	
(α=0.05)	o.o CIR_I	TO ETOC_INDAI	0.418			0.921 0.8		0.690	0.666		0.821	0.159	0.932	0.900	0.783	0.427	0.619	0.384	0.918	0.420	0.905	0.600		0.523	


9.19 Table S13 Statistical evaluation (Stdev and t-test results) of the identified VOCs for 2019.

			test results) of the identif			area	area	area	area	area	v a	area	area	area	area	ŕ		ea area	IUCI area	area	area	area	area	1OI area	∠U area	area	area
19.					area	area	area	area	area	area	area	area	area	area	area	area :	area as	ea area	area	area e5	area	area	area	area	area É	area	area
						limeth			- F								1 5	Nyl-3-		gi.					4-trim		
						2,4-6	adiene	zene	-m ep		÷ a	one					byde .	.1-etny	de les	2.5		30	one	cene	,1,2,4-tr		
					8	tane,	O ct	lben	90	yene	1,3-cis,5-cis- Octatriene	de	ene	/Jene	8	nene	zakleh	flyt-	ika Mesyti	(5Z)-Octa-1 ol	nene	de de	ctan	-Myrc	zene.	ane	
Treatme	nt No. o	f samples	INOCULATED at 1		950	Hep	- 3	ethy	Octa	e.		3-he	Styn	0-x)	Non	5	Ben	Ber Ber		(5Z)	7	õ	30	peta	Ben	Dec	
		1	19_1stEXP_CTR_14DA 19_1stEXP_CTR_14DA		4877. 3105.			4432.8 3571.3	7174.9 16505.2	21358.4 18164.7	51.1 21.8	472 8888	1491.4 1278.3	7846.7 4072.2	3376.8	38343.7 26025.8			968 108 549 96		2476.9 2128.6	1811.4 1480.5	352.4 304.9	2617.3 4256.2	71173.1 25421.2	1810 563	27
		3	19_1stEXP_CTR_14DA	I_3	3079.	3 10254.5	, 1	4203.3	5110.6	19825.7	76.9	16362	628.6	6421	4705.2	50020.7	6312 39	001.3 19	983 98	2 6248	2688.4	1066.7	429.3	3139.6	50145.8	2309	21
Control		5	19_1stEXP_CTR_14DA 19_2ndEXP_CTR_14DA		435 3453			3383.6 7616.7	28949.9 4551.8	19854 29068.9	41.2 156.6	11358.6	743.2 892.5	4447.5 12407.2		16579.5			561 142 808 1448.		1810.4 2101.3	2823.5 3833.6	341.1 645	4534.7 2991	17564.1 9609.8	571 3073	9
		6	19_2ndEXP_CTR_14DA	.I_2	3348.	9 4397.2	! 1	19158.2	2145.8	54032.6	140.7	476	2347.2	25210.1	4506.2	19179.8	2301 44	829.2 7.	574 64	5 4244	3227.2	4959.4	415.7	3262.2	33926.6	1473	12
		7 8	19_2ndEXP_CTR_14DA 19_2ndEXP_CTR_14DA		8332. 5424.			111888.2 75566.5	7350 9822.3	277789.7 195722.6	249.3 91	5534 349	19587.1 16001	117436.5 87462.7	10674.9 1 6903.5		29212 273 22099 155		576 144 146 59		16045.9 14426.9	4002.1 3378.1	963.6 755.5		276790.4 142651.1	7583 8771	25
		1	19_1stEXP_51_14DAI_	1	5767.	3 13937.8	40501.7	24384.9	15257.3	80217.6	3830.1	6942.6	13016.9	33104.3	24705.1 5	540669.6	48840 396	334.1 120	067 2198	758304	36564	430386.7	167643.9	10178.1	529542.7	8727	16
		3	19_1stEXP_51_14DAI_3 19_1stEXP_51_14DAI_3		6074.			3634.8 4268.5	4564.4 4788.8	17075.2 20685.3	8071.7 12767.9	15387.7 16392.2	873.6 1699.7	3847.6 6364.8		17216.7 224256.6			95 1958 513 24433.			606352.2 818210.9	172664.1 272295.3	6917.2 14058	9577.8 30745.4	938 3303	36
Pathotype	51	4	19_1stEXP_51_14DAI_4	4	3186.	8 9391.3	57632.6	4379.6	5179.2	17751.5	10642.8	19468.3	991.1	4737.4	6351.3	375750.2	56 19	520.3 5	266 2882	0 1723572	17825.6	798858.3	227199.3	17810.1	19321.1	1595	4
		5	19_2ndEXP_51_14DAI_ 19_2ndEXP_51_14DAI_		4972. 2252.			81444.5 46523.2	8806.9 4794.8	206670.1 135931.8	10730 5717.3	1808 5830	15036.9 7669.5	93643.3 64345		137513.2 67908.8			202 1916 784 1834		16635.7 7752	458740.7 209891	161905.2 76747.1	7287.5 7792.6	131438.9 96291.9	5668 1516	2
		7	19_2ndEXP_51_14DAI_	3	4438.	9 3884.6	30638.1	48902.2	2867.7	138359.3	5617.6	479	6822.2	63158.4	1432.8	66962.8	4161 99	948.6 21	413 1715	9 360346	9925.9	206314.3	67569.6	7622.8	84538.5	1662	2
		8	19_2ndEXP_51_14DAI_ 19_1stEXP_71_14DAI_		3446. 3206.		38171.2 43391.7	41738.6 3419.2	10822.9 4689.5	125613.8 15082.9	6519.8 7328.9	2682 9935.9	6043.5 1080.9	58125.1 4223.7	3442.2 4118.9	62907.8 30059.9			796 3997 381 2979			318958.9 439576.8	91182.5 137585.9	8007.3 7646.5	69359.9 26835.9	10506	2
Pathotype	71	2	19_1stEXP_71_14DAI_3		3817.		52883.8	3152.7	7591.7	14397.7	8400.9	8224.9	292.3	2815.4	870.5	7925.1			020 1809			477285.2		6525.1	9014.9	7580	-
гашохурс	,,	3	19_2ndEXP_71_14DAI_ 19_2ndEXP_71_14DAI_		6150. 18428.			103004.3 235885.4	8843.1 16438.6		4660.6 1146.3		22303.5 73732.8		10941.7 2 32951.3 4			1308.9 56 1503.3 144	175 2074 563 2790		23362.4 59125.8	156390.1 96454		4194.7 6477.4	224396 576263.4	1663 4194	7.
					-																						
ble S12b. S ntified VOC		ion (Stdev a	nd t-test results) of the	area	area	area	area	area	area	area	area	area	area	area	area	area	area	area	area	area a	irea a	rea	area	area	area	area	are
							÷		4	ethyl					2	ethyl				ethy			+				
							ie fhy		1-1%	dim			4,	ν'n	3-ef	1 2				2,6-dimethy	,		ethy		ш	9	
					ene		1,2-diethy	one	2-ethyl-	3,7,			1,2,3	1,2,3,5	, de		9			2,6-	7 0		3-m	0	E	yllen	
				9 0	mom	*	, L	hen		nol,	ane	la l			ldeh v		halen	ane	펼		mone, 1- lphenyl)	ane	ill e,	Scall	E	ophy	
				yme	Ę	Jame	nzen	etob	nzene, methyl-	-Octar	dece	mans	nzene,	nzene,	nza	1 2	phth	xdeca	8			l'rideca	ideca	trade	ONGIFOL	cary	
reatment	No. of samples		ATED at 14 DAI only _CTR_14DAI_1	59967	10182	Ĕ 8783.3	£ 32731.5	22504.3	£ ₹ 26943.3	210	5 6642.4	5383.1	17582.8	± 3		- 1	2 15101.4	6158.3	<u>출</u> 5962.9			E 5426.9	7494	16187.1	268.7	ية 397	4566
	2		_CTR_14DAI_1 _CTR_14DAI_2	59967 28139.6	10182 16756	8783.3 4035.5	32731.5 29865.1	22504.3 10493.3	26943.3 10183.3	210 470	10591.3							6158.3 16951	5962.9 7592.9			6426.9 0677.1		16187.1 82840.4	268.7 963.7		456 691
	3	19_1stEXP	_CTR_14DAI_3	36192.1	6086	7022.6	41936.1	17545.8	18897.7	350	5773.8	8390.7	15966.6	1610	9 3425.	.4 1319.1	8355.4	4123	5030.4	1807.6 4	0385.3 5	5987.7	10574	14707	209	5246	398
Control	4		CTR_14DAI_4 CTR_14DAI_1	29089 25264.6	8902 2959	3342.6 1461.8	34778.8 14949.9	5989.5 5948.5	5938.4 510.6	421 243	13270.6 4446.3	8039.4 7600.3						12590.7 3189.8	5174.8 2409.2			3504.7 3343.6		52848.5 43822.5	380.5 175	41457 1 391 4	
	6		P_CTR_14DAI_1 P_CTR_14DAI_2	54379.7	2959 8234	4714.9	23337.5	19086.7	8768.1	14579	6026.2	8326.6						3189.8 8558.4	11153.9			2299.1		43822.5 51002.6	960	166	
	7	19_2ndEXI	P_CTR_14DAI_3	72406.4	21261	29525.3	59886.6	36060.1	24541.7	142	14943	1601.9	16555.2	2022	10 3353.	.2 1290.6	78889	7487.3	1169.1	2285.6 5		18516		16731.7	233	847	1127
	8	19_2ndEXI	P_CTR_14DAI_4 51_14DAI_1	62053.5 107689.7	18499 71294	16795 53530.9	39041.4 162294.3	20304.8 140338.5	27680.4 89805.8	19642 383	13650.5 56436.6	7600.7 42818.2					46470.1 277332.9	12190.9 54153.6	5448.5 52111.2			3483.1 1435.8		41044.1 51288.1	715 888		623
	2		_51_14DAI_1 _51_14DAI_2	40289.8	14028	1851.8	32602.9	7823.7	4196.3	61	5301.1	14692.1						6542.5	11027.4			5294.9		42826.3	876		950
	3	19_1stEXP	_51_14DAI_3	54652.9	26011	4258.5	38449.6	14171.9	12617	518	4929.6		13256.1	1005	7 524	2284.7		6633.4	10021.2			5207.2		44913.2	93		435
hotype 51	4		_51_14DAI_4 P_51_14DAI_1	81810.1 48485.9	23123 18040	2786.8 17510.7	36121.7 35428.4	15998.9 18771.1	7011.4 14839.7	168 17454	4624.8 7604.2	14234.4 6379.9					4865.1 35766.4	7796.3 8826.9	8668.5 6851.5			3364.1 1388.1		24596.8 32314.9	1369 676	121 240	319
	6		P_51_14DAI_1	76402.9	7979	13309.9	30903.6	42590.8	21644.8	98	3716	4256.9						4312.3	2423.1			6858.2		16398.3	298		333
	7		P_51_14DAI_3	65484.8	15315	11393.1	30900.8	26024.6	16880.8	28096	9149.4	7115.5						5834.9	7651.7			3683.1		22084.1	920		283
	8		P_51_14DAI_4 P_71_14DAI_1	14901 40512.9	25431 10768	10993.7 3442.8	28475.5 38341.1	10369.3 14517.4	14902.7 12396.2	81282 251	12589.5 3231	8119.1 15149.9	7874.4 8477.6					9948.6 4575.8	8338.1 5520			12713 5624.8		35784.9 11171.3	467 148	50 I	1653 188
athotype 71	2		_71_14DAI_2	83400.1	10728	1024.2	27408	12874.1	1289.6	95	12435.9	11313.4						5326.3	6246.7			1858.9		27576.6	34		321
amotype /1	3 4		P_71_14DAI_1	81156.2 99433.3	30845	25748.2			37279 85038.5		19878.4		14984.3 27146.3				2 77511.7 2 239112.6	10660 44476.4	9722.6 6574.7	2614.5 7 9275.2 15				49822.8	960 438	70 !	
	*	19_2IRIE/A	P_71_14DAI_2	99433.3	43346	56959.1	100900.9	10143.3	0.000	113	74097.2	10039.2	2/140.3	3091	6 11773.	.0 4839.9	2391120	44470.4	0374.7	9213.2 13	0.590.5 111	1004.0	11997	51371.4	430	56	98
						hyl-												ethy		4					ethy		
						ii.			2									1 m		-dien-3-					- a		
						2,4.0	liene	gue	neg		÷ 2	9					páq .	1.3,5-ta	dene le			7	8	en e	1,2,4- Jumen		
					8	no,	Ctax	penz	4	9 9	is,5-	otta	2	ene	8	ě	akel	hyl- zene.	Mesy	, octa	ene	te p.	tano	Myrc	psiC	ne	
	SUMM	ARY 2019			Casa	Hept	<u> </u>	th	Octa	m-xy	1,3-cis,5-cis- Octatriene	3-he	Styre	0-xy	Non	臣			aka Mes 1-Henta	(5Z)-Octa-1 ol	F.	ğ	õ	beta-	Benz aka p	Deca	
			CTR_14DAI (n=8)		4496.6	0 11208.86	1.38	28727.58	10201.31	79477.08	103.58	5517.20	5371.16	33162.99	3942.73	53914.86 7	904.88 787	83.83 19183 16.66 29392 34.95 52709	.13 1073.5	4 3956.05	5613.20	2919.41	525.94	3951.51	78410.26	3269.13	2091
	AVG	are a 2019	INOC_51_14DAI (n=8 INOC_71_14DAI (n=4		7900.6	8 9871.25 5 9475.60	33172.35	86365.40	9390.73	92788.08 217762.68	7987.15 5384.18	6704.70	24352.38	90506.08	6234.41 18	78027.10 8	419.00 1137 697.50 2005	16.66 29.992 34.95 52709	.75 24134.0	0 644141.25	21985.53 2	92426.53	97579.43	6210.93	09127.55	4239.38	3587
			INOC_(51+71)_14DAI		5443.3	3 9739.37	43672.86	50061.49	7887.08	134446.28	7119.49	7984.05	12463.58	57445.85	8229.81 18	83774.51 8	511.83 1427	89.43 37164	.58 23832.6	1 851693.67	16549.48 4	18118.26	135627.06	8709.78	50610.53	4280.08	4243
			CTR_14DAI (n=8)		1776.5	2 6301.56	0.52	41599 53	8712.92	100199.45	75 24	6140.00	7746 00	44031 54	3634.00	50060 33 11	275 31 908	90 83 18318	96 346.0	4 2660.05	5970.68	1369.04	236.96	1200.91	90676 20	3157.72	1340
	STDE	/ area 2019	INOC_51_14DAI (n=8		1330.6	8 6490.37	17510.40	27853.28	4174.61	70411.56	3108.50	7391.42	5372.85	33927.93	7589.55 18	84143.47 16	394.39 1239	90.83 18318 39.86 38008	.71 7594.8	9 537050.91	10461.66 2	41638.77	73026.20	3943.15	70092.89	3669.93	5029
			INOC_71_14DAI (n=4 INOC_(51+71)_14DAI		7132.2 4277.1			110208.15 67268.79		265962.68 161965.96	3233.46 3262.36							14.40 65889 87.64 47277		8 460057.95 8 514551.33					98027.49		
green backgr	t-tests	2019 green	CTR_14DAI VS INOC CTR14_1 VS INOC_71		0.72			0.860	0.390	0.764	0.000	0.376	0.736	0.700	0.459	0.085			509 0.00 387 0.00		0.080	0.001	0.001	0.003 0.042	0.542	0.580	0
p≤0.05	baci		CTR14_1 VS INOC_(5	1+71)_14D	AI 0.50	4 0.600	0.000	0.393	0.504	0.361	0.000	0.393	0.293	0.350	0.199	0.038	0.917	0.287 0.3	252 0.00	0.000	0.056	0.000	0.000	0.001	0.286	0.495	0
hom's discon	ect size) 13/48 ≥0		INOC_51_14DAI VS I CTR_14DAI VS INOC					-0.090	0.472	-0.154	0.232	-0.457	0.378 -0.172	-0.197	-0.385	0.948 -0.984			548 0.91 342 -4.20	0.331	0.591 -0.965	0.185	0.204 -2.985	0.039 -2.061	-0.315	-0.283	-0
wer (α=0.05)	1			_51_14DA1			1.000				1.000								1.00			0.999	1.000				
se Discovery	rate (FDR, Benj	amini-Hohebe	rg)		0.84	9 0.839	0.000	0.897	0.851	0.833	0.000	0.859	0.841	0.840	0.816	0.408	0.943	0.751 0.	788 0.00	0.016	0.427	0.010	0.010	0.021	0.743	0.773	0
										fly					1	\$				- in							
							1,2-diethyl		7	ime			4	v.	19	tethy ethy				dimeth			flyl		[+1		
					2		5. ģ	ne e	2-ethyl-	3,7,			1,2,3,	1,2,3,5-	9	j j					÷ ÷		- ii		E E	le le	
				9	none			heno		101	ii e	-			zaklehvde	zaklehyde,	alen	e E	_		hen y	ne ne	ne,	cane	₽	ophy	
				cy me	Ľ.	lane	n zene,	cetophene	n zene, nethyl	Octanol,	deca	nan	n zene, rameth		Zak	1zak	phth	deca	cama	8	을 요	Frideca	deca	trade	ONGIFOI	3ary (
	SUMMARY 2		AT (= 9)	45936.49	±	MCC 15	5 2466 06		E il	ré l	5	ž	te Be	E E	- m	5 <u>8</u>	Z	8906.18	0		g th	E	Ē 8054.25 3	9007.00		± 7897.38 #	
		CTR_14D INOC_51	14DAI (n=8)	61214 64	25152.63	14454 43	49397 10	34511 10	22737 31	16007 50	13043 90	14223 93	17964 63	19169 5	0 8211.4	4203 55	49214.83	13006.06	13386 59	2091 64 ###	*#### 316	18.05	4789 50 3	3775 83	698 38	174 50 6	510
	AVG area 2019	INOC_71	_14DAI (n=4) +71)_14DAI (n=12)	76125.63	23921.75	21793.58	56351.83	34185.13	34000.83	6782.75	27410.63	12786.40	12820.03	15407.7	6020.8	2501.28	80909.43	16259.63	7016.00	3162.08 84	708.30 404	151.90	5491.25 3	4985.53	395.00	61.00	569
		INOC_(51	+71)_14DAI (n=12)	66184.97	24742.33	16900.81	51715.34	34402.44	26491.82	12932.58	17832.81	13744.75	16249.76	17915.5	8 7481.2	8 3636.13	59779.69	14090.58	11263.06	2448.45 ###	##### 345	62.67	5023.42 3	4179.06	597.25	136.67	530
		CTR_14D	AI (n=8)	18327.98	6471.98	9381.99	13373.00	9959.89	10435.27	7896.53	4172.45	2484.32	5959.34	7290.7	6 9945.4	4931.19	27256.71	4695.36	3051.92	615.03 ###	*#### 90	061.21	2104.50 2	3559.24	338.29 1		
	TDEV area 20	INOC_51	14DAI (n=8)	28337.01	19639.68	16724.18	45733,49	44136.02	27648.10	28413.60	17774.68	12365.44	25272.79	32524.4	3 13348.3	6746.74	92760.48	16718.13	15856.63	4057.65 ###	#### 486	76.82	2515.85	2199.13	404.82	160.48	179
	area 20		_14DAI (n=4) +71) 14DAI (n=12)	25098.06 27141.95	16045.03	25951.05	35305.71	27062.66	37203.83	13259.68	31860.46	4935.85	11200.59	15522.8	6 3942.9	5 1567.27	05214.12	19005.19	1857.44	4209.62 48	656.36 484	152.28	4638.40 1	9241.02	413.28 416.15	6.22	
		INOC_(51	+/1)_14DAI (n=12)	2/141.95	1///7.38	19357.62	41020.32	3 /939.38	29911.40	∠4131.66	229/6.76	10219.98	21144.39	2/245.4	10899.0	> 5508.06	95514.13	16/01.36	1.5068.37	3948.19 ###	+#### 465	201.05	o164.64 I	4000.93	410.15	139.73 4	+6()(
oroo.	t-tests 2019	CTR_14D	AI VS INOC_51_14D		0.099	0.477	0.404		0.502	0.302	0.590	0.148						0.523	0.206	0.600		0.394	0.014	0.528	0.279	0.173	(
green ckground:	green	CTR14_1	VS INOC_71_14DAI	0.089	0.224	0.418	0.309	0.303	0.395	0.767	0.341	0.098	0.646	0.55	3 0.88			0.498	0.312			0.385	0.358	0.710	0.712	0.168	0
p≤0.05	background: p≤0.05		VS INOC_(51+71)_1- 14DAI VS INOC_71		0.034	0.268	0.200	0.159	0.258 0.616	0.280	0.239	0.049						0.327	0.166	0.341		0.198	0.019	0.550	0.528	0.171	0.
ohen's d* (e			AI VS INOC_51_14D		-0.926	-0.368	-0.440	-0.540	-0.350	-0.551	-0.281							-0.334	-0.691			-0.452	1.408	0.326	-0.564	0.758	0.
wer (α=0.0	5)																										
ke Discover	ry rate (FDR, Be	niamini. Hoh	chera)	0.675	0.432	0.790	0.776	0.751	0.803	0.763	0.765	0.592	0.806	0.79	4 0.84	1 0.825	0.807	0.785	0.706	0.758	0.900	0.822	0.084	0.768	0.744	0.639	0.0

9.20 Table S14 Statistical evaluation (Stdev and t-test results) of targeted BVOCs for 2020.


Table S12c. Statistic	ai evaluation (Stdev and	t-test results) of the identified VC	CS 10r 2020.	area	area	-	area	area	area	area
						trie		n-3-		
)cta		die		
				liene		-sis-	70	1.1.	7	e
				ctac		5,5-	ptan	Octs	jen-	tano
Treatment	N6			1,3-Octadiene		1,3-cis,5-cis-Octatrien	1-Heptanol	5Z)-Octa-1,5-dien-3-0	L-Octen-3-ol	3-Octanone
1 reatment	No. of samples	20_CTR_7DAI_1		113		148	582	929	2089	19425
	2	20_CTR_7DAI_2		244		39	1587	1193	1698	6245
	3 4	20_CTR_7DAI_3 20_CTR_7DAI_4		406 239		104 25	1515 1297	746 1364	1688 1260	4435 3155
Control 7 DAI	5	20_CTR_7DAI_5		488		26	1068	1396	944	2361
	6	20_CTR_7DAI_6		235		20	1362	1458	1187	2353
	7 8	20_CTR_7DAI_7 20_CTR_7DAI_8		197 174		40 19	1422 1397	2926 4150	1694 3420	4670 5509
	1	20_INOC_71_7DAI_1		17827		6003	16781	286140	187061	67504
	2	20_INOC_71_7DAI_2		10359		2563	5974	123970	80737	45825
	1 2	20_INOC_51_7DAI_1 20_INOC_51_7DAI_2		10157 5430		3261 1372	12527 9457	131884 80368	71704 50490	51001 16095
Inoculated 7 DA	3	20_INOC_51_7DAI_3		2780		861	19330	70196	33988	38955
inoculated / DA	4	20_INOC_51_7DAI_4		5674		1636	10932	73076	43925	32624
	5	20_INOC_51_7DAI_5 20_INOC_51_7DAI_6		2211 6864		558 1974	14125 27133	51747 120010	32859 60943	31380 57774
	7	20_INOC_51_7DAI_0 20_INOC_51_7DAI_7		2486		454	11893	61830	34740	29735
	8	20_INOC_51_7DAI_8		3499		1428	17260	79066	47055	39036
	1 2	20_CTR_14DAI_1 20_CTR_14DAI_2		273 223		111 91	233 1463	932 1393	585 739	2651 3109
	3	20_CTR_14DAI_2 20_CTR_14DAI_3		122		79	768	1650	544	2601
Control 14 DAI	4	20_CTR_14DAI_4		64		149	688	1660	563	2257
	5	20_CTR_14DAI_5 20_CTR_14DAI_6		128 212		78 61	935 978	937 2480	814 375	1947 1764
	7	20_CTR_14DAI_0 20_CTR_14DAI_7		192		50	956	2183	602	2416
	8	20_CTR_14DAI_8		201		150	727	1342	2364	4066
	1 2	20_INOC_71_14DAI_1 20_INOC_71_14DAI_2		2866 3130		1462 1239	2612 3462	17944 20538	11406 13763	5489 5843
	1	20_INOC_51_14DAI_1		13754		5312	6049	100555	63259	19576
	2	20_INOC_51_14DAI_2		9801		4396	6912	63540	42224	12095
Inoculated 14 DA	AI 3	20_INOC_51_14DAI_3 20_INOC_51_14DAI_4		17138 4893		7607 1011	9677 6308	130759 26616	74109 17290	14951 7774
	5	20_INOC_51_14DAI_5		10586		6518	8661	126867	68473	16510
	6	20_INOC_51_14DAI_6		19006		11157	10870	185403	108037	22149
	7 8	20_INOC_51_14DAI_7 20_INOC_51_14DAI_8		8219 12631		3106 6382	5979 7280	85766 92992	47345 56111	12275 15610
SUMMARY 2020	0					•				
	CTR_7DAI (n=8)		261.98		52.88		8.86	1770.29	1747.28	6019.23
	INOC_51_7DAI (1		4887.59		1442.82		31.97	02522 12	46963.03	37075.09
	INOC_71_7DAI (1 INOC_(51+71)_7I		14092.80				7 70	83522.13		
AVG area 2020	11100_(31+71)_71)AI (n=10)	6728.6		4282.88		7.79	205055.08	133899.19	56664.71
	CTR 14DAI (n=8)		6728.64 176.90	4	4282.88 2010.83 96.07	1454	7.79 1.13 3.55	205055.08 107828.72	133899.19 64350.26	56664.71 40993.02
	CTR_14DAI (n=8) INOC_51_14DAI		6728.64 176.90 12003.3	4	2010.83	1454 84	1.13	205055.08	133899.19	56664.71 40993.02 2601.14
		(n=8)	176.90 12003.3 2997.9	4	2010.83 96.07 5685.93 1350.58	1454 84 771 303	11.13 13.55 7.05 16.77	205055.08 107828.72 1572.11 101562.05 19240.94	133899.19 64350.26 823.29 59605.95 12584.70	56664.71 40993.02 2601.14 15117.50
	INOC_51_14DAI	(n=8) (n=2)	176.90 12003.3	4	2010.83 96.07 5685.93	1454 84 771 303	1.13 3.55 7.05	205055.08 107828.72 1572.11 101562.05	133899.19 64350.26 823.29 59605.95	56664.71 40993.02 2601.14 15117.50 5666.23
	INOC_51_14DAI INOC_71_14DAI INOC_(51+71)_14	(n=8) (n=2)	176.90 12003.3 2997.9' 10202.24	4	2010.83 96.07 5685.93 1350.58 4818.86	1454 84 771 303 678	H.1.13 H3.55 7.05 H6.77 H6.77	205055.08 107828.72 1572.11 101562.05 19240.94 85097.83	133899.19 64350.26 823.29 59605.95 12584.70 50201.70	56664.71 40993.02 2601.14 15117.50 5666.23 13227.25
	INOC_51_14DAI INOC_71_14DAI INOC_(51+71)_14 CTR_7DAI (n=8)	(n=8) (n=2) (DAI (n=10)	176.90 12003.3 2997.9' 10202.2-	4	2010.83 96.07 5685.93 1350.58 4818.86	1454 84 771 303 678	H1.13 H3.55 7.05 H6.77 H0.99	205055.08 107828.72 1572.11 101562.05 19240.94 85097.83	133899.19 64350.26 823.29 59605.95 12584.70 50201.70	56664.71 40993.02 2601.14 15117.50 5666.23 13227.25
	INOC_51_14DAI INOC_71_14DAI INOC_(51+71)_14) (n=8) (n=2) (DAI (n=10)	176.90 12003.3 2997.9' 10202.24	4	2010.83 96.07 5685.93 1350.58 4818.86	1454 84 771 303 678 32 578	H.1.13 H3.55 7.05 H6.77 H6.77	205055.08 107828.72 1572.11 101562.05 19240.94 85097.83	133899.19 64350.26 823.29 59605.95 12584.70 50201.70	56664.71 40993.02 2601.14 15117.50 5666.23 13227.25 5598.38 12961.72
STDEV area 2021	INOC_51_14DAI INOC_71_14DAI INOC_(51+71)_14 CTR_7DAI (n=8) INOC_51_7DAI (n INOC_71_7DAI (n INOC_(51+71)_7I	(n=8) (n=2) (DAI (n=10) (n=8) (n=2) (DAI (n=10)	176.90 12003.3 2997.9' 10202.2- 124.2: 2722.60 5280.6' 4891.6:	4	2010.83 96.07 5685.93 1350.58 4818.86 47.46 904.78 2432.82 1651.75	1454 84 771 303 678 32 578 764 593	H.1.13 H.	205055.08 107828.72 1572.11 101562.05 19240.94 85097.83 1164.58 27946.16 114671.86 68515.18	133899.19 64350.26 823.29 59605.95 12584.70 50201.70 767.38 13866.18 75182.69 46056.69	56664.71 40993.02 2601.14 15117.50 5666.23 13227.25 5598.38 12961.72 15329.39 15000.14
STDEV area 2020	INOC_51_14DAI INOC_71_14DAI INOC_(51+71)_14 CTR_7DAI (n=8) INOC_51_7DAI (n INOC_71_7DAI (n INOC_(51+71)_7I CTR_14DAI (n=8)	(n=8) (n=2) (DAI (n=10) (n=8) (n=8) (n=2) (DAI (n=10)	176.90 12003.3 2997.9' 10202.2' 124.2: 2722.60 5280.6' 4891.6.	4	2010.83 96.07 5685.93 1350.58 4818.86 47.46 904.78 2432.82 1651.75 37.55	1454 84 771 303 678 32 578 764 593 34	H.1.13 H.1.13 H.1.22 H.1.22 H.1.22 H.1.55 H.1.59 H.8.52 H.6.03	205055.08 107828.72 1572.11 101562.05 19240.94 85097.83 1164.58 27946.16 114671.86 68515.18 548.90	133899.19 64350.26 823.29 59605.95 12584.70 50201.70 767.38 13866.18 75182.69 46056.69 636.17	56664.71 40993.02 2601.14 15117.50 5666.23 13227.25 5598.38 12961.72 15329.39 15000.14
	INOC_51_14DAI INOC_71_14DAI INOC_(51+71)_14 CTR_7DAI (n=8) INOC_51_7DAI (n INOC_71_7DAI (n INOC_(51+71)_7I CTR_14DAI (n=8) INOC_51_14DAI	(n=8) (n=2) (DAI (n=10) (n=8) (n=8)	176.90 12003.3 2997.9' 10202.2: 124.2: 2722.60 5280.6' 4891.6: 67.0 4638.3'	4	2010.83 96.07 5685.93 1350.58 4818.86 47.46 904.78 2432.82 1651.75 37.55 3049.96	1454 84 771 303 678 32 578 764 593 34	H.1.13 H.1.13 H.1.13 H.1.22 H.1.22 H.1.55 H.1.59 H.8.52 H.6.03 H.4.39	205055.08 107828.72 1572.11 101562.05 19240.94 85097.83 1164.58 27946.16 114671.86 68515.18 548.90 47672.52	133899.19 64350.26 823.29 59605.95 12584.70 50201.70 767.38 13866.18 75182.69 636.17 26466.03	56664.71 40993.02 2601.14 15117.50 5666.23 13227.25 5598.38 12961.72 15329.39 15000.14 725.73 4514.56
	INOC_51_14DAI INOC_71_14DAI INOC_(51+71)_14 CTR_7DAI (n=8) INOC_51_7DAI (n INOC_71_7DAI (n INOC_(51+71)_7I CTR_14DAI (n=8) INOC_51_14DAI INOC_71_14DAI	(n=8) (n=2) DAI (n=10) 1=8) 1=2) DAI (n=10) (n=8) (n=2)	176.90 12003.3 2997.9' 10202.2' 124.2: 2722.60 5280.6' 4891.6: 67.0 4638.3i	4	2010.83 96.07 5685.93 1350.58 4818.86 47.46 904.78 2432.82 1651.75 37.55 3049.96 157.19	1454 84 771 303 678 32 578 764 593 34 182	H.1.13 H.1.13 H.1.13 H.1.22 H.1.22 H.1.22 H.1.25 H.1.59 H.1.59 H.3.52 H.3.9 H.3.0 H.3.9 H.3. H.3.	205055.08 107828.72 1572.11 101562.05 19240.94 85097.83 1164.58 27946.16 114671.86 68515.18 548.90 47672.52 1834.03	133899.19 64350.26 823.29 59605.95 12584.70 50201.70 767.38 13866.18 75182.69 46056.69 636.17 26466.03 1666.68	56664.71 40993.02 2601.14 15117.50 5666.23 13227.25 5598.38 12961.72 15329.39 15000.14 725.73 4514.56
	INOC_51_14DAI INOC_71_14DAI INOC_(51+71)_14 CTR_7DAI (n=8) INOC_51_7DAI (n INOC_71_7DAI (n INOC_(51+71)_7I CTR_14DAI (n=8) INOC_51_14DAI	(n=8) (n=2) DAI (n=10) 1=8) 1=2) DAI (n=10) (n=8) (n=2)	176.90 12003.3 2997.9' 10202.2: 124.2: 2722.60 5280.6' 4891.6: 67.0 4638.3'	4	2010.83 96.07 5685.93 1350.58 4818.86 47.46 904.78 2432.82 1651.75 37.55 3049.96 157.19 3252.57	1454 84 771 303 678 32 578 764 593 34 182	H.1.13 H.1.13 H.1.13 H.1.22 H.1.22 H.1.55 H.1.59 H.8.52 H.6.03 H.4.39	205055.08 107828.72 1572.11 101562.05 19240.94 85097.83 1164.58 27946.16 114671.86 68515.18 548.90 47672.52 1834.03 54523.06	133899.19 64350.26 823.29 59605.95 12584.70 50201.70 767.38 13866.18 75182.69 636.17 26466.03	56664.71 40993.02 2601.14 15117.50 5666.23 13227.25 5598.38 12961.72 15329.39 15000.14 725.73 4514.56 250.07
	INOC_51_14DAI INOC_71_14DAI INOC_(51+71)_14 CTR_7DAI (n=8) INOC_51_7DAI (n INOC_71_7DAI (n INOC_(51+71)_7I CTR_14DAI (n=8) INOC_51_14DAI INOC_71_14DAI	(n=8) (n=2) DAI (n=10) 1=8) 1=2) DAI (n=10) (n=8) (n=2)	176.90 12003.3 2997.9' 10202.2' 124.2: 2722.60 5280.6' 4891.6: 67.0 4638.3i	4	2010.83 96.07 5685.93 1350.58 4818.86 47.46 904.78 2432.82 1651.75 37.55 3049.96 157.19 3252.57	1454 84 771 303 678 32 578 764 593 34 182	H.1.13 H.1.13 H.1.13 H.1.22 H.1.22 H.1.22 H.1.25 H.1.59 H.1.59 H.3.52 H.3.9 H.3.0 H.3.9 H.3. H.3.	205055.08 107828.72 1572.11 101562.05 19240.94 85097.83 1164.58 27946.16 114671.86 68515.18 548.90 47672.52 1834.03 54523.06	133899.19 64350.26 823.29 59605.95 12584.70 50201.70 767.38 13866.18 75182.69 46056.69 636.17 26466.03 1666.68	56664.71 40993.02 2601.14 15117.50 5666.23 13227.25 5598.38 12961.72 15329.39 15000.14 725.73 4514.56 250.07
	INOC_51_14DAI INOC_71_14DAI INOC_(51+71)_14 CTR_7DAI (n=8) INOC_51_7DAI (n INOC_71_7DAI (n INOC_(51+71)_7I CTR_14DAI (n=8) INOC_51_14DAI INOC_71_14DAI	(n=8) (n=2) DAI (n=10) 1=8) 1=2) DAI (n=10) (n=8) (n=2)	176.90 12003.3 2997.9' 10202.2' 124.2: 2722.60 5280.6' 4891.6: 67.0 4638.3i	4	2010.83 96.07 5685.93 1350.58 4818.86 47.46 904.78 2432.82 1651.75 37.55 3049.96 157.19 3252.57	1454 84 771 303 678 32 578 764 593 34 182	H.1.13 H.1.13 H.1.13 H.1.22 H.1.22 H.1.22 H.1.25 H.1.59 H.1.59 H.3.52 H.3.9 H.3.0 H.3.9 H.3. H.3.	205055.08 107828.72 1572.11 101562.05 19240.94 85097.83 1164.58 27946.16 114671.86 68515.18 548.90 47672.52 1834.03 54523.06	133899.19 64350.26 823.29 59605.95 12584.70 50201.70 767.38 13866.18 75182.69 46056.69 636.17 26466.03 1666.68	56664.71 40993.02 2601.14 15117.50 5666.22 13227.25 5598.38 12961.72 15329.35 15000.14 725.73 4514.56 250.07
	INOC_51_14DAI INOC_71_14DAI INOC_(51+71)_14 CTR_7DAI (n=8) INOC_51_7DAI (n INOC_71_7DAI (n INOC_(51+71)_7I CTR_14DAI (n=8) INOC_51_14DAI INOC_71_14DAI	(n=8) (n=2) DAI (n=10) 1=8) 1=2) DAI (n=10) (n=8) (n=2)	176.90 12003.3 2997.9' 10202.2: 124.2: 2722.60 5280.6' 4891.6: 67.0 4638.3' 186.4' 5581.6:	4	2010.83 96.07 5685.93 1350.58 4818.86 47.46 904.78 2432.82 1651.75 37.55 3049.96 157.19 3252.57	1454 84 771 303 678 32 578 764 593 34 182	H.1.13 H.1.13 H.1.13 H.1.22 H.1.22 H.1.22 H.1.25 H.1.59 H.1.59 H.3.52 H.3.9 H.3.0 H.3.9 H.3. H.3.	205055.08 107828.72 1572.11 101562.05 19240.94 85097.83 1164.58 27946.16 114671.86 68515.18 548.90 47672.52 1834.03 54523.06	133899.19 64350.26 823.29 59605.95 12584.70 50201.70 767.38 13866.18 75182.69 46056.69 636.17 26466.03 1666.68 30629.56	5666.71 40993.02 2601.14 15117.50 5666.22 13227.22 5598.38 12961.72 15329.39 15000.14 725.72 4514.56 250.07 5633.76
	INOC_51_14DAI INOC_71_14DAI INOC_(51+71)_14 CTR_7DAI (n=8) INOC_51_7DAI (n INOC_71_7DAI (n INOC_(51+71)_7I CTR_14DAI (n=8) INOC_51_14DAI INOC_71_14DAI	(n=8) (n=2) DAI (n=10) 1=8) 1=2) DAI (n=10) (n=8) (n=2)	176.90 12003.3 2997.9' 10202.2: 124.2: 2722.60 5280.6' 4891.6: 67.0 4638.3' 186.4' 5581.6:	4	2010.83 96.07 5685.93 1350.58 4818.86 47.46 904.78 2432.82 1651.75 37.55 3049.96 157.19 3252.57	1454 84 771 303 678 32 578 764 593 34 182	11.13 13.55 7.05 16.77 10.099 111.22 11.55 11.55 11.59 18.52 16.03 14.439 10.116	205055.08 107828.72 1572.11 101562.05 19240.94 85097.83 1164.58 27946.16 114671.86 68515.18 548.90 47672.52 1834.03 54523.06	133899.19 64350.26 823.29 59605.95 12584.70 50201.70 767.38 13866.18 75182.69 46056.69 636.17 26466.03 1666.68 30629.56	5666.71 40993.02 2601.14 15117.50 5666.22 13227.22 5598.38 12961.72 15329.39 15000.14 725.72 4514.56 250.07 5633.76
	INOC_51_14DAI INOC_71_14DAI INOC_(51+71)_14 CTR_7DAI (n=8) INOC_51_7DAI (n INOC_71_7DAI (n INOC_(51+71)_7I CTR_14DAI (n=8) INOC_51_14DAI INOC_71_14DAI	(n=8) (n=2) DAI (n=10) 1=8) 1=2) DAI (n=10) (n=8) (n=2)	176.90 12003.3 2997.9' 10202.2: 124.2: 2722.60 5280.6' 4891.6: 67.0 4638.3' 186.4' 5581.6:	4	2010.83 96.07 5685.93 1350.58 4818.86 47.46 904.78 2432.82 1651.75 37.55 3049.96 157.19 3252.57	1454 84 771 303 678 32 578 764 593 34 182	11.13 13.55 7.05 16.77 10.099 111.22 11.55 11.55 11.59 18.52 16.03 14.439 10.116	205055.08 107828.72 1572.11 101562.05 19240.94 85097.83 1164.58 27946.16 114671.86 68515.18 548.90 47672.52 1834.03 54523.06	133899.19 64350.26 823.29 59605.95 12584.70 50201.70 767.38 13866.18 75182.69 46056.69 636.17 26466.03 1666.68 30629.56	5666.4.71 40993.02 2601.14 15117.50 5666.23 13227.25 5598.38 12961.72 15329.39 15000.14 725.73 4514.56 250.07 5633.76
	INOC_51_14DAI INOC_71_14DAI INOC_(51+71)_14 CTR_7DAI (n=8) INOC_51_7DAI (n INOC_71_7DAI (n INOC_(51+71)_7I CTR_14DAI (n=8) INOC_51_14DAI INOC_71_14DAI	(n=8) (n=2) DAI (n=10) 1=8) 1=2) DAI (n=10) (n=8) (n=2)	176.90 12003.3 2997.9' 10202.2: 124.2: 2722.60 5280.6' 4891.6: 67.0 4638.3' 186.4' 5581.6:	4	2010.83 96.07 5685.93 1350.58 4818.86 47.46 904.78 2432.82 1651.75 37.55 3049.96 157.19 3252.57	1454 84 771 303 678 32 578 764 593 34 182	11.13 13.55 7.05 16.77 10.099 111.22 11.55 11.55 11.59 18.52 16.03 14.439 10.116	205055.08 107828.72 1572.11 101562.05 19240.94 85097.83 1164.58 27946.16 114671.86 68515.18 548.90 47672.52 1834.03 54523.06	133899.19 64350.26 823.29 59605.95 12584.70 50201.70 767.38 13866.18 75182.69 46056.69 636.17 26466.03 1666.68 30629.56	5666.71 40993.02 2601.14 15117.50 5666.22 13227.22 5598.38 12961.72 15329.39 15000.14 725.72 4514.56 250.07 5633.76
	INOC_51_14DAI INOC_71_14DAI INOC_(51+71)_14 CTR_7DAI (n=8) INOC_51_7DAI (n INOC_71_7DAI (n INOC_(51+71)_7I CTR_14DAI (n=8) INOC_51_14DAI INOC_71_14DAI	(n=8) (n=2) (DAI (n=10) 1=8) 1=2) OAI (n=10) (n=8) (n=2) (DAI (n=10)	176.90 12003.3 2997.9' 10202.2' 124.2: 2722.60 5280.6' 4891.6: 67.0 4638.3i	4	2010.83 96.07 5685.93 1350.58 4818.86 47.46 904.78 2432.82 1651.75 37.55 3049.96 157.19	1454 84 771 303 678 32 578 764 593 34 182 602 255	H.1.13 H.1.13 H.1.13 H.1.22 H.1.22 H.1.22 H.1.25 H.1.59 H.1.59 H.3.52 H.3.9 H.3.0 H.3.9 H.3. H.3.	205055.08 107828.72 1572.11 101562.05 19240.94 85097.83 1164.58 27946.16 114671.86 68515.18 548.90 47672.52 1834.03	133899.19 64350.26 823.29 59605.95 12584.70 50201.70 767.38 13866.18 75182.69 46056.69 636.17 26466.03 1666.68	5666.71 40993.02 2601.14 15117.50 5666.22 13227.22 5598.38 12961.72 15329.39 15000.14 725.72 4514.56 250.07 5633.76
	INOC_51_14DAI INOC_71_14DAI INOC_(51+71)_14 CTR_7DAI (n=8) INOC_51_7DAI (n INOC_71_7DAI (n INOC_(51+71)_7I CTR_14DAI (n=8) INOC_51_14DAI INOC_71_14DAI INOC_(51+71)_14	(n=8) (n=2) (DAI (n=10) 1=8) n=2) DAI (n=10) (n=8) (n=2) IDAI (n=10)	176.90 12003.3 2997.9' 10202.2 124.2: 2722.60 5280.6' 4891.6: 67.0 4638.3' 186.4' 5581.6:	4	2010.83 96.07 5685.93 1350.58 4818.86 47.46 904.78 2432.82 1651.75 37.55 3049.96 157.19 3252.57	1454 84 771 303 678 32 578 764 593 34 182 60 255	11.13 13.55 7.05 16.77 10.099 11.22 11.55 11.59 18.52 14.03 14.04	205055.08 107828.72 1572.11 101562.05 19240.94 85097.83 1164.58 27946.16 114671.86 68515.18 548.90 47672.52 1834.03 54523.06	133899.19 64350.26 823.29 59605.95 12584.70 50201.70 767.38 13866.18 75182.69 46056.69 636.17 26466.03 1666.68 30629.56	5666.71 40993.02 2601.14 15117.50 5666.22 13227.22 5598.38 12961.72 15329.31 15329.32 4514.50 250.07 5633.76
	INOC_51_14DAI INOC_71_14DAI INOC_(51+71)_14 CTR_7DAI (n=8) INOC_51_7DAI (n INOC_51_7DAI (n INOC_(51+71)_7I CTR_14DAI (n=8) INOC_51_14DAI INOC_71_14DAI INOC_(51+71)_14 CTR_7DAI VS INCCTR_7DAI VS INCCTR_	(n=8) (n=2) (DAI (n=10) 1=8) (n=2) (DAI (n=10) (n=8) (n=2) (DAI (n=10) (OC_51_7DAI (OC_71_7DAI (OC_(51+71)_7DAI	176.90 12003.3 2997.9 10202.2 124.2 2722.6 5280.6 4891.6 67.0 4638.3 186.4 5581.6	4	2010.83 96.07 5685.93 1350.58 4818.86 47.46 904.78 2432.82 1651.75 37.55 3049.96 157.19 3252.57 25 25 25 25 25 25 25 25 25 25 25 25 25 2	1454 84 771 303 678 32 578 764 593 34 182 60 255	11.13 13.55 7.05 16.77 10.99 11.22 11.55 11.55 11.15 11.	205055.08 107828.72 1572.11 101562.09 85097.83 1164.58 27946.16 114671.86 68515.18 548.90 47672.52 1834.03 54523.06	133899.19 64350.26 823.29 59605.95 12584.70 50201.70 767.38 13866.18 75182.69 636.17 26466.03 1666.68 30629.56	5666.71 40993.02 2601.14 15117.50 5666.22 5598.38 12961.72 15329.33 15000.14 725.72 4514.50 250.07 5633.76
t-tests 2020	INOC_51_14DAI INOC_71_14DAI INOC_71_14DAI INOC_(51+71)_14 CTR_7DAI (n=8) INOC_51_7DAI (n INOC_71_7DAI (n INOC_(51+71)_7I CTR_14DAI (n=8) INOC_51_14DAI INOC_51_14DAI INOC_(51+71)_14 CTR_7DAI VS IN CTR_7DAI VS IN CTR_7DAI VS IN CTR_14DAI VS IN	O(n=8) (n=2) (DAI (n=10) n=8) (n=2) (DAI (n=10) (n=8) (n=2) (DAI (n=10) OC_51_7DAI OC_71_7DAI OC_(51+71)_7DAI NOC_51_14DAI	176.90 12003.3 2997.9' 10202.2 124.2: 2722.60 5280.6' 4891.6. 67.0. 4638.3' 186.4' 5581.6:	4	2010.83 96.07 5685.93 1350.58 4818.86 47.46 904.78 2432.82 1651.75 37.55 3049.96 157.19 3252.57 2432.82 157.19 3252.57	1454 84 771 303 678 32 578 764 593 344 182 600 2555	11.13 13.55 7.05 16.77 10.099 11.22 11.55 11.55 11.55 11.16 14.04 10.000 1	205055.08 107828.72 1572.11 101562.09 19240.94 85097.83 1164.58 27946.16 114671.86 68515.18 548.90 47672.52 1834.03 54523.06	133899.19 64350.26 823.29 59605.95 12584.70 50201.70 767.38 13866.18 75182.69 46056.69 636.17 26466.03 1666.68 30629.56	5666.71 40993.02 2601.14 15117.50 5666.22 13227.22 5598.38 12961.72 15329.33 15000.14 725.73 4514.56 250.07 5633.76
<i>t</i> -tests 2020 (green	INOC_51_14DAI INOC_71_14DAI INOC_71_14DAI INOC_51+71)_14 CTR_7DAI (n=8) INOC_51_7DAI (n INOC_71_7DAI (n INOC_51_14DAI INOC_51_14DAI INOC_51_14DAI INOC_(51+71)_14 CTR_7DAI VS IN CTR_7DAI VS IN CTR_14DAI VS IN CTR_14DAI VS IN CTR_14DAI VS IN	(n=8) (n=2) (n=10) (n=10) (n=8) (n=10) (n=8) (n=2) (n=10) (n=	176.90 12003.3 2997.9' 10202.2 124.2: 2722.60 5280.6' 4891.6. 67.0 4638.33 186.4' 5581.6:	4	2010.83 96.07 5685.93 1350.58 4818.86 47.46 904.78 2432.82 1651.75 37.55 3049.96 157.19 3252.57 augustus augustus au	1454 84 771 303 678 764 593 3182 600 255	11.13 13.55 7.05 16.77 10.099 11.22 11.55 11.59 13.55 14.04 10.000	205055.08 107828.72 1572.11 101562.05 19240.94 85097.83 1164.58 27946.16 114671.86 68515.18 548.90 47672.52 1834.03 54523.06 10 10 10 10 10 10 10 10 10 10	133899.19 64350.26 823.29 59605.95 12584.70 50201.70 767.38 13866.18 75182.69 46056.69 46056.69 30629.56	5664.71 40993.02 2601.14 15117.50 5666.22 13227.25 5598.38 12961.72 15329.39 15000.14 7725.73 4514.56 250.07 6.000 0.000 0.000 0.000
t-tests 2020 (green background:	INOC_51_14DAI INOC_71_14DAI INOC_71_14DAI INOC_51+71)_14 CTR_7DAI (n=8) INOC_51_7DAI (n INOC_51_7DAI (n INOC_51_7DAI (n INOC_51+71)_7I CTR_14DAI (n=8) INOC_51_14DAI INOC_51_14DAI INOC_71_14DAI INOC_(51+71)_14 CTR_7DAI VS IN CTR_7DAI VS IN CTR_7DAI VS IN CTR_14DAI VS IN	OC_51_7DAI OC_51_1DAI OC_51_1DAI NOC_51_1DAI NOC_51_1DAI NOC_51_1DAI NOC_51_1DAI NOC_51_1DAI	176.90 12003.3 2997.9' 10202.2 124.2: 2722.60 5280.6' 4891.6. 67.0 4638.3i 186.4' 5581.6:	4	2010.83 96.07 5685.93 1350.58 4818.86 47.46 904.78 2432.82 1651.75 37.55 3049.96 157.19 3252.57 2432.82 160.005 0.003 0.246 0.005 0.001 0.053 0.001	1454 84 771 303 678 32 578 764 593 34 182 60 255 0 0 0 0	1.13	205055.08 107828.72 1572.11 101562.05 19240.94 85097.83 1164.58 27946.16 114671.86 68515.18 548.90 47672.52 1834.03 54523.06 To E S S S S S S S S S S S S S S S S S S	133899.19 64350.26 823.29 59605.95 12584.70 50201.70 767.38 13866.18 75182.69 46056.69 46056.69 30629.56	5666.71 40993.02 2601.14 15117.50 5666.22 13227.25 5598.38 12961.72 15329.33 15000.14 725.73 4514.55 250.07 5633.76
<i>t</i> -tests 2020 (green	INOC_51_14DAI INOC_71_14DAI INOC_71_14DAI INOC_(51+71)_14 CTR_7DAI (n=8) INOC_51_7DAI (n INOC_51_7DAI (n INOC_51_7DAI (n INOC_51+71)_7I CTR_14DAI (n=8) INOC_51_14DAI INOC_71_14DAI INOC_(51+71)_14 CTR_7DAI VS IN CTR_7DAI VS IN CTR_7DAI VS IN CTR_14DAI VS IN CTR_7DAI VS	OC_51_7DAI OC_71_7DAI OCC_71_14DAI NOC_(51+71)_14DAI OR_14DAI	176.90 12003.3 2997.9' 10202.2 124.2: 2722.6 5280.6' 4891.6: 67.0 4638.3' 186.4' 5581.6: 0.000 0.16: 0.000 0.002 0.000 0.012	4	2010.83 96.07 5685.93 1350.58 4818.86 47.46 904.78 2432.82 1651.75 37.55 3049.96 157.19 3252.57 auautus 61 0.003 0.246 0.005 0.001 0.003 0.001 0.003	1454 84 771 303 678 32 578 764 593 34 182 600 255	1.1.3	205055.08 107828.72 1572.11 101562.05 19240.94 85097.83 1164.58 27946.16 114671.86 68515.18 548.90 47672.52 1834.03 54523.06 Term Do O. Control of the contro	133899.19 64350.26 823.29 59605.95 12584.70 50201.70 767.38 13866.18 75182.69 46056.69 636.17 26466.03 1666.68 30629.56	5666.4.71 40993.02 2601.14 15117.50 5666.23 13227.25 5598.38 12961.72 15329.39 15000.14 725.73 4514.56 250.07 5633.76
t-tests 2020 (green background:	INOC_51_14DAI INOC_71_14DAI INOC_71_14DAI INOC_(51+71)_14 CTR_7DAI (n=8) INOC_51_7DAI (n INOC_71_7DAI (n INOC_(51+71)_7I CTR_14DAI (n=8) INOC_51_14DAI INOC_71_14DAI INOC_(51+71)_14 CTR_7DAI VS IN CTR_7DAI VS IN CTR_7DAI VS IN CTR_14DAI VS CTR_14D	OC_51_7DAI OC_51_1DAI OC_51_1DAI NOC_51_1DAI NOC_51_1DAI NOC_51_1DAI NOC_51_1DAI NOC_51_1DAI	176.90 12003.3 2997.9' 10202.2 124.2: 2722.60 5280.6' 4891.6. 67.0 4638.3i 186.4' 5581.6:	4	2010.83 96.07 5685.93 1350.58 4818.86 47.46 904.78 2432.82 1651.75 37.55 3049.96 157.19 3252.57 2432.82 160.005 0.003 0.246 0.005 0.001 0.053 0.001	1454 84 771 303 678 32 578 764 593 34 182 60 255	1.13	205055.08 107828.72 1572.11 101562.05 19240.94 85097.83 1164.58 27946.16 114671.86 68515.18 548.90 47672.52 1834.03 54523.06 To E S S S S S S S S S S S S S S S S S S	133899.19 64350.26 823.29 59605.95 12584.70 50201.70 767.38 13866.18 75182.69 46056.69 46056.69 30629.56	56664.71 40993.02 2601.14 15117.50 5666.23 13227.25 5598.38 12961.72 15329.39 15000.14 725.73 4514.56

9.21 Figure S5 Permanova results


```
"RESULTS OF ANOVA ON TREAT AND YEAR GROUPS" (TREAT: CTR-INF, YEAR: 2018-2019, only 14 DAI)
             Df Sum Sq Mean Sq F value Pr(>F)
      TREAT 1 16.531 16.531 64.51 5.77e-09 ***
      Residuals 30 7.687 0.256
              Df Sum Sq Mean Sq F value Pr(>F)
      YEAR 1 0.781 0.7812 1 0.325
      Residuals 30 23.438 0.7813
      (Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1)
TREAT
C "PERMUTATIONAL MULTIVARIATE ANALYSIS OF VARIANCE (PERMANOVA)"
      Call: adonis(formula = sp. ~ TREAT, data = env)
      Permutation: free
      Terms added sequentially (first to last)
              Df Sum Sq MeanSqs F.Model R2 Pr(>F)
      TREAT 1 0.9677 0.96767 6.964 0.1884 0.001 ***
      Residuals 30 4.1686 0.13895
      Total 31 5.1363
      Call: adonis(formula = sp. ~ YEAR, data = env)
      Permutation: free
      Number of permutations: 999
      Terms added sequentially (first to last)
               Df Sum Sq MeanSqs F.Model R2 Pr(>F)
      YEAR
              1 0.9954 0.99539 7.2114 0.1938 0.001 ***
      Residuals 30 4.1409 0.13803
      Total 31 5.1363
      (Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1)
      "Extract p-values for each VOC" (VOCs in Table 1 in the ms)
      1 10.789
        3 0.001
         5 0.002
         7 0.001
        9 0.161
      10 10 0.076
      11 11 0.760
     12 12 0.052
     13 13 0.706
      14 14 0.896
     15 15 0.823
      16 16 0.001
     17 17 0.001
      18 18 0.126
      19 19 0.001
     20 20 0.001
     21 21 0.001
     22 22 0.909
     23 23 0.526
     24 24 0.976
     25 25 0.005
     26 26 0.522
      27 27 0.814
     28 28 0.086
      29 29 0.984
      30 30 0.677
      31 31 0.295
```

9.22 Figure S6 Heatmap and pearson correlation test results for year 2018 (A) and year 2019 (B).

9.23 Table S15 List of highest scoring pairs (HSP) obtained by BLAST searches in B. graminis genome sequences and related references

Best hits for genes encoding dioxygenases

UniProt entry	Entry name	Protein name	Gene name	Organism	Length (aa)	Query (source)	E-value	Identity (9	Expression	References
N1JEN6	N1JEN6_BLUG1	Fatty acid oxygenase PpoA	BGHDH14_bgh01772	Blumeria graminis f.sp. hordei (strain DH14) (barley powdery milde	1085	Q6RET3 (Aspergillus nidulans)	0.0	47.	9 protein, RNA-se	Bindschedler et al. 2011 and
A0A383UJI1	A0A383UJI1_BLUGH	Uncharacterized protein	BLGHR1_10719	Blumeria graminis f.sp. hordei (barley powdery mildew) (Oidium mo	1085	Q6RET3 (Aspergillus nidulans)	0.0	47.	9	Hacquard et al. 2013; Laur et al. 201
A0A381LGQ4	A0A381LGQ4_BLUGF	BgtA-20812 (Fragment)	BGT96224V2_LOCUS6054	Blumeria graminis f.sp. tritici 96224	919	N1JEN6 (B. graminis f.sp. horde	0.0	95.	9	
N1JA34	N1JA34_BLUG1	Putative fatty acid oxygenase Ppo-	BGHDH14_bgh01025	Blumeria graminis f.sp. hordei (strain DH14) (barley powdery milde	1058	A1CI17 (Aspergillus clavatus)	0.0	35.	5 protein, RNA-se	Bindschedler et al. 2011 and
A0A383UPD0	A0A383UPD0_BLUGE	Uncharacterized protein	BLGHR1_11968	Blumeria graminis f.sp. hordei (barley powdery mildew) (Oidium mo	1058	A1CI17 (Aspergillus clavatus)	0.0	35.	5	Hacquard et al. 2013; Laur et al. 201
A0A381LHG6	A0A381LHG6_BLUGF	Bgt-1516	BGT96224V2_LOCUS6455	Blumeria graminis f.sp. tritici 96224	1058	N1JA34 (B. graminis f.sp. horde	i 0.0	98.	4	

Best hits for genes encoding monooxygenases

UniProt entry	Entry name	Protein name	Gene name	Organism	Length (aa)	Query (source)	Identity (%	Expression	References
N1JHB2	N1JHB2_BLUG1	Cytochrome P450	BGHDH14_bgh01926	Blumeria graminis f.sp. hordei (strain DH14) (barley powdery milde	565	UniProt database		RNA-seq	Hacquard et al. 2013; Laur et al. 201
N1J4S4	N1J4S4_BLUG1	Cytochrome P450 monooxygenase/CYP52A1	BGHDH14_bgh01897	Blumeria graminis f.sp. hordei (strain DH14) (barley powdery milde	516	UniProt database		RNA-seq	Hacquard et al. 2013; Laur et al. 201
A0A656KMF	A0A656KMF1_BLUG	Uncharacterized protein	BGT96224_2253	Blumeria graminis f.sp. tritici 96224	521	N1J4S4	91.2		
N1JEI9	N1JEI9_BLUG1	Cytochrome P450 oxidoreductase	BGHDH14_bgh05568	Blumeria graminis f.sp. hordei (strain DH14) (barley powdery milde	518	UniProt database		RNA-seq	Hacquard et al. 2013; Laur et al. 201
N1J9N7	N1J9N7_BLUG1	Putative cytochrome P450 monooxygenase/cyp2	BGHDH14_bgh06327	Blumeria graminis f.sp. hordei (strain DH14) (barley powdery milde	534	UniProt database		RNA-seq	Hacquard et al. 2013; Laur et al. 201
A0A061HEP9	A0A061HEP9_BLUGF	Bgt-404	BGT96224_404	Blumeria graminis f.sp. tritici 96224	534	N1J9M7	95.7		
N1JQU4	NIJQU4_BLUGI	Putative cytochrome P450 monooxygenase	BGHDH14_bgh01041	Blumeria graminis f.sp. hordei (strain DH14) (barley powdery milde	511	UniProt database		RNA-seq	Hacquard et al. 2013; Laur et al. 201
A0A061HNG	A0A061HNG4_BLUG	Bgt-1532	BGT96224_1532	Blumeria graminis f.sp. tritici 96224	509	N1JQU4	89.6		

References

Bindschedler, L.V., McGuffin, L.J., Burgis, T.A., Spanu, P.D., Cramer, R., 2011. Proteogenomics and in silico structural and functional annotation of the barley powdery mildew Blumeria graminis f. sp. hordei. Methods 54, 432–441. Description: partial proteomes in sporulating hyphae and haustoria 7-10 days post inoculation

Hacquard, S., Kracher, B., Maekawa, T., Vernaldi, S., Schulze-Lefert, P., Ver Loren van Themaat, E., 2013. Mosaic genome structure of the barley powdery mildew pathogen and conservation of transcriptional programs in divergent hosts. Proc. Natl. Acad. Sci. USA 110, 2219–2228. Description: "RNA-seq during early pathogenesis (6-24 h post inoculation: conidiospore germination,haustorium formation)"

Laur, J., Ramakrishnan, G.B., Labbe, C., Lefebvre, F., Spanu, P.D., Belanger, R.R., 2018. Effectors involved in fungal–fungal interaction lead to a rare phenomenon of hyperbiotrophy in the tritrophic system biocontrol agent–powdery mildew–plant. New Phytol. 217, 713–725. Description: RNA-seq during early pathogenesis (4-5 days post infection with Blumeria graminis)

Zeng, F.-S., Menardo, F., Xue, M.-F., Zhang, X.-J., Gong, S.-J., Yang, L.-J., Shi, W.-Q., Yu, D.-Z., 2017. Transcriptome analyses shed new insights into primary metabolism and regulation of Blumeria graminis f. sp. tritici during conidiation. Front. Plant Sci. 8, 1146. Description: RNA-seq during early pathogenesis (3-5 days post inoculation)

9.24 Table S16 Estimated emissions of four quantitated marker VOCs

	1-Heptanol	(5Z)-Octa-1,5-dien-3-ol	1-Octen-3-ol	3-Octanone	$50 \text{ pots/m}^2 = \text{ca. } 700 \text{ pl./m}^2$	1-Heptanol	(5Z)-Octa-1,5-dien-3-ol	1-Octen-3-ol	3-Octanone	Total
	ng/pot/24 h	ng/pot/24 h	ng/pot/24 h	ng/pot/24 h		$\mu g/m^2/24 h$	$\mu g/m^2/24 h$	$\mu g/m^2/24 h$	$\mu g/m^2/24 h$	$\mu g/m^2/24 h$
AVERAGE OVERALL	22.22	135.33	389.00	82.10	AVERAGE OVERALL	1.11	6.77	19.45	4.10	31.43
AVERAGE 7 DAI ALL	19.46	44.34	130.14	34.07	AVERAGE 7 DAI ALL	0.97	2.22	6.51	1.70	
AVERAGE 14 DAI ALL	23.88	189.92	544.31	110.91	AVERAGE 14 DAI ALL	1.19	9.50	27.22	5.55	
MIN 7 DAI ALL	8.70	4.20	10.50	3.90	1 ha average per day	mg/ha/24 h	mg/ha/24 h	mg/ha/24 h	mg/ha/24 h	mg/ha/24 h
MAX 7 DAI ALL	47.52	188.21	586.63	89.20	AVERAGE OVERALL	11	68	194	41	314
MIN 14 DAI ALL	4.67	12.55	35.70	7.32	AVERAGE 7 DAI ALL	9.73	22.17	65.07	17.04	
MAX 14 DAI ALL	63.00	816.60	2295.30	492.30	AVERAGE 14 DAI ALL	11.94	94.96	272.15	55.46	
MIN 7 DAI 2018	8.70	4.20	10.50	3.90	30 day contribution	g/ha/month	g/ha/month	g/ha/month	g/ha/month	g/ha/month
MAX 7 DAI 2018	14.40	12.30	23.10	13.80	AVERAGE OVERALL	0.33	2.03	5.83	1.23	9.42
MIN 14 DAI 2018	12.30	4.20	10.50	3.90	AVERAGE 7 DAI ALL	0.29	0.67	1.95	0.51	
MAX 14 DAI 2018	24.00	52.50	88.20	34.80	AVERAGE 14 DAI ALL	0.36	2.85	8.16	1.66	
MIN 14 DAI 2019	27.00	83.40	270.60	69.90						
MAX 14 DAI 2019	63.00	816.60	2295.30	492.30						
MIN 7 DAI 2020	10.66	35.88	120.55	21.43						
MAX 7 DAI 2020	47.52	188.21	586.63	89.20						
IIN 14 DAI 2020 4.67 12.55 43.06 7.32 During three years of our survey there was cold 2018, medium 2019 and hot weather 2020 with								r 2020 with		
MAX 14 DAI 2020	AX 14 DAI 2020 19.31 124.62 364.05 29.46 varying pathogen conditions from slightly to heavily infected samples.									

10. ACKNOWLEDGEMENTS

10.1 Acknowledgement of grants, funds supporting my research work and me in any way

- GINOP-2.3.2-15-2016-00051 E-nose research group analysis of natural odor patterns and utilization in agricultural sciences
- Grant "RRF-2.3.1-21-2022-00007, Agrár-biotechnológia és precíziós nemesítés az élelmiszerbiztonságért"
- Industrial research and development projects in Hungarian-Vietnamese cooperation, grant number 2019-2.1.12-TÉT_VN-2020-00001.

10.2 Acknowledgements for research colleagues for their useful suggestions or support I'd like to express my gratitude **to my thesis leader Dr. Katalin Posta** and to Hungarian University of Agriculture and Life Sciences and HUN-REN CAR.

My dear, supporting colleagues at Centre of Agricultural Research, Martonvásár and beyond: first and foremost to Dr. László Sági and to Dr. Mihály Dernovics as they deserve it before anyone. To Dr. Tibor Janda, Dr. Péter Lukács, Dr. Zsuzsanna Ambrózy, Dr. Gabriella Szalai, Dr. Magda Pál, Dr. Éva Darkó, Dr. Katalin Zboray, Dr. Gyula Vida, Dr. Ervin Balázs, Dr. Katalin Puskás, Dr. Mónika Cséplő, Dr. Imre Majláth, Dr. Csaba Éva, Dr. Gyöngyvér Gell, Larisza Szeidl, Tímea Taligás, Dr. Vilmos Soós, Dr. Zsolt Gulyás, Dr. Gábor Galiba, Dr. Béla Péter Molnár, Dr. Dalma Radványi, Dr. Veronika Bókony, Dr. Kinga Benczúr, Dr. József Bakonyi, Dr. Klára Mészáros, Dr. Mariann Rakszegi, Gábor Palotás, Ferenc Tóth and Dr. Tamás Weiszburg.

10.3 Acknowledgements for inspiring, supporting friends, students, muscians and family I wanna take this opportunity to express how thankful I am to my family and its close friends: To my wonderful mom, Ingrid Hamow, sweet angel of a sister Zeire Hamow, also to my brother Adam Hamow. To my cousin Mazloum Hamo and to my godmother Mária Muskovics and their families. To Dr. Mousa Mustafa and Dr. Hussein Daood and their families. And of course to my father, Ali Hassan Hamow (†), who taught me to be an honorable loving man, and that you should never be afraid of work, let the work be afraid of you! To my dear love, Rebeka Blanka Jordanov, who has supported me in the past months like no one before. A special thanks are in order for my dear students Réka Mátyus, Ráchel Bolford, Cintia Bese and Oszkár Jókai. Addittional wonderous friends who supported me: Niké Kicandasz, Dr. Gábor Glatz and his family, Gergely Huba Vígh, Ádám Bulyovszki, Gábor Alekszics and his family, Judit Bernadett Kőszegi, Dominik Hollender, Dr. Attila Gidófalvi and his family, Péter Pálfi and his family, Adrienn Mészáros, Alexandra Kulcsár, Zsolt Dolinka, Szabolcs Marton, Zsuzsanna Máró, Ágoston Stella, Andrea Pataky, Andrea Csimár, Anasztázia Pintye. Musician friends who have helped and inspired me a lot through their art and music and/or friendship - From Hungary: Balázs Biletzky (Psyletzky), Gergely Tóth (Toge), Alex Vargyasi (Metaverse), Bence Kiss-Leizer (Bimbiri), Balázs Rimóczi (Cabra), Dániel Zimányi-Faltisz (Körner), Dávid Gózon (Goeson), Fábián Zoltán (Snag the Sunshepherd), Florentína Agócs (Lissza) and Erika Csáky (Era). From abroad: Joske Vranken (Anoebis) and her wife (Pavane), Elias Gits (Agneton), Jannis Tzikas (Filteria), René Kaipel and Anja Pichler (KavanRay & ZavaConnex). Finally I wanna say thanks to "Dürer Kert" and all its staff members. You all mentioned above, and many more fellow dear souls helped and motivated me immensely to write my PhD and other scientific works. Also to become a fast yet precise young analytical chemist method developer in Hungary. Especially inspired me to be someone who is addicted to good music and the dancing how to keep on blastin joyfully as a CSK CSK CSK, my thanks never have been more in order dear fellow inspiring loving souls, thanks dears! Keep on dancing, discovering and of course forever joyfully blastin'!