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1. INTRODUCTION

Interest in the stock market and financial products among ordinary people has
grown exponentially in recent decades (Kumbure et al., 2022). Billions of
dollars worth of assets change hands every day on the world's stock exchanges
(Hoseinzade and Haratizadeh, 2019), and investors enter the market with the
intention of making a profit within their investment horizon. If a private or
institutional investor could accurately predict market behavior and
movements, this would enable them to achieve a higher risk-adjusted return
(alpha) than the market. Among other things, this factor motivates the use of
machine learning and artificial intelligence methods to create more accurate
models for stock market forecasting and to fine-tune existing ones. The
predictability of stock and other financial markets has been examined in
numerous studies through the development of sophisticated forecasting
systems (Sedighi et al., 2019; Song et al., 2019), some of which have reported
that their models were able to generate significant profits (Atsalakis and
Valavanis, 2009a; Weng et al., 2017).

In general, stock market forecasting is considered one of the most relevant yet
challenging areas of financial research (Chen and Hao, 2017). Nevertheless,
the ability of an investor to consistently achieve higher risk-adjusted returns
than the market may violate the so-called efficient market hypothesis. Fama
(1970) is credited with the market efficiency hypothesis (EMH). The EMH
distinguishes between three forms of market efficiency. Weak form market
efficiency assumes that information contained in past prices is already
reflected in current stock prices and does not help predict future price
movements (Fama, 1970). As a result, technical analysis cannot outperform a
buy-and-hold strategy in terms of expected returns. The second form of the
efficient market hypothesis is called semi-strong market efficiency, which

states that stock prices reflect all publicly available information (economic
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conditions, political events, interest rates, company-specific information,
etc.), including information about past prices. All this suggests that even using
technical analysis tools, it is not possible to consistently achieve higher
expected returns. In the case of semi-strong market efficiency, publicly
available information, including fundamental data, does not allow an investor
to outperform the market. This means that, with all publicly available
information at their disposal, actively managed portfolios will not consistently
achieve higher risk-adjusted returns than passive portfolios, i.e., those
following a buy-and-hold strategy. The third, strong form of the EMH states
that all information, including insider information, is reflected in stock prices.
This precludes any investor (even one with insider information) from
consistently achieving higher expected returns than the market (Fama, 1965).
For this reason, the strong form of EMH essentially asserts that stock market
prices and returns cannot be predicted (Timmermann and Granger, 2004). The
strong form of EMH is based on extremely strict criteria, which Fama (1970)
himself later partially refuted and refined. He stated that it cannot be expected
that insider information cannot be used to realize higher expected profits.

Over time, more and more people have questioned the efficient market
hypothesis and whether securities are priced rationally (Daniel et al., 1998;
Borovkova and Tsiamas, 2019). There are numerous market anomalies that
contradict the efficient market hypothesis (Malkiel and Mullainathan, 2005).
These include financial market overreactions (De Bondt and Thaler, 1985) and
underreactions, short-term momentum, long-term reversal, and high asset
price volatility. Some researchers have discussed explanations for such
anomalies that are consistent with the efficient market hypothesis, including
that overreactions and underreactions occur randomly and with equal
frequency (Fama, 1998). They have also examined the possibility that

institutional investors (smart money) are able to offset the anomalies created



by less experienced investors (dumb money) (Shiller, 2003). However, it
remained doubtful whether models based on investor rationality could
accommodate the observed anomalies. This led to a shift towards models that
also integrate human psychology and to the emergence of behavioral finance,
which questions the perfect rationality of investors due to behavioral biases
such as loss aversion, overreaction, and underreaction. One attempt to
reconcile EMH and behavioral finance was the proposal of the adaptive
markets hypothesis (AMH), which acknowledges and explains the anomalies
observed in financial markets (Lo, 2004).

Given that anomalies may exist, it is not surprising that most market
participants use historical price information and company-specific
information (past earnings, losses, and profits) as well as other factors to
estimate future stock prices (Patel and Marwala, 2006). Stock market
forecasting studies typically use two well-known analytical approaches:
fundamental analysis and technical analysis (Lohrmann and Luukka, 2019;
Sedighi et al., 2019). Fundamental analysis focuses on basic information.
When forecasting a company's stock price or yield based on fundamentals,
information such as the company's revenues and expenses, annual growth rate,
market position, and other relevant factors included in financial statements or
reports are taken into account. When forecasting a stock index that represents
a number of company stocks, information about the market environment can
also be used, including national economic production data, trade, prices, or
interest rates that are likely to affect the performance of the companies
included in the stock index. In contrast, technical analysis involves studying
past trends in stock prices and related trading information (volume) in order
to predict stock price movements (Wei et al., 2011). Based on the literature on
the subject, it can be concluded that there are a number of models available

for predicting prices, yields, and volatility, which researchers classify into



three main groups. The first group includes traditional statistical methods, the
second group includes methods based on some form of artificial intelligence,
and the third group includes so-called hybrid methods (Kim & Won, 2018;
Vidal & Kristjanpoller, 2020; Zolfaghari & Gholami, 2021).

The application of artificial intelligence (AI) and machine learning (ML) is
fundamentally transforming the financial sector, which directly or indirectly
affects other industries as well. Financial service providers are allocating
significant investments to develop and improve data science-related areas.
Since the 2007-2008 financial crisis, data-driven innovation and regulation
have received particular attention, leading to a re-evaluation of banking and
trading practices. Alternative data, such as voice recordings and social media
posts, are playing an increasingly important role in decision-making, but
analyzing such data poses a challenge for traditional approaches, which is why
machine learning models have come to the fore. These algorithms provide the
necessary computing power and flexibility to uncover complex patterns.
Recent developments have enabled the effective application of scientific
theories to make more accurate predictions.

Most previous studies have used some form of statistical time series method
to predict stock market products, based on historical data (Efendi et al., 2018).
Among these, autoregressive conditional heteroscedasticity (ARCH),
autoregressive moving average (ARMA), and autoregressive integrated
moving average (ARIMA) models, Kalman filtering, and exponential
smoothing are the most popular techniques (Chen & Chen, 2015; Yeh et al.,
2011). Later, with the advent of artificial intelligence (Al) and soft computing,
these techniques received increasing attention in studies dealing with stock
market forecasting. Unlike traditional time series methods, these techniques
are capable of handling the nonlinear, chaotic, noisy, and complex data of the

stock market, which can result in more accurate forecasts (Chen & Hao, 2017).



These methods represent innovative and advantageous alternatives, making
them attractive to researchers for financial market forecasting. The
shortcomings of the various methodologies have given rise to a third category,
which includes so-called hybrid predictive models. These combine traditional
statistical and machine learning-based methods to achieve the most accurate
estimation results possible (Reston et al., 2014; Biiyiiksahin and Ertekin,
2019).

In my research, I will examine the most modern predictive models, which are
an important tool for investor groups and companies in the areas of risk
management, yield maximization, and profit maximization. For empirical
analysis, I will use the most popular financial instruments, such as stock
indices (S&P500, DAX, Nikkei225), commodity market products (crude oil,
gold, silver), cryptocurrencies (Bitcoin, Ethereum, Litecoin), and currency
pairs (EUR/USD, GBP/USD, AUD/USD) for the period from January 1, 2016,
to June 30, 2022. In terms of testing the robustness of the models, it is
important that this period includes the calm period (2018), Covid19 (2020)
and the Russian-Ukrainian conflict (2022). Since cryptocurrencies are
relatively new products compared to others, their price data also covers a
shorter period, which is one of the reasons for choosing the start and end points
of the database. For the modeling, I examine three deep learning algorithms
(RNN, LSTM, GRU) and three hybrid methodologies created from them
(LSTM-GRU, RNN-LSTM, RNN-GRU) using regression analysis. I evaluate
the differences between actual and estimated prices using the MAPE indicator.
I begin by presenting the results of the analyses by product type, followed by
a comparison by product and model type. In the rest of this section, I compare
single- and multi-variable methods, the absolute best and worst predictive
performance, and the effects of activation function optimization. I will also

use the predictive results of the models to develop a trading strategy, which I



will compare with the buy-and-hold method. In this way, I will attempt to
emphasize the practical economic usefulness of the thesis with quantifiable

investment results.



2. OBJECTIVES

Nothing illustrates the spread of artificial intelligence better than the fact that
various learning algorithms are slowly seeping into different areas of our lives,
making our daily routines easier and processes more efficient. The advantages
and disadvantages of this will, of course, generate a lot of debate, but I believe
that the advance of these technologies is inevitable, especially in industries
with high capital strength. Predicting the prices of various investment products
has always been a challenge for both statisticians and financial professionals
(Nabipour et al., 2020). The main goal of developing predictive models is to
estimate market-generated uncertainties as accurately as possible, thereby

minimizing risk factors.

The spread and increasingly widespread use of machine learning
methodologies has contributed to improving the performance of predictive
models and increasing the accuracy of forecasts (Magsood et al., 2019).
Experts involved in prediction face a number of fundamental challenges in
model development. Issues such as complexity, noisy information,
developmental characteristics, and non-linear relationships can be attributed
to the instability of stock and financial markets, as well as the
interrelationships between investor psychology and market behavior (Duarte

et al., 2017).

In the development of predictive models, machine learning tools are therefore
becoming increasingly important, helping investors, traders, and corporate
risk managers to make optimal decisions. The primary goal of these methods
is to learn and then automatically recognize different patterns in large data
sets. The most advanced deep learning algorithms are constantly evolving,
enabling them to predict price fluctuations more and more effectively in order

to optimize various strategies.



The importance of risk management is particularly heightened during periods
of high volatility, such as the 2008 global crisis, Covid19, or the stock market
crash caused by the Russian-Ukrainian war. The unpredictability of the
inflationary environment creates an additional need for the most effective
tools possible. Today, the most modern risk management techniques go
beyond traditional diversification, with artificial intelligence-based solutions
becoming increasingly prominent and an integral part of our everyday lives.
In the case of trading strategies, price forecasting models can determine key
price levels that can be used in fundamental and technical analysis, as well as
in risk management and portfolio management. The main goal of my research
is to explore the characteristics of predictive modeling using machine learning

models. I will describe the detailed objectives and hypotheses below.

C1: The primary objective of my research is to determine the extent to which
different neural deep learning models can be generalized, i.e., whether they
are capable of achieving outstanding predictive performance in different crisis

situations.

For this reason, I will analyze three different periods, with 2018 representing
a period of calm, while Covid19 (2020) and the outbreak of the Russian-

Ukrainian conflict (2022) represent periods of crisis.

K1: What relationship can be demonstrated between the volatility of financial

instruments and the predictive performance of price forecasting models?

K2: What kind of forecasting distortions are caused by the extreme price
movements observed during periods of crisis, and how do different types of

algorithms respond to this?

K3: What role does hybrid model architecture play in predictive performance

change in a volatile market environment?



During the modeling process, I also discuss which of the product categories
examined is the most stable and which poses the greatest challenge for
predictive algorithms. There are significant differences between product
specifics, as the analysis includes traditional stock markets with a long history,
as well as cryptocurrencies, which are still in their infancy in economic terms
but are all the more volatile. Commodity market products also play a role in
the study, as their prices are influenced by a multitude of external factors.
Foreign exchange markets should not be forgotten either, as they also have
special characteristics, with prices being determined by a number of
interrelated factors, such as interest rate differentials, inflation, political
stability, and trade relations. Correlations between currency pairs can also
have a significant impact on the accuracy of forecasts. Stock indices show
more predictable trends in the longer term, while cryptocurrencies and certain
commodity prices can be much more sensitive to short-term events, such as
economic cycles or extreme events. This volatility poses a significant
challenge for predictive models, as it is more difficult to make accurate
forecasts in markets where prices can change rapidly and significantly. Stress
factors affecting the global economy have a significant impact on the
performance of various financial markets, so it is particularly important to be
able to estimate the prices of the products under review as accurately as
possible during such periods. One of the advantages of using machine learning
models is that, compared to other methods, they are better at recognizing
patterns in large amounts of historical data and using them to predict future
prices and trends. A characteristic feature of deep learning models is that the
more data they have at their disposal, the more effectively they can learn. It is
therefore particularly important to teach them using data sets from economic
periods with specific characteristics. I am seeking answers to the following

research questions:



C2: The second objective of my thesis is to examine the extent to which
machine learning models can improve the trading performance of financial
instruments compared to the traditional buy-and-hold strategy. I seek answers

to the following research questions:

K4: How well can trading strategies based on machine learning predictions

exploit market anomalies, as opposed to the efficient market theory?

K5: What effect does the volatility of different asset classes (e.g., stocks,
cryptocurrencies, commodities, currency pairs) have on the performance of

machine learning-supported trading strategies?

K6: What differences can be observed in the performance of machine

learning-based strategies during different economic cycles?

I use the forecasts to develop rule-based trading strategies. I backtest the
performance of these strategies and compare them with the results of a passive
investment approach, with a particular focus on returns and risk indicators
(cumulative return, Sharpe ratio, etc.). The goal is not only to evaluate the
accuracy of the predictions, but also to explore whether the decisions
generated by the models actually result in improved trading performance.
Through this, I seek to answer the question of how well machine learning-
based decision support can handle different market conditions (trends,
volatility, shocks). The practical value of the thesis is that the approach
examined offers a potential alternative to classic passive investing. This is
particularly relevant in the context of the efficient market hypothesis (EMH),
which states that market prices reflect all available information, making it
impossible to achieve extra returns in the long run using any predictive
method. If the strategies presented in this paper are able to systematically
outperform the buy-and-hold benchmark, they may implicitly call into
question the practical validity of the EMH. In addition, maximizing the Sharpe

10



ratio plays a central role in the evaluation of strategies, as this ratio measures
the ratio of return to return volatility and is thus suitable for objectively
comparing risk-weighted performance. The goal of the models is therefore not
merely to achieve high returns, but to ensure stable, volatility-adjusted
profitability. Examining this can help us understand the extent to which
machine learning-based trading systems can create value in an environment

where information efficiency theoretically precludes arbitrage opportunities.
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3. MATERIALS AND METHODS

3.1. Data

In my research, I used daily exchange rate data for stock indices (S&P500,
DAX, Nikkei225), commodity products (crude oil, gold, silver),
cryptocurrencies (Bitcoin, Ethereum, Litecoin), and currency pairs
(EUR/USD, GBP/USD, AUD/USD) for the period between January 1, 2016,
and June 30, 2022. For crude oil, gold, and silver, I used futures prices, while
for the other products, I used spot prices. I chose this period partly because it
includes the calm period (2018), the Covid19 (2020) and the war crisis (2022),
and partly because cryptocurrencies are relatively new products compared to
the others, so their exchange rate data covers a shorter period. Therefore, this
seemed to be the most optimal decision in terms of comparability. I collected
the data from the website www.finance.yahoo.com, with the exception of
cryptocurrencies, as their data comes from the  website

www.coinmarketcap.com.

During data cleaning and data series review, I also had to deal with the
problem of handling missing data, which was particularly significant in the
calculation of the correlation matrix, as the number of observations differed
for each product. To solve this problem, I chose the linear interpolation
method. In the case of forecasting methods, missing data was not significant,
as each product was examined separately. I will discuss the filtering of trend
and seasonal effects later when determining volatility. When making
predictions, I did not treat trends and seasonality separately, but left this to the
pattern recognition capabilities of the models. I then divided the databases into
three parts. The first period examined focused on a calm economic
environment from January 1, 2016, to June 30, 2018. The second covers the
period from January 1, 2018, to June 30, 2020, which was selected due to
12



Covid19. The third period also relates to an economic crisis, namely the
Russian-Ukrainian conflict, covering the interval between January 1, 2020,
and June 30, 2022. During the analysis, the two crisis periods served as
important factors in terms of testing the robustness of the models. The
descriptive statistics of the data used for the empirical analysis are presented

in Tables 1-3.

Table 1: Descriptive statistics of the examined products for the period

between January 1, 2016 and June 30, 2018

N Average | Median Std Min Max
S&P500 628 | 2360.37| 2365.41 258.18| 1829.08| 2872.87
DAX 632| 11575.03| 12002.46| 1243.42| 8752.87| 13559.60
Nikkei225 613 | 19315.52| 19383.84| 2355.25] 14952.02| 24124.15
Crude oil 626 50.81 49.56 9.54 26.21 74.15
Gold 625| 1266.21| 1271.50 57.64| 1073.90| 1364.90
Silver 625 16.98 16.87 1.25 13.74 20.67
Bitcoin 912| 3649.33| 1187.47| 4189.45 364.33 | 19497.40
Ethereum 911 233.20 44.89 298.89 0.92] 1398.99
Litecoin 912 52.79 6.93 72.31 3.00 358.34
EUR/USD 649 1.14 1.13 0.05 1.04 1.25
GBP/USD 649 1.33 1.32 0.07 1.20 1.48
AUD/USD 649 0.76 0.76 0.02 0.69 0.81

Source: own editing

In the first examined period (Table 1), the stock markets exhibited moderate
growth and relatively stable volatility. The average value of the S&P 500 index
was 2360.37 points, with a standard deviation of 258.18 points, whereas the
DAX and Nikkei225 recorded higher averages and deviations, indicating
greater price fluctuations in the European and Asian markets. The average
price of crude oil was USD 50.81, accompanied by a relatively high standard
deviation (USD 9.54), reflecting the commodity market’s sensitivity to
geopolitical and supply—demand dynamics. Gold and silver functioned as

more stable stores of value, with comparatively low volatility, particularly in
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the case of silver (USD 1.25). Cryptocurrencies, especially Bitcoin and
Ethereum, displayed substantial volatility during this period: the standard
deviation of Bitcoin was USD 4189.45, while that of Ethereum was USD
298.89. This elevated volatility underscores the rapid price surge and
speculative nature of digital assets. In the foreign exchange markets, the
EUR/USD, GBP/USD, and AUD/USD exchange rates demonstrated relative
stability, with low deviations and narrow minimum-maximum ranges.
Overall, this period was characterized by stability in traditional financial
assets, while cryptocurrencies experienced pronounced growth and

heightened volatility.

Table 2: Descriptive statistics of the examined products for the period

between January 1, 2018 and June 30, 2020

N Average | Median Std Min Max
S&P500 628 | 2862.46| 2843.11 195.87| 2237.40| 3386.15
DAX 627 | 12099.54| 12253.15 911.70| 8441.71| 13789.00
Nikkei225 606| 21865.58| 21874.23| 1291.52| 16552.83 | 24270.62
Crude oil 628 56.18 58.30 13.28 -37.63 76.41
Gold 627| 1394.23| 1328.10 15939 1176.20| 1793.00
Silver 627 16.06 16.14 1.29 11.73 19.39
Bitcoin 912| 7679.92| 7679.97| 2384.93| 3236.76| 17527.00
Ethereum 911 302.16 207.80 238.30 81.72| 1398.99
Litecoin 912 80.24 61.06 48.48 23.46 296.45
EUR/USD 651 1.14 1.13 0.04 1.07 1.25
GBP/USD 651 1.30 1.29 0.05 1.15 1.43
AUD/USD 651 0.71 0.71 0.04 0.57 0.81

Source: own editing

In the second period (Table 2), which partly overlaps with the onset of the
Covid19 pandemic, increasing volatility and structural reconfiguration were
observed in the financial markets. Stock indices, particularly the S&P 500
(average: 2862.46) and the DAX (average: 12099.54), exhibited moderate

growth compared to the previous period; however, their standard deviations
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slightly declined, which may indicate partial market stabilization prior to the
outbreak. In the crude oil market, an extraordinary price collapse occurred, as
reflected in the negative minimum value (-37.63 USD) recorded in April 2020
on the futures market. Precious metals, especially gold, appreciated as safe-
haven assets: the average price of gold rose to 1394.23 USD, while its standard
deviation increased substantially (159.39 USD). Cryptocurrencies, such as
Bitcoin and Ethereum, continued to display high volatility, although their
rising median values were more moderate than before, suggesting certain
signs of market maturation. Litecoin also registered an increase in its average
price, accompanied by relatively high volatility. Among currencies, the
EUR/USD and GBP/USD pairs showed slight depreciation, while the
AUD/USD experienced a more pronounced decline, attributable to the
Australian economy’s dependence on commodity exports. Overall, this period
reflected heightened uncertainty, but at the same time, adaptation in both

traditional and novel financial asset markets.

Table 3: Descriptive statistics of the examined products for the period

between January 1, 2020 and June 30, 2022

N Average | Median Std Min Max
S&P500 628 | 3851.17| 3915.98 599.47| 2237.40| 4796.56
DAX 635| 13907.57| 13950.04| 1633.03| 8441.71| 16271.75
Nikkei225 606 | 26031.83 | 27007.45| 3214.96| 16552.83| 30670.10
Crude oil 628 63.11 62.57 25.23 -37.63 123.70
Gold 628 | 1803.00| 1809.30 104.27| 1477.30] 2051.50
Silver 628 22.99 23.97 3.70 11.73 29.40
Bitcoin 911 | 30776.76| 33798.01 | 18183.70| 4970.79| 67566.83
Ethereum 911 | 174593| 1790.25| 1384.34 109.21| 4800.00
Litecoin 911 116.99 109.43 68.26 30.93 386.45
EUR/USD 651 1.15 1.16 0.05 1.04 1.23
GBP/USD 651 1.32 1.33 0.06 1.15 1.42
AUD/USD 651 0.72 0.72 0.04 0.57 0.80

Source: own editing
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The third period (Table 3) brought about profound market shifts driven by the
Covid19 pandemic, the subsequent recovery, and the geopolitical uncertainty
arising from the Russian—Ukrainian conflict. The average value of the S&P
500 index increased to 3851.17 points, while its standard deviation rose
substantially to 599.47 points, indicating heightened market volatility. The
DAX and Nikkei225 indices also recorded higher averages and maximum
values, accompanied by rising volatility, particularly in the case of the
Nikkei225. The crude oil market exhibited extreme sensitivity to the Russian—
Ukrainian conflict: the standard deviation increased to 25.23 USD, and the
maximum price reached 123.70 USD. The disruption and uncertainty
surrounding Russian commodity exports, especially energy resources, played
a key role in driving these fluctuations. Demand for precious metals,
especially gold, intensified as investors sought safe-haven assets, although
prices stabilized at elevated levels, with an average of 1803.00 USD. Bitcoin
and Ethereum reached peak valuations during this period: Bitcoin averaged
30776.76 USD, with an exceptionally high standard deviation of 18183.70
USD. This may partly reflect both heightened risk aversion and speculative
capital inflows amid the turbulence of traditional markets. The EUR/USD and
GBP/USD exchange rates remained relatively stable; however, a slight
depreciation was observed due to the European economy’s direct exposure to
the conflict. Overall, this period was characterized by intensifying geopolitical
tensions, energy market shocks, and the predominance of investor risk

aversion.

In the course of the analysis, both univariate and multivariate methods were
applied. In the univariate case, daily closing prices formed the basis of
prediction, whereby the price at a given point in time was estimated using the
data of the preceding 50 time steps (sequence). In the multivariate analysis, a
similar approach was adopted, with the difference that, in addition to daily

16



closing prices, opening, highest, and lowest prices were also incorporated,

again using 50-day sequences.
3.2. Methods

Simple Recurrent Neural Network (RNN)

RNN is a type of artificial neural network consisting of three main parts: input,
hidden, and output layers. There are two main differences compared to
traditional networks. One is that the nodes in the same hidden layer of an RNN
are connected to each other, and the other is that the inputs to the hidden layer
contain the outputs of the input layer at the current time as well as the outputs
of the hidden layer stored at the previous time. This special structure allows
for a better description of dynamic temporal behavior in a time series
sequence. Thus, an RNN can use previously learned information to recognize

the current pattern, enabling more efficient modeling (Bai et al. 2021).

Gated Recurrent Unit (GRU)

GRU is a type of recurrent neural network (RNN) that excels at predicting
time series. It is similar to another neural network model we discussed
(LSTM), but GRU has lower computational requirements, which can greatly
improve learning efficiency. Its input and output structures are the same as
those of a simple RNN. The internal structure of the GRU unit contains only
two gates: the zt update gate and the rt reset gate. The zt update gate
determines the previous memory value saved at the current time, and the rt
reset gate determines how the new input information should be combined with
the previous memory value. Unlike the LSTM algorithm, the zt update gate
can simultaneously forget and select the contents of the memory, which
improves computational performance and reduces the required running time

(Xiao et al. 2022).
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Long-Short Term Memory (LSTM)

LSTM is a type of recurrent neural network (RNN) that is often used in
research related to sequential data. Long-term memory refers to learning
weights, while short-term memory refers to the internal states of cells. LSTM
was created to solve the vanishing gradient problem in RNNSs, and its main
change is the replacement of the middle layer of the RNN with a block (LSTM
block). The main feature of LSTM is the possibility of long-term affiliation
learning, which was impossible in RNNs. To predict data related to the next
time point, the network weights need to be updated, which requires
maintaining data from the initial time interval. An RNN could only learn a
limited number of short-term aftiliations; however, RNNs cannot learn long-
term time series. The LSTM, however, can handle these adequately. The
structure of the LSTM model contains a set of recurrent subnetworks, which
are called memory blocks. Each block contains one or more autoregressive
memory cells and three multiple units (input, output, and forget), which
perform continuous writing, reading, and control of cell operation (Ortu et al.

2022).

LSTM-GRU hybrid
The hybrid LSTM/GRU model based on LSTM and GRU retains the

advantages of both models, reduces overfitting, and thus enables high-
accuracy predictions (Zhao et al. 2023). In this model, the first hidden layer is
the LSTM. Each LSTM neuron collects data and generates a weighted value.
The data is then transferred from the LSTM to the GRU layer, which is the
second hidden layer. On the way from the LSTM layer to the GRU layer,
weighted values are generated again. Similarly, the data is then transferred to
the third hidden layer (dense layer). A weighted value is also generated from

the GRU layer to the dense layer. The dense layer is a normal neural network
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layer that is used to produce the output. From the dense layer, the data then

goes to the output neuron (Islam and Hossain 2021).

RNN-LSTM hybrid

In order to exploit the strengths of RNN and LSTM and eliminate their
weaknesses, the use of the RNN-LSTM hybrid model significantly improves
the predictability of time series (Faru et al. 2023). In this algorithm, the first
hidden layer is the RNN, in which neurons collect information and a weighted
value is generated. The information is then transferred from the RNN layer to
the second hidden layer, the LSTM. Weighted values are generated again on
the way from the RNN layer to the LSTM. The data is then transferred to the
third hidden layer (dense layer). Weighted values are also generated from the
LSTM layer to the dense layer.

RNN-GRU hybrid

Although there are quite a few hybrid algorithms in the literature, there's not
much research on the RNN-GRU combo. This model is very similar to the
previous one, so the first hidden layer is the RNN, in which neurons collect
information and a weighted value is generated. The information is then
transferred from the RNN layer to the second hidden layer, the GRU. Weighted
values are generated again on the way from the RNN layer to the GRU. The
data is then transferred to the third hidden layer (dense layer). Weighted values

are also generated from the GRU layer to the dense layer.
3.3. Softwares

The Python programming language (version 3.9) was used for model
development, which was justified for several reasons. On the one hand, Python
has a broad and rapidly evolving ecosystem, particularly in the areas of data
analysis (e.g., Pandas, Numpy) and machine learning (e.g., TensorFlow,

Keras, Scikit-learn, Pytorch), which enables the efficient implementation of
19



state-of-the-art neural network models. On the other hand, Python is open
source and platform-independent, ensuring cost-effective development and
reproducibility. Another advantage is that the programming language's simple,
easy-to-read syntax allows for rapid prototype development, which is
particularly useful in research projects where models need to be continuously
fine-tuned. Other advantages of Python include a wide range of frameworks,
support for deep learning, and industrial applicability. I ran the scripts on the

Google Colab interface and locally using the Visual Studio Code code editor.
3.4. Evaluation of models

To evaluate the models used for forecasting and determine their accuracy, the
following metrics are most commonly used in the literature: root mean square
error (RMSE), mean absolute error (MAE), mean absolute percentage error
(MAPE). In my dissertation, [ used the MAPE indicator to measure deviations.
This indicator measures the average magnitude of forecast errors and shows

the deviations in percentage form.

n
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The lower the values of the above indicators, the more reliable and accurate
the forecasts will be. MAPE is interpreted as a percentage (the deviations are
expressed as a percentage of the original value). For this reason, MAPE can
also be used to compare different instruments, as it does not depend on the
nominal value of the exchange rate. Since our study examined indices from
many parts of the world and the effects of two different negative economic
events, we used the MAPE indicator for the comprehensive evaluation of the

models for the sake of comparability.
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3.5. Volatility analysis

The variance data for different products and periods are not suitable for
comparing volatility and MAPE values, so it was necessary to use an indicator
measuring relative volatility, the calculation of which is detailed below. First,
it was necessary to find a method that identifies trends in time series and can
remove them, as they can distort the results. For this, I used the Seasonal-
Trend decomposition using Loess (STL) approach. I will discuss the

methodology in detail below.
3.5.1. STL (Seasonal-Trend decomposition using Loess)

STL is a flexible time series analysis method that breaks down the series under
examination into three components: the long-term trend, the seasonal pattern,
and the random residual. A special feature of STL is the use of LOESS
(Locally Weighted Scatterplot Smoothing), which is also capable of modeling
nonlinear, time-varying seasonal patterns. Another advantage is its robustness
and flexibility, making it well suited for analyzing financial time series, for

example. The time series is decomposed in the following form:
Yt = Tt + St + Rt

where Yt is the original time series, Tt is the trend, St is the seasonal
component, and Rt is the residual. STL can be effectively applied to financial
time series where seasonal patterns may change over time (Cleveland et al.,
1990). The residual R: contains short-term fluctuations independent of the

trend, making this component suitable for volatility analysis (He et al., 2021).
3.5.2. Relative volatility: coefficient of variation (CV)

I measured the volatility of the trend-adjusted series using the coefficient of

variation (CV). The CV is a dimensionless indicator that allows the
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comparison of the dispersion of assets with different units of measurement and

magnitudes. Its formula is as follows:

_ 0(Ry)
B n(Yy)

where a(R:) is the standard deviation of the residual component, while p(Y+)

cv

is the mean of the original time series. The indicator is sensitive to the size of
the series average, so CV may show greater volatility for assets with low
nominal values. CV strikes a balance between absolute and relative variance-
based volatility measures and is well suited as a basis for cluster analysis

(Brockwell and Davis, 2002).

Relative volatility is calculated from the residual components of the
aforementioned method (STL). In the case of STL, we obtain trend- and

seasonality-free residuals.
3.6. Prediction-based, dynamically optimized trading strategy

The algorithm I use is a parameter-sensitive trading strategy based on machine
learning predictions, which is compared to the classic buy-and-hold approach.
The central element of the strategy is that it generates trading positions based
on the relationship between predicted and actual exchange rates, then
optimizes the risk/return ratio using various stop-loss (SL), take-profit (TP),
and volatility estimation window (VOL LOOKBACK) values. Its goal is
therefore to maximize trading performance according to the Sharpe ratio. The
input for the source program is provided by a multi-page Excel file, which
contains the following for each instrument: timestamp ("Date"), actual market
values (closing prices), and estimated values generated by the prediction
models. The strategy is based on the assumption that if the estimated value is
higher than the actual value at a given point in time, the price is expected to
rise, so it is worth taking a long position. Otherwise, a short position is
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justified. This can be formally described as follows: if P, > P,_;, then opens

a long position, as long as P, < P,_;n

Log return is calculated as follows: 1, = In (Ppt )
t—-1

The strategy is further refined by volatility-based risk management, for which
three parameters are set:
o SL MULTIPLIER: stop-loss threshold ratio compared to the volatility
of the previous period.
o TP MULTIPLIER: take-profit threshold ratio.
e VOL LOOKBACK: the period length used to calculate volatility
(moving standard deviation calculated on a specific day).

Volatility and limits are calculated as follows:
0t = Stdyoping (T, VOL_LOOKBACK)
SL; = SL_MULTIPLIER * o,
TP, = TP_MULTIPLIER * o;

The realized return will be adjusted based on these if the profit or loss reaches
the specified levels. For example, if the return in a long position exceeds the
TP, we will cut the return at the TP value; if the loss falls below the SL, we

will cut it at the -SL value. The same applies to short positions.

Building on this base strategy, I incorporated and tested two other methods. In
one case, it calculates a 5-day rolling MAPE indicator and only opens a
position if the deviation indicator is below a specified threshold. In this case,
I set the threshold at 3%, so the MAPE acts as a kind of filter for opening
positions. The other alternative also uses the rolling MAPE indicator value,
but only to determine the dynamic position size. Specifically, it takes a smaller
position size in the case of a higher MAPE, while in the opposite case, it

implements a larger allocation.
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The program performs static and cumulative performance analysis,
calculating the most important statistical indicators for each parameter
combination and instrument examined. These include the average daily return

(), the standard deviation of the daily return (o), and the Sharpe ratio, which

is calculated using the standard annualized formula: % * v 252. In addition, the

function calculates the cumulative return, the maximum drawdown (which is
the largest difference between the local maxima and minima of the cumulative
return curve), and the win rate. The calculations are performed separately for
the buy-and-hold benchmark strategy and the dynamically managed strategy,
allowing for a multidimensional comparison of the two approaches. During
the optimization process, the algorithm iterates through a predefined
parameter grid. This grid contains the following values: SL € {0.5, 1.0, 1.5},
TP € {1.5, 2.0, 3.0}, and VOL LOOKBACK € {10, 20, 30}. The strategy is
run for all possible combinations - 27 in total - and then the system selects the
parameter configuration with the highest Sharpe ratio. The setting determined
in this way is stored as a parameter set optimized for the given instrument. At
the end of the analysis, the algorithm performs a graphical comparison in the
form of a bar chart. This figure shows the cumulative returns of the four
strategies for each instrument. This makes it clear whether the model is able
to consistently outperform the passive investment strategy, i.e., whether the
parameter-tuned trading approach based on the predictive model has practical

value.

In summary, the program is a generally applicable tool for analyzing
prediction-based investment strategies. Its main features include the explicit
integration of the predictive component, the application of parametric risk
management, automatic optimization, and systematic comparison with the

classic buy-and-hold benchmark strategy. The code can be used not only in a
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simulation environment, but can also be effectively adapted for backtesting

systems, machine learning model validation, and sensitivity testing.

When applying trading strategies, similar to most other literature, I did not
take taxes, transaction and other costs into account, so the results represent

gross cumulative returns.

25



4. RESULTS

4.1. Results of volatility analysis

The examination of the relationship between volatility and MAPE was
conducted following the activation function optimization process. Based on
volatility values, cryptocurrencies clearly stand out, particularly in 2018:
Ethereum (0.0475) and Litecoin (0.0432) exhibit extremely high values, in
contrast to the low CV levels characteristic of currency pairs (EUR/USD:
0.0032). In 2020, crude oil displayed exceptionally high volatility (0.1005),
which can be attributed to the market shocks associated with the Covid19
period. Classical stock indices such as the S&P 500 and the DAX also showed
higher volatility in 2020 compared to 2018 or 2022, indicating the

intensification of market uncertainty.

According to the pooled regression analysis covering all periods (Figure 1), a
significant positive relationship was identified between relative volatility
(CV_STL) and univariate MAPE. The regression coefficient was 1.2937,
implying that a one-unit increase in volatility increases the forecasting error
by an average of 1.2937 units. The statistical significance of the coefficient (p
< 0.01) confirms the robustness of this relationship. The constant term was
0.0049 but proved non-significant, suggesting that the level of MAPE is
essentially explained by the level of volatility. This finding indicates that the
forecasting performance of univariate models is substantially affected by
market fluctuations. The explanatory power of the model was high, with an R?
value of 76.28%. In terms of univariate MAPE values, the weakest predictive
performance in 2018 was observed for Litecoin (0.1095), followed by Bitcoin
(0.1011). In the same year, the lowest error values were associated with
currency pairs, such as GBP/USD (0.0047) and AUD/USD (0.0055). In 2020,
crude oil also stood out with a MAPE value of 0.1023, reinforcing the notion
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that turbulent market movements significantly impair forecasting

performance.
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Figure 1: The relationship between relative volatility and univariate
average MAPE values, displayed by time periods

Source: own editing

In the multivariate model (Figure 2), the effect of volatility appears even more
pronounced: the regression coefficient of CV_STL is 1.6224, which is
likewise significant (p < 0.01). This suggests that multivariate forecasting
systems are even more sensitive to volatility, meaning that input complexity
does not reduce, but in some cases actually increases error sensitivity under
market fluctuations. The constant term is -0.0009 and again non-significant,
indicating that relative volatility remains the decisive factor in explaining the
variability of the model. The high coefficient value reinforces the conclusion
that volatility continues to play a key role in shaping predictive performance,
even in more advanced multivariate models. The explanatory power of the

model was even higher than in the univariate case, with an R? of 90.58%. In
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terms of MAPE values, the trend is similar, but the errors are generally lower
or nearly identical compared to the univariate models. Interestingly, in 2018
Litecoin’s multivariate MAPE (0.1198) was even higher than its univariate
value, which may point to issues related to predictor selection. In most cases,
however, multivariate models slightly improve forecasting accuracy, as
observed for the Nikkei225 in 2020 (0.0203 vs. 0.0204) and for GBP/USD in
2022 (0.0040 vs. 0.0063).
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Figure 2: The relationship between relative volatility and multivariate
average MAPE values, displayed by time periods

Source: own editing

The relationship between relative volatility and MAPE values, differentiated
by model and broken down for the periods 2018, 2020, and 2022, is presented
in Tables 4—6, based on the STL approach. These results are described in detail

below.

Table 4 shows the relationship between relative volatility (CV_STL) and both
univariate and multivariate forecasting errors (MAPE) for the year 2018,
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across six neural network models. The results indicate that in all univariate
models, a significant positive relationship exists between volatility and
MAPE, meaning that the higher the volatility of a given financial asset, the
greater the prediction error. Among the univariate analyses, the highest
regression coefficient was observed in the LSTM model (2.920), while the
lowest was recorded for the GRU model (1.528), reflecting the differing
sensitivities of network architectures to volatility. Based on R? values, the
GRU model achieved the strongest explanatory power (R? = 0.9713), whereas
the RNN showed the weakest (R* = 0.6134). These findings confirm that
relative volatility is a strong and stable predictor of univariate forecasting
performance. The second part of the table presents the relationship between
relative volatility and multivariate forecasting errors (MAPE). The results
suggest that in all models there is again a significant positive relationship
between volatility and forecasting error, indicating that more volatile assets
are associated with higher prediction errors, even when additional input
variables are included. The highest regression coefficient was found in the
RNN-LSTM model (2.856), while the lowest was observed in the LSTM-
GRU model (1.662), highlighting that certain architectures are more sensitive
to the effects of volatility. In terms of R? values, the LSTM-GRU model
demonstrated the best fit (0.9651), while the RNN-LSTM showed the weakest
(0.7951). Overall, it can be concluded that both univariate and multivariate
models display a strong and consistent relationship between relative volatility

and prediction error.
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Table 4: Regression results of the relative volatility indicators and MAPE

values for the examined assets during the calm period (2018)

@ 2) 3) “) Q)] (©6)

Univ- Univ- Univ- Univ- Univ- Univ-

RNN LSTM GRU LSTM- RNN- RNN-

GRU LSTM GRU
CV_STL 2.422™ 2.920™" 1.528™ 2.128™ 2.304" 1.817°"
(0.608) (0.578) (0.083) (0.315) (0.168) (0.275)

Constant -0.002 -0.006 -0.000 -0.001 -0.003 0.002
(0.013) (0.013) (0.002) (0.007) (0.004) (0.006)

Observations 12 12 12 12 12 12
R? 0.6134 0.7185 0.9713 0.8207 0.9498 0.8132
™ ® )] (10) an 12)

Multi- Multi- Multi- Multi- Multi- Multi-

RNN LSTM GRU LSTM- RNN- RNN-

GRU LSTM GRU
CV_STL 1.830™ 2.854"" 1.810™ 1.662° 2.856"" 1.870""
(0.264) (0.346) (0.188) (0.100) (0.458) (0.239)

Constant 0.000 -0.008 -0.004 -0.001 -0.007 -0.001
(0.006) (0.008) (0.004) (0.002) (0.010) (0.005)

Observations 12 12 12 12 12 12

R? 0.8273 0.8720 0.9022 0.9651 0.7951 0.8595

Source: Own editing based on STATA 17 results
In parentheses, the standard errors
*p<0.1," p<0.05"" p<0.01

Table 5 presents the relationship between relative volatility (CV_STL) and
both univariate and multivariate forecasting errors (MAPE) for the year 2020,
across six neural network models. For all univariate models, the regression
coefficient of volatility is significant and positive, confirming that higher
volatility is associated with increased prediction error during this crisis-laden
period. The lowest coefficient was observed in the GRU model (0.845), while
the highest was recorded for the RNN model (1.158), reflecting the differing
sensitivities of the architectures to volatility. The R? values are extremely high
across all models (each exceeding 90%), indicating outstanding explanatory

power of the regression analysis during the period under review. The second

30



part of the table illustrates the relationship between relative volatility
(CV_STL) and multivariate forecasting errors (MAPE). Here too, the results
indicate a statistically significant and positive relationship across all models,
meaning that prediction errors in multivariate forecasts also increase with
rising volatility. The highest regression coefficient was observed for the RNN-
LSTM model (2.847), while the lowest was found for the GRU (0.828), which
may suggest greater robustness of the latter to volatility. The coefficients of
determination (R?) are remarkably high for all models (ranging between 86%
and 98%), with the LSTM model in particular (0.9714) exhibiting the
strongest explanatory power. These results confirm that even in the pandemic-
stricken year of 2020, a strong relationship persisted between the extent of
market fluctuations and the forecasting errors of the models, including the

more advanced hybrid architectures.
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Table 5: Regression results of the relative volatility indicators and MAPE

values for the examined assets during the Covid19 period (2020)

@ ) 3) “) Q)] (6)

Univ- Univ- Univ- Univ- Univ- Univ-

RNN LSTM GRU LSTM- RNN- RNN-

GRU LSTM GRU
CV_STL 1.158™ 0.964™ 0.845™" 0.984™" 0.984™ 0.936™
(0.067) (0.044) (0.077) (0.0406) (0.100) (0.064)
Constant 0.005" 0.004™ 0.006™ 0.005™" 0.011™ 0.007™*
(0.002) (0.002) (0.003) (0.002) (0.004) (0.002)

Observations 12 12 12 12 12 12
R? 0.9676 0.9795 0.9228 0.9787 0.9067 0.9549
©) ® )] (10) (mn (12)

Multi- Multi- Multi- Multi- Multi- Multi-

RNN LSTM GRU LSTM- RNN- RNN-

GRU LSTM GRU
CV_STL 2279 0.896"" 0.828"" 0911™ 2.847" 1.150"*
(0.158) (0.049) (0.066) (0.050) (0.289) (0.146)

Constant -0.010" 0.004™ 0.005" 0.004™ -0.020" 0.005
(0.006) (0.002) (0.002) (0.002) (0.010) (0.005)

Observations 12 12 12 12 12 12

R? 0.9543 0.9714 0.9403 0.9706 0.9065 0.8616

Source: Own editing based on STATA 17 results
In parentheses, the standard errors
*p<0.1," p<0.05,"" p<0.01

Table 6 presents the relationship between relative volatility (CV_STL) and
both univariate and multivariate forecasting errors (MAPE) for the year 2022.
In all univariate models, a positive and significant relationship is observed,
meaning that increases in volatility continue to be associated with higher
forecasting errors. The regression coefficients range from 1.149 (GRU) to
1.969 (RNN-LSTM), indicating a relatively consistent, moderate sensitivity
to volatility. The explanatory power (R?) is high across all models, ranging
between 85% and 92%. The second part of the table represents the relationship
between relative volatility (CV_STL) and multivariate forecasting errors
(MAPE). Here as well, all models exhibit significant and positive regression

coefficients. The coefficients fall within a relatively narrow range, with the
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lowest value observed for the GRU model (1.312) and the highest for the
RNN-LSTM (2.033), reflecting the differing sensitivities of network
architectures to volatility. The R? values are high, ranging between 82% and
97%, with particularly strong explanatory power for the LSTM-GRU model
(97.48%). The results consistently reinforce the findings of previous years: the
structural presence of volatility fundamentally shapes forecasting

performance, even in more complex multivariate deep learning models.

Table 6: Regression results of the relative volatility indicators and
univariate MAPE values for the examined assets during the Russian—

Ukrainian conflict period (2022)

@ ) 3) ) Q)] ()
Univ- Univ- Univ- Univ- Univ- Univ-
RNN LSTM GRU LSTM- RNN- RNN-
GRU LSTM GRU
CV_STL 1.856™ 1.403™" 1.149™ 1.539™ 1.969™" 1.598™
(0.205) (0.132) (0.133) (0.192) (0.254) (0.165)
Constant -0.002 -0.000 0.003 0.000 -0.001 -0.001
(0.004) (0.002) (0.002) (0.003) (0.005) (0.003)
Observations 12 12 12 12 12 12
R? 0.8915 0.9192 0.8819 0.8656 0.8570 0.9032
¥) ® )] 10) an (12)
Multi- Multi- Multi- Multi- Multi- Multi-
RNN LSTM GRU LSTM- RNN- RNN-
GRU LSTM GRU
CV_STL 1.370"* 1.523* 1.312" 1.395" 2.033* 1.903**
(0.153) (0.225) (0.115) (0.071) (0.225) (0.188)
Constant 0.003 -0.000 -0.001 -0.001 -0.003 -0.003
(0.003) (0.004) (0.002) (0.001) (0.004) (0.003)
Observations 12 12 12 12 12 12
R? 0.8889 0.8206 0.9283 0.9748 0.8904 09112

Source: Own editing based on STATA 17 results

In parentheses, the standard errors

"p<0.1,"p<0.05 " p<0.01

To enable a comprehensive quantifiable assessment and comparison of the

models, I also conducted a panel regression analysis for both univariate and

multivariate approaches across all examined periods. The results are presented
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in Table 7. In exploring the relationship between univariate MAPE and relative
volatility (CV_STL), I found that all coefficients are positive and statistically
significant (p < 0.01), indicating that rising volatility systematically
corresponds with increased prediction errors in the panel regression model as
well. The highest sensitivity was observed for the RNN model (1.485), while
the lowest was found for the GRU model (0.923). The R? values reflect
varying explanatory power: the GRU model achieved the best fit (0.8632),
while the LSTM yielded the weakest (0.5259), highlighting the heterogeneous
performance of the models. For the multivariate neural network models, a
positive and significant relationship between relative volatility and MAPE
values was also observed across all aggregated panel regressions. The highest
regression coefficient was recorded for the RNN-LSTM model (2.719), while
the lowest appeared in the GRU (1.035), once again pointing to the somewhat
more robust behavior of GRU models under higher volatility conditions. The
R? values ranged between 60% and 90% depending on the model, thus
showing variable but generally strong explanatory power, particularly in the
case of the RNN model (90.72%), which exhibited outstanding fit. Overall,
the results demonstrate that both univariate and multivariate deep learning
models are systematically influenced by volatility in their forecasting errors,
with this effect remaining consistent across different time periods. This
reinforces the central role of volatility in shaping predictive performance, even

within more complex model structures.
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Table 7: Panel regression results of the relative volatility indicators and

MAPE values for the examined assets across all periods

@ ) 3) ) Q)] (6)
Univ- Univ- Univ- Univ- Univ- Univ-
RNN LSTM GRU LSTM- RNN- RNN-
GRU LSTM GRU
CV_STL 1.485™ 1.418™ 0.923™ 1.274™ 1.373™ 1.185™
(0.201) (0.231) (0.067) (0.135) (0.131) (0.114)
Constant 0.004 0.003 0.006™" 0.005 0.007" 0.006™
(0.005) (0.006) (0.002) (0.004) (0.003) (0.003)
Observations 36 36 36 36 36 36
R? 0.6157 0.5259 0.8632 0.7251 0.7645 0.7606
¥) ® )] 10) an (12)
Multi- Multi- Multi- Multi- Multi- Multi-
RNN LSTM GRU LSTM- RNN- RNN-
GRU LSTM GRU
CV_STL 2.144™ 1.369"" 1.035" 1.117* 2719 1.198**
(0.118) (0.192) (0.104) (0.073) (0.188) (0.112)
Constant -0.007* 0.003 0.003 0.003 -0.012*" 0.006"
(0.003) (0.005) (0.003) (0.002) (0.005) (0.004)
Observations 36 36 36 36 36 36
R? 0.9072 0.5982 0.7794 0.8734 0.8604 0.8102

Source: Own editing based on STATA 17 results
In parentheses, the standard errors
*p<0.1," p<0.05,"" p<0.01

The aggregated panel regression results presented in Table 7 provide an
opportunity to compare the prediction sensitivity of the models as a function
of relative volatility (CV_STL). The positive regression coefficients across all
models confirm that increases in volatility lead to higher forecasting errors
(MAPE). At the same time, the magnitude of the coefficients allows us to infer
which models are the least sensitive to volatility, i.e., more robust. Based on
these findings, a comparison between univariate and multivariate models
follows.

The results clearly show that in most model pairs, the multivariate versions
respond more sensitively to volatility, as indicated by the higher CV_STL

coefficients. For the RNN, GRU, RNN-LSTM, and RNN-GRU models, the
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univariate versions exhibit more favorable (lower) coefficients. However, for
the LSTM and LSTM-GRU models, the opposite pattern is observed. Overall,
in most cases, multivariate models demonstrate greater sensitivity to volatility,
as reflected by higher regression coefficients. This suggests that while
multivariate models generally achieve higher predictive performance (as also
indicated by higher R? values, e.g., Multi-RNN: 0.9072 vs. Univ-RNN:
0.6157), they may be more vulnerable during periods of market turbulence,
meaning that forecasting errors are more dependent on the level of volatility.
Therefore, explicit handling of volatility dependence may be particularly
warranted when applying these models.

Comparisons between simple and hybrid models also yield important insights.
In the univariate analyses, based on results for the RNN and its hybrid variants,
it can be concluded that the hybrid versions were less sensitive to volatility
than the base model. The same pattern applies to the LSTM and its hybrid
variants. In contrast, for the GRU, the opposite was observed: the conventional
base type exhibited lower volatility sensitivity than the hybrid variants. In the
multivariate analyses, the GRU base model also outperformed its hybrid
variants. Comparisons of RNN and LSTM models are more mixed, as in some
cases the hybrid models (RNN-GRU and LSTM-GRU) displayed lower
sensitivity than their base counterparts. Based on the regression coefficients,
it can be concluded that univariate models are, on average, less sensitive to
volatility and therefore demonstrate more robust performance. Simple
architectures (particularly GRU) exhibit lower volatility sensitivity than
hybrid models. The performance of hybrid models spans a wide spectrum:
while some (e.g., RNN-LSTM) are highly sensitive to volatility, others (e.g.,
RNN-GRU) are surprisingly stable. Consequently, model selection strongly
influences how well a given architecture can manage the effects of volatility.

This comparison highlights that not only the model type but also the input

36



structure (univariate vs. multivariate) must be carefully considered when
designing predictive systems, particularly in highly volatile market

environments.

4.2. Comparison of trading strategy results

The basis of the trading strategies was formed by the predictive values
generated by the models with the best forecasting performance for each period
and asset category. The following section compares the returns and risk

metrics of strategies based on backtesting actual versus predicted values.

Based on the 2018 data (Figure 3), it is evident that the traditional buy-and-
hold strategy was outperformed in many cases by the more advanced machine
learning-based models. This was particularly true for volatile asset classes
such as cryptocurrencies and, to some extent, precious metals, although the
predictive models also demonstrated advantages in equity and currency
markets. For stock indices (S&P 500, DAX), the superiority of the MAPE-
based models was clearly observable. For example, the buy-and-hold strategy
for the S&P 500 achieved only a 0.83% cumulative return, whereas MAPE-
based strategies yielded 12-14% returns with an outstanding Sharpe ratio
around 2.65. In the case of the DAX, the buy-and-hold strategy produced a
negative return (-17.12%), in contrast to the positive performance of the
MAPE-based models, which not only improved returns but also exhibited a
significantly more favorable risk profile. For the Nikkei225 index, however,
all strategies generated negative returns. For gold and silver, a clear increase
in returns was also observed. For instance, the MAPE-position strategy
yielded a 7.02% return and a Sharpe ratio of 3.1859 for gold, while the buy-
and-hold approach showed only marginal positive performance. The only
exception was crude oil: the buy-and-hold strategy achieved a 20.56% positive

return, whereas active strategies could not meaningfully improve on this. The
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predictive models’ Sharpe ratios were negative, and maximum drawdowns
reached considerably higher levels (e.g., MAPE filter: 0.5712), indicating that
the model was unable to adequately track the nonlinear and turbulent
movements of the oil market. The most pronounced differences were observed
in cryptocurrencies. Bitcoin’s buy-and-hold return was strongly negative (-
73.38%), whereas the Base Strategy achieved over 86% cumulative return.
Similarly significant improvements were noted for Ethereum and Litecoin,
where machine learning-based strategies provided substantial return
advantages, with Sharpe ratios consistently exceeding two. For currency pairs
(EUR/USD, GBP/USD, AUD/USD), the machine learning models generally
exhibited positive Sharpe ratios that were higher than those of the buy-and-
hold strategies, even when absolute return levels remained moderate.
Additionally, in nearly all cases, they resulted in lower maximum drawdowns.
Overall, the Base, MAPE-filter, and MAPE-position strategies in 2018
outperformed the buy-and-hold approach across almost all asset classes,
particularly in terms of returns and risk-adjusted performance (Sharpe ratio).
Maximum drawdowns were also lower under the predictive models, reflecting
more effective risk management. The exception of the oil market highlights
that, while machine learning represents a promising tool for financial
forecasting, there are market environments in which predictive performance

is not guaranteed.
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Figure 3: Comparison of the 4 trading strategies for the calm period
(2018)

Source: own editing

The extreme market environment of 2020, marked by Covid19 (Figure 4),
sharply highlighted the performance differences between various investment
strategies. The traditional buy-and-hold approach underperformed in many
asset classes compared to machine learning-based adaptive strategies, which
not only provided higher returns but also better risk-adjusted performance and
lower maximum drawdowns. The S&P 500 is a particularly clear example of
the advantages of predictive strategies. While the buy-and-hold return was
slightly negative (-5.65%), the Base Strategy achieved a cumulative return of
74.26%. The Sharpe ratio for the predictive models reached an extremely high
value (4.7), compared to the negative ratio of buy-and-hold (-0.2465). Similar
results were observed for the DAX and Nikkei225: alongside losses from the
traditional strategy, the MAPE-based models delivered positive returns and
significantly better risk metrics. Active strategies also performed well for

precious metals. For gold, the MAPE-position strategy achieved a 23% return
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and a Sharpe ratio of 2.48, clearly outperforming buy-and-hold. Maximum
drawdowns were also more moderate for the active models, reflecting
improved risk management. The crude oil market again behaved as an
exception in 2020. While the buy-and-hold strategy yielded a 17.12% return,
the active strategies suffered substantial losses (-45.52%) and produced
negative Sharpe ratios. This is likely attributable to market extremes (negative
futures prices) that represented structural changes for which the predictive
algorithms were not prepared. Following usual volatility patterns, the models
often favored incorrect directions, which visibly worsened performance. In
cryptocurrency markets, active approaches almost universally led to
significant outperformance. Litecoin’s buy-and-hold return was 1.23%,
whereas the predictive strategy produced a cumulative return of 127.96% and
a Sharpe ratio above 2.75. Similar trends were observed for Bitcoin and
Ethereum. Machine learning-based strategies (Base Strategy and MAPE-
position) achieved returns exceeding 100% with consistently strong Sharpe
ratios between 2 and 3. For currency markets, the advantage of predictive
strategies was smaller but still noticeable. Although absolute return
differences were not dramatic, machine learning models generally improved
risk-adjusted performance and reduced drawdowns in most cases. In 2020,
amid extreme market volatility, machine learning strategies were not merely
an alternative but, in many cases, a more effective and stable solution for
portfolio management. Active strategies achieved outstanding results in equity
markets, cryptocurrency markets, and precious metals, while producing
moderate but stable improvements in currency markets. The oil market,

however, again posed significant challenges to predictive systems.
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Figure 4: Comparison of the 4 trading strategies for the Covid19 period
(2020)

Source: own editing

The market environment in 2022 (Figure 5) presented significant challenges
for investors. Geopolitical tensions, inflationary pressures, and monetary
tightening generated substantial volatility across traditional asset classes. In
this uncertain context, predictive, machine learning-based strategies often
provided effective protection against losses, and in many cases even generated
positive returns where buy-and-hold suffered significant drawdowns. In
equity markets, the buy-and-hold approach proved ineffective: the S&P 500
posted a -22.42% return with a Sharpe ratio of -1.81, whereas the Base
Strategy achieved a positive return of 13.49% and a Sharpe ratio of 1.46. The
contrast was even more pronounced for the DAX: buy-and-hold closed with -
31.16% return and a -2.06 Sharpe ratio, while predictive strategies delivered
positive, albeit more modest, performance. The superiority of active strategies
was also evident for the Nikkei225, with buy-and-hold yielding -7.55% and

the Base Strategy generating 18.55% returns alongside an exceptionally high
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Sharpe ratio of 2.16. For gold and silver, predictive strategies enhanced returns
and achieved better Sharpe ratios than the passive approach. Crude oil again
acted as an exception: the buy-and-hold strategy produced an outstanding
35.48% return, whereas competing methods largely underperformed, with
only the MAPE-filter strategy managing a positive outcome (10.89%). This
discrepancy likely reflects that oil price movements were driven by nonlinear,
unusual dynamics (geopolitical shocks, supply chain anomalies) to which the
machine learning algorithms could not adequately respond. The
cryptocurrency markets in 2022 experienced severe corrections. Buy-and-hold
returns for Bitcoin (-85.01%), Ethereum (-120.93%), and Litecoin (-101.92%)
incurred substantial losses. Predictive strategies, however, substantially
mitigated losses, particularly for Litecoin, where the Base Strategy realized a
49.07% return with a Sharpe ratio of 2.17. Active strategy construction also
generated profits for Bitcoin, although for Ethereum it could not fully offset
the negative trend. Predictive strategies also produced more favorable
outcomes in currency markets. The EUR/USD buy-and-hold return was -
7.65%, while the Base Strategy (MAPE-based) achieved 7.91% with a Sharpe
ratio of 2.57. For GBP/USD and AUD/USD, results were more mixed, but the
passive approach still underperformed. Overall, in 2022, machine learning-
based predictive strategies demonstrated their value, particularly in managing
crisis-like, extreme market conditions. Across equities, cryptocurrencies,
precious metals, and multiple currency pairs, they were able to reduce losses
and, in many cases, deliver positive returns. Improvements in Sharpe ratios
clearly indicate that these models manage risk more effectively. The oil
market, however, remained a critical challenge, as investment approaches

based on predictive models consistently underperformed in this asset class.
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Figure 5: Comparison of the 4 trading strategies for the Russian—
Ukrainian conflict period (2022)

Source: own editing

Across the three years under review, it is generally observed that machine
learning-based active strategies systematically outperformed the buy-and-
hold approach in terms of both returns and risk-adjusted performance. This
trend was particularly pronounced in equity and cryptocurrency markets. The
largest differences occurred in years with elevated market volatility (e.g., 2020
and 2022), supporting the conclusion that machine learning strategies are
more effective at navigating turbulent environments. A notably important
exception, however, is crude oil, which produced weak results for active
strategies in every year. This may be attributed to the unique characteristics of
commodity markets, the difficult-to-predict impacts of fundamental events
(geopolitics, OPEC decisions), and the fact that oil price movements often
occur suddenly within narrow time windows. Overall, the broad application
of machine learning strategies can be considered successful, although certain

asset classes (e.g., oil) may require further model development or combination
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with other predictive tools. Accordingly, predictive models represent a
valuable supplement to investment decision-making, but they do not replace
careful market interpretation. This highlights that while artificial intelligence
holds significant potential, no single model provides a universal solution for

all market conditions.

Beyond evaluating individual asset performance, I also experimented with

portfolios of varying weightings, which are detailed in the following section.

Figure 6 presents the cumulative returns in 2018 for equally weighted
portfolios across four different asset classes (each asset included with a 1/3
weight), broken down by strategy. The buy-and-hold approach underperforms
in all portfolios, particularly in the cryptocurrency portfolio, which suffered a
drastic -75.13% loss. In contrast, the Base Strategy significantly improves
performance, especially for the cryptocurrency portfolio, achieving a
cumulative return of 100.54%, thereby fully outperforming the passive
investment approach. Models based on the MAPE-filter and MAPE-position
strategies exhibit more stable, conservative results: for the commodity
portfolio, both approaches produced around 12% returns, surpassing buy-and-
hold. Improvements are also observed for the equity and currency portfolios
when using active strategies, particularly those based on MAPE. In the
cryptocurrency portfolio, the MAPE-filter strategy delivers more modest but
still positive performance (15.21%), while the MAPE-position strategy
achieves an outstanding 89.91% return, which is remarkable given the
extremely volatile environment. Overall, active, prediction-based strategies
effectively manage high-risk market conditions (cryptocurrencies), while

moderate gains can also be achieved in more conservative asset classes.
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Figure 6: Cumulative semi-annual returns of equally weighted portfolios
by asset class for the calm period (2018)

Source: own editing

Figure 7 presents the cumulative returns for various portfolios in 2020.
Significant differences can be observed across asset classes and strategies. In
the equity portfolio, the buy-and-hold strategy yielded a negative return (-
7.51%), whereas the Base Strategy and the MAPE-position strategy showed
substantial positive performance (37.74% and 36.90%), indicating that active,
prediction-based approaches can outperform even in a crisis environment. For
the commodity portfolio, although the buy-and-hold strategy achieved a
positive return (11.17%), the Base and MAPE-position strategies resulted in
negative returns (-2.11% and -1.92%), suggesting that these active models
struggled to adapt effectively to market dynamics in this segment. The
cryptocurrency portfolio delivered outstanding returns across all strategies,
with the Base Strategy (120.96%) and MAPE-position strategy (107.37%)
achieving exceptional performance, surpassing even the buy-and-hold

approach (27.43%). In the currency markets, returns remained low under all
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approaches, yet prediction-based strategies still outperformed the passive buy-
and-hold method. Overall, machine learning-based strategies were
particularly effective in high-volatility markets (cryptocurrencies, equities),
while their performance was moderate or occasionally underperforming in

more stable or less predictable markets (commodities, currencies).
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Figure 7: Cumulative semi-annual returns of equally weighted portfolios
by asset class for the Covid19 period (2020)

Source: own editing

Based on the 2022 data (Figure 8), the buy-and-hold strategy performed
poorly across all portfolios, particularly in the cryptocurrency portfolio, which
experienced an extreme cumulative loss of -103.05%. In contrast, the Base
Strategy consistently outperformed the passive approach, especially in the
equity market (13.05%) and the crypto market (24.23%), achieving positive
returns despite high volatility. The MAPE-filter strategy produced more stable
and moderate results, delivering returns above 10% for equities and

commodity assets, while closing slightly negative in the cryptocurrency
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portfolio (-1.67%). The MAPE-position strategy also performed strongly in
both the equity (12.29%) and cryptocurrency portfolios (21.99%), confirming
that position management based on prediction errors can effectively mitigate
risk in turbulent market conditions. For the commodity portfolio, both the
Base and MAPE-position strategies showed slight losses, indicating that these
models were less capable of accurately tracking the market movements in this
segment. In the currency markets, all approaches yielded similar, modest
positive returns (approximately 1.4-2.1%), reflecting low volatility and
limited predictability. Overall, active, prediction-based strategies in 2022
again outperformed the buy-and-hold approach, particularly in equity and

cryptocurrency markets, even under extreme market stress conditions.
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Figure 8: Cumulative semi-annual returns of equally weighted portfolios
by asset class for the Russian-Ukrainian conflict period (2022)

Source: own editing

Figure 9 presents the cumulative returns of equally weighted portfolios (each

asset assigned a 1/12 weight) across three different years, based on four
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distinct strategic approaches. The buy-and-hold strategy recorded significant
losses in 2018 and 2022 (-19.86% and -30.70%, respectively), while achieving
a moderate 7.12% return in 2020. In contrast, the Base Strategy generated
positive cumulative returns in all examined years, notably outperforming in
2020 (39.75%) and strongly exceeding the buy-and-hold performance in 2018
(29.52%). The MAPE-filter-based strategy delivered more conservative but
generally more stable results, closing 2018 with an 8.98% return, 2020 with
20.52%, and 2022 with 5.26% positive returns. The MAPE-position approach
also significantly outperformed the passive strategy, particularly in 2020 and
2018, achieving cumulative returns of +36.17% and +27.60%, respectively.
These findings indicate that filtering and position management based on
prediction errors (MAPE) can help mitigate negative market impacts and

enhance performance stability under varying environmental conditions.
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Figure 9: Semi-annual cumulative returns of equally weighted portfolios
composed of 12 assets for the calm period, the Covid19 period, and the
Russia-Ukraine conflict period (2018, 2020, and 2022)
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5. CONCLUSIONS AND RECOMMENDATIONS

The objective of the research was to explore the applicability of machine
learning algorithms, particularly deep neural networks, for predicting the
prices of financial instruments in different market environments and product
types. The study focused on the volatility sensitivity of predictive models, the
reliability of predictions, and their practical applicability. The thesis examined
the topic based on two main objectives. The first focuses on the relationship
between the performance of predictive models and market volatility, as well
as the applicability of individual models in different economic cycles. The
second objective focuses on the practical performance of trading strategies
supported by machine learning models. The analysis paid particular attention
to the modeling of stock indices, commodity market products,
cryptocurrencies, and currency pairs, as their volatility, liquidity, and
regulation vary greatly. Based on the empirical analyses conducted during the
research, well-founded conclusions can be drawn from several perspectives,

which I will detail below.

C1: The primary objective of my research is to determine the extent to
which different neural deep learning models can be generalized, i.e.,
whether they are capable of achieving outstanding predictive

performance in different crisis situations.

K1: What relationship can be demonstrated between the volatility of financial

instruments and the predictive performance of price forecasting models?

Based on regression models, it can be clearly demonstrated that volatility, in
this case the trend and seasonality-free (CV_STL) relative standard deviation,
has a significant positive correlation with the forecast error (MAPE).
According to my results, the accuracy of forecasts deteriorates in all model

categories examined as market volatility increases, which is particularly
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noticeable in the case of cryptocurrencies, but can also be observed in
commodity market products. This is consistent with the findings of several
studies that emphasize the difficulties of forecasting nonlinear and non-
stationary data (Ouyang et al., 2021; Zhang et al., 2023; Avinash et al., 2024).
Deep learning can partially address these challenges, but sudden shifts in

turbulent markets remain a problem in terms of prediction reliability.

K2: What kind of forecasting distortions are caused by the extreme price
movements observed during periods of crisis, and how do different types of

algorithms respond to this?

The crisis periods of 2020 and 2022 clearly demonstrated that models respond
differently to extreme price movements. GRU models, for example, proved to
be surprisingly stable, while the performance of hybrid architectures
containing RNNs (e.g., RNN-LSTM) deteriorated significantly, meaning that
the crisis periods not only caused an increase in prediction errors but also
exacerbated performance differences between models. This confirms the
findings reported in the literature that overly complex models are more
susceptible to instability (Livieris et al., 2020) and also highlights that
forecasting algorithms are sensitive to extreme price movements caused by
market shocks regardless of their level of sophistication, so it is of paramount
importance to take these factors into account when developing forecasting

methods (Mari and Mari, 2023 and 2025; Sivakumar, 2025).

K3: What role does hybrid model architecture play in predictive performance

change in a volatile market environment?

Based on the results of this paper, it can be concluded that the architecture of
predictive models, especially hybrid deep learning structures, plays a
significant role in the development of forecasting performance, particularly in

volatile market environments. Empirical studies have shown that models using
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RNN components as the first layer often perform worse than other
architectures, especially in the case of cryptocurrencies. This result is partly
consistent with the findings of Liang et al. (2022) and Ouyang et al. (2021),
who pointed out that more complex, attention-based or Transformer-type
architectures can provide more robust performance in extreme market
environments. At the same time, the simpler LSTM- or GRU-based models
examined in the dissertation proved to be more stable than RNN modules in
several cases, especially in hybrid structures, which supports the importance
of fine-tuning hybrid architectures. The internal structure of the models is
therefore not just a matter of technical preference, but a key element in

managing volatility.

C2: The second objective of my thesis is to examine the extent to which
machine learning models can improve the trading performance of

financial instruments compared to the traditional buy-and-hold strategy.

K4: How well can trading strategies based on machine learning predictions

exploit market anomalies, as opposed to the efficient market theory?

Backtesting of rule-based, prediction-driven trading strategies confirmed that
they outperformed the buy-and-hold benchmark return in several periods and
for several product types. Versions equipped with a MAPE filter enabled
additional risk management, as they were able to filter out positions with low
prediction certainty. My results confirm the findings of Viéitez et al. (2024)
and Ju et al. (2024), who argue that, in addition to the predictive capabilities
of the models, their adaptive use, for example in the form of position filtering,
greatly improves practical performance. In the case of the Sharpe ratio, it was
observed that the predictive strategy generally showed a higher value,
indicating a better risk-return ratio in terms of return volatility. This finding

contradicts the efficient market hypothesis (EMH), which states that it is not
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possible to systematically outperform the market in the long run by taking all

available information into account (Fama, 1970).

K5: What effect does the volatility of different asset classes (e.g., stocks,
cryptocurrencies, commodities, currency pairs) have on the performance of

machine learning-supported trading strategies?

The results show that the unpredictability of cryptocurrencies and the stability
of currency pairs differ significantly, which has a direct impact on trading
results. Product-specific analyses have therefore highlighted that volatility
affects strategy performance in different ways. In the case of cryptocurrencies,
the MAPE filter was particularly effective in reducing losses, while in foreign
exchange markets, the stability of the Base Strategy was outstanding. In stock
markets, the relative performance of the strategies proved to be more period-
dependent, which is consistent with the findings in the literature that asset-
specific volatility requires a different modeling approach (Yu et al., 2023;
Aydogan-Kilic and Selcuk-Kestel, 2023). The results support the need for
product-specific parameterization to achieve maximum efficiency. Another
important conclusion is that, in the case of equally weighted portfolios, the
performance of prediction-driven strategies was not consistent across all
market segments. For commodity and currency market instruments, the
differences between the strategic variants were smaller, while for
cryptocurrencies, there were drastic differences. This reaffirms that the
effectiveness of a strategy and model can only be interpreted in relation to a
given product type and period, so model selection and parameter tuning play

a decisive role in practical effectiveness.

K6: What differences can be observed in the performance of machine

learning-based strategies during different economic cycles?
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The performance of trading strategies varied significantly across different
market environments. In the calm market environment of 2018, almost all
model-based strategies generated stable profits. In contrast, in 2020 and 2022,
predictive performance declined due to increased volatility. However, MAPE-
filtered systems reduced the risk of losses, confirming the practical relevance
of Ouyang et al. (2021) attention-based volatility management strategies and
highlighting the importance of adaptive decision-making mechanisms. These
findings reinforce the view in the literature (Kang et al., 2025) that prediction
systems must adapt to changes in economic regimes. The performance of
strategies thus depends not only on the accuracy of the model, but also on its
volatility-sensitive application. One of the most important conclusions of the
research is therefore that machine learning-based trading systems can only
deliver stable performance in crisis situations if they also have built-in

prediction validation mechanisms and adaptive filtering.

The empirical results of the dissertation confirm that machine learning models
are effective prediction tools, but their performance depends significantly on
volatility, market regime, and asset type. The excess returns and risk reduction
achieved through the use of prediction-based strategies demonstrate that such
systems can be valuable additions to investment decision support, as they offer
not only theoretical but also practical advantages, provided that they
adequately integrate the measurement of forecast uncertainty and adaptation

to market volatility.
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II.

6. NEW SCIENTIFIC RESULTS

I have verified through joint analysis of several different product
types (stocks, commodity instruments, currency pairs,
cryptocurrencies) that volatility has a significant impact on the
predictive performance (MAPE) of neural network models,

regardless of the methodology used.

During my research, I examined different asset classes (stock indices,
commodity products, currency pairs, and cryptocurrencies) in three
different periods. Based on the results, there was a significant positive
correlation between trend- and seasonality-adjusted relative volatility
and the mean absolute percentage error (MAPE) in all cases. The panel
regression models showed high R? values, which supports the fact that
volatility is not only statistically significant but also has a strong
explanatory power in terms of changes in predictive performance. This
effect was independent of the asset class type and the chosen model
architecture, meaning that volatility acts as a distorting factor in all

cascs.

I have demonstrated using empirical tools that the level of market
volatility influences the performance difference between models,

which is noticeable during periods of high volatility.

During the 2018 ("calm") period, the forecast errors of the individual
models were pretty much the same. Most models (RNN, LSTM, GRU,
and their hybrids) produced similar MAPE values, so model selection
wasn't that important. During periods of lower volatility, the
performance of the models converged, reducing the significance of
model selection. In contrast, during the 2020 crisis period, the

differences between the models increased significantly: the standard
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deviation of prediction errors more than doubled. The studies also
revealed that higher volatility levels increase not only MAPE but also
performance variance, which is a particularly important factor in

model application.

During the periods examined, the RNN architecture used in the
first hidden layer of hybrid models has a performance-degrading

effect, regardless of which other algorithm it is combined with.

Based on the regression results for the 2018 period, it is clear that
hybrid models based on RNN (RNN-GRU or RNN-LSTM) are
characterized by higher volatility sensitivity and lower predictive
performance than hybrid models that do not contain an RNN
component in the first layer. This suggests that RNN structures have
more difficulty handling densely noisy, trend-dependent time series,
especially in cases of high volatility. The results also show that not all
model combinations lead to performance gains and that the internal
structure of the network, especially the structure of the first layers,

plays a critical role in prediction accuracy.

I have demonstrated that, during the period under review, GRU-
based forecasting models are less sensitive to increases in relative
volatility than RNN- or LSTM-based architectures, which offers a
novel approach to examining the relationship between model

specification and market uncertainty.

Based on the panel regression analyses presented in the dissertation,
relative volatility was significantly positively correlated with the mean
absolute percentage error (MAPE), regardless of the period and asset
class. At the same time, I also found that the model response to

volatility is not uniform: architectures were distorted in different ways
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and to different degrees by increased market uncertainty. GRU-based
models showed lower sensitivity, while the performance of RNN-
based hybrid architectures deteriorated significantly in the case of high
volatility. This result combines the quantitative impact of the volatility
environment with the quality of the model specification in a novel way
and confirms that prediction risk depends not only on the current state
of the market but also on the chosen model structure. This enables a
preliminary analysis of the volatility sensitivity profile of models,
which can be an important practical guideline, for example, in the
application of predictive trading systems. This finding is consistent
with, but also further develops, the conclusions of the current
literature, which discusses the interaction between volatility and
models separately, but does not systematically compare the volatility

sensitivity of different architectures.

I have demonstrated that trading rules (position opening timing
and position sizing) developed with dynamic consideration of the
mean absolute percentage error (MAPE) significantly improve the
risk-return ratio, especially in the case of highly volatile asset
classes. This result provides empirical evidence against the validity

of the weak form of the efficient market hypothesis.

During the research, trading strategies were not only based on the
direction of price movements predicted by the model, but also
integrated the estimated prediction error (MAPE). This allowed the
strategy to manage uncertainty on two levels. On the one hand, it
excluded opening positions during periods when the reliability of
predictions was low. On the other hand, it adapted directly to the
performance of the models at the level of capital exposure by

dynamically scaling position sizes. The results were particularly
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striking for cryptocurrencies, as the maximum drawdown for Litecoin
and Ethereum decreased significantly, while the cumulative return and
Sharpe ratio increased significantly compared to the traditional buy-
and-hold strategy. This approach offers a new perspective on the use
of predictive models, as it not only uses deterministic signals for
trading decisions, but also explicitly incorporates model uncertainty
into decision-making. This contributes to the development of an
adaptive, self-reflective trading architecture that is sensitive to changes
in market regimes. In practice, performance suggests that by taking
prediction errors into account, it is possible to achieve statistically
significant excess returns in certain market segments especially in
asset classes characterized by high volatility and information
asymmetry even when the weak form efficient market hypothesis

holds.
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7. SUMMARY

The emergence of complex and large data sets has caused significant
technological and conceptual changes in the development and application of
forecasting models over the past 20 years. Processing the vast amount of data
would no longer be efficient using traditional methods, and machine learning
has become an essential part of most predictive modelling industries. This is
particularly true in the financial sector, where profitable operations seek to
make the best use of the innovative tools available, which are much needed to

explore non-linear relationships and patterns.

The dissertation examines two highly topical and practically significant
financial prediction modeling problems. The first objective was to map the
impact of volatility on prediction performance, while the second evaluated the
effectiveness of trading strategies utilizing machine learning-based
predictions in different market environments. The research relied on
quantitative regression analyses, comparisons of deep learning architectures,
and back-tested trading strategies, thus contributing new scientific knowledge
to financial machine learning research in both theoretical and applied aspects.
In the introduction, I presented the economic background and significance of
the field, and also discussed the development path of predictive algorithms.
Furthermore, I provided insight into the current state of this field of science
and the latest trends. The topic I examined is quite popular among
international researchers, and there are many publications to choose from to
get a more detailed picture. I divided the systematic literature review into four
main sections, in which I dealt in detail with the stock, cryptocurrency,
commodity, and foreign exchange markets. The analysis of scientific
publications provided guidance in understanding the characteristics of the

models on the one hand, and in identifying various product-specific factors on
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the other. In the empirical part of my research, I used data from the most traded
stock indices (S&P500, DAX, Nikkei225), commodity market products
(crude oil, gold, silver), cryptocurrencies (Bitcoin, Ethereum, Litecoin) and
currency pairs (EUR/USD, GBP/USD, AUD/USD) for the period from
January 1, 2016 to June 30, 2022. This period was chosen in part because it
includes the calm period (2018), the Covid19 (2020) and the war crisis (2022),
and partly because cryptocurrencies are relatively new products compared to
the others, so their price data covers a shorter period. Therefore, this seemed
to be the optimal decision in terms of comparability. I collected the data from
the website www.finance.yahoo.com, with the exception of cryptocurrencies,
for which the data comes from www.coinmarketcap.com. The modeling was
based on three deep learning algorithms (RNN, LSTM, GRU) and three hybrid
methodologies developed from them (LSTM-GRU, RNN-LSTM, RNN-
GRU) developed from them. I presented the differences between actual and
estimated prices using the MAPE indicator. I divided the results chapter into
three main sections. In the first section, I compared the models examined by
product type, model, and period. The performance analysis of the methods
was essential for further investigations, which focused on volatility and real
trading strategies. The first objective of the thesis was to explore the
relationship between the different volatility structures of financial instruments
and the accuracy of time series-based machine learning models. Experiments
conducted on different product classes (stocks, commodity market
instruments, cryptocurrencies, and currency pairs) confirmed that there is a
strong positive correlation between relative volatility and prediction error,
which was significantly supported by regression models run on different
architectures. The relationship was present in all periods examined, but proved
to be particularly strong in the crisis periods of 2020 and 2022. Another

important finding of the research is that the performance of the models is
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highly dependent on the period and the asset. During the calm period (2018),
the differences were minimized, while during the crisis periods (2020, 2022),
model selection became a critical factor. Hybrid architectures (RNN-GRU,
LSTM-GRU) performed better in most cases, but not all combinations were
beneficial, especially the use of RNN as the first layer, which degraded
performance. The research thus directly confirmed the assumption that neither
volatility nor model architecture can be treated as independent factors when
examining predictive performance. The second objective of the research was
to examine whether trading strategies built on machine learning models are
capable of systematically outperforming the passive investment approach
(buy-and-hold), especially in environments with varying volatility. The paper
examined backtested strategies in equally weighted portfolios over three years
(2018, 2020, 2022) and across four different asset classes. Methods based on
the predictive performance of machine learning models (Base Strategy,
MAPE-filter, and MAPE-position) consistently improved the risk-return ratio,
which was most evident in lower Sharpe ratios and drawdowns. In the case of
cryptocurrencies, machine learning-based strategies were most prominent in
2022, while losses were significantly reduced. In line with the trading strategy
literature discussed in Section 2.8, the results of this paper show that machine
learning not only offers predictive accuracy but also has decision support
potential. The difference is that the present study explicitly quantified the
volatility sensitivity of the strategies, which provides a new perspective on the
evaluation of the applicability of machine learning in an investment
environment. The success of the strategies calls into question the practical
validity of the efficient market hypothesis (EMH), especially if the models
used are able to adapt to market regimes, as this research has demonstrated on

several occasions.
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Overall, the results of this paper contribute to the understanding of the
volatility sensitivity of machine learning models and support the notion that
predictive performance depends not only on the structure of the model but also
a large extent on the characteristics of the market environment. Based on the
literature review, it can be stated that although numerous publications deal
with volatility forecasting, few studies specifically analyze the impact of
volatility on predictive performance, especially when examining multiple
asset classes simultaneously. The examination of trading strategies based on
predictive models further reinforces the practical economic value of the thesis.
The research draws attention to the diversity and excellent results of machine
learning in the financial sector and emphasizes that the application of the latest

technologies is essential for continuous development and profitable operation.
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