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1. INTRODUCTION 

Interest in the stock market and financial products among ordinary people has 

grown exponentially in recent decades (Kumbure et al., 2022). Billions of 

dollars worth of assets change hands every day on the world's stock exchanges 

(Hoseinzade and Haratizadeh, 2019), and investors enter the market with the 

intention of making a profit within their investment horizon. If a private or 

institutional investor could accurately predict market behavior and 

movements, this would enable them to achieve a higher risk-adjusted return 

(alpha) than the market. Among other things, this factor motivates the use of 

machine learning and artificial intelligence methods to create more accurate 

models for stock market forecasting and to fine-tune existing ones. The 

predictability of stock and other financial markets has been examined in 

numerous studies through the development of sophisticated forecasting 

systems (Sedighi et al., 2019; Song et al., 2019), some of which have reported 

that their models were able to generate significant profits (Atsalakis and 

Valavanis, 2009a; Weng et al., 2017). 

In general, stock market forecasting is considered one of the most relevant yet 

challenging areas of financial research (Chen and Hao, 2017). Nevertheless, 

the ability of an investor to consistently achieve higher risk-adjusted returns 

than the market may violate the so-called efficient market hypothesis. Fama 

(1970) is credited with the market efficiency hypothesis (EMH). The EMH 

distinguishes between three forms of market efficiency. Weak form market 

efficiency assumes that information contained in past prices is already 

reflected in current stock prices and does not help predict future price 

movements (Fama, 1970). As a result, technical analysis cannot outperform a 

buy-and-hold strategy in terms of expected returns. The second form of the 

efficient market hypothesis is called semi-strong market efficiency, which 

states that stock prices reflect all publicly available information (economic 
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conditions, political events, interest rates, company-specific information, 

etc.), including information about past prices. All this suggests that even using 

technical analysis tools, it is not possible to consistently achieve higher 

expected returns. In the case of semi-strong market efficiency, publicly 

available information, including fundamental data, does not allow an investor 

to outperform the market. This means that, with all publicly available 

information at their disposal, actively managed portfolios will not consistently 

achieve higher risk-adjusted returns than passive portfolios, i.e., those 

following a buy-and-hold strategy. The third, strong form of the EMH states 

that all information, including insider information, is reflected in stock prices. 

This precludes any investor (even one with insider information) from 

consistently achieving higher expected returns than the market (Fama, 1965). 

For this reason, the strong form of EMH essentially asserts that stock market 

prices and returns cannot be predicted (Timmermann and Granger, 2004). The 

strong form of EMH is based on extremely strict criteria, which Fama (1970) 

himself later partially refuted and refined. He stated that it cannot be expected 

that insider information cannot be used to realize higher expected profits. 

Over time, more and more people have questioned the efficient market 

hypothesis and whether securities are priced rationally (Daniel et al., 1998; 

Borovkova and Tsiamas, 2019). There are numerous market anomalies that 

contradict the efficient market hypothesis (Malkiel and Mullainathan, 2005). 

These include financial market overreactions (De Bondt and Thaler, 1985) and 

underreactions, short-term momentum, long-term reversal, and high asset 

price volatility. Some researchers have discussed explanations for such 

anomalies that are consistent with the efficient market hypothesis, including 

that overreactions and underreactions occur randomly and with equal 

frequency (Fama, 1998). They have also examined the possibility that 

institutional investors (smart money) are able to offset the anomalies created 
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by less experienced investors (dumb money) (Shiller, 2003). However, it 

remained doubtful whether models based on investor rationality could 

accommodate the observed anomalies. This led to a shift towards models that 

also integrate human psychology and to the emergence of behavioral finance, 

which questions the perfect rationality of investors due to behavioral biases 

such as loss aversion, overreaction, and underreaction. One attempt to 

reconcile EMH and behavioral finance was the proposal of the adaptive 

markets hypothesis (AMH), which acknowledges and explains the anomalies 

observed in financial markets (Lo, 2004). 

Given that anomalies may exist, it is not surprising that most market 

participants use historical price information and company-specific 

information (past earnings, losses, and profits) as well as other factors to 

estimate future stock prices (Patel and Marwala, 2006). Stock market 

forecasting studies typically use two well-known analytical approaches: 

fundamental analysis and technical analysis (Lohrmann and Luukka, 2019; 

Sedighi et al., 2019). Fundamental analysis focuses on basic information. 

When forecasting a company's stock price or yield based on fundamentals, 

information such as the company's revenues and expenses, annual growth rate, 

market position, and other relevant factors included in financial statements or 

reports are taken into account. When forecasting a stock index that represents 

a number of company stocks, information about the market environment can 

also be used, including national economic production data, trade, prices, or 

interest rates that are likely to affect the performance of the companies 

included in the stock index. In contrast, technical analysis involves studying 

past trends in stock prices and related trading information (volume) in order 

to predict stock price movements (Wei et al., 2011). Based on the literature on 

the subject, it can be concluded that there are a number of models available 

for predicting prices, yields, and volatility, which researchers classify into 
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three main groups. The first group includes traditional statistical methods, the 

second group includes methods based on some form of artificial intelligence, 

and the third group includes so-called hybrid methods (Kim & Won, 2018; 

Vidal & Kristjanpoller, 2020; Zolfaghari & Gholami, 2021). 

The application of artificial intelligence (AI) and machine learning (ML) is 

fundamentally transforming the financial sector, which directly or indirectly 

affects other industries as well. Financial service providers are allocating 

significant investments to develop and improve data science-related areas. 

Since the 2007-2008 financial crisis, data-driven innovation and regulation 

have received particular attention, leading to a re-evaluation of banking and 

trading practices. Alternative data, such as voice recordings and social media 

posts, are playing an increasingly important role in decision-making, but 

analyzing such data poses a challenge for traditional approaches, which is why 

machine learning models have come to the fore. These algorithms provide the 

necessary computing power and flexibility to uncover complex patterns. 

Recent developments have enabled the effective application of scientific 

theories to make more accurate predictions. 

Most previous studies have used some form of statistical time series method 

to predict stock market products, based on historical data (Efendi et al., 2018). 

Among these, autoregressive conditional heteroscedasticity (ARCH), 

autoregressive moving average (ARMA), and autoregressive integrated 

moving average (ARIMA) models, Kalman filtering, and exponential 

smoothing are the most popular techniques (Chen & Chen, 2015; Yeh et al., 

2011). Later, with the advent of artificial intelligence (AI) and soft computing, 

these techniques received increasing attention in studies dealing with stock 

market forecasting. Unlike traditional time series methods, these techniques 

are capable of handling the nonlinear, chaotic, noisy, and complex data of the 

stock market, which can result in more accurate forecasts (Chen & Hao, 2017). 
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These methods represent innovative and advantageous alternatives, making 

them attractive to researchers for financial market forecasting. The 

shortcomings of the various methodologies have given rise to a third category, 

which includes so-called hybrid predictive models. These combine traditional 

statistical and machine learning-based methods to achieve the most accurate 

estimation results possible (Reston et al., 2014; Büyükşahin and Ertekin, 

2019). 

In my research, I will examine the most modern predictive models, which are 

an important tool for investor groups and companies in the areas of risk 

management, yield maximization, and profit maximization. For empirical 

analysis, I will use the most popular financial instruments, such as stock 

indices (S&P500, DAX, Nikkei225), commodity market products (crude oil, 

gold, silver), cryptocurrencies (Bitcoin, Ethereum, Litecoin), and currency 

pairs (EUR/USD, GBP/USD, AUD/USD) for the period from January 1, 2016, 

to June 30, 2022. In terms of testing the robustness of the models, it is 

important that this period includes the calm period (2018), Covid19 (2020) 

and the Russian-Ukrainian conflict (2022). Since cryptocurrencies are 

relatively new products compared to others, their price data also covers a 

shorter period, which is one of the reasons for choosing the start and end points 

of the database. For the modeling, I examine three deep learning algorithms 

(RNN, LSTM, GRU) and three hybrid methodologies created from them 

(LSTM-GRU, RNN-LSTM, RNN-GRU) using regression analysis. I evaluate 

the differences between actual and estimated prices using the MAPE indicator. 

I begin by presenting the results of the analyses by product type, followed by 

a comparison by product and model type. In the rest of this section, I compare 

single- and multi-variable methods, the absolute best and worst predictive 

performance, and the effects of activation function optimization. I will also 

use the predictive results of the models to develop a trading strategy, which I 
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will compare with the buy-and-hold method. In this way, I will attempt to 

emphasize the practical economic usefulness of the thesis with quantifiable 

investment results. 
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2. OBJECTIVES 

Nothing illustrates the spread of artificial intelligence better than the fact that 

various learning algorithms are slowly seeping into different areas of our lives, 

making our daily routines easier and processes more efficient. The advantages 

and disadvantages of this will, of course, generate a lot of debate, but I believe 

that the advance of these technologies is inevitable, especially in industries 

with high capital strength. Predicting the prices of various investment products 

has always been a challenge for both statisticians and financial professionals 

(Nabipour et al., 2020). The main goal of developing predictive models is to 

estimate market-generated uncertainties as accurately as possible, thereby 

minimizing risk factors. 

The spread and increasingly widespread use of machine learning 

methodologies has contributed to improving the performance of predictive 

models and increasing the accuracy of forecasts (Maqsood et al., 2019). 

Experts involved in prediction face a number of fundamental challenges in 

model development. Issues such as complexity, noisy information, 

developmental characteristics, and non-linear relationships can be attributed 

to the instability of stock and financial markets, as well as the 

interrelationships between investor psychology and market behavior (Duarte 

et al., 2017). 

In the development of predictive models, machine learning tools are therefore 

becoming increasingly important, helping investors, traders, and corporate 

risk managers to make optimal decisions. The primary goal of these methods 

is to learn and then automatically recognize different patterns in large data 

sets. The most advanced deep learning algorithms are constantly evolving, 

enabling them to predict price fluctuations more and more effectively in order 

to optimize various strategies. 
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The importance of risk management is particularly heightened during periods 

of high volatility, such as the 2008 global crisis, Covid19, or the stock market 

crash caused by the Russian-Ukrainian war. The unpredictability of the 

inflationary environment creates an additional need for the most effective 

tools possible. Today, the most modern risk management techniques go 

beyond traditional diversification, with artificial intelligence-based solutions 

becoming increasingly prominent and an integral part of our everyday lives. 

In the case of trading strategies, price forecasting models can determine key 

price levels that can be used in fundamental and technical analysis, as well as 

in risk management and portfolio management. The main goal of my research 

is to explore the characteristics of predictive modeling using machine learning 

models. I will describe the detailed objectives and hypotheses below. 

C1: The primary objective of my research is to determine the extent to which 

different neural deep learning models can be generalized, i.e., whether they 

are capable of achieving outstanding predictive performance in different crisis 

situations. 

For this reason, I will analyze three different periods, with 2018 representing 

a period of calm, while Covid19 (2020) and the outbreak of the Russian-

Ukrainian conflict (2022) represent periods of crisis. 

K1: What relationship can be demonstrated between the volatility of financial 

instruments and the predictive performance of price forecasting models? 

K2: What kind of forecasting distortions are caused by the extreme price 

movements observed during periods of crisis, and how do different types of 

algorithms respond to this? 

K3: What role does hybrid model architecture play in predictive performance 

change in a volatile market environment? 
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During the modeling process, I also discuss which of the product categories 

examined is the most stable and which poses the greatest challenge for 

predictive algorithms. There are significant differences between product 

specifics, as the analysis includes traditional stock markets with a long history, 

as well as cryptocurrencies, which are still in their infancy in economic terms 

but are all the more volatile. Commodity market products also play a role in 

the study, as their prices are influenced by a multitude of external factors. 

Foreign exchange markets should not be forgotten either, as they also have 

special characteristics, with prices being determined by a number of 

interrelated factors, such as interest rate differentials, inflation, political 

stability, and trade relations. Correlations between currency pairs can also 

have a significant impact on the accuracy of forecasts. Stock indices show 

more predictable trends in the longer term, while cryptocurrencies and certain 

commodity prices can be much more sensitive to short-term events, such as 

economic cycles or extreme events. This volatility poses a significant 

challenge for predictive models, as it is more difficult to make accurate 

forecasts in markets where prices can change rapidly and significantly. Stress 

factors affecting the global economy have a significant impact on the 

performance of various financial markets, so it is particularly important to be 

able to estimate the prices of the products under review as accurately as 

possible during such periods. One of the advantages of using machine learning 

models is that, compared to other methods, they are better at recognizing 

patterns in large amounts of historical data and using them to predict future 

prices and trends. A characteristic feature of deep learning models is that the 

more data they have at their disposal, the more effectively they can learn. It is 

therefore particularly important to teach them using data sets from economic 

periods with specific characteristics. I am seeking answers to the following 

research questions: 
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C2: The second objective of my thesis is to examine the extent to which 

machine learning models can improve the trading performance of financial 

instruments compared to the traditional buy-and-hold strategy. I seek answers 

to the following research questions: 

K4: How well can trading strategies based on machine learning predictions 

exploit market anomalies, as opposed to the efficient market theory? 

K5: What effect does the volatility of different asset classes (e.g., stocks, 

cryptocurrencies, commodities, currency pairs) have on the performance of 

machine learning-supported trading strategies? 

K6: What differences can be observed in the performance of machine 

learning-based strategies during different economic cycles? 

I use the forecasts to develop rule-based trading strategies. I backtest the 

performance of these strategies and compare them with the results of a passive 

investment approach, with a particular focus on returns and risk indicators 

(cumulative return, Sharpe ratio, etc.). The goal is not only to evaluate the 

accuracy of the predictions, but also to explore whether the decisions 

generated by the models actually result in improved trading performance. 

Through this, I seek to answer the question of how well machine learning-

based decision support can handle different market conditions (trends, 

volatility, shocks). The practical value of the thesis is that the approach 

examined offers a potential alternative to classic passive investing. This is 

particularly relevant in the context of the efficient market hypothesis (EMH), 

which states that market prices reflect all available information, making it 

impossible to achieve extra returns in the long run using any predictive 

method. If the strategies presented in this paper are able to systematically 

outperform the buy-and-hold benchmark, they may implicitly call into 

question the practical validity of the EMH. In addition, maximizing the Sharpe 
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ratio plays a central role in the evaluation of strategies, as this ratio measures 

the ratio of return to return volatility and is thus suitable for objectively 

comparing risk-weighted performance. The goal of the models is therefore not 

merely to achieve high returns, but to ensure stable, volatility-adjusted 

profitability. Examining this can help us understand the extent to which 

machine learning-based trading systems can create value in an environment 

where information efficiency theoretically precludes arbitrage opportunities.  
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3. MATERIALS AND METHODS 

3.1. Data 

In my research, I used daily exchange rate data for stock indices (S&P500, 

DAX, Nikkei225), commodity products (crude oil, gold, silver), 

cryptocurrencies (Bitcoin, Ethereum, Litecoin), and currency pairs 

(EUR/USD, GBP/USD, AUD/USD) for the period between January 1, 2016, 

and June 30, 2022. For crude oil, gold, and silver, I used futures prices, while 

for the other products, I used spot prices. I chose this period partly because it 

includes the calm period (2018), the Covid19 (2020) and the war crisis (2022), 

and partly because cryptocurrencies are relatively new products compared to 

the others, so their exchange rate data covers a shorter period. Therefore, this 

seemed to be the most optimal decision in terms of comparability. I collected 

the data from the website www.finance.yahoo.com, with the exception of 

cryptocurrencies, as their data comes from the website 

www.coinmarketcap.com.  

During data cleaning and data series review, I also had to deal with the 

problem of handling missing data, which was particularly significant in the 

calculation of the correlation matrix, as the number of observations differed 

for each product. To solve this problem, I chose the linear interpolation 

method. In the case of forecasting methods, missing data was not significant, 

as each product was examined separately. I will discuss the filtering of trend 

and seasonal effects later when determining volatility. When making 

predictions, I did not treat trends and seasonality separately, but left this to the 

pattern recognition capabilities of the models. I then divided the databases into 

three parts. The first period examined focused on a calm economic 

environment from January 1, 2016, to June 30, 2018. The second covers the 

period from January 1, 2018, to June 30, 2020, which was selected due to 
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Covid19. The third period also relates to an economic crisis, namely the 

Russian-Ukrainian conflict, covering the interval between January 1, 2020, 

and June 30, 2022. During the analysis, the two crisis periods served as 

important factors in terms of testing the robustness of the models. The 

descriptive statistics of the data used for the empirical analysis are presented 

in Tables 1-3. 

Table 1: Descriptive statistics of the examined products for the period 

between January 1, 2016 and June 30, 2018 

 N Average Median Std Min Max 
S&P500 628 2360.37 2365.41 258.18 1829.08 2872.87 
DAX 632 11575.03 12002.46 1243.42 8752.87 13559.60 
Nikkei225 613 19315.52 19383.84 2355.25 14952.02 24124.15 
Crude oil 626 50.81 49.56 9.54 26.21 74.15 
Gold 625 1266.21 1271.50 57.64 1073.90 1364.90 
Silver 625 16.98 16.87 1.25 13.74 20.67 
Bitcoin 912 3649.33 1187.47 4189.45 364.33 19497.40 
Ethereum 911 233.20 44.89 298.89 0.92 1398.99 
Litecoin 912 52.79 6.93 72.31 3.00 358.34 
EUR/USD 649 1.14 1.13 0.05 1.04 1.25 
GBP/USD 649 1.33 1.32 0.07 1.20 1.48 
AUD/USD 649 0.76 0.76 0.02 0.69 0.81 

Source: own editing 

In the first examined period (Table 1), the stock markets exhibited moderate 

growth and relatively stable volatility. The average value of the S&P 500 index 

was 2360.37 points, with a standard deviation of 258.18 points, whereas the 

DAX and Nikkei225 recorded higher averages and deviations, indicating 

greater price fluctuations in the European and Asian markets. The average 

price of crude oil was USD 50.81, accompanied by a relatively high standard 

deviation (USD 9.54), reflecting the commodity market’s sensitivity to 

geopolitical and supply–demand dynamics. Gold and silver functioned as 

more stable stores of value, with comparatively low volatility, particularly in 
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the case of silver (USD 1.25). Cryptocurrencies, especially Bitcoin and 

Ethereum, displayed substantial volatility during this period: the standard 

deviation of Bitcoin was USD 4189.45, while that of Ethereum was USD 

298.89. This elevated volatility underscores the rapid price surge and 

speculative nature of digital assets. In the foreign exchange markets, the 

EUR/USD, GBP/USD, and AUD/USD exchange rates demonstrated relative 

stability, with low deviations and narrow minimum–maximum ranges. 

Overall, this period was characterized by stability in traditional financial 

assets, while cryptocurrencies experienced pronounced growth and 

heightened volatility. 

Table 2: Descriptive statistics of the examined products for the period 

between January 1, 2018 and June 30, 2020 

 N Average Median Std Min Max 
S&P500 628 2862.46 2843.11 195.87 2237.40 3386.15 
DAX 627 12099.54 12253.15 911.70 8441.71 13789.00 
Nikkei225 606 21865.58 21874.23 1291.52 16552.83 24270.62 
Crude oil 628 56.18 58.30 13.28 -37.63 76.41 
Gold 627 1394.23 1328.10 159.39 1176.20 1793.00 
Silver 627 16.06 16.14 1.29 11.73 19.39 
Bitcoin 912 7679.92 7679.97 2384.93 3236.76 17527.00 
Ethereum 911 302.16 207.80 238.30 81.72 1398.99 
Litecoin 912 80.24 61.06 48.48 23.46 296.45 
EUR/USD 651 1.14 1.13 0.04 1.07 1.25 
GBP/USD 651 1.30 1.29 0.05 1.15 1.43 
AUD/USD 651 0.71 0.71 0.04 0.57 0.81 

Source: own editing 

In the second period (Table 2), which partly overlaps with the onset of the 

Covid19 pandemic, increasing volatility and structural reconfiguration were 

observed in the financial markets. Stock indices, particularly the S&P 500 

(average: 2862.46) and the DAX (average: 12099.54), exhibited moderate 

growth compared to the previous period; however, their standard deviations 
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slightly declined, which may indicate partial market stabilization prior to the 

outbreak. In the crude oil market, an extraordinary price collapse occurred, as 

reflected in the negative minimum value (-37.63 USD) recorded in April 2020 

on the futures market. Precious metals, especially gold, appreciated as safe-

haven assets: the average price of gold rose to 1394.23 USD, while its standard 

deviation increased substantially (159.39 USD). Cryptocurrencies, such as 

Bitcoin and Ethereum, continued to display high volatility, although their 

rising median values were more moderate than before, suggesting certain 

signs of market maturation. Litecoin also registered an increase in its average 

price, accompanied by relatively high volatility. Among currencies, the 

EUR/USD and GBP/USD pairs showed slight depreciation, while the 

AUD/USD experienced a more pronounced decline, attributable to the 

Australian economy’s dependence on commodity exports. Overall, this period 

reflected heightened uncertainty, but at the same time, adaptation in both 

traditional and novel financial asset markets. 

Table 3: Descriptive statistics of the examined products for the period 

between January 1, 2020 and June 30, 2022 

 N Average Median Std Min Max 
S&P500 628 3851.17 3915.98 599.47 2237.40 4796.56 
DAX 635 13907.57 13950.04 1633.03 8441.71 16271.75 
Nikkei225 606 26031.83 27007.45 3214.96 16552.83 30670.10 
Crude oil 628 63.11 62.57 25.23 -37.63 123.70 
Gold 628 1803.00 1809.30 104.27 1477.30 2051.50 
Silver 628 22.99 23.97 3.70 11.73 29.40 
Bitcoin 911 30776.76 33798.01 18183.70 4970.79 67566.83 
Ethereum 911 1745.93 1790.25 1384.34 109.21 4800.00 
Litecoin 911 116.99 109.43 68.26 30.93 386.45 
EUR/USD 651 1.15 1.16 0.05 1.04 1.23 
GBP/USD 651 1.32 1.33 0.06 1.15 1.42 
AUD/USD 651 0.72 0.72 0.04 0.57 0.80 

Source: own editing 
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The third period (Table 3) brought about profound market shifts driven by the 

Covid19 pandemic, the subsequent recovery, and the geopolitical uncertainty 

arising from the Russian–Ukrainian conflict. The average value of the S&P 

500 index increased to 3851.17 points, while its standard deviation rose 

substantially to 599.47 points, indicating heightened market volatility. The 

DAX and Nikkei225 indices also recorded higher averages and maximum 

values, accompanied by rising volatility, particularly in the case of the 

Nikkei225. The crude oil market exhibited extreme sensitivity to the Russian–

Ukrainian conflict: the standard deviation increased to 25.23 USD, and the 

maximum price reached 123.70 USD. The disruption and uncertainty 

surrounding Russian commodity exports, especially energy resources, played 

a key role in driving these fluctuations. Demand for precious metals, 

especially gold, intensified as investors sought safe-haven assets, although 

prices stabilized at elevated levels, with an average of 1803.00 USD. Bitcoin 

and Ethereum reached peak valuations during this period: Bitcoin averaged 

30776.76 USD, with an exceptionally high standard deviation of 18183.70 

USD. This may partly reflect both heightened risk aversion and speculative 

capital inflows amid the turbulence of traditional markets. The EUR/USD and 

GBP/USD exchange rates remained relatively stable; however, a slight 

depreciation was observed due to the European economy’s direct exposure to 

the conflict. Overall, this period was characterized by intensifying geopolitical 

tensions, energy market shocks, and the predominance of investor risk 

aversion. 

In the course of the analysis, both univariate and multivariate methods were 

applied. In the univariate case, daily closing prices formed the basis of 

prediction, whereby the price at a given point in time was estimated using the 

data of the preceding 50 time steps (sequence). In the multivariate analysis, a 

similar approach was adopted, with the difference that, in addition to daily 
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closing prices, opening, highest, and lowest prices were also incorporated, 

again using 50-day sequences. 

3.2. Methods 

Simple Recurrent Neural Network (RNN) 

RNN is a type of artificial neural network consisting of three main parts: input, 

hidden, and output layers. There are two main differences compared to 

traditional networks. One is that the nodes in the same hidden layer of an RNN 

are connected to each other, and the other is that the inputs to the hidden layer 

contain the outputs of the input layer at the current time as well as the outputs 

of the hidden layer stored at the previous time. This special structure allows 

for a better description of dynamic temporal behavior in a time series 

sequence. Thus, an RNN can use previously learned information to recognize 

the current pattern, enabling more efficient modeling (Bai et al. 2021). 

Gated Recurrent Unit (GRU) 

GRU is a type of recurrent neural network (RNN) that excels at predicting 

time series. It is similar to another neural network model we discussed 

(LSTM), but GRU has lower computational requirements, which can greatly 

improve learning efficiency. Its input and output structures are the same as 

those of a simple RNN. The internal structure of the GRU unit contains only 

two gates: the zt update gate and the rt reset gate. The zt update gate 

determines the previous memory value saved at the current time, and the rt 

reset gate determines how the new input information should be combined with 

the previous memory value. Unlike the LSTM algorithm, the zt update gate 

can simultaneously forget and select the contents of the memory, which 

improves computational performance and reduces the required running time 

(Xiao et al. 2022). 
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Long-Short Term Memory (LSTM) 

LSTM is a type of recurrent neural network (RNN) that is often used in 

research related to sequential data. Long-term memory refers to learning 

weights, while short-term memory refers to the internal states of cells. LSTM 

was created to solve the vanishing gradient problem in RNNs, and its main 

change is the replacement of the middle layer of the RNN with a block (LSTM 

block). The main feature of LSTM is the possibility of long-term affiliation 

learning, which was impossible in RNNs. To predict data related to the next 

time point, the network weights need to be updated, which requires 

maintaining data from the initial time interval. An RNN could only learn a 

limited number of short-term affiliations; however, RNNs cannot learn long-

term time series. The LSTM, however, can handle these adequately. The 

structure of the LSTM model contains a set of recurrent subnetworks, which 

are called memory blocks. Each block contains one or more autoregressive 

memory cells and three multiple units (input, output, and forget), which 

perform continuous writing, reading, and control of cell operation (Ortu et al. 

2022). 

LSTM-GRU hybrid 

The hybrid LSTM/GRU model based on LSTM and GRU retains the 

advantages of both models, reduces overfitting, and thus enables high-

accuracy predictions (Zhao et al. 2023). In this model, the first hidden layer is 

the LSTM. Each LSTM neuron collects data and generates a weighted value. 

The data is then transferred from the LSTM to the GRU layer, which is the 

second hidden layer. On the way from the LSTM layer to the GRU layer, 

weighted values are generated again. Similarly, the data is then transferred to 

the third hidden layer (dense layer). A weighted value is also generated from 

the GRU layer to the dense layer. The dense layer is a normal neural network 
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layer that is used to produce the output. From the dense layer, the data then 

goes to the output neuron (Islam and Hossain 2021). 

RNN-LSTM hybrid 

In order to exploit the strengths of RNN and LSTM and eliminate their 

weaknesses, the use of the RNN-LSTM hybrid model significantly improves 

the predictability of time series (Faru et al. 2023). In this algorithm, the first 

hidden layer is the RNN, in which neurons collect information and a weighted 

value is generated. The information is then transferred from the RNN layer to 

the second hidden layer, the LSTM. Weighted values are generated again on 

the way from the RNN layer to the LSTM. The data is then transferred to the 

third hidden layer (dense layer). Weighted values are also generated from the 

LSTM layer to the dense layer. 

RNN-GRU hybrid 

Although there are quite a few hybrid algorithms in the literature, there's not 

much research on the RNN-GRU combo. This model is very similar to the 

previous one, so the first hidden layer is the RNN, in which neurons collect 

information and a weighted value is generated. The information is then 

transferred from the RNN layer to the second hidden layer, the GRU. Weighted 

values are generated again on the way from the RNN layer to the GRU. The 

data is then transferred to the third hidden layer (dense layer). Weighted values 

are also generated from the GRU layer to the dense layer. 

3.3. Softwares 

The Python programming language (version 3.9) was used for model 

development, which was justified for several reasons. On the one hand, Python 

has a broad and rapidly evolving ecosystem, particularly in the areas of data 

analysis (e.g., Pandas, Numpy) and machine learning (e.g., TensorFlow, 

Keras, Scikit-learn, Pytorch), which enables the efficient implementation of 
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state-of-the-art neural network models. On the other hand, Python is open 

source and platform-independent, ensuring cost-effective development and 

reproducibility. Another advantage is that the programming language's simple, 

easy-to-read syntax allows for rapid prototype development, which is 

particularly useful in research projects where models need to be continuously 

fine-tuned. Other advantages of Python include a wide range of frameworks, 

support for deep learning, and industrial applicability. I ran the scripts on the 

Google Colab interface and locally using the Visual Studio Code code editor. 

3.4. Evaluation of models 

To evaluate the models used for forecasting and determine their accuracy, the 

following metrics are most commonly used in the literature: root mean square 

error (RMSE), mean absolute error (MAE), mean absolute percentage error 

(MAPE). In my dissertation, I used the MAPE indicator to measure deviations. 

This indicator measures the average magnitude of forecast errors and shows 

the deviations in percentage form. 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  
1
𝑛𝑛
��

𝑦𝑦𝑖𝑖 −  𝑦𝑦�𝑖𝑖
𝑦𝑦𝑖𝑖

�
𝑛𝑛

𝑖𝑖=1

 

The lower the values of the above indicators, the more reliable and accurate 

the forecasts will be. MAPE is interpreted as a percentage (the deviations are 

expressed as a percentage of the original value). For this reason, MAPE can 

also be used to compare different instruments, as it does not depend on the 

nominal value of the exchange rate. Since our study examined indices from 

many parts of the world and the effects of two different negative economic 

events, we used the MAPE indicator for the comprehensive evaluation of the 

models for the sake of comparability. 
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3.5. Volatility analysis 

The variance data for different products and periods are not suitable for 

comparing volatility and MAPE values, so it was necessary to use an indicator 

measuring relative volatility, the calculation of which is detailed below. First, 

it was necessary to find a method that identifies trends in time series and can 

remove them, as they can distort the results. For this, I used the Seasonal-

Trend decomposition using Loess (STL) approach. I will discuss the 

methodology in detail below. 

3.5.1. STL (Seasonal-Trend decomposition using Loess) 

STL is a flexible time series analysis method that breaks down the series under 

examination into three components: the long-term trend, the seasonal pattern, 

and the random residual. A special feature of STL is the use of LOESS 

(Locally Weighted Scatterplot Smoothing), which is also capable of modeling 

nonlinear, time-varying seasonal patterns. Another advantage is its robustness 

and flexibility, making it well suited for analyzing financial time series, for 

example. The time series is decomposed in the following form: 

𝑌𝑌𝑡𝑡 =  𝑇𝑇𝑡𝑡 + 𝑆𝑆𝑡𝑡 + 𝑅𝑅𝑡𝑡 

where Yt is the original time series, Tt is the trend, St is the seasonal 

component, and Rt is the residual. STL can be effectively applied to financial 

time series where seasonal patterns may change over time (Cleveland et al., 

1990). The residual Rt contains short-term fluctuations independent of the 

trend, making this component suitable for volatility analysis (He et al., 2021). 

3.5.2. Relative volatility: coefficient of variation (CV) 

I measured the volatility of the trend-adjusted series using the coefficient of 

variation (CV). The CV is a dimensionless indicator that allows the 
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comparison of the dispersion of assets with different units of measurement and 

magnitudes. Its formula is as follows: 

𝐶𝐶𝐶𝐶 =  
𝜎𝜎(𝑅𝑅𝑡𝑡)
𝜇𝜇(𝑌𝑌𝑡𝑡)

 

where 𝜎𝜎(𝑅𝑅𝑡𝑡) is the standard deviation of the residual component, while 𝜇𝜇(𝑌𝑌𝑡𝑡) 

is the mean of the original time series. The indicator is sensitive to the size of 

the series average, so CV may show greater volatility for assets with low 

nominal values. CV strikes a balance between absolute and relative variance-

based volatility measures and is well suited as a basis for cluster analysis 

(Brockwell and Davis, 2002). 

Relative volatility is calculated from the residual components of the 

aforementioned method (STL). In the case of STL, we obtain trend- and 

seasonality-free residuals. 

3.6. Prediction-based, dynamically optimized trading strategy 

The algorithm I use is a parameter-sensitive trading strategy based on machine 

learning predictions, which is compared to the classic buy-and-hold approach. 

The central element of the strategy is that it generates trading positions based 

on the relationship between predicted and actual exchange rates, then 

optimizes the risk/return ratio using various stop-loss (SL), take-profit (TP), 

and volatility estimation window (VOL_LOOKBACK) values. Its goal is 

therefore to maximize trading performance according to the Sharpe ratio. The 

input for the source program is provided by a multi-page Excel file, which 

contains the following for each instrument: timestamp ("Date"), actual market 

values (closing prices), and estimated values generated by the prediction 

models. The strategy is based on the assumption that if the estimated value is 

higher than the actual value at a given point in time, the price is expected to 

rise, so it is worth taking a long position. Otherwise, a short position is 
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justified. This can be formally described as follows: if 𝑃𝑃�𝑡𝑡 >  𝑃𝑃𝑡𝑡−1, then opens 

a long position, as long as 𝑃𝑃�𝑡𝑡 <  𝑃𝑃𝑡𝑡−1n 

Log return is calculated as follows: 𝑟𝑟𝑡𝑡 = 𝑙𝑙𝑙𝑙 � 𝑃𝑃𝑡𝑡
𝑃𝑃𝑡𝑡−1

� 

The strategy is further refined by volatility-based risk management, for which 

three parameters are set: 

• SL_MULTIPLIER: stop-loss threshold ratio compared to the volatility 

of the previous period. 

• TP_MULTIPLIER: take-profit threshold ratio. 

• VOL_LOOKBACK: the period length used to calculate volatility 

(moving standard deviation calculated on a specific day). 

Volatility and limits are calculated as follows: 

𝜎𝜎𝑡𝑡 =  𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑟𝑟𝑡𝑡 ,𝑉𝑉𝑉𝑉𝑉𝑉_𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) 

𝑆𝑆𝑆𝑆𝑡𝑡 = 𝑆𝑆𝑆𝑆_𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ∗  𝜎𝜎𝑡𝑡 

𝑇𝑇𝑇𝑇𝑡𝑡 = 𝑇𝑇𝑇𝑇_𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ∗  𝜎𝜎𝑡𝑡 

The realized return will be adjusted based on these if the profit or loss reaches 

the specified levels. For example, if the return in a long position exceeds the 

TP, we will cut the return at the TP value; if the loss falls below the SL, we 

will cut it at the -SL value. The same applies to short positions. 

Building on this base strategy, I incorporated and tested two other methods. In 

one case, it calculates a 5-day rolling MAPE indicator and only opens a 

position if the deviation indicator is below a specified threshold. In this case, 

I set the threshold at 3%, so the MAPE acts as a kind of filter for opening 

positions. The other alternative also uses the rolling MAPE indicator value, 

but only to determine the dynamic position size. Specifically, it takes a smaller 

position size in the case of a higher MAPE, while in the opposite case, it 

implements a larger allocation. 
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The program performs static and cumulative performance analysis, 

calculating the most important statistical indicators for each parameter 

combination and instrument examined. These include the average daily return 

(μ), the standard deviation of the daily return (σ), and the Sharpe ratio, which 

is calculated using the standard annualized formula: 𝜇𝜇
𝜎𝜎
∗ √252. In addition, the 

function calculates the cumulative return, the maximum drawdown (which is 

the largest difference between the local maxima and minima of the cumulative 

return curve), and the win rate. The calculations are performed separately for 

the buy-and-hold benchmark strategy and the dynamically managed strategy, 

allowing for a multidimensional comparison of the two approaches. During 

the optimization process, the algorithm iterates through a predefined 

parameter grid. This grid contains the following values: SL ∈ {0.5, 1.0, 1.5}, 

TP ∈ {1.5, 2.0, 3.0}, and VOL_LOOKBACK ∈ {10, 20, 30}. The strategy is 

run for all possible combinations - 27 in total - and then the system selects the 

parameter configuration with the highest Sharpe ratio. The setting determined 

in this way is stored as a parameter set optimized for the given instrument. At 

the end of the analysis, the algorithm performs a graphical comparison in the 

form of a bar chart. This figure shows the cumulative returns of the four 

strategies for each instrument. This makes it clear whether the model is able 

to consistently outperform the passive investment strategy, i.e., whether the 

parameter-tuned trading approach based on the predictive model has practical 

value. 

In summary, the program is a generally applicable tool for analyzing 

prediction-based investment strategies. Its main features include the explicit 

integration of the predictive component, the application of parametric risk 

management, automatic optimization, and systematic comparison with the 

classic buy-and-hold benchmark strategy. The code can be used not only in a 
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simulation environment, but can also be effectively adapted for backtesting 

systems, machine learning model validation, and sensitivity testing. 

When applying trading strategies, similar to most other literature, I did not 

take taxes, transaction and other costs into account, so the results represent 

gross cumulative returns. 
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4. RESULTS 

4.1. Results of volatility analysis 

The examination of the relationship between volatility and MAPE was 

conducted following the activation function optimization process. Based on 

volatility values, cryptocurrencies clearly stand out, particularly in 2018: 

Ethereum (0.0475) and Litecoin (0.0432) exhibit extremely high values, in 

contrast to the low CV levels characteristic of currency pairs (EUR/USD: 

0.0032). In 2020, crude oil displayed exceptionally high volatility (0.1005), 

which can be attributed to the market shocks associated with the Covid19 

period. Classical stock indices such as the S&P 500 and the DAX also showed 

higher volatility in 2020 compared to 2018 or 2022, indicating the 

intensification of market uncertainty. 

According to the pooled regression analysis covering all periods (Figure 1), a 

significant positive relationship was identified between relative volatility 

(CV_STL) and univariate MAPE. The regression coefficient was 1.2937, 

implying that a one-unit increase in volatility increases the forecasting error 

by an average of 1.2937 units. The statistical significance of the coefficient (p 

< 0.01) confirms the robustness of this relationship. The constant term was 

0.0049 but proved non-significant, suggesting that the level of MAPE is 

essentially explained by the level of volatility. This finding indicates that the 

forecasting performance of univariate models is substantially affected by 

market fluctuations. The explanatory power of the model was high, with an R² 

value of 76.28%. In terms of univariate MAPE values, the weakest predictive 

performance in 2018 was observed for Litecoin (0.1095), followed by Bitcoin 

(0.1011). In the same year, the lowest error values were associated with 

currency pairs, such as GBP/USD (0.0047) and AUD/USD (0.0055). In 2020, 

crude oil also stood out with a MAPE value of 0.1023, reinforcing the notion 
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that turbulent market movements significantly impair forecasting 

performance. 

 
Figure 1: The relationship between relative volatility and univariate 

average MAPE values, displayed by time periods 

Source: own editing 

In the multivariate model (Figure 2), the effect of volatility appears even more 

pronounced: the regression coefficient of CV_STL is 1.6224, which is 

likewise significant (p < 0.01). This suggests that multivariate forecasting 

systems are even more sensitive to volatility, meaning that input complexity 

does not reduce, but in some cases actually increases error sensitivity under 

market fluctuations. The constant term is -0.0009 and again non-significant, 

indicating that relative volatility remains the decisive factor in explaining the 

variability of the model. The high coefficient value reinforces the conclusion 

that volatility continues to play a key role in shaping predictive performance, 

even in more advanced multivariate models. The explanatory power of the 

model was even higher than in the univariate case, with an R² of 90.58%. In 
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terms of MAPE values, the trend is similar, but the errors are generally lower 

or nearly identical compared to the univariate models. Interestingly, in 2018 

Litecoin’s multivariate MAPE (0.1198) was even higher than its univariate 

value, which may point to issues related to predictor selection. In most cases, 

however, multivariate models slightly improve forecasting accuracy, as 

observed for the Nikkei225 in 2020 (0.0203 vs. 0.0204) and for GBP/USD in 

2022 (0.0040 vs. 0.0063). 

 

Figure 2: The relationship between relative volatility and multivariate 

average MAPE values, displayed by time periods 

Source: own editing 

The relationship between relative volatility and MAPE values, differentiated 

by model and broken down for the periods 2018, 2020, and 2022, is presented 

in Tables 4–6, based on the STL approach. These results are described in detail 

below. 

Table 4 shows the relationship between relative volatility (CV_STL) and both 

univariate and multivariate forecasting errors (MAPE) for the year 2018, 
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across six neural network models. The results indicate that in all univariate 

models, a significant positive relationship exists between volatility and 

MAPE, meaning that the higher the volatility of a given financial asset, the 

greater the prediction error. Among the univariate analyses, the highest 

regression coefficient was observed in the LSTM model (2.920), while the 

lowest was recorded for the GRU model (1.528), reflecting the differing 

sensitivities of network architectures to volatility. Based on R² values, the 

GRU model achieved the strongest explanatory power (R² = 0.9713), whereas 

the RNN showed the weakest (R² = 0.6134). These findings confirm that 

relative volatility is a strong and stable predictor of univariate forecasting 

performance. The second part of the table presents the relationship between 

relative volatility and multivariate forecasting errors (MAPE). The results 

suggest that in all models there is again a significant positive relationship 

between volatility and forecasting error, indicating that more volatile assets 

are associated with higher prediction errors, even when additional input 

variables are included. The highest regression coefficient was found in the 

RNN-LSTM model (2.856), while the lowest was observed in the LSTM-

GRU model (1.662), highlighting that certain architectures are more sensitive 

to the effects of volatility. In terms of R² values, the LSTM-GRU model 

demonstrated the best fit (0.9651), while the RNN-LSTM showed the weakest 

(0.7951). Overall, it can be concluded that both univariate and multivariate 

models display a strong and consistent relationship between relative volatility 

and prediction error. 
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Table 4: Regression results of the relative volatility indicators and MAPE 

values for the examined assets during the calm period (2018) 
 (1) (2) (3) (4) (5) (6) 
 Univ-

RNN 
Univ-
LSTM 

Univ-
GRU 

Univ-
LSTM-
GRU 

Univ-
RNN-
LSTM 

Univ-
RNN-
GRU 

CV_STL 2.422*** 2.920*** 1.528*** 2.128*** 2.304*** 1.817*** 
 (0.608) (0.578) (0.083) (0.315) (0.168) (0.275) 
       
Constant -0.002 -0.006 -0.000 -0.001 -0.003 0.002 
 (0.013) (0.013) (0.002) (0.007) (0.004) (0.006) 
Observations 12 12 12 12 12 12 
R2 0.6134 0.7185 0.9713 0.8207 0.9498 0.8132 

 
 (7) (8) (9) (10) (11) (12) 
 Multi-

RNN 
Multi-
LSTM 

Multi-
GRU 

Multi-
LSTM-
GRU 

Multi-
RNN-
LSTM 

Multi-
RNN-
GRU 

CV_STL 1.830*** 2.854*** 1.810*** 1.662*** 2.856*** 1.870*** 
 (0.264) (0.346) (0.188) (0.100) (0.458) (0.239) 
       
Constant 0.000 -0.008 -0.004 -0.001 -0.007 -0.001 
 (0.006) (0.008) (0.004) (0.002) (0.010) (0.005) 
Observations 12 12 12 12 12 12 
R2 0.8273 0.8720 0.9022 0.9651 0.7951 0.8595 

Source: Own editing based on STATA 17 results 
In parentheses, the standard errors 
* p < 0.1, ** p < 0.05, *** p < 0.01 
 

Table 5 presents the relationship between relative volatility (CV_STL) and 

both univariate and multivariate forecasting errors (MAPE) for the year 2020, 

across six neural network models. For all univariate models, the regression 

coefficient of volatility is significant and positive, confirming that higher 

volatility is associated with increased prediction error during this crisis-laden 

period. The lowest coefficient was observed in the GRU model (0.845), while 

the highest was recorded for the RNN model (1.158), reflecting the differing 

sensitivities of the architectures to volatility. The R² values are extremely high 

across all models (each exceeding 90%), indicating outstanding explanatory 

power of the regression analysis during the period under review. The second 
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part of the table illustrates the relationship between relative volatility 

(CV_STL) and multivariate forecasting errors (MAPE). Here too, the results 

indicate a statistically significant and positive relationship across all models, 

meaning that prediction errors in multivariate forecasts also increase with 

rising volatility. The highest regression coefficient was observed for the RNN-

LSTM model (2.847), while the lowest was found for the GRU (0.828), which 

may suggest greater robustness of the latter to volatility. The coefficients of 

determination (R²) are remarkably high for all models (ranging between 86% 

and 98%), with the LSTM model in particular (0.9714) exhibiting the 

strongest explanatory power. These results confirm that even in the pandemic-

stricken year of 2020, a strong relationship persisted between the extent of 

market fluctuations and the forecasting errors of the models, including the 

more advanced hybrid architectures.   
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Table 5: Regression results of the relative volatility indicators and MAPE 

values for the examined assets during the Covid19 period (2020) 
 (1) (2) (3) (4) (5) (6) 
 Univ-

RNN 
Univ-
LSTM 

Univ-
GRU 

Univ-
LSTM-
GRU 

Univ-
RNN-
LSTM 

Univ-
RNN-
GRU 

CV_STL 1.158*** 0.964*** 0.845*** 0.984*** 0.984*** 0.936*** 
 (0.067) (0.044) (0.077) (0.046) (0.100) (0.064) 
       
Constant 0.005* 0.004** 0.006** 0.005*** 0.011** 0.007*** 
 (0.002) (0.002) (0.003) (0.002) (0.004) (0.002) 
Observations 12 12 12 12 12 12 
R2 0.9676 0.9795 0.9228 0.9787 0.9067 0.9549 

 
 (7) (8) (9) (10) (11) (12) 
 Multi-

RNN 
Multi-
LSTM 

Multi-
GRU 

Multi-
LSTM-
GRU 

Multi-
RNN-
LSTM 

Multi-
RNN-
GRU 

CV_STL 2.279*** 0.896*** 0.828*** 0.911*** 2.847*** 1.150*** 
 (0.158) (0.049) (0.066) (0.050) (0.289) (0.146) 
       
Constant -0.010* 0.004** 0.005* 0.004** -0.020* 0.005 
 (0.006) (0.002) (0.002) (0.002) (0.010) (0.005) 
Observations 12 12 12 12 12 12 
R2 0.9543 0.9714 0.9403 0.9706 0.9065 0.8616 

Source: Own editing based on STATA 17 results 
In parentheses, the standard errors 
* p < 0.1, ** p < 0.05, *** p < 0.01 
 

Table 6 presents the relationship between relative volatility (CV_STL) and 

both univariate and multivariate forecasting errors (MAPE) for the year 2022. 

In all univariate models, a positive and significant relationship is observed, 

meaning that increases in volatility continue to be associated with higher 

forecasting errors. The regression coefficients range from 1.149 (GRU) to 

1.969 (RNN-LSTM), indicating a relatively consistent, moderate sensitivity 

to volatility. The explanatory power (R²) is high across all models, ranging 

between 85% and 92%. The second part of the table represents the relationship 

between relative volatility (CV_STL) and multivariate forecasting errors 

(MAPE). Here as well, all models exhibit significant and positive regression 

coefficients. The coefficients fall within a relatively narrow range, with the 
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lowest value observed for the GRU model (1.312) and the highest for the 

RNN-LSTM (2.033), reflecting the differing sensitivities of network 

architectures to volatility. The R² values are high, ranging between 82% and 

97%, with particularly strong explanatory power for the LSTM-GRU model 

(97.48%). The results consistently reinforce the findings of previous years: the 

structural presence of volatility fundamentally shapes forecasting 

performance, even in more complex multivariate deep learning models. 

Table 6: Regression results of the relative volatility indicators and 

univariate MAPE values for the examined assets during the Russian–

Ukrainian conflict period (2022) 
 (1) (2) (3) (4) (5) (6) 
 Univ-

RNN 
Univ-
LSTM 

Univ-
GRU 

Univ-
LSTM-
GRU 

Univ-
RNN-
LSTM 

Univ-
RNN-
GRU 

CV_STL 1.856*** 1.403*** 1.149*** 1.539*** 1.969*** 1.598*** 
 (0.205) (0.132) (0.133) (0.192) (0.254) (0.165) 
       
Constant -0.002 -0.000 0.003 0.000 -0.001 -0.001 
 (0.004) (0.002) (0.002) (0.003) (0.005) (0.003) 
Observations 12 12 12 12 12 12 
R2 0.8915 0.9192 0.8819 0.8656 0.8570 0.9032 

 
 (7) (8) (9) (10) (11) (12) 
 Multi-

RNN 
Multi-
LSTM 

Multi-
GRU 

Multi-
LSTM-
GRU 

Multi-
RNN-
LSTM 

Multi-
RNN-
GRU 

CV_STL 1.370*** 1.523*** 1.312*** 1.395*** 2.033*** 1.903*** 
 (0.153) (0.225) (0.115) (0.071) (0.225) (0.188) 
       
Constant 0.003 -0.000 -0.001 -0.001 -0.003 -0.003 
 (0.003) (0.004) (0.002) (0.001) (0.004) (0.003) 
Observations 12 12 12 12 12 12 
R2 0.8889 0.8206 0.9283 0.9748 0.8904 0.9112 

Source: Own editing based on STATA 17 results 
In parentheses, the standard errors 
* p < 0.1, ** p < 0.05, *** p < 0.01 
To enable a comprehensive quantifiable assessment and comparison of the 

models, I also conducted a panel regression analysis for both univariate and 

multivariate approaches across all examined periods. The results are presented 
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in Table 7. In exploring the relationship between univariate MAPE and relative 

volatility (CV_STL), I found that all coefficients are positive and statistically 

significant (p < 0.01), indicating that rising volatility systematically 

corresponds with increased prediction errors in the panel regression model as 

well. The highest sensitivity was observed for the RNN model (1.485), while 

the lowest was found for the GRU model (0.923). The R² values reflect 

varying explanatory power: the GRU model achieved the best fit (0.8632), 

while the LSTM yielded the weakest (0.5259), highlighting the heterogeneous 

performance of the models. For the multivariate neural network models, a 

positive and significant relationship between relative volatility and MAPE 

values was also observed across all aggregated panel regressions. The highest 

regression coefficient was recorded for the RNN-LSTM model (2.719), while 

the lowest appeared in the GRU (1.035), once again pointing to the somewhat 

more robust behavior of GRU models under higher volatility conditions. The 

R² values ranged between 60% and 90% depending on the model, thus 

showing variable but generally strong explanatory power, particularly in the 

case of the RNN model (90.72%), which exhibited outstanding fit. Overall, 

the results demonstrate that both univariate and multivariate deep learning 

models are systematically influenced by volatility in their forecasting errors, 

with this effect remaining consistent across different time periods. This 

reinforces the central role of volatility in shaping predictive performance, even 

within more complex model structures. 
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Table 7: Panel regression results of the relative volatility indicators and 

MAPE values for the examined assets across all periods 
 (1) (2) (3) (4) (5) (6) 
 Univ-

RNN 
Univ-
LSTM 

Univ-
GRU 

Univ-
LSTM-
GRU 

Univ-
RNN-
LSTM 

Univ-
RNN-
GRU 

CV_STL 1.485*** 1.418*** 0.923*** 1.274*** 1.373*** 1.185*** 
 (0.201) (0.231) (0.067) (0.135) (0.131) (0.114) 
       
Constant 0.004 0.003 0.006*** 0.005 0.007* 0.006** 
 (0.005) (0.006) (0.002) (0.004) (0.003) (0.003) 
Observations 36 36 36 36 36 36 
R2 0.6157 0.5259 0.8632 0.7251 0.7645 0.7606 

 
 (7) (8) (9) (10) (11) (12) 
 Multi-

RNN 
Multi-
LSTM 

Multi-
GRU 

Multi-
LSTM-
GRU 

Multi-
RNN-
LSTM 

Multi-
RNN-
GRU 

CV_STL 2.144*** 1.369*** 1.035*** 1.117*** 2.719*** 1.198*** 
 (0.118) (0.192) (0.104) (0.073) (0.188) (0.112) 
       
Constant -0.007** 0.003 0.003 0.003 -0.012** 0.006* 
 (0.003) (0.005) (0.003) (0.002) (0.005) (0.004) 
Observations 36 36 36 36 36 36 
R2 0.9072 0.5982 0.7794 0.8734 0.8604 0.8102 

Source: Own editing based on STATA 17 results 
In parentheses, the standard errors 
* p < 0.1, ** p < 0.05, *** p < 0.01 
 

The aggregated panel regression results presented in Table 7 provide an 

opportunity to compare the prediction sensitivity of the models as a function 

of relative volatility (CV_STL). The positive regression coefficients across all 

models confirm that increases in volatility lead to higher forecasting errors 

(MAPE). At the same time, the magnitude of the coefficients allows us to infer 

which models are the least sensitive to volatility, i.e., more robust. Based on 

these findings, a comparison between univariate and multivariate models 

follows. 

The results clearly show that in most model pairs, the multivariate versions 

respond more sensitively to volatility, as indicated by the higher CV_STL 

coefficients. For the RNN, GRU, RNN-LSTM, and RNN-GRU models, the 
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univariate versions exhibit more favorable (lower) coefficients. However, for 

the LSTM and LSTM-GRU models, the opposite pattern is observed. Overall, 

in most cases, multivariate models demonstrate greater sensitivity to volatility, 

as reflected by higher regression coefficients. This suggests that while 

multivariate models generally achieve higher predictive performance (as also 

indicated by higher R² values, e.g., Multi-RNN: 0.9072 vs. Univ-RNN: 

0.6157), they may be more vulnerable during periods of market turbulence, 

meaning that forecasting errors are more dependent on the level of volatility. 

Therefore, explicit handling of volatility dependence may be particularly 

warranted when applying these models. 

Comparisons between simple and hybrid models also yield important insights. 

In the univariate analyses, based on results for the RNN and its hybrid variants, 

it can be concluded that the hybrid versions were less sensitive to volatility 

than the base model. The same pattern applies to the LSTM and its hybrid 

variants. In contrast, for the GRU, the opposite was observed: the conventional 

base type exhibited lower volatility sensitivity than the hybrid variants. In the 

multivariate analyses, the GRU base model also outperformed its hybrid 

variants. Comparisons of RNN and LSTM models are more mixed, as in some 

cases the hybrid models (RNN-GRU and LSTM-GRU) displayed lower 

sensitivity than their base counterparts. Based on the regression coefficients, 

it can be concluded that univariate models are, on average, less sensitive to 

volatility and therefore demonstrate more robust performance. Simple 

architectures (particularly GRU) exhibit lower volatility sensitivity than 

hybrid models. The performance of hybrid models spans a wide spectrum: 

while some (e.g., RNN-LSTM) are highly sensitive to volatility, others (e.g., 

RNN-GRU) are surprisingly stable. Consequently, model selection strongly 

influences how well a given architecture can manage the effects of volatility. 

This comparison highlights that not only the model type but also the input 
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structure (univariate vs. multivariate) must be carefully considered when 

designing predictive systems, particularly in highly volatile market 

environments. 

4.2. Comparison of trading strategy results 

The basis of the trading strategies was formed by the predictive values 

generated by the models with the best forecasting performance for each period 

and asset category. The following section compares the returns and risk 

metrics of strategies based on backtesting actual versus predicted values. 

Based on the 2018 data (Figure 3), it is evident that the traditional buy-and-

hold strategy was outperformed in many cases by the more advanced machine 

learning-based models. This was particularly true for volatile asset classes 

such as cryptocurrencies and, to some extent, precious metals, although the 

predictive models also demonstrated advantages in equity and currency 

markets. For stock indices (S&P 500, DAX), the superiority of the MAPE-

based models was clearly observable. For example, the buy-and-hold strategy 

for the S&P 500 achieved only a 0.83% cumulative return, whereas MAPE-

based strategies yielded 12–14% returns with an outstanding Sharpe ratio 

around 2.65. In the case of the DAX, the buy-and-hold strategy produced a 

negative return (-17.12%), in contrast to the positive performance of the 

MAPE-based models, which not only improved returns but also exhibited a 

significantly more favorable risk profile. For the Nikkei225 index, however, 

all strategies generated negative returns. For gold and silver, a clear increase 

in returns was also observed. For instance, the MAPE-position strategy 

yielded a 7.02% return and a Sharpe ratio of 3.1859 for gold, while the buy-

and-hold approach showed only marginal positive performance. The only 

exception was crude oil: the buy-and-hold strategy achieved a 20.56% positive 

return, whereas active strategies could not meaningfully improve on this. The 
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predictive models’ Sharpe ratios were negative, and maximum drawdowns 

reached considerably higher levels (e.g., MAPE filter: 0.5712), indicating that 

the model was unable to adequately track the nonlinear and turbulent 

movements of the oil market. The most pronounced differences were observed 

in cryptocurrencies. Bitcoin’s buy-and-hold return was strongly negative (-

73.38%), whereas the Base Strategy achieved over 86% cumulative return. 

Similarly significant improvements were noted for Ethereum and Litecoin, 

where machine learning-based strategies provided substantial return 

advantages, with Sharpe ratios consistently exceeding two. For currency pairs 

(EUR/USD, GBP/USD, AUD/USD), the machine learning models generally 

exhibited positive Sharpe ratios that were higher than those of the buy-and-

hold strategies, even when absolute return levels remained moderate. 

Additionally, in nearly all cases, they resulted in lower maximum drawdowns. 

Overall, the Base, MAPE-filter, and MAPE-position strategies in 2018 

outperformed the buy-and-hold approach across almost all asset classes, 

particularly in terms of returns and risk-adjusted performance (Sharpe ratio). 

Maximum drawdowns were also lower under the predictive models, reflecting 

more effective risk management. The exception of the oil market highlights 

that, while machine learning represents a promising tool for financial 

forecasting, there are market environments in which predictive performance 

is not guaranteed. 
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Figure 3: Comparison of the 4 trading strategies for the calm period 

(2018) 

Source: own editing 

The extreme market environment of 2020, marked by Covid19 (Figure 4), 

sharply highlighted the performance differences between various investment 

strategies. The traditional buy-and-hold approach underperformed in many 

asset classes compared to machine learning-based adaptive strategies, which 

not only provided higher returns but also better risk-adjusted performance and 

lower maximum drawdowns. The S&P 500 is a particularly clear example of 

the advantages of predictive strategies. While the buy-and-hold return was 

slightly negative (-5.65%), the Base Strategy achieved a cumulative return of 

74.26%. The Sharpe ratio for the predictive models reached an extremely high 

value (4.7), compared to the negative ratio of buy-and-hold (-0.2465). Similar 

results were observed for the DAX and Nikkei225: alongside losses from the 

traditional strategy, the MAPE-based models delivered positive returns and 

significantly better risk metrics. Active strategies also performed well for 

precious metals. For gold, the MAPE-position strategy achieved a 23% return 
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and a Sharpe ratio of 2.48, clearly outperforming buy-and-hold. Maximum 

drawdowns were also more moderate for the active models, reflecting 

improved risk management. The crude oil market again behaved as an 

exception in 2020. While the buy-and-hold strategy yielded a 17.12% return, 

the active strategies suffered substantial losses (-45.52%) and produced 

negative Sharpe ratios. This is likely attributable to market extremes (negative 

futures prices) that represented structural changes for which the predictive 

algorithms were not prepared. Following usual volatility patterns, the models 

often favored incorrect directions, which visibly worsened performance. In 

cryptocurrency markets, active approaches almost universally led to 

significant outperformance. Litecoin’s buy-and-hold return was 1.23%, 

whereas the predictive strategy produced a cumulative return of 127.96% and 

a Sharpe ratio above 2.75. Similar trends were observed for Bitcoin and 

Ethereum. Machine learning-based strategies (Base Strategy and MAPE-

position) achieved returns exceeding 100% with consistently strong Sharpe 

ratios between 2 and 3. For currency markets, the advantage of predictive 

strategies was smaller but still noticeable. Although absolute return 

differences were not dramatic, machine learning models generally improved 

risk-adjusted performance and reduced drawdowns in most cases. In 2020, 

amid extreme market volatility, machine learning strategies were not merely 

an alternative but, in many cases, a more effective and stable solution for 

portfolio management. Active strategies achieved outstanding results in equity 

markets, cryptocurrency markets, and precious metals, while producing 

moderate but stable improvements in currency markets. The oil market, 

however, again posed significant challenges to predictive systems. 
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Figure 4: Comparison of the 4 trading strategies for the Covid19 period 

(2020) 

Source: own editing 

The market environment in 2022 (Figure 5) presented significant challenges 

for investors. Geopolitical tensions, inflationary pressures, and monetary 

tightening generated substantial volatility across traditional asset classes. In 

this uncertain context, predictive, machine learning-based strategies often 

provided effective protection against losses, and in many cases even generated 

positive returns where buy-and-hold suffered significant drawdowns. In 

equity markets, the buy-and-hold approach proved ineffective: the S&P 500 

posted a -22.42% return with a Sharpe ratio of -1.81, whereas the Base 

Strategy achieved a positive return of 13.49% and a Sharpe ratio of 1.46. The 

contrast was even more pronounced for the DAX: buy-and-hold closed with -

31.16% return and a -2.06 Sharpe ratio, while predictive strategies delivered 

positive, albeit more modest, performance. The superiority of active strategies 

was also evident for the Nikkei225, with buy-and-hold yielding -7.55% and 

the Base Strategy generating 18.55% returns alongside an exceptionally high 
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Sharpe ratio of 2.16. For gold and silver, predictive strategies enhanced returns 

and achieved better Sharpe ratios than the passive approach. Crude oil again 

acted as an exception: the buy-and-hold strategy produced an outstanding 

35.48% return, whereas competing methods largely underperformed, with 

only the MAPE-filter strategy managing a positive outcome (10.89%). This 

discrepancy likely reflects that oil price movements were driven by nonlinear, 

unusual dynamics (geopolitical shocks, supply chain anomalies) to which the 

machine learning algorithms could not adequately respond. The 

cryptocurrency markets in 2022 experienced severe corrections. Buy-and-hold 

returns for Bitcoin (-85.01%), Ethereum (-120.93%), and Litecoin (-101.92%) 

incurred substantial losses. Predictive strategies, however, substantially 

mitigated losses, particularly for Litecoin, where the Base Strategy realized a 

49.07% return with a Sharpe ratio of 2.17. Active strategy construction also 

generated profits for Bitcoin, although for Ethereum it could not fully offset 

the negative trend. Predictive strategies also produced more favorable 

outcomes in currency markets. The EUR/USD buy-and-hold return was -

7.65%, while the Base Strategy (MAPE-based) achieved 7.91% with a Sharpe 

ratio of 2.57. For GBP/USD and AUD/USD, results were more mixed, but the 

passive approach still underperformed. Overall, in 2022, machine learning-

based predictive strategies demonstrated their value, particularly in managing 

crisis-like, extreme market conditions. Across equities, cryptocurrencies, 

precious metals, and multiple currency pairs, they were able to reduce losses 

and, in many cases, deliver positive returns. Improvements in Sharpe ratios 

clearly indicate that these models manage risk more effectively. The oil 

market, however, remained a critical challenge, as investment approaches 

based on predictive models consistently underperformed in this asset class. 
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Figure 5: Comparison of the 4 trading strategies for the Russian–

Ukrainian conflict period (2022) 

Source: own editing 

Across the three years under review, it is generally observed that machine 

learning-based active strategies systematically outperformed the buy-and-

hold approach in terms of both returns and risk-adjusted performance. This 

trend was particularly pronounced in equity and cryptocurrency markets. The 

largest differences occurred in years with elevated market volatility (e.g., 2020 

and 2022), supporting the conclusion that machine learning strategies are 

more effective at navigating turbulent environments. A notably important 

exception, however, is crude oil, which produced weak results for active 

strategies in every year. This may be attributed to the unique characteristics of 

commodity markets, the difficult-to-predict impacts of fundamental events 

(geopolitics, OPEC decisions), and the fact that oil price movements often 

occur suddenly within narrow time windows. Overall, the broad application 

of machine learning strategies can be considered successful, although certain 

asset classes (e.g., oil) may require further model development or combination 
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with other predictive tools. Accordingly, predictive models represent a 

valuable supplement to investment decision-making, but they do not replace 

careful market interpretation. This highlights that while artificial intelligence 

holds significant potential, no single model provides a universal solution for 

all market conditions. 

Beyond evaluating individual asset performance, I also experimented with 

portfolios of varying weightings, which are detailed in the following section. 

Figure 6 presents the cumulative returns in 2018 for equally weighted 

portfolios across four different asset classes (each asset included with a 1/3 

weight), broken down by strategy. The buy-and-hold approach underperforms 

in all portfolios, particularly in the cryptocurrency portfolio, which suffered a 

drastic -75.13% loss. In contrast, the Base Strategy significantly improves 

performance, especially for the cryptocurrency portfolio, achieving a 

cumulative return of 100.54%, thereby fully outperforming the passive 

investment approach. Models based on the MAPE-filter and MAPE-position 

strategies exhibit more stable, conservative results: for the commodity 

portfolio, both approaches produced around 12% returns, surpassing buy-and-

hold. Improvements are also observed for the equity and currency portfolios 

when using active strategies, particularly those based on MAPE. In the 

cryptocurrency portfolio, the MAPE-filter strategy delivers more modest but 

still positive performance (15.21%), while the MAPE-position strategy 

achieves an outstanding 89.91% return, which is remarkable given the 

extremely volatile environment. Overall, active, prediction-based strategies 

effectively manage high-risk market conditions (cryptocurrencies), while 

moderate gains can also be achieved in more conservative asset classes. 
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Figure 6: Cumulative semi-annual returns of equally weighted portfolios 

by asset class for the calm period (2018) 

Source: own editing 

Figure 7 presents the cumulative returns for various portfolios in 2020. 

Significant differences can be observed across asset classes and strategies. In 

the equity portfolio, the buy-and-hold strategy yielded a negative return (-

7.51%), whereas the Base Strategy and the MAPE-position strategy showed 

substantial positive performance (37.74% and 36.90%), indicating that active, 

prediction-based approaches can outperform even in a crisis environment. For 

the commodity portfolio, although the buy-and-hold strategy achieved a 

positive return (11.17%), the Base and MAPE-position strategies resulted in 

negative returns (-2.11% and -1.92%), suggesting that these active models 

struggled to adapt effectively to market dynamics in this segment. The 

cryptocurrency portfolio delivered outstanding returns across all strategies, 

with the Base Strategy (120.96%) and MAPE-position strategy (107.37%) 

achieving exceptional performance, surpassing even the buy-and-hold 

approach (27.43%). In the currency markets, returns remained low under all 
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approaches, yet prediction-based strategies still outperformed the passive buy-

and-hold method. Overall, machine learning-based strategies were 

particularly effective in high-volatility markets (cryptocurrencies, equities), 

while their performance was moderate or occasionally underperforming in 

more stable or less predictable markets (commodities, currencies). 

 
Figure 7: Cumulative semi-annual returns of equally weighted portfolios 

by asset class for the Covid19 period (2020) 

Source: own editing 

Based on the 2022 data (Figure 8), the buy-and-hold strategy performed 

poorly across all portfolios, particularly in the cryptocurrency portfolio, which 

experienced an extreme cumulative loss of -103.05%. In contrast, the Base 

Strategy consistently outperformed the passive approach, especially in the 

equity market (13.05%) and the crypto market (24.23%), achieving positive 

returns despite high volatility. The MAPE-filter strategy produced more stable 

and moderate results, delivering returns above 10% for equities and 

commodity assets, while closing slightly negative in the cryptocurrency 
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portfolio (-1.67%). The MAPE-position strategy also performed strongly in 

both the equity (12.29%) and cryptocurrency portfolios (21.99%), confirming 

that position management based on prediction errors can effectively mitigate 

risk in turbulent market conditions. For the commodity portfolio, both the 

Base and MAPE-position strategies showed slight losses, indicating that these 

models were less capable of accurately tracking the market movements in this 

segment. In the currency markets, all approaches yielded similar, modest 

positive returns (approximately 1.4–2.1%), reflecting low volatility and 

limited predictability. Overall, active, prediction-based strategies in 2022 

again outperformed the buy-and-hold approach, particularly in equity and 

cryptocurrency markets, even under extreme market stress conditions. 

 
Figure 8: Cumulative semi-annual returns of equally weighted portfolios 

by asset class for the Russian-Ukrainian conflict period (2022) 

Source: own editing 

Figure 9 presents the cumulative returns of equally weighted portfolios (each 

asset assigned a 1/12 weight) across three different years, based on four 
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distinct strategic approaches. The buy-and-hold strategy recorded significant 

losses in 2018 and 2022 (-19.86% and -30.70%, respectively), while achieving 

a moderate 7.12% return in 2020. In contrast, the Base Strategy generated 

positive cumulative returns in all examined years, notably outperforming in 

2020 (39.75%) and strongly exceeding the buy-and-hold performance in 2018 

(29.52%). The MAPE-filter-based strategy delivered more conservative but 

generally more stable results, closing 2018 with an 8.98% return, 2020 with 

20.52%, and 2022 with 5.26% positive returns. The MAPE-position approach 

also significantly outperformed the passive strategy, particularly in 2020 and 

2018, achieving cumulative returns of +36.17% and +27.60%, respectively. 

These findings indicate that filtering and position management based on 

prediction errors (MAPE) can help mitigate negative market impacts and 

enhance performance stability under varying environmental conditions. 

 
Figure 9: Semi-annual cumulative returns of equally weighted portfolios 

composed of 12 assets for the calm period, the Covid19 period, and the 

Russia-Ukraine conflict period (2018, 2020, and 2022) 

Source: own editing  
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5. CONCLUSIONS AND RECOMMENDATIONS 

The objective of the research was to explore the applicability of machine 

learning algorithms, particularly deep neural networks, for predicting the 

prices of financial instruments in different market environments and product 

types. The study focused on the volatility sensitivity of predictive models, the 

reliability of predictions, and their practical applicability. The thesis examined 

the topic based on two main objectives. The first focuses on the relationship 

between the performance of predictive models and market volatility, as well 

as the applicability of individual models in different economic cycles. The 

second objective focuses on the practical performance of trading strategies 

supported by machine learning models. The analysis paid particular attention 

to the modeling of stock indices, commodity market products, 

cryptocurrencies, and currency pairs, as their volatility, liquidity, and 

regulation vary greatly. Based on the empirical analyses conducted during the 

research, well-founded conclusions can be drawn from several perspectives, 

which I will detail below. 

C1: The primary objective of my research is to determine the extent to 

which different neural deep learning models can be generalized, i.e., 

whether they are capable of achieving outstanding predictive 

performance in different crisis situations. 

K1: What relationship can be demonstrated between the volatility of financial 

instruments and the predictive performance of price forecasting models? 

Based on regression models, it can be clearly demonstrated that volatility, in 

this case the trend and seasonality-free (CV_STL) relative standard deviation, 

has a significant positive correlation with the forecast error (MAPE). 

According to my results, the accuracy of forecasts deteriorates in all model 

categories examined as market volatility increases, which is particularly 
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noticeable in the case of cryptocurrencies, but can also be observed in 

commodity market products. This is consistent with the findings of several 

studies that emphasize the difficulties of forecasting nonlinear and non-

stationary data (Ouyang et al., 2021; Zhang et al., 2023; Avinash et al., 2024). 

Deep learning can partially address these challenges, but sudden shifts in 

turbulent markets remain a problem in terms of prediction reliability. 

K2: What kind of forecasting distortions are caused by the extreme price 

movements observed during periods of crisis, and how do different types of 

algorithms respond to this? 

The crisis periods of 2020 and 2022 clearly demonstrated that models respond 

differently to extreme price movements. GRU models, for example, proved to 

be surprisingly stable, while the performance of hybrid architectures 

containing RNNs (e.g., RNN-LSTM) deteriorated significantly, meaning that 

the crisis periods not only caused an increase in prediction errors but also 

exacerbated performance differences between models. This confirms the 

findings reported in the literature that overly complex models are more 

susceptible to instability (Livieris et al., 2020) and also highlights that 

forecasting algorithms are sensitive to extreme price movements caused by 

market shocks regardless of their level of sophistication, so it is of paramount 

importance to take these factors into account when developing forecasting 

methods (Mari and Mari, 2023 and 2025; Sivakumar, 2025). 

K3: What role does hybrid model architecture play in predictive performance 

change in a volatile market environment? 

Based on the results of this paper, it can be concluded that the architecture of 

predictive models, especially hybrid deep learning structures, plays a 

significant role in the development of forecasting performance, particularly in 

volatile market environments. Empirical studies have shown that models using 
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RNN components as the first layer often perform worse than other 

architectures, especially in the case of cryptocurrencies. This result is partly 

consistent with the findings of Liang et al. (2022) and Ouyang et al. (2021), 

who pointed out that more complex, attention-based or Transformer-type 

architectures can provide more robust performance in extreme market 

environments. At the same time, the simpler LSTM- or GRU-based models 

examined in the dissertation proved to be more stable than RNN modules in 

several cases, especially in hybrid structures, which supports the importance 

of fine-tuning hybrid architectures. The internal structure of the models is 

therefore not just a matter of technical preference, but a key element in 

managing volatility. 

C2: The second objective of my thesis is to examine the extent to which 

machine learning models can improve the trading performance of 

financial instruments compared to the traditional buy-and-hold strategy. 

K4: How well can trading strategies based on machine learning predictions 

exploit market anomalies, as opposed to the efficient market theory? 

Backtesting of rule-based, prediction-driven trading strategies confirmed that 

they outperformed the buy-and-hold benchmark return in several periods and 

for several product types. Versions equipped with a MAPE filter enabled 

additional risk management, as they were able to filter out positions with low 

prediction certainty. My results confirm the findings of Viéitez et al. (2024) 

and Ju et al. (2024), who argue that, in addition to the predictive capabilities 

of the models, their adaptive use, for example in the form of position filtering, 

greatly improves practical performance. In the case of the Sharpe ratio, it was 

observed that the predictive strategy generally showed a higher value, 

indicating a better risk-return ratio in terms of return volatility. This finding 

contradicts the efficient market hypothesis (EMH), which states that it is not 
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possible to systematically outperform the market in the long run by taking all 

available information into account (Fama, 1970). 

K5: What effect does the volatility of different asset classes (e.g., stocks, 

cryptocurrencies, commodities, currency pairs) have on the performance of 

machine learning-supported trading strategies? 

The results show that the unpredictability of cryptocurrencies and the stability 

of currency pairs differ significantly, which has a direct impact on trading 

results. Product-specific analyses have therefore highlighted that volatility 

affects strategy performance in different ways. In the case of cryptocurrencies, 

the MAPE filter was particularly effective in reducing losses, while in foreign 

exchange markets, the stability of the Base Strategy was outstanding. In stock 

markets, the relative performance of the strategies proved to be more period-

dependent, which is consistent with the findings in the literature that asset-

specific volatility requires a different modeling approach (Yu et al., 2023; 

Aydogan-Kilic and Selcuk-Kestel, 2023). The results support the need for 

product-specific parameterization to achieve maximum efficiency. Another 

important conclusion is that, in the case of equally weighted portfolios, the 

performance of prediction-driven strategies was not consistent across all 

market segments. For commodity and currency market instruments, the 

differences between the strategic variants were smaller, while for 

cryptocurrencies, there were drastic differences. This reaffirms that the 

effectiveness of a strategy and model can only be interpreted in relation to a 

given product type and period, so model selection and parameter tuning play 

a decisive role in practical effectiveness. 

K6: What differences can be observed in the performance of machine 

learning-based strategies during different economic cycles? 
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The performance of trading strategies varied significantly across different 

market environments. In the calm market environment of 2018, almost all 

model-based strategies generated stable profits. In contrast, in 2020 and 2022, 

predictive performance declined due to increased volatility. However, MAPE-

filtered systems reduced the risk of losses, confirming the practical relevance 

of Ouyang et al. (2021) attention-based volatility management strategies and 

highlighting the importance of adaptive decision-making mechanisms. These 

findings reinforce the view in the literature (Kang et al., 2025) that prediction 

systems must adapt to changes in economic regimes. The performance of 

strategies thus depends not only on the accuracy of the model, but also on its 

volatility-sensitive application. One of the most important conclusions of the 

research is therefore that machine learning-based trading systems can only 

deliver stable performance in crisis situations if they also have built-in 

prediction validation mechanisms and adaptive filtering. 

The empirical results of the dissertation confirm that machine learning models 

are effective prediction tools, but their performance depends significantly on 

volatility, market regime, and asset type. The excess returns and risk reduction 

achieved through the use of prediction-based strategies demonstrate that such 

systems can be valuable additions to investment decision support, as they offer 

not only theoretical but also practical advantages, provided that they 

adequately integrate the measurement of forecast uncertainty and adaptation 

to market volatility. 
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6. NEW SCIENTIFIC RESULTS 

I. I have verified through joint analysis of several different product 

types (stocks, commodity instruments, currency pairs, 

cryptocurrencies) that volatility has a significant impact on the 

predictive performance (MAPE) of neural network models, 

regardless of the methodology used. 

During my research, I examined different asset classes (stock indices, 

commodity products, currency pairs, and cryptocurrencies) in three 

different periods. Based on the results, there was a significant positive 

correlation between trend- and seasonality-adjusted relative volatility 

and the mean absolute percentage error (MAPE) in all cases. The panel 

regression models showed high R² values, which supports the fact that 

volatility is not only statistically significant but also has a strong 

explanatory power in terms of changes in predictive performance. This 

effect was independent of the asset class type and the chosen model 

architecture, meaning that volatility acts as a distorting factor in all 

cases. 

II. I have demonstrated using empirical tools that the level of market 

volatility influences the performance difference between models, 

which is noticeable during periods of high volatility.  

During the 2018 ("calm") period, the forecast errors of the individual 

models were pretty much the same. Most models (RNN, LSTM, GRU, 

and their hybrids) produced similar MAPE values, so model selection 

wasn't that important. During periods of lower volatility, the 

performance of the models converged, reducing the significance of 

model selection. In contrast, during the 2020 crisis period, the 

differences between the models increased significantly: the standard 
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deviation of prediction errors more than doubled. The studies also 

revealed that higher volatility levels increase not only MAPE but also 

performance variance, which is a particularly important factor in 

model application. 

III. During the periods examined, the RNN architecture used in the 

first hidden layer of hybrid models has a performance-degrading 

effect, regardless of which other algorithm it is combined with. 

Based on the regression results for the 2018 period, it is clear that 

hybrid models based on RNN (RNN-GRU or RNN-LSTM) are 

characterized by higher volatility sensitivity and lower predictive 

performance than hybrid models that do not contain an RNN 

component in the first layer. This suggests that RNN structures have 

more difficulty handling densely noisy, trend-dependent time series, 

especially in cases of high volatility. The results also show that not all 

model combinations lead to performance gains and that the internal 

structure of the network, especially the structure of the first layers, 

plays a critical role in prediction accuracy. 

IV. I have demonstrated that, during the period under review, GRU-

based forecasting models are less sensitive to increases in relative 

volatility than RNN- or LSTM-based architectures, which offers a 

novel approach to examining the relationship between model 

specification and market uncertainty. 

Based on the panel regression analyses presented in the dissertation, 

relative volatility was significantly positively correlated with the mean 

absolute percentage error (MAPE), regardless of the period and asset 

class. At the same time, I also found that the model response to 

volatility is not uniform: architectures were distorted in different ways 
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and to different degrees by increased market uncertainty. GRU-based 

models showed lower sensitivity, while the performance of RNN-

based hybrid architectures deteriorated significantly in the case of high 

volatility. This result combines the quantitative impact of the volatility 

environment with the quality of the model specification in a novel way 

and confirms that prediction risk depends not only on the current state 

of the market but also on the chosen model structure. This enables a 

preliminary analysis of the volatility sensitivity profile of models, 

which can be an important practical guideline, for example, in the 

application of predictive trading systems. This finding is consistent 

with, but also further develops, the conclusions of the current 

literature, which discusses the interaction between volatility and 

models separately, but does not systematically compare the volatility 

sensitivity of different architectures. 

V. I have demonstrated that trading rules (position opening timing 

and position sizing) developed with dynamic consideration of the 

mean absolute percentage error (MAPE) significantly improve the 

risk-return ratio, especially in the case of highly volatile asset 

classes. This result provides empirical evidence against the validity 

of the weak form of the efficient market hypothesis. 

During the research, trading strategies were not only based on the 

direction of price movements predicted by the model, but also 

integrated the estimated prediction error (MAPE). This allowed the 

strategy to manage uncertainty on two levels. On the one hand, it 

excluded opening positions during periods when the reliability of 

predictions was low. On the other hand, it adapted directly to the 

performance of the models at the level of capital exposure by 

dynamically scaling position sizes. The results were particularly 
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striking for cryptocurrencies, as the maximum drawdown for Litecoin 

and Ethereum decreased significantly, while the cumulative return and 

Sharpe ratio increased significantly compared to the traditional buy-

and-hold strategy. This approach offers a new perspective on the use 

of predictive models, as it not only uses deterministic signals for 

trading decisions, but also explicitly incorporates model uncertainty 

into decision-making. This contributes to the development of an 

adaptive, self-reflective trading architecture that is sensitive to changes 

in market regimes. In practice, performance suggests that by taking 

prediction errors into account, it is possible to achieve statistically 

significant excess returns in certain market segments especially in 

asset classes characterized by high volatility and information 

asymmetry even when the weak form efficient market hypothesis 

holds. 
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7. SUMMARY 

The emergence of complex and large data sets has caused significant 

technological and conceptual changes in the development and application of 

forecasting models over the past 20 years. Processing the vast amount of data 

would no longer be efficient using traditional methods, and machine learning 

has become an essential part of most predictive modelling industries. This is 

particularly true in the financial sector, where profitable operations seek to 

make the best use of the innovative tools available, which are much needed to 

explore non-linear relationships and patterns. 

The dissertation examines two highly topical and practically significant 

financial prediction modeling problems. The first objective was to map the 

impact of volatility on prediction performance, while the second evaluated the 

effectiveness of trading strategies utilizing machine learning-based 

predictions in different market environments. The research relied on 

quantitative regression analyses, comparisons of deep learning architectures, 

and back-tested trading strategies, thus contributing new scientific knowledge 

to financial machine learning research in both theoretical and applied aspects. 

In the introduction, I presented the economic background and significance of 

the field, and also discussed the development path of predictive algorithms. 

Furthermore, I provided insight into the current state of this field of science 

and the latest trends. The topic I examined is quite popular among 

international researchers, and there are many publications to choose from to 

get a more detailed picture. I divided the systematic literature review into four 

main sections, in which I dealt in detail with the stock, cryptocurrency, 

commodity, and foreign exchange markets. The analysis of scientific 

publications provided guidance in understanding the characteristics of the 

models on the one hand, and in identifying various product-specific factors on 
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the other. In the empirical part of my research, I used data from the most traded 

stock indices (S&P500, DAX, Nikkei225), commodity market products 

(crude oil, gold, silver), cryptocurrencies (Bitcoin, Ethereum, Litecoin) and 

currency pairs (EUR/USD, GBP/USD, AUD/USD) for the period from 

January 1, 2016 to June 30, 2022. This period was chosen in part because it 

includes the calm period (2018), the Covid19 (2020) and the war crisis (2022), 

and partly because cryptocurrencies are relatively new products compared to 

the others, so their price data covers a shorter period. Therefore, this seemed 

to be the optimal decision in terms of comparability. I collected the data from 

the website www.finance.yahoo.com, with the exception of cryptocurrencies, 

for which the data comes from www.coinmarketcap.com. The modeling was 

based on three deep learning algorithms (RNN, LSTM, GRU) and three hybrid 

methodologies developed from them (LSTM-GRU, RNN-LSTM, RNN-

GRU) developed from them. I presented the differences between actual and 

estimated prices using the MAPE indicator. I divided the results chapter into 

three main sections. In the first section, I compared the models examined by 

product type, model, and period. The performance analysis of the methods 

was essential for further investigations, which focused on volatility and real 

trading strategies. The first objective of the thesis was to explore the 

relationship between the different volatility structures of financial instruments 

and the accuracy of time series-based machine learning models. Experiments 

conducted on different product classes (stocks, commodity market 

instruments, cryptocurrencies, and currency pairs) confirmed that there is a 

strong positive correlation between relative volatility and prediction error, 

which was significantly supported by regression models run on different 

architectures. The relationship was present in all periods examined, but proved 

to be particularly strong in the crisis periods of 2020 and 2022. Another 

important finding of the research is that the performance of the models is 



60 
 

highly dependent on the period and the asset. During the calm period (2018), 

the differences were minimized, while during the crisis periods (2020, 2022), 

model selection became a critical factor. Hybrid architectures (RNN-GRU, 

LSTM-GRU) performed better in most cases, but not all combinations were 

beneficial, especially the use of RNN as the first layer, which degraded 

performance. The research thus directly confirmed the assumption that neither 

volatility nor model architecture can be treated as independent factors when 

examining predictive performance. The second objective of the research was 

to examine whether trading strategies built on machine learning models are 

capable of systematically outperforming the passive investment approach 

(buy-and-hold), especially in environments with varying volatility. The paper 

examined backtested strategies in equally weighted portfolios over three years 

(2018, 2020, 2022) and across four different asset classes. Methods based on 

the predictive performance of machine learning models (Base Strategy, 

MAPE-filter, and MAPE-position) consistently improved the risk-return ratio, 

which was most evident in lower Sharpe ratios and drawdowns. In the case of 

cryptocurrencies, machine learning-based strategies were most prominent in 

2022, while losses were significantly reduced. In line with the trading strategy 

literature discussed in Section 2.8, the results of this paper show that machine 

learning not only offers predictive accuracy but also has decision support 

potential. The difference is that the present study explicitly quantified the 

volatility sensitivity of the strategies, which provides a new perspective on the 

evaluation of the applicability of machine learning in an investment 

environment. The success of the strategies calls into question the practical 

validity of the efficient market hypothesis (EMH), especially if the models 

used are able to adapt to market regimes, as this research has demonstrated on 

several occasions. 
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Overall, the results of this paper contribute to the understanding of the 

volatility sensitivity of machine learning models and support the notion that 

predictive performance depends not only on the structure of the model but also 

a large extent on the characteristics of the market environment. Based on the 

literature review, it can be stated that although numerous publications deal 

with volatility forecasting, few studies specifically analyze the impact of 

volatility on predictive performance, especially when examining multiple 

asset classes simultaneously. The examination of trading strategies based on 

predictive models further reinforces the practical economic value of the thesis. 

The research draws attention to the diversity and excellent results of machine 

learning in the financial sector and emphasizes that the application of the latest 

technologies is essential for continuous development and profitable operation. 
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