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1. INTRODUCTION 

1.1. Geopolitical shocks and their impact on financial markets 

Over time, events with global repercussions occur time and again. These can be described 

as geopolitical events or geopolitical shocks. Geopolitical shocks can be defined as significant 

events that can influence large parts of the world, affecting economic stability, political relations, 

and social dynamics (Baker et al., 2016; Bloom, 2009; Caldara & Iacoviello, 2022). These shocks 

often arise from military conflicts, political unrest, or sudden changes in international relations, 

leading to widespread uncertainty and volatility across multiple sectors. One of the primary 

characteristics of geopolitical shocks is their ability to induce immediate and substantial economic 

impacts (Caldara & Iacoviello, 2022). Furthermore, geopolitical shocks impact the volatility of all 

assets, asset classes, sectors, and countries worldwide (Engle & Campos-Martins, 2020). 

Concerning the impact on the financial markets, they are accompanied by increasing broad 

uncertainty, which in turn leads to changes in the behavior of international market players (Baker 

et al., 2016; Baur & Smales, 2020; Caldara and Iacoviello, 2022). Uncertainty in the financial 

markets is reflected here by the fact that opinions on the valuation of assets are more unclear, 

resulting in stronger selling and buying (Fama & French, 1993; Fama & MacBeth, 1973). 

However, it can be observed that the volatility is lower for good news than bad news, which is 

called the asymmetry effect, e.g., Alberg et al. (2008), Awartani and Corradi (2005), Byun and Cho 

(2013), Pan and Liu (2018), and Wang et al. (2020). 

The question of whether a shock has a global impact can only be answered ex-post in 

review, since a cause-and-effect relationship has to be considered. One must distinguish here 

between the geopolitical risk and the possible geopolitical shock Caldara and Iacoviello (2022). 

The geopolitical risk can be quantified using various methods and thus indicates the likelihood of 

certain geopolitical events occurring. Since the expectations of future developments in the 

financial markets are based on the thesis of efficient capital markets, the occurrence of a 

geopolitical shock with a certain probability is already included (Fama, 1970). The last major 

geopolitical events that caused turbulence in the financial markets were the COVID-19 pandemic 

(e.g., Albulescu, 2021; Liu et al., 2020; Zhang et al., 2020), the Russian attack on Ukraine (e.g., 

Izzeldin et al., 2021; Izzeldin et al., 2023; Umar, 2022), and the attack of Hamas on Israel (e.g., 

Altemur et al., 2024; Ugli, 2024). 

COVID-19 has been regarded as the most significant global threat since World War II and 

the greatest health crisis of the 21st century (Boccaletti et al., 2020; Kickbusch & Leung, 2020). 

The emergence of COVID-19 was first identified in Wuhan, China, in December 2019, following 

a notable rise in cases of pneumonia of unknown origin (WHO, 2020). The illness was 

subsequently named Coronavirus Disease 2019 (COVID-19) (Huang et al., 2020). The virus soon 

transcended national borders, with the initial reported death occurring on January 11, 2020. To 

limit transmission, authorities imposed a lockdown on Wuhan by January 23, 2020. Nevertheless, 

the situation soon escalated, causing the World Health Organization (WHO) to proclaim a public 

health emergency on January 30, 2020, of International Concern (PHEIC) on January 30, 2020 

(Heymann & Shindo, 2020). Despite global containment strategies, the virus continued to spread 



at an alarming rate, leading to its classification as a pandemic by the WHO on March 11, 2020 

(Cucinotta & Vanelli, 2020). The pandemic has since resulted in widespread health crises and 

significant economic and societal disruptions across the globe (Lupton & Willis, 2021). The 

pandemic has triggered a global economic downturn, with many countries enforcing full or partial 

lockdowns to curb the virus’s transmission. These restrictions have drastically slowed global 

economic activity, forcing many businesses to scale back operations or shut down entirely, 

resulting in widespread job losses (Fernandes, 2020). Not only have manufacturers and 

agricultural sectors been impacted, but service industries, education, sports, entertainment, and the 

food sector have also experienced significant declines (Hale et al., 2021). However, financial 

markets were also heavily affected. COVID-19 impacted the stock markets like no other infection, 

not even the Spanish Flu (Baker et al., 2020). With rising uncertainty, stock market volatility rose 

significantly (Albulescu, 2021). The most important volatility index worldwide (VIX) showed a 

spike on the March 16, 2020 of 85.11 points (CBOE, 2024). The simple average value of the index 

from 2014 to 2024 is 19.20 points (CBOE, 2024). 

The second geopolitical shock I wanted to examine is the Russian attack on Ukraine in 

2022. This Russian invasion on February 24, 2022, marks a significant geopolitical shift in 

Europe’s trajectory since the 1990s (Ahmed et al., 2023; Umar et al., 2022). Following the 

dissolution of the Soviet Union, Europe experienced increasing market integration, among other 

developments (Mbah & Wasum, 2022). After a period of liberalization, Russia showed increasing 

autocratic tendencies (Boubaker et al., 2022). Although, Europe maintained strong ties with Russia 

particularly through trade relations like the import of natural gas and other resources (Grätz, 2022). 

As part of a maneuver, Russia is already taking up position on the borders of Ukraine in 2021. The 

invasion that followed on February 24, 2022, caused a global shock (Boubaker et al., 2022; Grossi 

& Vakulenko, 2022). As seen by sell-offs across major stock indices, uncertainty surrounding 

Russia’s actions had already been partially factored into the markets in the days leading up to the 

invasion. However, the invasion itself was largely unexpected. This can be seen by various 

significant market reactions. All major stock indices experienced losses on the day (FRED, 2024a, 

2024b, 2024c; Reuters, 2024; Robus et al., 2024). Meanwhile, crude oil prices surged above USD 

100 per barrel, and natural gas prices spiked (FRED, 2024e). At the same time, volatility increased 

(e.g., Izzeldin et al., 2023; Robus et al., 2024; Umar et al., 2022). The VIX rose to roughly 39.00 

points at the end of January 2022 (CBOE, 2024). Despite manifold sanctions and political pressure 

from the European Union, the United States of America and other Western states, Russia's war has 

been going on since 2022 (Chen et al., 2023; Van Bergeijk, 2022). 

The third geopolitical event I was focusing on in this article is the Hamas attack on Israel 

in 2023. On October 7, 2023, Hamas, the Palestinian political and military organization, launched 

a significant and coordinated attack against Israel, resulting in a profound escalation of hostilities 

and marking a pivotal moment in the ongoing Israel-Palestine conflict. This attack resulted in a 

tragic death toll of approximately 1,400 Israelis, including civilians, soldiers, and police forces, 

while around 240 individuals were taken hostage (Saar‐Ashkenazy et al., 2024). The surprise 

nature of this assault has drawn extensive scrutiny regarding Hamas's operational capabilities and 



the failures in Israel's intelligence and preparedness, raising questions about the factors 

contributing to Hamas’s sudden success (Bordás, 2024; Paché, 2024).  The context of the attack is 

deeply rooted in decades of conflict marked by cycles of violence, historical grievances, and 

territorial disputes. Notably, the ongoing tensions and violence have led to significant humanitarian 

crises on both sides, exacerbated by historical narratives of displacement and violence dating back 

to pivotal events like the Nakba in 1948 (Alsous et al., 2024). The repercussions of the October 7 

attack were immediate; Israel declared a state of war and initiated extensive aerial and ground 

offensives in Gaza, resulting in high civilian casualties and widespread destruction of 

infrastructure, reflective of the broader humanitarian impact of the escalation (Levy et al., 2024; 

Gómez et al., 2024). The international community has responded with mixed reactions. Legal 

claims regarding war crimes have surfaced, particularly concerning Israel’s military actions in 

Gaza, leading to calls for investigations under international law, such as South Africa's recent legal 

proceedings against Israel at the International Court of Justice (Akbar & Genovés, 2024; Soraya 

et al., 2024). This escalation has contributed to significant instability in the markets, which remains 

uncertainty (Ugli, 2024). Around the day of the Hamas terrorist attack on the 7th of October 2023, 

in Israel, the VIX rose only moderately to around 23 points and then flattened out again to a normal 

level (CBOE, 2024). It is not yet possible to foresee the global impact of the conflict between 

Israel and Hamas. However, there is a clear risk of significant effects on the commodity markets, 

as well as the entry of additional parties supporting the respective sides (e.g., the US for Israel or 

Iran for Hamas) and thus an escalation of the conflict in the Middle East. 

1.2. Volatility as a measure of uncertainty in financial markets 

All these events have in common that they have led to increased uncertainty among market 

participants about the future. This is expressed in an increase in market volatility. Volatility is a 

crucial factor influencing investor decisions in financial markets and is fundamental for asset 

pricing and regulatory frameworks, particularly in risk assessment and management (Black & 

Scholes, 1973; Merton, 1976). It serves as a key measure of risk, helping investors and financial 

institutions understand the degree of price fluctuations in stocks or indices and enabling more 

effective risk management. For instance, higher volatility may deter risk-averse investors or 

prompt portfolio adjustments (Black, 1986). Volatility also plays a role in shaping hedging 

strategies used by investors and can influence decisions about the holding period of an investment. 

In addition, volatility is vital in pricing derivatives, particularly options. Increased volatility leads 

to a higher option premium since the likelihood of the option finishing in the money rises with 

greater price variability (Black & Scholes, 1973). Moreover, in economic indicators, volatility 

often signals economic uncertainty or instability. A sharp increase in volatility may reflect investor 

concerns over economic policies, geopolitical events, or financial crises. Analysts and 

policymakers closely monitor such fluctuations to assess economic conditions and formulate 

appropriate responses. In this context, regulators examine volatility and market behavior to ensure 

stability and develop regulations to protect investors while maintaining fair, orderly, and efficient 

markets (Robus et al., 2024). The volatility in the financial markets influences the behavior of 

market participants in these markets. However, increased volatility in the financial markets can 



also affect other capital flows, such as direct investment. This is because volatility influences 

investors' risk assessment. High volatility tends to indicate a rather unstable economic or political 

situation, which increases uncertainty about future returns. As a result, direct investments, which 

represent long-term commitments, become less attractive. Dobrota et al. (2021) examined FDI net 

flows and used an ARIMA procedure to model the time series. Ghosh et al. (2014) showed that 

interest rate volatility has a negative effect on direct capital inflows. A negative impact of increased 

exchange rate volatility on receiving direct investment was shown, for example, by Christiano 

(2014), Hoque & Yakob (2017), Latief & Lefen (2018). Conversely, many studies examine the 

influence of direct investment on stock markets, e.g., Demir (2019), Elimam (2017), Gupta & 

Ahmed (2020). 

There are various methods for measuring asset price volatility, and it is useful to summarize 

them here briefly. A well-known approach involves calculating the standard deviation, which can 

be estimated as the square root of the sample variance (Granger & Poon, 2001). The standard 

deviation is particularly suitable for normally distributed data, serving as an appropriate measure 

of dispersion. Other approaches aimed at mitigating bias from extreme values have been proposed 

by researchers such as Ball & Torous (1984), Garman & Klass (1980), and Parkinson (1980). For 

market participants, volatility is closely tied to risk assessment. In financial markets, downside 

risks are often considered more significant than upside risks. As a result, semi-variance has 

emerged as a risk measurement tool that focuses specifically on the downside volatility of an asset 

or investment portfolio. Unlike standard deviation, which accounts for all deviations from the 

mean, semi-variance only considers negative deviations, or losses, that fall below a defined 

threshold (Choobineh & Branting, 1986). This measure offers investors a more targeted and 

conservative view of risk, emphasizing the potential for losses rather than treating all fluctuations 

equally. Another way to measure volatility, indirectly but market-related, is using option prices. 

Implied volatility represents the market’s forecast of the future volatility of an asset, as reflected 

in option pricing (Day & Lewis, 1992). Higher implied volatility signals a higher anticipated level 

of future price fluctuations (Beckers, 1981; Black & Scholes, 1973; Canina & Figlewski, 1993).  

In addition to different modeling and estimation approaches, the behavior of volatility has 

also been studied since at least the 1960s. Mandelbrot (1963), for example, examined changes in 

cotton prices and found that strong fluctuations often follow one another and are then replaced by 

calm phases. This bundling is generally known as volatility clustering. Another phenomenon of 

volatility is the so-called leverage effect. This effect describes the behavior of increasing volatility 

with negative asset returns (Christie, 1982; Schwert,1989). 

1.3. Research scope 

In this study, I have taken a detailed analysis of the effect of geopolitical shocks on market 

dynamics, as well as the possibilities for modeling and forecasting volatility in times of 

geopolitical shocks. To carry out the most comprehensive analysis possible, I examined many 

different aspects. The first part of my investigation is concerned with identifying abnormal returns 

and abnormal volatility in times of geopolitical shocks. I was conducting a detailed event analysis 



for the period around the Russian attack on Ukraine and examined the reaction of the financial 

market to this shock in terms of returns and volatility. I analyzed the reactions of the various MSCI 

World Sector indices to this shock. This detailed analysis allows us to gain further insights 

compared to the analysis of sector-aggregated indices, for example, a better understanding of 

sector dynamics. Every industry - such as technology, healthcare, finance or energy - has unique 

characteristics and influencing factors (e.g., Elyasiani et al., 2020). Conducting sector-specific 

analysis provides valuable insight into the distinct behaviors and dynamics across industries. This 

approach allows investors to make more informed decisions by identifying sectors likely to 

outperform during particular phases of the economic cycle (He et al., 2020). Economic expansions 

and contractions affect sectors differently. Cyclical industries, such as consumer discretionary, 

typically exhibit greater responsiveness to macroeconomic fluctuations, whereas defensive or non-

cyclical sectors like healthcare tend to remain relatively stable regardless of the economic 

environment (Long & Plosser, 1987). Investors can therefore increase their returns by rotating 

their investments between sectors (Sassetti & Tani, 2006). It is also easier to distinguish between 

the expected returns and the risk taken. By understanding the specifics of a sector, investors can 

better assess the risks associated with investing in that sector and thus better hedge against risk. 

Sector analysis can also point to emerging trends, such as the increasing importance of renewable 

energy in the utilities sector or the impact of e-commerce on the retail sector. In addition, a sector-

specific view enables better benchmarking of individual stocks and thus a better classification of 

performance. 

I used the sector indices of the MSCI World Index (Morgan Stanley Capital International 

Index) to include the most relevant companies in the respective sectors in my analysis. The MSCI 

World Index, introduced in 1986, serves as a prominent benchmark for tracking the performance 

of large and mid-cap equities across 23 developed markets (MSCI, 2024a). MSCI also provides 

sector-specific indices designed to offer systematic coverage of market segments, enabling the 

analysis of sectoral performance and characteristics at a global scale (MSCI, 2024b). Representing 

approximately 85% of the free float-adjusted market capitalization in each constituent country, the 

MSCI World Index offers a comprehensive gauge of equity performance within developed 

economies (Fama & French, 2012). Furthermore, the index is widely used by institutional 

investors for index funds and as a benchmark for global equity portfolios. Its components are 

weighted by market capitalization and the index is reviewed quarterly to include or exclude stocks 

based on market capitalization and other criteria. It includes companies from North America, 

Europe and the Asia-Pacific region, making it a diversified option for investors seeking exposure 

to global equity markets. There are advantages and disadvantages by using the MSCI World Sector 

Indices. The advantage is that they include the largest companies from 23 industrialized countries 

with a large number of different business models. In addition, the methodology of the index is very 

transparent, and it is frequently adjusted. It is widely accepted by investors and analysts and is 

often used as a benchmark. Disadvantages are the focus on industrialized countries, the weighting 

by market capitalization (small but important companies for an industry can be underrepresented) 

and there is a certain risk of currency fluctuations for companies that are not listed in U.S. dollars. 



In addition, the weighting process results in a high proportion of U.S. companies, which is 

associated with an increased country risk. My analysis aims to shed light on the impact of the 

Russian attack on Ukraine on the world's largest companies and how uncertainty is caused by the 

major geopolitical shifts arose. One must understand volatility here as a measure of risk, or as an 

indicator of the strength of changes, since large price fluctuations, especially if they occur 

frequently, are a sign of investor dissent. They disagree on expectations and on the fair pricing of 

assets, which results in strong upward and downward movements on the markets. However, strong 

volatility is also caused by large price movements in one direction. Here, investors adjust their 

valuation based on new information on the markets. 

I wanted to find out what excessive returns and volatility the Russian attack has caused on 

the biggest companies and most important business models worldwide and whether returns and 

volatility are persistent. Moreover, I wanted to analyze if there are statistically significant 

differences of the volatility between different sectors. By doing an event study, I therefore used 

the concept of abnormal returns (Campbell & Lo, 1996; Fama, 1970) and abnormal volatility 

(Beaver, 1968; Brown & Warner, 1985) and analyzed the behavior of eleven different MSCI World 

sector indices close around the Russian attack on February 24, 2022. My concrete research 

questions are as follows: 

▪ Research Question 1: Are there significant abnormal returns on the February 24, 2022, in 

the sectors of the MSCI World index, respectively? 

▪ Research Question 2: Are there significant cumulative abnormal returns in the MSCI World 

index sectors up to 25 days after the February 24, 2022? 

▪ Research question 3: Can significant abnormal volatility (-5,+5 days) around the Russian 

attack on Ukraine at February 24, 2022 in the MSCI market sectors be observed? 

▪ Research question 4: Can a persistence in the abnormal volatility after February 24, 2022, in 

the MSCI market sectors be observed? 

▪ Research question 5: Are there significant differences of the abnormal volatility between 

the MSCI market sectors? 

 

The identification of abnormal returns and volatility is a fundamentally ex-post analysis 

and important for a retrospective assessment of the impact and duration of geopolitical shocks. 

From a practical point of view, for example that of an active market participant or a risk manager, 

the forward-looking aspect is more relevant, i.e. whether the evolution of market dynamics can be 

predicted. So, the second part of my study covers the modeling and forecasting of financial time 

series around geopolitical shocks. Particularly in turbulent times, action is often needed in the form 

of increasing hedges or adjusting the portfolios of market participants to adapt to the new situation 

and manage the risk of adverse effects. This always involves the best possible assessment of 

volatility. With my study, I wanted to provide insights for research and practice into which 

forecasting methods are best suited for modeling volatility on the one hand and out-of-sample 

forecasting on the other in phases of geopolitical shocks. I focused on the periods in which I 

observed a shock to the financial markets and analyze how different forecasting methods can 



predict periods of high volatility. To do this, I evaluated different approaches for prediction, 

univariate and multivariate, as well as parametric and non-parametric approaches. The core model 

of my analysis is the state-of-the-art Temporal Fusion Transformer (TFT) for modeling and 

predicting time series. For my univariate parametric approach, and as a benchmark, I examined 

the frequently applied GARCH, EGARCH, and GJR-GARCH models in terms of their ability to 

explain and predict volatility for the most important financial instruments. From a practitioner's 

point of view, there is always a trade-off between model complexity and performance. Therefore, 

I also provided statistically significant differences in forecasting performance between model 

classes in my study. 

In this context, I wanted to answer the following research questions: 

▪ Research Question 6: Which GARCH-type model provides the best in-sample fit regarding 

the volatility of the analyzed financial instruments during the recent geopolitical shocks? 

▪ Research Question 7: Which GARCH-type model provides the best out-of-sample forecasts 

regarding the volatility of the analyzed financial instruments during the recent geopolitical 

shocks? 

▪ Research Question 8: Can the Temporal Fusion Transformer achieve better out-of-sample 

performance than the best performing GARCH-type model in times of geopolitical shocks? 

▪ Research Question 9: Can the implementation of a regime-switching feature in the TFT 

increase the forecasting performance in times of geopolitical shocks? 

▪ Research Question 10: Can a significantly better forecasting performance be achieved by 

optimizing the hyperparameters of the TFT than the performance averaged by a 

hyperparameter grid in times of geopolitical shocks? 

▪ Research Question 11: Can a multivariate forecasting approach of the Temporal Fusion 

Transformer model achieve better results than a univariate approach of the TFT in times of 

geopolitical shocks? 

 

To answer these questions, I have used various modifications of the Temporal Fusion 

Transformer to predict the volatility of some of the most important financial instruments: the 

highly traded stock indices S&P 500, NASDAQ 100, Nikkei 225 and Hang Seng; Gold as the 

essential instrument for hedging against inflation and a long-term store of value; Brent Crude Oil 

as the most important source of energy; the 10 years Treasury Bond as the essential reference for 

fixed income, a benchmark for returns and the price of time; the exchange rate of Euro vs. US-

Dollar as an indicator of the balance between the two most important currencies; and Bitcoin as 

an instrument with increasing market capitalization, high potential of growth and a hedge against 

inflation. For selected periods during the geopolitical shocks of COVID-19, the Russian attack on 

Ukraine and the Hamas attack on Israel, I examined how well the different methods could predict 

these phases of increased market volatility. Using a rolling window approach, I trained the model 

with data from the last 250 trading days and generate direct multi-step ahead forecasts for the next 

10 trading days. Then I moved the window forward by one step. For the three periods of 

geopolitical shocks under consideration, I analyze around 60 steps of the window each. 



1.4. Robustness of the results 

The robustness of the results is critical at empirical studies, so I ensured it by the following 

methodical approach. First, I analyze a total of nine different financial assets from different 

markets: stock markets, commodity markets, bond markets, currency markets, and finally, the 

crypto market. This allows us to observe a wide range of different markets and their dynamics. By 

analyzing several different time series, one can reduce sampling bias, i.e., specific behaviors of a 

single time series, and increase the generalizability of the results (e.g., Baltagi, 2008, Bergmeir et 

al., 2018, Pesaran, 2015). Furthermore, this enables us to identify similarities or structural 

differences. It should be noted, however, that a strong correlation between the variables can reduce 

robustness (Stock & Watson, 2012). 

Next, I examined three different periods of geopolitical shocks to the financial markets: 

COVID-19, the Russian attack on Ukraine and the Hamas attack on Israel. These shocks were very 

different in their causes and effects and therefore offer us a good opportunity to evaluate the 

reactions to the various financial instruments The robustness of the results is also supported by the 

inclusion of several periods with geopolitical shocks. Models that are stable over several periods 

are less subject to risk from specific events in one period and the fact that the results are distorted 

by them. Furthermore, the different periods usually also include different phases of 

macroeconomic influences (e.g. business cycle). In addition, possible limitations of the prediction 

model and sensitivities can be identified (Giacomini & Rossi, 2010; Pesaran & Timmermann, 

2007; Stock & Watson, 1996). One can achieve a significant contribution to robustness by 

generating out-of-sample forecasts. This provides us with a realistic assessment of the forecasting 

performance of the models under consideration, which is of course particularly important for 

practical applications. In addition, the model selection made based on the out-of-sample 

performance carries less risk of overfitting, since a model that is too strongly adapted to the 

training data or the estimation period usually shows a poorer performance (e.g., Kutner, 2005; 

Tashman, 2000; Welch & Goyal, 2008). 

Furthermore, I used a rolling window approach to estimate and train the forecasting 

models, as well as for the subsequent volatility forecasts. The rolling window approach is a variant 

of cross-validation, specifically for time series models. In this approach, the model is trained on a 

fixed training window and then tested on the immediately following observations. The window is 

then shifted in time (“rolled”) and the process is repeated step by step until the end of the time 

series. This ensures that forecasts are based exclusively on historical data, that the temporal 

structure is considered and that a realistic assessment of the out-of-sample forecasting ability is 

made possible (Bergmeir & Benitez, 2012; Hyndman & Athanasopoulos, 2018; Tashman, 2000). 

In my work, I generated multi-step forecasts of volatility for each step for 1-10 trading days into 

the future. These multi-step forecasts allow to evaluate the forecasting performance of the 

considered models more validly. Furthermore, I evaluated the forecasting performance over 

several time horizons. This allows to produce a more valid selection of the optimal forecasting 

model. Furthermore, by evaluating the longer forecasting horizons, one can identify possible 

effects of overfitting the model (Marcellino et al., 2006; Pesaran et al., 2011, Tashman, 2000). 



1.5. Contribution to research and outline 

With my dissertation, I’m contributing to the steadily growing research literature on 

predicting volatility in financial markets. The development of the unipolar world order into a 

multipolar world order suggests that the addition of political actors that can trigger geopolitical 

shocks in the financial markets will increase, and thus the frequency of such events is more likely 

to increase. These shocks carry a high risk of portfolio losses and require intensive management. 

A tailored hedging strategy is based first on an accurate forecast of expected developments. 

Otherwise, the portfolio can be both over- and under-hedged, leading to an unsatisfactory result 

for the market participant. I started with an ex-post analysis of the effect of a geopolitical shock 

on the financial markets, using the example of the MSCI World sector indices with an analysis of 

abnormal returns and abnormal volatility. Here I showed how strongly and how differently shocks 

can affect sectors and thus the most important business models. I also examine how long shocks 

can persist in the individual sectors. I also observed here that the Russian attack on Ukraine has 

exerted a shock on the financial markets, from which individual sectors have benefited. After 

considering how a geopolitical shock works, I turned to the task of predicting how markets will 

behave in turbulent times. 

To do this, I examined how well the Temporal Fusion Transformer (TFT), a state-of-the-

art transformer-based neural network designed specifically for time series analysis, is able to 

predict the volatility of key financial stocks during geopolitical shocks. I examined various 

modifications: univariate forecasting, multivariate forecasting and forecasting with a regime-

switch feature, and compare the performance for significant differences. I used the GARCH 

models, which have been used in practice for years, as a benchmark for the results. In particular, 

there is little literature on the forecasting performance of the Temporal Fusion Transformer for 

describing and predicting volatility in the face of geopolitical shocks, and so I aimed to close a 

research gap here. By considering the most important financial instruments for the last three most 

recent geopolitical events, I provided systematic and comprehensive insights into the performance 

of the TFT in predicting volatility during phases of geopolitical shocks. With my work, I gained 

insights into the advantages of using the Temporal Fusion Transformer to predict the Temporal 

Fusion Transformer over the GARCH model approach, by providing a multivariate forecasting 

approach. In doing so, I provided practitioners with results that can be used to improve portfolio 

management based on the implementation of the TFT. Furthermore, which modifications appear 

useful for the TFT. For researchers, I provided a research status on which further improvement 

steps can be taken. The dissertation is organized as follows: Section 2 contains the literature 

review, which provides an overview of the relevant research on my topic. Section 3 describes the 

methods and procedures I used and discusses the data sets used. Section 4 discusses the results of 

my research. First, the identification of abnormal returns and abnormal volatility during the 

Russian attack for the MSCI World Sector indices. Second, the results on predicting volatility 

using the Temporal Fusion Transformer and benchmark GARCH class models. In Chapter 5, I 

draw a conclusion and present my scientific contribution to current research in Chapter 6. Finally, 

I summarize the whole work in chapter 7. 



2. LITERATURE OVERVIEW 

2.1. Geopolitical Shocks and their impact on financial markets 

Geopolitical shocks are abrupt and significant events that alter the strategic landscape, 

disrupt established power relations, or trigger systemic uncertainty in international relations 

(Brütsch & Papa, 2013). Bremmer & Roubini (2011) defined them as disruptive event rooted in 

political instability, war, or regime change, with potential to impact global markets, security 

structures, or alliances. For OECD, geopolitical shocks refer to sudden, unexpected developments 

in international affairs, such as armed conflicts, sanctions, or diplomatic breakdowns, that affect 

global supply chains, energy markets, and international cooperation (OECD, 2022). These 

definitions have in common, that these kinds of shocks are suddenly and exogenous, with a 

significant multidimensional impact on the global order, economies and security architecture that 

can result in disturbances of political systems and society. 

Famous publications regarding geopolitical shocks are the following. Brütsch & Papa 

(2013) examined geopolitical shocks as risks to the stability of the international system and 

evaluate the capacity of multilateral institutions to manage them. They identify patterns of 

institutional resilience and argue that global governance mechanisms often fall short in responding 

to sudden geopolitical crises. The study advocates for strengthening preventive and adaptive 

capacities within international organizations. Bremmer & Roubini (2011) analyzed the ongoing 

transition to a multipolar order and described a global order without a clear hegemon, in which 

cooperation is limited and geopolitical shocks become more frequent and less manageable. They 

argue that neither the United States, China, nor Europe is willing or able to provide global public 

goods. This power vacuum increases systemic volatility and the likelihood of economic and 

security-related disruptions. Mead (2024) argues that the era of liberal internationalism is giving 

way to a resurgence of great power competition, with revisionist states like Russia and China 

challenging the U.S.-led order. This return of geopolitics raises the likelihood of shocks as global 

institutions lose their integrative capacity. Dalby (2013) connects classical geopolitical thinking 

with global environmental crises, arguing that geopolitical shocks increasingly stem from 

ecological disruptions and planetary boundaries. He advocates for a fundamental rethinking of 

geopolitics in the context of the Anthropocene. The work is innovative and interdisciplinary, 

expanding the notion of shocks to include climate-related and ecological dimensions. Schweller 

(2018) analyzed U.S.–China relations through a neoclassical realist lens, emphasizing how 

ideological and identity-based divergence can lead to geopolitical instability. He contends that 

national narratives may exacerbate systemic tensions and trigger shocks, even in the absence of 

direct material conflicts. The study adds conceptual depth by highlighting the ideational dimension 

of geopolitical risk. 

Consequences of recent geopolitical shocks, particularly the war in Ukraine and global 

supply chain disruptions, was investigated by OECD (2022). They analyzed both short-term 

effects (e.g., energy prices, inflation) and long-term structural shifts in trade and investment flows. 

The report calls for enhanced national and supranational resilience strategies. The World Bank 



(2022) analyzed how geopolitical shocks, such as conflict, sanctions, and resource volatility, affect 

long-term growth, development, and poverty. Special emphasis is placed on emerging economies, 

which are disproportionately vulnerable to global disruptions. Forecast models suggest that 

adverse effects are likely to deepen in the absence of coordinated international responses. 

Blackwill & Harris (2016) introduced the concept of geoeconomics as the strategic use of 

economic instruments to achieve foreign policy objectives. They argue that geopolitical shocks 

are increasingly triggered or intensified through economic means, such as sanctions, trade wars, 

or investment policies. The book provides a comprehensive analytical framework for 

understanding contemporary power politics beyond traditional military tools. 

To quantify these shocks, Caldara & Iacoviello (2022) developed the news-based 

Geopolitical Risk (GPR) index to measure the risk, which spikes around major conflicts (e.g. 

World Wars, the Cuban Missile Crisis, 9/11). Heightened geopolitical risk is associated with 

deteriorating economic outlooks. Caldara & Iacoviello (2022) find that surges in their GPR index 

precede lower investment and employment and increase downside tail risks to growth. 

In financial markets, geopolitical events inject uncertainty that can alter asset valuations 

and volatility. In recent history it was observed that geopolitical shocks, including wars, terrorist 

attacks, and major political crises roil financial markets worldwide. Multiple studies underscore 

that geopolitical tensions engender adverse economic outcomes such as elevated commodity 

prices, inflationary pressures, and diminished social welfare (Aizenman et al., 2024; Bouri et al., 

2024; Mahjoubi & Henchiri, 2024; Wang & Zhou, 2024). The IMF (2023) investigated how rising 

geopolitical tensions and strategic decoupling—particularly between major powers could fragment 

global trade and financial systems. Simulation models show significant long-term output losses, 

especially for low-income countries, if global cooperation continues to deteriorate. Campos et al. 

(2024) used macroeconomic models to estimate the costs of geopolitical divisions in trade, 

technology, and capital flows and found, that persistent fragmentation could lead to a substantial 

decline in global GDP and welfare, especially if technological cooperation collapses. From a 

perspective of international specialization, trade and connectedness, Baldwin & Freeman (2022) 

argued that geopolitical shocks have transformed global supply chain strategies from “just-in-

time” to “just-in-case.” They document a shift toward regionalization and redundancy in 

production, which increases costs but enhances economic security. 

A growing body of research highlights that geopolitical shocks significantly influence 

financial markets through complex and multifaceted channels. Geopolitical events such as regional 

conflicts, wars, trade wars, and political crises have been documented to induce heightened 

uncertainty that propagates rapidly into asset prices and market volatility. Rigobon & Sack (2005) 

analyze the Iraq War and demonstrate that war risk can immediately affect U.S. stock prices, 

interest rates, and exchange rates. Pástor & Veronesi (2012) developed a general equilibrium 

model indicating that political uncertainty commands a risk premium, an effect that is magnified 

during periods of economic weakness and market instability. Bekaert et al. (2013) distinguished 

between risk and uncertainty shocks and illustrated how geopolitical uncertainty contributes to 

financial volatility and rising risk premiums. Bouras et al. (2019) found that the GPR significantly 



improves the predictability of stock returns in G7 economies, especially during periods of 

heightened uncertainty. Ha et al. (2021) demonstrated that uncertainty shocks stemming from 

events on the Korean Peninsula triggered substantial market reactions. Agyei et al. (2023) explored 

the relationship between geopolitical risk and stock market behavior, revealing a strong association 

between geopolitical developments and heightened market volatility. Similarly, Konovalova & 

Abuzov (2023) examined how trade disputes, exemplified by the US-China trade war, result in 

significant declines in global share prices, emphasizing the transnational spillover effects of such 

shocks. Gupta et al. (2023) analyzed the role of geopolitical uncertainty in relation to the realized 

volatility of WTI oil-price returns. Wang et al. (2022) showed that geopolitical risk causes 

volatility spillovers between oil and equity markets, emphasizing the role of commodities in 

transmitting shocks. 

The transmission mechanisms of geopolitical shocks into financial variables have been 

widely analyzed. Ali et al. (2023) analyzed the influence of stock markets and sectoral 

performance in the context of geopolitical threats over the period from 1987 to 2021. Their 

findings indicate that U.S. equities generally benefited from geopolitical tensions, with the 

financial and information technology sectors exhibiting particularly strong positive responses. 

Naifar & Aljarba (2023) argued that geopolitical risk elevates sovereign credit risk and contracts 

capital flows, suggesting that investors are highly sensitive to rising uncertainty. Complementing 

this perspective, Hoque et al. (2019) found that while the direct effects of geopolitical risks on 

local stock markets may be muted, significant indirect effects occur through channels such as oil 

price shocks and global economic policy uncertainty. Such findings reinforce the idea that 

geopolitical shocks not only affect asset prices directly through market sentiment but also 

indirectly by altering macroeconomic fundamentals and investor risk assessments. Będowska-

Sójka et al. (2022) examined how various asset classes respond to geopolitical risk, identifying 

green bonds, precious metals such as gold and silver, the Swiss franc, and real estate as among the 

most resilient in the face of geopolitical uncertainty. Research by Balcılar et al. (2018) reveals that 

markets, especially in emerging economies like the BRICS, exhibit pronounced volatility in 

response to geopolitical tensions regardless of the nature of the shock. In addition, Apergis et al. 

(2018) note that investors adjust their risk management strategies by seeking industries and assets 

that promise relative stability as a hedge against geopolitical uncertainty. Moreover, studies 

focusing on investment behavior, such as the one by Tanyeri et al. (2021) in the context of the Arab 

Spring, underscore the broader market’s sensitivity to geopolitical shocks, with abnormal stock 

returns and credit spread adjustments observed during periods of heightened political unrest. A 

broad theme in the literature also is, that geopolitical shocks prompt a “flight to safety”: investors 

sell risky assets like equities and seek safe havens in assets such as government bonds, gold, or 

safe-haven currencies (e.g., Jäggi et al., 2019; Rigobon & Sack, 2005). This documents that during 

major conflicts, such as the Russia-Ukraine war, investors increasingly gravitate towards safe-

haven investments, which underscores the role of geopolitical shocks in reshaping investment 

portfolios (Rania, 2023). In a related vein, Rasheed et al. (2021) find that assets such as gold serve 

as effective hedges against political uncertainty, especially in economies prone to political 



instability. This safe-haven behavior reflects a strategic shift by market participants to mitigate the 

risks associated with unpredictable geopolitical events.  

Collectively, these studies underscore that financial markets are highly sensitive to 

geopolitical developments, with impacts that are both immediate and far-reaching across asset 

classes and regions. Now I want to provide a closer look at the geopolitical shocks of COVID-19 

and the Russian attack on Ukraine. These two events are still a growing research field. Goodell 

(2020), laid the groundwork by identifying that COVID-19 represents a novel shock with 

multifaceted economic consequences. In particular, this study highlighted that while previous 

pandemics and infectious disease outbreaks provide limited analogues, the scale and nature of 

COVID-19’s impact necessitate new research avenues to more comprehensively understand its 

diverse ramifications on financial institutions and market dynamics (Goodell, 2020). A substantial 

body of literature has focused on the alteration of investor sentiment and the subsequent volatility 

observed in equity, bond, and commodity markets. For example, Ali et al. (2020) documented that 

the outbreak resulted in markedly negative returns and heightened volatility across most asset 

classes, with the notable exception of US Treasury bonds. Such findings are consistent with earlier 

research linking uncertainty with prolonged market disturbances. In a similar vein, Liu et al. (2020) 

employed event study methodologies across 21 major stock market indices and found that the 

reaction to the pandemic’s onset was both rapid and profound, indicating that COVID-19 induced 

an immediate revaluation of risk and market fundamentals across different national contexts. The 

research further underscores that the disruption was not homogeneous across sectors and asset 

types. Baek et al. (2020) provided an industry-level analysis within the US, showing that certain 

sectors experienced heightened volatility compared to others, underscoring the sector-specific 

sensitivity to exogenous shocks such as a global pandemic. 

Complementing these findings, Albulescu (2021) examines volatility at a global level, 

suggesting that government interventions and market responses to pandemic uncertainty play a 

critical role in shaping the volatility landscape of financial markets. These studies collectively 

emphasize that COVID-19 has not only increased market risk but also altered the structure of risk 

connectedness among assets (Cheng et al., 2022). Another important stream of literature has 

investigated how sustainability factors, such as environmental, social, and governance (ESG) 

criteria, can mitigate the negative effects of crisis periods. Broadstock et al. (2021) demonstrated 

that firms with superior ESG performance tend to exhibit lower risk during turbulent times like 

those induced by COVID-19, implying that non-financial performance indicators may serve as 

risk buffers in times of systemic stress. Such insights provide critical evidence that shifting 

investor focus on sustainability can modify the typical risk-return trade-offs observed during 

market distress.  Moreover, market efficiency and contagion effects have been key themes in the 

emerging literature. Khan et al. (2023) applied GARCH-model methodologies to show that 

COVID-19 drastically increased market volatility, while Phan & Narayan (2020) relay that 

governmental actions taken to curb the pandemic, such as lockdowns and fiscal stimuli have had 

a measurable yet heterogeneous effect on stock prices across nations. Similarly, Cheng et al. (2022) 

investigated volatility connectedness networks across global markets, concluding that the 



pandemic induced stronger spillover effects in an era characterized by intensified cross-market 

linkages. Aslam et al. (2020) extended this discussion to the foreign exchange markets, finding 

that the efficiency of forex markets was significantly impaired during the initial crisis period due 

to abrupt changes in market sentiment. 

Lastly, innovative methods have emerged in the literature to capture the dynamics of the 

COVID-19 shock. Gao et al. (2021) adopt a wavelet-based quantile-on-quantile approach to 

compare the impacts on stock market volatility in the United States and China, revealing that 

COVID-19 exerted a more pronounced effect in the U.S. market, thereby highlighting regional 

differences that may be associated with divergent monetary policies and public health responses. 

Complementing these quantitative analyses, Costola et al. (2021) utilized Google search volume 

data as a proxy for investor sentiment, demonstrating that digital information flows played a 

significant role in the rapid market adjustments observed during the pandemic’s outbreak. 

The Russian invasion of Ukraine in 2022 constituted a profound disruption to the post-

Cold War security order and triggered a major geopolitical shock, with immediate and far-reaching 

effects on global financial markets, including increased volatility, risk repricing, and commodity 

price surges (Caldara & Iacoviello, 2022; ECB, 2022; IMF, 2022; Mariotti, 2022). One body of 

research highlights the immediate market disruption resulting from the conflict's geopolitical 

shock. The invasion led to an immediate surge in commodity prices, particularly in oil and natural 

gas, as Russia and Ukraine collectively contribute around 12% of global oil production and 17% 

of natural gas supply (Martins et al., 2024; Mbah & Wasum, 2022). This surge in energy prices 

created a ripple effect across various asset classes, increasing volatility in equity and derivative 

markets as market participants reassessed risk premia amid growing uncertainty (Alam et al., 2022; 

Theiri et al., 2022). In addition, the implementation of fiscal and monetary interventions by leading 

economies—particularly sanctions targeting Russian financial operations—intensified global 

uncertainty and contributed to heightened market volatility (Hao, 2023). Izzeldin et al. (2023) 

assessed how market participants responded to the Russian invasion, focusing on both the 

immediacy and persistence of market reactions. Their comparative analysis, which included the 

2008 global financial crisis and the onset of the COVID-19 pandemic in 2020, revealed that market 

responses to the Russian attack were significantly more rapid. However, the volatility period 

following the invasion was notably shorter than that observed during the other two crises. Among 

the most heavily impacted commodities were wheat and nickel. Stock market responses to the 

invasion have been particularly well documented. Several studies report that the day of the 

invasion marked a strong negative reaction among global equity markets, especially within Russia 

itself, where abnormal trading volumes and heightened selling pressures were detected (Alam et 

al., 2022; Davydov, 2022). The divergence between companies that chose to maintain operations 

in Russia and those that divested underscores how political risk and uncertainty can lead to 

heterogeneous market responses (Davydov, 2022; Kiesel et al., 2022). Ahmed et al. (2023) 

investigated the impact of the Russian invasion of Ukraine on the STOXX Europe 600 Index and 

its constituent sectors. Their findings indicate that the conflict exerted a negative influence on 

seven out of eleven sectors, specifically materials, consumer staples, financials, healthcare, 



industrials, telecommunications, and utilities. Among these, the consumer staples sector recorded 

the most pronounced negative average abnormal return on the event day (February 24, 2022), 

whereas the energy sector exhibited a marginally positive, albeit statistically insignificant, average 

abnormal return. 

In addition to market reactions, the imposition of sanctions led to a substantial exodus of 

foreign investors from the Russian financial markets, thereby reducing market liquidity and 

exacerbating volatility in affected equity sectors (Hoffmann & Neuenkirch, 2015; Nimani & 

Spahija, 2023). Complementary evidence is provided by Boubaker et al. (2022), who assessed the 

war’s impact on global equity markets across 23 developed and 24 emerging economies, as defined 

by the MSCI classification. Their analysis revealed that nearly all markets experienced negative 

abnormal returns on the event day, with emerging markets displaying a more pronounced 

sensitivity. Furthermore, their study documented persistent negative cumulative returns in the 

aftermath of the invasion, with the exception of markets in Asia and the Middle East. In a broader 

cross-country study, Boungou & Yatié (2022) analyzed stock market performance in 94 countries 

between January 22, 2022 and March 24, 2022. Their findings offer robust empirical support for 

the hypothesis that the Russian invasion had a statistically significant negative impact on global 

equity returns. Similarly, Pandey et al. (2023) examined the immediate consequences of the 

invasion on major stock market indices within the European Union, further reinforcing the 

consensus that geopolitical conflict precipitated widespread market disruptions across regional and 

global financial systems. Their analysis identified a negative impact on index performance on the 

day of the event. 

However, in the post-event period, they observed positive cumulative abnormal returns in 

select countries, notably Poland, Denmark, and Portugal. The financial repercussions extend into 

the realm of foreign exchange markets as well. Empirical evidence shows that the Russian-

Ukrainian conflict led to significant fluctuations in euro and other European currencies, 

highlighting the fragility of the European financial system to such external shocks (Aliu et al., 

2023). These sudden movements have not only impacted international trade dynamics but have 

also complicated monetary policy implementation for central banks dealing with dual shocks from 

the pandemic's residual effects and the wartime uncertainty (Aliu et al., 2023; Hao, 2023). Another 

critical area of study concerns the effects on cryptocurrency markets. Research indicates that 

market liquidity for leading digital currencies such as Bitcoin and Ethereum was notably affected 

during the conflict (Theiri et al., 2022). Short-term dynamics in cryptocurrency returns were 

observed, with studies identifying an increased correlation between cryptocurrency yields and 

commodity price movements, particularly in crude oil futures (e.g., Yousaf & Ali, 2023). 

Additionally, the cryptocurrency market has emerged as a conduit for risk transmission, showing 

robust connectedness with conventional financial assets and thereby serving both as a refuge and 

a risk amplifier during times of geopolitical turmoil (Ullah, 2024; Volosovych et al., 2024).  

Methodologically, various approaches have been employed to capture these dynamics. Event 

studies, vector autoregressive models, and network spillover estimations have all been used to 

determine the degree and persistence of financial market responses to the conflict (Alam et al., 



2022; Nittayakamolphun et al., 2024). These methods underscore that while some market 

disruptions are transient, others have longer-lasting implications, particularly in the areas of 

investor sentiment and the strategic allocation of assets globally (Davydov, 2022; Kiesel & 

Kolaric, 2023). 

In sum, the existing body of literature consistently highlights that geopolitical shocks 

induce significant, albeit temporary, disturbances across a wide range of financial markets. 

Empirical evidence robustly associates such events with elevated stock market volatility, 

destabilization of foreign exchange rates, sharp fluctuations in energy prices, and shifts in liquidity 

conditions—affecting both traditional financial instruments and newer asset classes, including 

cryptocurrencies (Robus et al., 2024). 

2.2. Modeling and forecasting volatility in times of geopolitical shocks 

The modeling and forecasting of financial market volatility represent a foundational area 

within financial econometrics, owing to their pivotal role in risk assessment, asset valuation, 

portfolio optimization, and the pricing of derivative instruments (Andersen et al., 2005; Bollerslev, 

1986; Engle, 1982). Volatility forecasts have widespread applications across financial institutions, 

including banks, hedge funds, and regulatory bodies, where they inform decisions related to capital 

adequacy and portfolio risk management. Accurate volatility estimates serve as essential inputs 

for market risk models and are central to conducting stress-testing exercises (Christoffersen et al., 

2012). In the domain of derivatives, volatility modeling underpins pricing frameworks, with both 

implied and forecasted volatility playing key roles in dynamic hedging strategies and the 

calibration of models incorporating stochastic volatility (Bakshi et al., 1997). 

Furthermore, in portfolio and asset allocation contexts, volatility forecasts are integral to 

mean-variance optimization and other risk-return trade-off models (Engle & Colacito, 2006). 

Further, central banks and regulators monitor market volatility as an indicator of financial 

instability or systemic risk. So, forecasting volatility helps detecting early signs of financial stress 

and inform macroprudential policy tools (Diebold & Yilmaz, 2014). Estimation and forecasting 

Volatility during crisis are most important, because the risk for adverse results is highly increased. 

So, the heightened uncertainty requires more accurate risk assessment: turbulent periods are 

characterized by heightened and persistent volatility, necessitating dynamic models that can 

capture rapid shifts in risk because standard risk measures such as VaR can significantly 

underestimate downside risk when volatility spikes (Christoffersen, 2011; Engle, 2001). Further, 

investors typically rebalance portfolios, shift into safe-haven assets, or employ volatility-targeting 

strategies. Accurate forecasts help avoid overreaction or mispricing, which can further destabilize 

markets (Anderson et al., 2003). 

In crisis, volatility spikes can indicate systemic fragility. Forecasting volatility allows 

central banks and financial regulators to conduct stress tests and implement macroprudential 

policies aimed at stabilizing markets and mitigating the risk of cascading failures (Diebold & 

Yilmaz, 2014; Tobias & Brunnermeier, 2016). Obviously, there is a particular need to estimate and 



predict volatility and their special behavior in times of crisis. The models suitable for this purpose 

will be presented below. 

Before I’m discussing how volatility can be modeled in times of geopolitical shocks, I want 

to give a short summary of the so-called stylized facts, one can observe in time series of financial 

markets. Empirical research in financial econometrics has consistently documented a set of robust 

statistical regularities across different asset classes, markets, and time periods. These regularities, 

known as stylized facts, are not strict laws but rather empirically observed phenomena that hold 

with remarkable consistency. Their identification has had a profound impact on the development 

of theoretical and empirical models in asset pricing, volatility modeling, and market microstructure 

(Cont, 2001). One of the most fundamental stylized facts is the presence of heavy tails in asset 

return distributions. Empirical returns exhibit excess kurtosis, indicating a significantly higher 

probability of extreme events than would be implied by a normal distribution (Mandelbrot, 1963). 

This observation has motivated the widespread use of fat-tailed distributions such as the Students 

t-distribution or generalized hyperbolic distributions in financial modeling. 

Another prominent characteristic is volatility clustering, a phenomenon in which 

substantial price fluctuations are often succeeded by further large movements, regardless of 

direction, while periods of minimal change are typically followed by similarly small variations. 

This phenomenon results in significant autocorrelation in the second moments of return series, 

even when first moments (returns themselves) are uncorrelated. The presence of volatility 

clustering provided the impetus for the development of autoregressive conditional 

heteroskedasticity (ARCH) models (Engle, 1982) and their generalizations such as GARCH 

(Bollerslev, 1986), which explicitly model time-varying conditional volatility. A closely related 

empirical regularity is the absence of linear autocorrelation in raw asset returns, especially at daily 

or higher frequencies. This is consistent with the weak-form Efficient Market Hypothesis (Fama, 

1970), which posits that prices fully reflect past information. While raw returns are often 

indistinguishable from white noise, measures of volatility such as squared or absolute returns 

exhibit strong and persistent autocorrelation, implying long memory in volatility dynamics (Ding 

et al., 1993). 

The leverage effect constitutes another asymmetric stylized fact in financial markets, where 

negative returns tend to be followed by higher future volatility than positive returns of equal 

magnitude. This asymmetry is typically attributed to the capital structure of firms: a decline in 

equity value increases financial leverage, thereby raising equity risk (Black, 1976). Econometric 

models such as EGARCH (Nelson, 1991) and GJR-GARCH (Glosten et al., 1993) have been 

developed to accommodate this asymmetry in volatility responses. Additionally, a strong positive 

correlation between trading volume and volatility is frequently observed. This relationship has 

been interpreted within the framework of heterogeneous agent models and information arrival 

hypotheses (Karpoff, 1987), which posit that both volume and volatility respond to the flow of 

new information in the market. 

Another notable stylized fact is aggregational Gaussianity, which refers to the observation 

that as one increases the time horizon over which returns are measured—from minutes to hours, 



or days to weeks—the distribution of returns tends to converge toward the normal distribution. 

This is broadly consistent with the Central Limit Theorem under the assumption of weak 

dependence and finite variance, though the convergence is often slower than predicted due to the 

presence of long-memory effects and volatility persistence (Dacorogna et al., 2001). Finally, at 

very high frequencies (e.g., tick-by-tick or intraday data), market microstructure effects become 

prominent. Features such as bid-ask bounce, discrete pricing, and asynchronous trading introduce 

serial correlation and measurement error, necessitating the use of specialized econometric tools to 

extract meaningful signals from noisy high-frequency data (Andersen et al., 2001; Hasbrouck, 

2007). Taken together, these stylized facts provide a foundational empirical reference for 

constructing and evaluating models of financial markets. Any realistic econometric model must 

either replicate or account for these phenomena in order to be considered empirically adequate.  

2.2.1. Modeling and forecasting volatility in times of geopolitical shocks using GARCH-

class models 

When modeling and forecasting the movements of financial markets, stochastic processes 

(Doob, 1942; Pavliotis, 2014) are frequently used, e.g., ARIMA models (Box & Jenkins, 1970; 

Box et al., 2015; De Gooijer & Hyndman, 2006). These models lead to good forecasts of the time-

varying expected value. A common assumption of these models was, that the variance of the 

stochastic error term is constant over time, which is referred to as homoscedasticity. The ARIMA 

models are therefore only suitable to a limited extent for modeling and predicting strong 

fluctuations on the markets. However, two phenomena can often be observed with financial market 

data. The first is that volatility is not constant over time, which is known as heteroscedasticity 

(Engle, 1982). Secondly, the high level of volatility occurs in clusters, i.e. there is a serial 

correlation (Cont, 2001; Engle, 1982; Taylor, 2007). To describe the time-varying volatility, Engle 

(1982) designed the model of autoregressive conditional heteroscedasticity (ARCH). Later, 

Bollerslev (1986) introduced the generalized autoregressive conditional heteroscedasticity model 

(GARCH) to better describe volatility persistence, which often occurs in financial time series. The 

most common extensions are the EGARCH (Exponential GARCH), IGARCH (Integrated 

GARCH) and TGARCH (Treshold GARCH) (Engle & Bollerslev, 1986; Glosten et al., 1993; 

Nelson, 1991). These models are now frequently used to predict volatility on the financial markets. 

As with the ARIMA models, a test-based specification of the model is also important for the 

GARCH models to achieve adequate forecast results (Lundbergh & Teräsvirta, 2002). They are 

also combined with the ARMA models to model and forecast the conditional mean and the 

conditional variance simultaneously. An often-investigated question is which type of model 

predicts volatility better. Brailsford & Faff (1996) found evidence that more complex prediction 

models, like ARCH class models) outperform the simpler volatility models, like the class of 

moving average models. Savickas (2003) analyzed statistic tests in the presence of event-induced 

variance and compares them according to their performance. He found that the GARCH-based 

approach performed best due to the highest test power. In contrast to other studies, my analysis of 

volatility dynamics in connection with a geopolitical shock focuses on a sector-specific view. 



Volatility in financial markets is known to exhibit shifts corresponding to different market 

conditions – for example, tranquil periods versus crisis periods. So, regime switching volatility 

models are pivotal in modeling the dynamics of financial assets, as they allow for the capture of 

abrupt changes in market conditions. These models are primarily based on the premise that 

financial markets do not operate in a static environment but rather switch between different states 

or regimes that reflect varying levels of volatility and returns. The introduction of regime-

switching models by Hamilton laid the groundwork for understanding these market phenomena 

(Edwards, 2005; Kim, 2014). This approach builds on early work by Hamilton (1988) and 

Hamilton & Susmel (1994) for regime-switching in means and by Gray (1996) who first embedded 

regime changes in GARCH. Traditional GARCH models assume a single set of volatility dynamics 

for an entire sample, which can lead to mis-estimation (e.g. overstated persistence) if structural 

breaks occur (Ardia et al., 2019). Regime-switching GARCH models generalize the standard 

GARCH framework by permitting the volatility dynamics to differ across a finite number of states. 

In a typical two-state MSGARCH (Markov-Switch GARCH), for instance, one state might 

correspond to a low-volatility regime (with lower GARCH intercept and quicker mean reversion) 

and another to a high-volatility regime (with higher shock impact and persistence). The switching 

is governed by transition probabilities, often assumed constant (Markovian) or sometimes time-

varying. This allows the model to capture phenomena like sudden jumps in volatility or prolonged 

high-volatility episodes that a single-regime GARCH would struggle with (Ardia et al., 2019).  

Over the last decade, regime-switching GARCH models have become popular for 

capturing nonlinear volatility patterns and they have been extended to various GARCH variants 

(e.g. EGARCH, GJR-GARCH) and multi-regime setups. One of the significant contributions of 

regime-switching models is their ability to explain the behaviors of asset returns more accurately 

than traditional models. Ang & Timmermann (2012) and Guidolin & Timmermann (2008) 

demonstrated that returns on stocks can be characterized by different regimes, such as bear markets 

with high volatility and low returns, and bull markets with high volatility and high returns. They 

argue that these regimes account for fat tails and skewness in returns, which are often observed in 

empirical data. By modeling these shifts, the regime-switching approach provides a robust 

framework for portfolio optimization and risk management (Oliveira & Pereira, 2018; Tu, 2010). 

Moreover, empirical studies have revealed that regime-switching models can effectively capture 

the long-term behaviors of financial data. For instance, Delong & Pelsser (2015) articulate that 

these models adequately reflect the market's transition between low and high volatility states, 

which align with observed economic realities. The capacity of these models to accommodate 

various macroeconomic variables, as discussed by Chang (2017), further supports their relevance 

in contemporary asset management strategies. This adaptability allows investment strategies to be 

tailored according to expected changes in market conditions, significantly impacting overall 

portfolio performance (Chang, 2017). As financial markets increasingly exhibit volatility due to 

external shocks—such as during the COVID-19 pandemic—researchers have turned to regime-

switching frameworks to better understand and predict market dynamics. Kanamura (2022) 

exemplifies this, where a model was proposed to examine how COVID-19 influenced volatility 



across various assets, showcasing the adaptability and relevance of regime-switching models in 

current financial contexts. The resilience of these models allows practitioners not only to anticipate 

market shifts but also to implement more effective hedging strategies during turbulent times (Lee, 

2010). Shen et al. (2020) have examined the optimal investment strategies based on regime-

switching pricing models, highlighting the increasing interest among financial scholars to utilize 

these models for complex asset management challenges. 

2.2.2. Modeling and forecasting market dynamics using the Temporal Fusion Transformer 

Accurate forecasting is fundamental to effective decision-making across a wide range of 

fields, including finance, healthcare, energy, and climate science. Time series forecasting, in 

particular, plays a central role in these disciplines by predicting future values based on historical 

observations and, in some cases, incorporating additional explanatory variables. However, the 

forecasting of temporal data presents substantial challenges due to its complex structure, which 

often involves trends, seasonality, and nonlinear dependencies. Traditional statistical models such 

as the autoregressive integrated moving average (ARIMA) model (Box & Jenkins, 1970; Box et 

al., 2015) and exponential smoothing methods (Holt, 1957; Winters, 1960) have long been 

employed due to their interpretability and computational simplicity. 

While effective for linear and univariate data, these models often fall short in capturing 

intricate patterns within high-dimensional or nonlinear time series. In response to these limitations, 

artificial neural networks (ANNs) have gained widespread attention for their capacity to model 

complex, nonlinear relationships. Drawing inspiration from the structure and function of the 

human brain, ANNs consist of interconnected units—artificial neurons—that process and transmit 

information collectively. The conceptual foundation was established by McCulloch & Pitts (1943), 

who introduced the first formal model of a neuron. This was further developed by Rosenblatt 

(1958), who proposed the perceptron, a simple neural architecture consisting of a single neuron 

with modifiable weights and a threshold function. However, the field experienced a temporary 

decline following the critical analysis by Minsky & Papert (1969), who highlighted the 

perceptron’s limitations in solving non-linearly separable problems. Interest in neural networks 

was revitalized in the early 1980s when Hopfield (1982) demonstrated their potential to model 

associative memory. The architecture of modern ANNs typically involves multiple layers: an input 

layer through which data enter the model, one or more hidden layers where processing and 

transformation occur, and an output layer that produces the final prediction. A major advancement 

was the introduction of the backpropagation algorithm by Rumelhart et al. (1986), which enabled 

the efficient training of multilayer networks and marked the beginning of deep learning. This 

innovation was soon applied in practice by LeCun et al. (1989), who employed convolutional 

neural networks (CNNs) for digit recognition in postal codes, demonstrating their utility in pattern 

recognition tasks. Since then, the field has expanded rapidly, both in theoretical development and 

practical applications. Comprehensive overviews of neural network evolution and applications can 

be found in Goodfellow et al. (2016) and Schmidhuber (2015). 



Neural networks now encompass a broad spectrum of architectures. Shallow neural 

networks, as discussed by Aggarwal (2018), represent simpler forms with limited layers. Deep 

neural networks, or multilayer perceptrons, have been explored extensively in studies such as 

Schmidhuber (2015) and Yosinski et al. (2014), highlighting their capacity to learn hierarchical 

representations. CNNs, advanced by LeCun & Bengio (1995), LeCun et al. (1998), and Simard et 

al. (2003), have proven highly effective in image and spatial data processing, with further 

refinements presented by Gu et al. (2018). Recurrent neural networks (RNNs), introduced by 

Elman (1990) and extended by Hochreiter et al. (2001), were specifically designed to handle 

sequential data by retaining temporal dependencies. Long short-term memory networks (LSTMs), 

proposed by Hochreiter and Schmidhuber (1997) and subsequently improved by Gers et al. (2000), 

Mikolov et al. (2010), and Yu et al. (2019), address the limitations of traditional RNNs in capturing 

long-term dependencies. Attention-based neural networks have recently emerged as efficient tools 

for sequence modeling and prediction. With key contributions from Vaswani et al. (2017) they 

demonstrated superiority in capturing contextual information across time steps. Generative 

adversarial networks (GANs), first introduced by Goodfellow et al. (2014) and later refined by 

Creswell et al. (2018), Goodfellow et al. (2020) and Karras et al. (2018) represent another 

transformative innovation, enabling the generation of synthetic data and enhancing forecasting 

through data augmentation and simulation techniques. 

Altogether, these advancements underscore the versatility and growing significance of 

neural networks in modeling complex time series, and their continuing evolution promises to 

further improve forecasting accuracy and applicability across domains. Neural networks are 

widely used today for estimating volatility, because they can capture intricate temporal dynamics 

and nonlinear relationships. Recurrent Neural Networks (RNN), Long Short-Term Memory 

(LSTM) networks, and Gated Recurrent Units (GRU) have shown promise in modeling sequential 

data (Schmidhuber, 2015). They can flexibly approximate complex nonlinear relationships and 

potentially mimic regime-switching behavior (Zolfaghari & Hoseinzade, 2020). Neural networks 

offer a very different approach to modeling volatility, one that can be seen as complementary to or 

even a substitute for explicit regime-switching parametric model approach. A sufficiently complex 

neural network can, in theory, approximate the kind of piecewise dynamics that regime-switching 

models capture – for instance, by using nonlinear activation functions to mimic different volatility 

response regimes (Zolfaghari & Hoseinzade, 2020). 

In practice, two strands of research have emerged: Hybrid models that integrate neural 

networks with regime-switching GARCH and pure machine-learning models that implicitly 

capture regime dynamics. For instance, the integration of neural network structures with 

autoregressive conditional heteroskedasticity (ARCH) frameworks, as discussed by Ramos-Pérez 

et al. (2021) in their study, shows substantial promise in predicting volatility in complex financial 

environments like the S&P market. The synergy between these approaches leverages the strengths 

of both statistical modeling and neural networks, providing robust predictions that outperform 

conventional models. Furthermore, Bildirici & Ersin (2015) explore the efficacy of combining 

radial basis function (RBF) and multilayer perceptron (MLP) neural networks with GARCH 



models specifically for volatility forecasting in oil markets. Their findings suggest that these 

hybrid models significantly enhance forecasting accuracy by effectively capturing the 

nonlinearities inherent in financial time series. 

Effective hybrid modeling is not limited to GARCH frameworks; it also extends to 

stochastic volatility models, as demonstrated by Cao et al. (2018) who incorporated regime 

switching in a hybrid model for pricing variance swaps. Their work emphasizes the significant 

impact of incorporating regime switching dynamics on the pricing of financial derivatives. Further 

enriching this discourse, Yang et al. (2023) illustrate the application of hybrid long short-term 

memory (LSTM) models to volatility forecasting during the COVID-19 period, reinforcing the 

notion that combining traditional econometric techniques with contemporary machine learning 

approaches leads to improved prediction outcomes. This adaptability of hybrid models allows 

them to capture shifts in market sentiment and structural breaks more effectively than either 

traditional or machine learning models alone. 

But there is increasing research regarding pure machine learning approaches to model 

regime switching in volatility. Recent advancements in deep learning have significantly impacted 

the prediction of stock market volatility, as traditional forecasting methods often struggle with the 

complexities and non-linearity of financial data. Deep learning models, particularly variations of 

Recurrent Neural Networks (RNNs) and Long Short-Term Memory networks (LSTMs), have 

emerged as powerful tools for capturing the temporal dependencies inherent in stock price 

movements and volatility (Jia & Yang, 2021). They have been utilized effectively to process 

historical price data, uncovering complex relationships that simpler models fail to detect (Zhao et 

al., 2024). Velásquez et al. (2013) proposed using a dynamic neural network to forecast volatility 

across various international indices, implying significant advancements in predictive performance 

over conventional GARCH models. The integration of macroeconomic variables into these models 

has further enhanced their predictive capabilities, allowing for a comprehensive analysis that 

factors in broader market influences along with granular price patterns (Song et al., 2022). 

Moreover, the ability of deep learning models to adapt to high-dimensional data underscores their 

effectiveness in predicting volatility. For instance, studies have shown that deep neural networks 

excel at modeling intricate, non-linear relationships within stock price movements, thereby 

offering a distinct advantage over traditional linear models (Fan & Zhang, 2024; Liao et al., 2024). 

The introduction of advanced features, such as sentiment-driven indicators derived from news 

articles and social media, has also shown promise in reflecting the real-time dynamics of market 

sentiment, thus refining prediction accuracy (Jain et al., 2021). 

Furthermore, in recent years, the Temporal Fusion Transformer (TFT) has emerged as a 

powerful model for multi-horizon time series forecasting, combining high accuracy with 

interpretability. The TFT was proposed by Lim et al. (2021) as an interpretable attention-based 

model combining recurrent layers and transformer-style self-attention for multi-horizon 

forecasting, and gained traction in numerous domains, notably in finance where forecasting tasks 

are often multi-scale, non-linear, and dependent on heterogeneous inputs. Its architecture includes 

several innovative components: gating mechanisms, static covariate encoders, variable selection 



networks, and interpretable attention layers, allowing it to adaptively select relevant inputs at each 

time step (Lim et al., 2021). In contrast to pure Transformers (Vaswani et al., 2017), the TFT 

introduces mechanisms for handling static metadata and known future inputs, enabling realistic 

multi-step-ahead forecasting without recursive errors. The model’s direct multi-horizon forecast 

structure and attention-based interpretability have made it particularly suitable for complex 

financial time series. Wu et al. (2022) and Zhou et al. (2021) compared TFT to other attention-

based architectures like Autoformer and Informer, confirming TFT’s superior performance in 

medium-range forecasting tasks. Several studies (e.g., Ji et al., 2023; Mazen et al., 2023) also 

introduced enhancements such as multi-task learning and hybrid TFT structures tailored for 

specific domains. 

Volatility forecasting remains a core challenge in financial econometrics. Traditional 

models like GARCH (Bollerslev, 1986) and its extensions (e.g., EGARCH, FIGARCH, GJR-

GARCH) are widely used but limited in capturing non-linear dependencies and high-dimensional 

covariates. TFT offers a promising alternative, due to their ability to utilize self-attention 

mechanisms, enabling them to model intricate relationships across sequential data effectively, 

which is crucial in capturing the volatility patterns in financial markets (Hartanto & Gunawan, 

2024; Ji et al., 2023; Lim et al., 2021). The TFT model's structure allows for the incorporation of 

both historical price data and external indicators, such as macroeconomic variables, which have 

been shown to significantly impact volatility predictions (e.g. Kanarachos et al., 2023; Song et al., 

2022). For example, the TFT, through its gating mechanisms, can dynamically adjust to the 

changes in the financial landscape, thus enhancing the predictability of complex market 

movements when compared to traditional models like GARCH (Ardia, 2019; Song et al., 2022). 

Furthermore, the adaptability of TFTs suggests their potential in analyzing the asymmetric nature 

of market volatility, considering factors such as leverage effects and time-varying conditions 

(Bhowmik & Wang, 2020; Catania & Proietti, 2019). Frank (2023) applied TFT to forecast weekly 

and monthly realized volatility of S&P 500 constituents, finding it outperformed GARCH, LSTM, 

and Random Forest models across multiple metrics. The inclusion of static and temporal 

covariates—such as VIX, macroeconomic indicators, and sectoral identifiers—significantly 

improved forecast accuracy. Similarly, Lin & Sun (2021) integrated sparse attention with TFT in 

forecasting asset volatility, noting improved performance over ARIMA, LSTM, and GRU models. 

In the cryptocurrency domain, Farooq et al. (2024) used a modified TFT model to forecast Bitcoin 

volatility, incorporating geopolitical risk indicators and on-chain metrics, with results showing 

superior accuracy to baseline deep learning models. In their original work, Lim et al. (2021) 

included a stock market volatility dataset as one of the case studies to demonstrate TFT’s utility. 

Specifically, they modeled daily realized volatility of stock returns (for S&P 500 index 

constituents) as a multi-horizon forecasting problem. The TFT not only delivered accurate 

volatility forecasts, but its attention mechanisms yielded insights into the volatility dynamics. 

Notably, the model did not detect strong seasonal patterns in the volatility data, in contrast to other 

datasets like traffic or retail sales that showed clear daily/weekly seasonality. This finding aligns 

with financial theory: stock volatility is largely stochastic with little regular periodicity. The TFT’s 



attention weights for the volatility series were roughly uniformly distributed over past time steps 

(akin to a moving-average effect), suggesting the model was effectively smoothing out noise to 

capture any low-frequency trend in volatility. 

This kind of interpretability is valuable for financial analysts, as it confirms that the model 

isn’t erroneously perceiving cycles where none exist. The TFT has also shown strong results in 

forecasting stock returns and prices. Hu (2021) compared TFT with LSTM and SVR models for 

stock price forecasting and found that TFT yielded lower RMSE and higher directional accuracy. 

Hartanto & Gunawan (2024) applied TFT to the Indonesian stock market, reporting high accuracy 

and robust short-term forecasts using technical and macroeconomic indicators. Díaz Berenguer et 

al. (2024) enhanced TFT with causality-driven features, using transfer entropy from financial news 

to predict stock movements. Their TFT variant significantly outperformed LSTM, DeepAR, and 

pure Transformer baselines, suggesting TFT’s suitability for integrating alternative data like 

sentiment and news. Multiple empirical studies benchmark TFT against traditional and deep 

learning models. In volatility prediction, TFT consistently outperforms GARCH, ARIMA, and 

LSTM models (Frank, 2023; Lin & Sun, 2021). For price forecasting, studies by Zhao & Yan 

(2024) found that TFT delivers better performance than Informer and Transformer encoder-

decoder models across asset classes including FX and equities. In a survey of deep learning in 

finance, Fischer et al. (2023) highlighted TFT’s unique position: it matches or surpasses the 

accuracy of other models while retaining interpretability. Comparative benchmarks (Wu et al., 

2021; Zhou et al., 2021) showed that while Informer and Autoformer offer efficiency gains, TFT 

leads in accuracy for mid-range horizons. Bhardwaj et al. (2023) and Bhat et al. (2022) underlined 

that hybrid models (e.g., GARCH-LSTM) offer improvements over classical models, but TFT 

often surpasses even these when multiple covariates and time horizons are involved. Another core 

advantage of TFT is its built-in interpretability. Its variable selection network highlights the most 

influential features for each forecast, while attention scores identify key time steps contributing to 

predictions. Díaz Berenguer et al. (2024) leveraged attention heatmaps to interpret market regimes 

and driver variables in volatility prediction. 

Studies such as Alonso & Carbo (2022) and Hajek & Novotny (2024) emphasized that 

explainable AI models are crucial for finance professionals. Another interpretability use-case 

demonstrated by Lim et al. (2021) was regime identification in financial markets. By analyzing 

attention weight shifts, they showed that TFT could help identify high-volatility regimes or 

significant market events. For instance, during the 2008 financial crisis period, the TFT model’s 

attention patterns deviated notably from baseline, highlighting those periods as out-of-distribution 

regimes. These attention spikes corresponded to volatility surges, effectively flagging the crisis as 

a distinct regime. This is an important capability: in risk management, being able to detect regime 

changes (such as a shift from a low-volatility market to a turmoil period) is crucial. TFT’s 

architecture addresses this demand, offering transparency not available in many deep learning 

models. 

Research has expanded TFT applications beyond US equities. Yang et al. (2025) applied a 

multi-sensor TFT to predict Sharpe ratios using multi-task learning, showing robustness in both 



US and European markets. Hajek & Novotny (2024) incorporated Google Trends data and 

FinBERT sentiment scores into TFT for European stock forecasting. In commodities, Zha et al. 

(2024) used TFT for risk estimation of crude oil future prices forecasting. Zhao & Yan (2024) 

applied TFT to FX prediction (NZD pairs), achieving a high explanation of the data by the model 

for short-term exchange rate forecasts. Cross-country studies (Ang & Lim, 2022; Diaz Berenguer, 

2024) demonstrate TFT’s applicability to global financial markets, especially when extended to 

include relational data such as supply chain networks or macroeconomic dependencies. In 

summary, while research is still evolving, TFT has shown great promise in financial time series 

forecasting, especially for modeling stock return volatility. Its ability to incorporate a wide range 

of predictors (financial, economic, or technical) and to provide interpretable outputs makes it 

attractive for analysts seeking to predict not just point values but also understand the uncertainty 

and drivers of financial volatility. 

Early studies consistently report that TFT achieves higher predictive accuracy than 

traditional econometric models in volatility forecasting, and its interpretability features (like 

attention-based regime detection) offer additional value in financial decision-making contexts. 

They elucidate the utility of Temporal Fusion Transformers (TFT) in time series forecasting, 

specifically highlighting that financial returns exhibit regime-switching characteristics, including 

volatility changes. Lim et al. (2021) described, how identifying these temporary shifts can be 

essential for modeling financial time series accurately, asserting that significant regimes or events 

can lead to abrupt changes in volatility. This aligns with the broader literature that considers 

varying market conditions, emphasizing the need for models that can adapt to sudden changes. 

Moreover, the research presented by Diaz Berenguer et al. (2024) integrates causality-driven 

dynamics into stock movement predictions, utilizing TFT to account for different market 

conditions that may signify regime shifts. The dynamic transfer entropy approach they adopt for 

measuring interactions between stock prices and external news sentiments provides insights into 

how volatility regimes may evolve in response to new information. This reflects the importance of 

understanding external factors driving regime changes in financial markets. Hartanto & Gunawan 

(2024) further expands on multivariate forecasting within specific regimes by employing TFT 

models. Their investigation into short-term stock prices illustrates how feature engineering and 

technical data can enhance predictive accuracy during volatile periods, thus emphasizing the role 

of regime-switching behavior in shaping market predictions. Additionally, the comparative study 

by Lin & Sun (2021) highlights the strengths of transformer models over traditional LSTM 

approaches in capturing complex temporal dependencies, which are valuable in scenarios 

characterized by regime-switching. Their findings suggest that the self-attention mechanism in 

transformers can provide critical insights and adaptability to changing market conditions, thereby 

allowing for more robust forecasting models. Tang et al. (2024) introduce a period-aggregated 

transformer model (LPAST) aimed at learning latent seasonality in financial time series. Their 

work addresses how unobservable temporal patterns contribute to market volatility and the 

potential for abrupt regime shifts, advocating for models that incorporate these dynamic aspects 

to improve long-horizon predictions in financial markets. 



The literature also discusses the implications of using sentiment analysis in forecasting, as 

highlighted by Yao & Li (2020), who examines the information flow between economic policy 

uncertainty and various financial time series. This type of analysis can be crucial for recognizing 

regime changes by correlating shifts in sentiment with market movements. Despite the apparent 

advantages, several challenges remain in the application of pure neural networks for stock market 

volatility prediction. Issues like overfitting are particularly prevalent due to the often-limited 

availability of historical data for model training in financial contexts (Chen et al., 2023). 

Researchers have proposed various strategies to mitigate this problem, including data 

augmentation techniques and the careful tuning of model hyperparameters to enhance 

generalization (Yu & Li, 2021).  



3. MATERIAL AND METHODS 

In my research I focused on two major issues. First, I measured volatility around a 

geopolitical shock and analyzed the existence of abnormal market dynamics in the form of 

abnormal returns and abnormal volatility for the MSCI World sector indices. Therefore, I used the 

event study approach of Campbell & Lo (1996), Fama et al. (1969), and MacKinley (1997) to 

analyze the stock sector’s reaction to the Russian attack. For the evaluation of abnormal volatility, 

I used the approach of Ahmed et al. (2020), Beaver (1968), Brown & Warner (1985), Landsman 

& Maydew (2002), and Prasad et al. (2021). In terms of formal notation, I followed Robus et al. 

(2024). 

Second, I analyzed the out-of-sample forecasting performance of the Temporal Fusion 

Transformer (TFT) to predict daily volatility of high important financial instruments in three 

periods of geopolitical events: COVID-19, the Russian attack on Ukraine, and the attack by Hamas 

terrorists on Israel. Thus, I trained a multivariate TFT network and generated 1 to 10 step ahead 

out-of-sample forecasts in a rolling window for nine financial instruments. I analyzed the volatility 

of the four most significant stock indices: S&P 500 stock index, NASDAQ stock index, Nikkei 

225 stock index, Hang Seng; Gold as the essential instrument for hedging against inflation and a 

long-term store of value; Brent Crude Oil as the most important source of energy; the 10 years 

Treasury Bond as the essential reference for fixed income and the price of time; the exchange rate 

of Euro vs. US-Dollar as an indicator of the balance between the two most essential currencies; 

and Bitcoin as an instrument with increasing market capitalization, high potential of growth and a 

hedge against inflation. In addition, I used the VIX index future and the Geopolitical Risk Index 

(GPR; Caldara & Iacoviello, 2022) as explanatory variables in the multivariate forecasting 

approach. In particular, I examined whether the TFT outperformed different GARCH-class models 

(GARCH, EGARCH and GJR-GARCH). Therefore, I used 250 trading days of the financial 

instruments under consideration as training for the TFT. I used 200 trading days only for training 

the neural network and 50 trading days for validating the weights of the neural network. After 

training procedure, I generated predictions within the time periods for COVID-19 (02/03/20 - 

04/30/2020), the Russian attack on Ukraine (02/01/2022 - 29/04/2022) and for the period around 

the Hamas attack on Israel (10/01/2023 - 12/29/2023) for the volatility of financial instruments. 

The forecasts were each 1 to 10 trading days into the future. I used the rolling window approach, 

whereby for each step of the rolling window in the above-mentioned period, the Temporal Fusion 

Transformer was first trained with a combination of different hyperparameters (attention head = 

1, 4, 8 and hidden size = 16, 32, 64) and then the predictions for the next 1 to 10 trading days were 

generated. The rolling window was then shifted by one trading day. The TFT is known for its 

ability as a multivariate forecasting model. For this analysis I generated and analyzed multivariate 

forecasts. 



 

 

Figure 1: Research procedure for out-of-sample forecasting. 

Source: Own illustration using MS PowerPoint (2025) 

 

I predicted the volatility of all financial instruments simultaneously and included them in 

the training accordingly, so all the financial instruments mentioned are used as explanatory 

variables to forecast their volatility. In addition to the variables to be predicted, which in the 

method are both exogenous (as an explanatory variable for another variable to be predicted) and 

endogenous (as a variable to be predicted), I included the volatility index (VIX) future and the 

geopolitical risk index (GPR) as explanatory variables. I then tested whether the multivariate 

prediction approach achieves significantly better performance in predicting the volatility of the 

above financial instruments than the univariate approach, in which only the historical values of the 

financial instrument to be predicted itself serves as an explanatory variable. I evaluated the 

forecasting performance using the Symmetric Mean Average Percentage Error method (SMAPE). 

 

Figure 2: Rolling window approach for TFT out-of-sample forecasting. 

Source: Own illustration using MS PowerPoint (2025). 

My research focuses on how well the TFT can predict volatility behavior during periods of 

crisis. In this context, I also separately examine whether a TFT with an additional regime-

switching feature performs better than the pure TFT model. As mentioned above, all forecasts were 

generated multiple times, on a grid of different hyperparameters of the TFT. On the one hand, this 



is intended to increase the robustness of the results, and, on the other hand, I wanted to use it to 

examine whether variations in the hyperparameters can achieve significant improvements in 

forecasting performance. 

3.1. Definitions of volatility 

Here, I want to give a brief overview of the definitions of volatility. The statistical 

definition of volatility is the standard deviation of returns over a specific time horizon (Hull, 

2022). This is the classical definition of volatility used in risk management and time series 

analysis. It assumes that returns 𝑟𝑡 are random variables, and volatility captures their dispersion: 

𝜎 =  √𝑉𝑎𝑟(𝑟𝑡) =  √𝐸[(𝑟𝑡 − 𝜇)2] 

where 𝑟𝑡 are log returns of a time series of a financial asset 𝑝𝑡 and 𝜇 = 𝐸[𝑟𝑡] is the expected 

value of 𝑟𝑡, for 𝑡 ∈ {1, … , 𝑇}. The definition of conditional volatility arises from the 

observations, that volatility is not constant over time (Engle, 1982; Mandelbrot, 1963). 

Conditional volatility refers to the time-varying variance of returns, conditioned on past 

information (Engle, 1982). Based on this definition, ARCH (Engle, 1982) and GARCH models 

(Bollerslev, 1986) where developed. In the context of valuation of derivatives, the definition of 

implied volatility was created. Implied volatility is the markets expectation of the future 

volatility of an asset, as inferred from the price of options (Black & Scholes, 1973). It is derived 

by inverting the Black-Scholes or another option pricing model and reflects market sentiment 

and forward-looking expectations of risk. The definition of realized volatility approximates the 

true variance of returns over a day (or another interval) using summations of squared intraday 

returns and is e.g. applied in high-frequency finance, risk modeling and forecast accuracy tests. 

So, realized volatility (RV) is a non-parametric, ex-post measure of actual volatility, calculated 

using high-frequency intraday returns (Andersen et al., 2003): 

𝑅𝑉𝑡 = ∑ 𝑟𝑡,𝑖
2

𝑛

𝑖=1
 

where 𝑟𝑡,𝑖
2  are intraday returns and interval 𝑖 = 1, … , 𝑛. Frequently used in technical 

analysis, backtesting and VaR models the historical volatility (HV) is used. Historical volatility is 

the standard deviation of asset returns over a specified past window, without assuming time-

variation (Poon & Granger, 2003). HV is often computed using daily, weekly or monthly returns 

and is a simple backward-looking definition. In the context of Bayesian econometrics, state-space 

modeling and asset pricing, the definition of stochastic volatility is used. In stochastic volatility 

models, volatility itself follows a latent stochastic process, rather than being deterministically 

linked to past returns (Taylor, 1986). So, volatility is modeled as a separate, unobserved process, 

often following a log-normal distribution, which can explain features like volatility clustering and 

leverage effects. 



3.2. Abnormal Returns and Abnormal Volatility 

To identify Abnormal Returns and Abnormal Volatility, I used the event study approach 

of Campbell & Lo (1996), Fama et al., (1969) and MacKinley (1997) to analyze global stock 

market sector’s reaction to the Russian attack. For the evaluation of abnormal volatility, I use the 

approach of Ahmed et al., (2020), Beaver (1968), Brown & Warner (1985), Landsman & Maydew 

(2002) and Prasad et al., (2021). In terms of formal notation, I followed Robus et al. (2024). First, 

I calculated daily MSCI sector index returns by: 

Rs,t = ln(
Ps,t

Ps,t−1
) 

where the closing price of the sector index s at day t is denoted by Ps,t. Further, I constructed the 

OLS market model for every sector s:  

Rs,t = αs + βsRm,t + εs,t 

where εs,t~(0, σs,t
2 ) is white noise process, Rs,t is the daily return of sector 𝑠 at day 𝑡 and Rm,t is 

the daily market return at day t. αs, βs are the sector individual parameters of the market model. I 

used the MSCI as a benchmark for market returns Rm,t I use the MSCI World Index. The OLS 

market model assumes that the conditional expectation of Rs,t is given by: 

E(Rs,t|It−1) = αs + βsRm,t 

where It−1 are the information which was realized up to day t-1. 

I calculated abnormal returns by: 

ARs,t = Rs,t − E(Rs,t) = Rs,t − (α̂s + β̂sRm,t) 

where the estimated OLS market model parameters are denoted by α̂s and β̂s for each sector s 

within the period of t-250 to t-6. Cumulated abnormal returns can then be calculated by: 

CARs,τ1,τ2
= ∑ ARs,t

τ2

t=τ1

 

Using a GARCH(1,1) approach to model the sector volatility,  σs,t
2  can be described by the 

following: 

σ̂s,t
2 = ω̂s + 𝜃̂s𝜀𝑠,𝑡−1

2 + 𝜑̂sσs,t−1
2  

where ω̂s, 𝜃̂s and 𝜑̂s are the estimated model parameters which must estimated within the period 

of t-250 to t-6. I computed abnormal volatility for each sector 𝑠 at time 𝑡 (𝐴𝑉𝑂𝐿𝐴𝑠,𝑡) by: 

𝐴𝑉𝑂𝐿𝐴𝑠,𝑡 = 𝐴𝑅𝑠,𝑡
2  / σ̂s,t

2  

The procedure of an event study using Abnormal volatility is based on estimating the model 

parameters within the pre-event phase and then using this model to make predictions for the event 



and post-event phase. Bialkowski et al., (2008) gave the notice that a one-step forecast does not 

produce an event-independent forecast. This problem can be solved by making the volatility 

forecast depends only on the information available before the event. For this reason, a ℎ-th step 

ahead forecast must be used instead of ℎ separate one step ahead forecast. I defined 𝑇 = 𝑡 − 6 and 

compute ℎ-step out-of-sample Abnormal volatility forecasts for ℎ =1,…,31 by: 

𝐴𝑉𝑂𝐿𝐴𝑠,𝑇+ℎ = 𝐴𝑅𝑠,𝑇+ℎ
2  / σ̂s,T+h

2
 

𝐴𝑅𝑠,𝑇+ℎ
2 = (𝑅𝑠,𝑇+ℎ − (α̂s + β̂sRm,T+h))2 

σ̂s,T+h
2 = ω̂s ∑ (𝜃̂s + 𝜑̂s)𝑖 +

ℎ−1

𝑖=1
(𝜃̂s + 𝜑̂s)𝑖−1 + (𝜃̂s𝜀𝑠̂,𝑇

2 + 𝜑̂s𝜎̂𝑠,𝑇
2 ) 

For the analysis of whether volatility increases around the event day are persistent or not, I used 

the cumulative abnormal volatility (𝐶𝐴𝑉𝑂𝐿𝐴𝑠,𝑡) with: 

𝐶𝐴𝑉𝑂𝐿𝐴𝑠,𝑡+ℎ =  ∑ 𝐴𝑅𝑠,𝑖
2

𝑡+ℎ

𝑖=𝑡

/ ∑ σ̂s,j
2

𝑡+ℎ

𝑗=𝑡

 

3.3. GARCH-Class Models 

Let 𝑃𝑡 with a time series of a financial asset. Then 

ln (
𝑃𝑡

𝑃𝑡−1
) = 𝑟𝑡  t= 1, … , 𝑇 

is called the time series of returns. The series of returns can now be described as the sum of a 

constant mean (𝐸[𝑟𝑡] = 𝜇) and a time dependent error term (𝜎𝑡𝜀𝑡) (Engle, 1982), where 𝜎𝑡 is the 

conditional variance and 𝜀𝑡 a white noise process: 

𝑟𝑡 = 𝜇 + 𝜀𝑡𝜎𝑡  with 𝜀𝑡 ∼ 𝑁(0,1) i.i.d. 

By demeaning the return series, it can be described as a time series of residual returns: 

𝑟𝑡 − 𝜇 = 𝑥𝑡 = 𝜎𝑡𝜀𝑡 

The Generalized Autoregressive Conditional Heteroscedasticity GARCH(p,q) process 

was introduced by Bollerslev (1986) to model the time-varying behavior of the variance. In 

addition to the ARCH model developed by Engle (1982), in which only the squared historical 

error terms are included to model the current variance, the GARCH model also consists of the 

historical variance. This was due to empirical observations that volatility shows persistence. The 

GARCH model can be described by: 

𝜎𝑡
2 = 𝜔 + ∑ 𝛼𝑖𝑥𝑡−𝑖

2

𝑝

𝑖=1

+ ∑ 𝛽𝑗𝜎𝑡−𝑗
2

𝑞

𝑗=1

 

where 𝜔, 𝛼𝑖, 𝛽𝑗,𝛾𝑖 are the GARCH parameters with the following conditions: 



𝜔, 𝛼𝑖, 𝛽𝑗,𝛾𝑖  ≥ 0  𝑖 = 1, … , 𝑝 𝑗 = 1, … , 𝑞 

The GARCH parameters 𝜔, 𝛼𝑖, 𝛽𝑗,𝛾𝑖 determine the strength of the influence of the respective 

components. The EGARCH process was introduced by Nelson (1991) to model the leverage effect 

that occurs in many financial time series. He developed the EGARCH model for this purpose, 

which is good at capturing this asymmetry because it allows for the effect of the signs of the shocks 

on volatility. Another advantage, as pointed out by Nelson & Cao (1992), is that there are no 

restrictions on the model parameters: 

ln (𝜎𝑡
2) = 𝜔 + ∑ 𝛼𝑖(

|𝑥𝑡−𝑖
2 |

𝜎𝑡−𝑖
− 𝐸 [

|𝑥𝑡−𝑖
2 |

𝜎𝑡−𝑖
])

𝑝

𝑖=1

+ ∑ 𝛾𝑡−𝑖

𝑥𝑡−𝑖
2

𝜎𝑡−𝑖

𝑝

𝑖=1

+ ∑ 𝛽𝑡−𝑗ln (𝜎𝑡−𝑗
2 )

𝑞

𝑗=1

 

The GJR-GARCH model of Glosten, Jagannathan, and Runkle (Glosten et al., 1993), which is also 

known as the threshold GARCH (T-GARCH) model, is proposed to capture the asymmetric 

behavior of volatility regarding good and bad news, and by allowing the current conditional 

variance has a different response to the past positive and negative returns, captured by the dummy 

variable 𝐷𝑡. The GJR-GARCH model is expressed as follows: 

𝜎𝑡
2 =  𝜔 + ∑ 𝛼𝑖𝜀𝑡−𝑖

2

𝑝

𝑖=1

+ ∑ 𝛾𝑡−𝑖𝐷𝑡−𝑖𝜀𝑡−𝑖
2

𝑝

𝑖=1

+ ∑ 𝛽𝑡−𝑗𝜎𝑡−𝑗
2

𝑞

𝑗=1

 

with 𝜔, 𝛼𝑖, 𝛽𝑗  ≥ 0 and 𝐷𝑡−𝑖  = {
1, 𝜀𝑡−𝑖

2 < 0

0, 𝜀𝑡−𝑖
2 ≥ 0

 

The correct choice of the order of the GARCH model, i.e., the lags of past squared errors 

and variances included, is an essential question in modeling. Regarding Brooks & Burke (2003), 

French et al. (1987), Franses & Van Dijk (1996), Gokcan (2000), Pagan & Schwert (1990), and 

Visković et al. (2014) modeling 𝜎𝑡 as GARCH(1,1) process is sufficient to capture the volatility 

framework of financial data. In the analysis, I restricted the parameters to 𝑝 = 1, … ,5 and 𝑞 =

1, … ,5. Thus, I evaluated the best-fitting GARCH type model from a set of 75 competing models.  

To estimate the GARCH(p,q) parameters, I used the approach of the maximum likelihood, 

regarding Bollerslev (1986), Bollerslev & Woodbridge (1992), and Nelson (1991). With the 

assumption of normal conditional returns, the estimation of the exemplary GARCH(1,1) process 

by the Maximum Likelihood function can be described as follows: 

𝐿(𝜔, 𝛼1, 𝛽1, 𝜇|𝑟1, … 𝑟𝑇) =  ∏
1

√2𝜋𝜎𝑖
2

exp (
−(𝑟𝑖 − 𝜇)2

2𝜎𝑖
2 )

𝑇

𝑖=1
 

The L function is monotonically increasing, so one can maximize the log-likelihood function: 

max ln 𝐿(𝜔, 𝛼1, 𝛽1, 𝜇|𝑟1, … 𝑟𝑇) = −
𝑇

2
ln(2𝜋) −

1

2
∑ ln 𝜎𝑖

2

𝑇

𝑖=1

−
1

2
∑ (

(𝑟𝑖 − 𝜇)2

𝜎𝑖
2 )

𝑇

𝑖=1

 



Suppose it is necessary to relax the assumption of normal distributed conditional returns, for 

example, to model the excess kurtosis of asset prices. In that case, one can assume that the 

conditional returns follow a generalized error distribution 𝑓(𝑥), e.g., Bollerslev et al. (1994) and 

McDonald & Newey (1988), which can be described by: 

𝑓(𝑥) =
𝜈 exp (−

1

2
|

𝑥

𝜆𝜎
|
𝜐

)
1

𝜎

𝜆2(1+1/𝜈)Γ(1/𝜈)
  where 𝜈 > 0  and 𝜆 = [2−(2/𝜈) Γ(1/𝜈)

Γ(3/𝜈)
]

1

2
 

 

With estimated GARCH parameters 𝜔̂, 𝛼̂𝑖 , 𝛽̂𝑗 the estimated GARCH model can be forecasted. 

For the GARCH(p,q) model and a forecast horizon ℎ, the values of 𝜎̂𝑇+ℎ
2  can be computed by 

(Campbell & Lo, 1996; Figlewski, 1997; Granger & Poon, 2001): 

𝐸[𝜎̂𝑇+1
2 |𝐼𝑇] =  𝜔̂ + ∑ 𝛼̂𝑖𝐸[𝑥̂𝑇−𝑖+1

2 |𝐼𝑇]

𝑝

𝑖=1

+ ∑ 𝛽̂𝑗𝜎̂𝑇−𝑗+1
2

𝑞

𝑗=1

 

𝐸[𝜎̂𝑇+ℎ
2 |𝐼𝑇] = 𝜔̂ + ∑ 𝛼̂𝑖𝐸[𝑥̂𝑇−𝑖+1

2 |𝐼𝑇]

𝑝

𝑖=1

+ ∑ 𝛽̂𝑗𝜎̂𝑇−𝑗+1
2

𝑞

𝑗=1

 

= 𝜔̂ ∑ (∑ 𝛼̂𝑖

𝑝

𝑖=1

+ ∑ 𝛽̂𝑗

𝑞

𝑗=1

)𝑠
ℎ−1

𝑠=1
+ (∑ 𝛼̂𝑖

𝑝

𝑖=1

+ ∑ 𝛽̂𝑗

𝑞

𝑗=1

)ℎ−1(∑ 𝛼̂𝑖𝑥̂𝑇−𝑗+1
2

𝑝

𝑖=1

∑ 𝛽𝑗𝜎̂𝑇−𝑗+1
2 )

𝑞

𝑗=1

 

 

For ℎ → ∞ it follows: 

lim
ℎ→∞

𝐸[𝜎̂𝑇+ℎ
2 |𝐼𝑇] =

𝜔̂

1 − ∑ 𝛼̂𝑖
𝑝
𝑖=1 − ∑ 𝛽̂𝑗

𝑞
𝑗=1

 

3.4. The Temporal Fusion Transformer for volatility forecasting. 

The Temporal Fusion Transformer (TFT) is an advanced deep learning model, specifically 

designed for forecasting multivariate time series with multiple prediction horizons. Introduced by 

Lim et al. (2021), it combines the strengths of various modeling approaches, including recurrent 

neural networks (RNNs; Hopfield, 1982; Rumelhart et al., 1986) particularly Long Short-Term 

Memory (LSTM) networks (Hochreiter & Schmidhuber, 1997), self-attention mechanisms 

(Vaswani et al., 2017), and interpretable model components. The TFT is structured to efficiently 

model highly complex temporal dependencies while simultaneously providing robust 

interpretability of the results. A central feature of the TFT is its multi-horizon forecasting 

capability, which allows for simultaneous predictions across multiple future time steps. The model 

supports probabilistic forecasting, which is especially valuable in fields such as financial market 

prediction. The probabilistic nature of the forecasts is typically achieved through the use of 

quantile regression, enabling the estimation of prediction intervals and the explicit representation 

of uncertainties. A distinguishing feature of the TFT is its interpretability. Beyond variable 



selection, the attention mechanisms provide insights into the temporal significance of individual 

observations. By analyzing feature importance scores, users can understand which variables and 

time steps were critical for the forecast. 

 

Figure 3: Temporal Fusion architecture. Source: Lim et al. (2021). 

This attribute is particularly relevant in the financial sector, where model decision traceability is 

essential. In summary, the Temporal Fusion Transformer represents a significant advancement in 

time series forecasting by combining high predictive accuracy with robust interpretability. Due to 

its flexible architecture, the TFT is suitable for a wide range of applications, including financial 

market forecasting, energy consumption prediction, demand forecasting in supply chain 

management, and healthcare forecasting. Its ability to effectively model both short-term and long-

term dependencies makes it a powerful tool for modern time series analysis tasks. Here I want to 

discuss just some of the TFT elements, the full description can be taken from Lim et al. (2021). 

The TFT forecasting framework can be described by: 

𝑦̂𝑖,𝑡+𝜏(𝑞, 𝑡, 𝜏) = 𝑓𝑞(𝜏, 𝑦𝑖,𝑡−𝑘:𝑡 , 𝒛𝑖,𝑡−𝑘:𝑡,𝒙𝑖,𝑡−𝑘:𝑡+𝜏, 𝒔𝑖) 

where 𝑦̂𝑖,𝑡+𝜏(𝑞, 𝑡, 𝜏) is the predicted 𝑞𝑡ℎ sample quantile of the 𝜏-step ahead forecast at 

time 𝑡, for the target variable 𝑦𝑖,𝑡+𝜏 and 𝑓𝑞(∙) is a prediction model. The TFT incorporates different 

types of explanatory input features: static covariates 𝒔𝑖𝜖ℝ𝑚𝑠, time-dependent observable input 

features, which can only be measured at each step and are unknown beforehand 𝒛𝑖,𝑡𝜖ℝ𝑚𝑧 and time-

dependent known inputs, which can be predetermined 𝒙𝑖,𝑡𝜖ℝ𝑚𝑥 (e.g. the day-of-week at time t). 

Past information is incorporated within a finite look-back window 𝑘, where outcomes of the target 

variable 𝑦𝑖,𝑡−𝑘:𝑡 = {𝑦𝑖,𝑡−𝑘 , … , 𝑦𝑖,𝑡} are available up to time 𝑡. Known inputs 𝑥𝑖,𝑡−𝑘:𝑡+𝜏 =

{𝑥𝑖,𝑡−𝑘 , … , 𝑥𝑖,𝑡+𝜏} are available at any time across the entire time series range. 



The TFT model architecture consists of the following elements (Figure 3): Variable 

Selection Networks (VSN), Gated Residual Networks (GRN), Static Covariate Encoders, LSTM-

based local processing (Encoder and Decoder), a Multi-head Attention mechanism, the Temporal 

Fusion decoder and the Quantile Prediction Layer. The Variable Selection Network (VSN) 

dynamically weights each input feature (static, past, and future) based on its relevance to the 

prediction task. This is done using Gated Residual Networks (GRNs), which enable adaptive deep 

architectures and efficiently capture nonlinear relationships and is combined with soft attention. It 

allows the model to focus on the most important signals at each time step, ignore irrelevant noise, 

and improves interpretability and robustness, especially when many covariates are available (Lim 

et al. 2021): 

𝒗𝜒𝑡
= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐺𝑅𝑁𝜒𝑡

(𝚵𝑡 , 𝒄𝑠)) 

where 𝒗𝜒𝑡
 𝜖 ℝ𝜒𝑡 is a vector of variable selection weight and 𝒄𝑠 is obtained from a static covariate 

encoder, 𝜉𝑡
(𝑗)

 𝜖 ℝ𝑚𝜒 is the transformed input of the 𝑗𝑡ℎ variable at time 𝑡 with 𝚵𝑡 =

[𝜉𝑡
(1)𝑇

, … , 𝜉𝑡

(𝑚𝜒)𝑇

 ]
𝑇

 is the flattened vector of all past inputs at time 𝑡. 

The second element, Gated Residual Networks, transform and filter inputs via a gated 

mechanism, enabling the model to learn non-linear feature interactions while preserving gradient 

flow. They use a residual connection combined with gating and normalization. This allows the 

model to conditionally pass information forward or suppress it. GRNs are used extensively 

throughout the TFT, especially in feature selection and temporal processing. (Lim et al. 2021). 

These encode time-invariant inputs (e.g., asset type, geography) into embeddings that influence 

the entire network. Static Covariate Encoders are used to modulate various parts of the model, 

including variable selection, LSTM initial states, and attention scaling. This allows the model to 

tailor its internal dynamics depending on static properties of the input series. It provides a global 

conditioning mechanism for sequence modeling. Further, the TFT uses an LSTM encoder to 

process historical time series and a separate decoder for known future inputs. These LSTMs model 

short- and mid-range temporal dependencies effectively. They provide a localized understanding 

of temporal patterns, which is complemented by the attention mechanism for longer-range 

dependencies. Integrating future-known covariates such as holidays or planned interventions are 

done by this decoder (Lim et al. 2021). 

The Multi-Head Attention layer applies parallel attention heads to focus on different time 

steps and types of temporal dependencies. Each head learns to attend to relevant parts of the 

sequence based on a different learned projection. This mechanism allows the model to capture 

long-term dependencies between different time steps by assigning weights that reflect each time 

step's relative importance for prediction. As a result, the model can effectively identify and 

incorporate seasonal patterns, trend shifts, abrupt events and other complex patterns that LSTMs 

may miss. It also supports interpretability by revealing which time steps influenced the forecast 

(Lim et al. 2021). The Temporal Fusion decoder combines outputs from the LSTM decoder and 



attention layer, aligning and fusing them to generate final representations. It ensures the model 

balances both local sequential patterns (via LSTM) and global dependencies (via attention). This 

fusion is gated and residual in nature, maintaining efficient information flow and training stability. 

It prepares the context-aware features for final prediction (Lim et al. 2021). Finally, the Quantile 

Prediction Layer outputs multiple quantile forecasts (e.g., 10%, 50%, 90%) using fully connected 

layers. This allows the model to represent uncertainty in its forecasts, not just point estimates. It’s 

particularly valuable in high-variance or risk-sensitive domains like finance or energy. The use of 

quantile loss (pinball loss) encourages accurate estimation of prediction intervals (Lim et al. 2021).  

To train the TFT, I used the combination of hyperparameters as shown in Table 1. 

Table 1: Applied hyperparameter for Temporal Fusion Transformer training and forecasting 

TFT Parameters Value 

Learning Rate 0.001 

Dropout Rate 0.01 

Minibatch Size 32 

Attention Head 1, 4, 8 

Hidden Size 16, 32, 64 

Max. Epochs 100 

Loss Metrics MAE, MSE 

Source: Own collection (2025). 

In doing so, I based the hyperparameter selection by publications such as: Frank (2023); 

Hartanto & Gunawan (2024) and Lim et al. (2021). 

Attributed to its flexibility, TFT is well-suited for modeling financial market time series, 

which are the focus of this research scope. These series are characterized by complex and often 

non-linear temporal dynamics. These include short-term fluctuations, long-term structural 

dependencies, volatility clustering, regime shifts and abrupt volatility spikes (Box et al. 2015; 

Engle & Bollerslev, 1986; Glosten et al. 1993). Short-term behaviors, such as return 

autocorrelations (at intraday level), momentum effects, and reactions to market news, are captured 

in the TFT through a combination of Gated Residual Networks (GRNs), LSTM encoders, and 

decoder self-attention. GRNs dynamically weight input features at each time step, allowing the 

model to focus selectively on the most informative variables in response to evolving market 

conditions. (Farooq et al., 2024; Hartanto & Gunawan, 2024; Lim et al., 2021). For example, 

during a brief momentum phase, the model can increase reliance on recent return-based indicators, 

while deprioritizing static or lagged variables. The LSTM encoder complements this by learning 

sequential dependencies from recent observations, effectively capturing patterns such as price 

reversals, temporary shocks, or drift. In the decoding stage, the self-attention mechanism allows 

the model to refine its predictions by considering interdependencies across the forecast horizon, 

helping to model the short-term evolution of financial variables more precisely (Lim et al., 2021; 

Zhang et al., 2025). 



Long-term structures in financial time series, such as macroeconomic cycles, seasonal 

patterns, or structural breaks, are addressed through temporal self-attention, static covariate 

encoders, and positional embeddings. The temporal self-attention mechanism allows the model to 

assign relevance to past time steps regardless of their distance from the present, making it ideal 

for capturing lagged relationships and recurring long-term dependencies. For instance, the model 

can learn to associate certain market behaviors with previous policy announcements or 

macroeconomic releases. The static covariate encoder incorporates fixed characteristics, such as 

asset class, sector, or region, that influence the long-run dynamics of each series. These encodings 

are broadcast across the model, conditioning the forecast on the broader context. Additionally, 

positional encodings inject information about the location of each time step within the sequence, 

helping the model distinguish between different phases of the calendar (e.g., month-end effects, 

quarterly earnings cycles) (Laborda & Zamanillo, 2023; Lim et al., 2021). 

One of the defining features of financial time series is volatility clustering, the empirical 

tendency for periods of high volatility to be followed by further high volatility, and likewise for 

low-volatility periods (Bollerslev, 1986). In the TFT, volatility clustering is effectively modeled 

through the interplay of the LSTM encoder, GRNs, and temporal self-attention. The LSTM 

captures recent patterns in volatility behavior, such as surges in realized variance or rapid 

fluctuations in returns, by encoding them into its internal state. GRNs dynamically modulate the 

importance of inputs such as rolling standard deviations, implied volatility indices, or liquidity 

measures, enabling the model to adapt to early signals of clustering. Temporal self-attention allows 

the TFT to recall similar historical regimes, even if they occurred at distant time points, providing 

a mechanism for pattern recognition that is not limited by sequential memory constraints. 

Collectively, these components enable the model to learn both the persistence and evolution of 

volatility over time (Beck et al., 2025; Lim et al., 2021). 

While volatility clustering describes persistent variance over time, volatility spikes 

represent sudden and often exogenous breaks in the variance structure, frequently associated with 

macroeconomic shocks, geopolitical events, or market crises. The TFT is well-suited to capture 

such discontinuities due to its architectural flexibility and contextual awareness. GRNs enable 

rapid re-weighting of features when market conditions change abruptly, allowing the model to 

respond to signals such as unexpected macroeconomic data or news sentiment indicators (Shen et 

al., 2025). The LSTM encoder preserves short-term temporal patterns that often precede spikes, 

such as increased intraday volatility or widening bid-ask spreads. Through temporal attention, the 

model can draw on analogs from past volatility episodes, identifying similar historical dynamics 

that inform its current predictions. The decoder’s self-attention mechanism enables the forecast to 

adjust dynamically across the prediction horizon, allowing the model to capture whether a spike 

is expected to dissipate quickly or initiate a prolonged regime shift (Yang et al., 2025). Finally, 

gating mechanisms and residual connections ensure that the model can transition smoothly 

between stable and volatile regimes without losing predictive stability. 

Quantile forecasting capabilities of the Temporal Fusion Transformer (TFT) present 

substantial opportunities for e.g. enhancing risk management, portfolio management, and 



regulatory supervision in financial contexts. By directly modeling conditional distributions and 

providing accurate quantile estimates, the TFT is particularly adept at capturing complex financial 

dynamics, including tail risks and nonlinear market behaviors. In risk management, the TFT’s 

quantile forecasting allows for precise estimation of key risk metrics such as Value-at-Risk and 

Expected Shortfall (e.g. Merlo et al., 2021; Petneház, 2021; Zha et al., 2024). Banks and financial 

institutions can utilize these advanced forecasts to dynamically adjust risk exposure, ensuring 

compliance with stringent regulatory requirements. TFT quantile forecasts further contribute to 

credit risk management by enabling scenario-based predictions of default probabilities and credit 

losses. 

In portfolio management, TFT-based quantile predictions enable fund managers to better 

anticipate and navigate extreme market conditions. By incorporating tail-risk forecasts into 

portfolio construction, managers can dynamically hedge or rebalance asset allocations, effectively 

minimizing downside risks and optimizing returns under stressed scenarios. The TFT's ability to 

capture volatility clustering and spikes further strengthens the fund manager’s capability to time 

factor exposures and sector rotations effectively (e.g. Hartanto & Gunawan, 2024; Yang et al., 

2025). 

Regulatory supervisory applications benefit significantly from TFT quantile forecasting, 

particularly through enhanced stress-testing frameworks. Supervisory authorities can deploy TFT 

models to generate detailed, scenario-based projections of systemic risks, improving the accuracy 

and interpretability of regulatory stress tests such as those conducted under CCAR and by the 

European Banking Authority (EBA). TFT forecasts provide supervisors with critical insights into 

potential vulnerabilities, facilitating proactive policy responses and macroprudential interventions 

aimed at maintaining financial stability. Additionally, the improved precision in modeling extreme 

financial events through quantile forecasting assists institutions in determining regulatory capital 

requirements more accurately, ensuring capital adequacy and regulatory compliance (Merlo et al., 

2021; Storti & Wang, 2022; Taylor, 2019). 

3.5. Forecasting Evaluation 

Volatility forecasting itself has been approached by various methodologies, including 

GARCH-type models, neural networks, and hybrid approaches. Reviews on forecasting volatility, 

such as those by Gospodinov et al. (2006) and Poon & Granger (2003) emphasize that the choice 

of forecasting evaluation metric can be as critical as the forecasting model itself. While much of 

the literature has traditionally focused on metrics such as root mean squared error (RMSE) or mean 

absolute error (MAE), the Symmetric Mean Absolute Percentage Error (SMAPE) has gained 

attention as an alternative to traditional forecast accuracy metrics in financial econometrics, 

particularly for evaluating volatility forecasts. Unlike measures such as Mean Absolute Percentage 

Error (MAPE), which can become undefined or highly unstable in the presence of zero or near-

zero actual values, SMAPE normalizes forecast errors by the average of the absolute predicted and 

actual values, yielding a bounded and symmetric error metric (Goodwin & Lawton, 1999; 

Makridakis, 1993). This formulation ensures that SMAPE avoids the infinite or excessively large 



errors that can occur in MAPE when actual values approach zero. As such, SMAPE has been 

proposed as more robust and interpretable in settings where volatility varies widely or where 

heteroskedasticity is present (Makridakis & Hibon, 2000; Taylor, 2004). These properties make it 

particularly suitable for evaluating financial volatility forecasts, where both the scale and 

asymmetry of predicted and realized volatility can fluctuate substantially across time and assets 

(Bao et al., 2017; Kim & Won, 2018). The SMAPE can be described by: 

𝑆𝑀𝐴𝑃𝐸({𝑦𝑡 , 𝑦̂𝑡}𝑡=1,…,𝑇) =
1

𝑇
∑

𝑦𝑡 − 𝑦̂𝑡

(|𝑦𝑡| − |𝑦̂𝑡 |)/2

𝑇

𝑡=1
 

where 𝑦𝑡 is the observed value of the target variable and 𝑦̂𝑡 a corresponding forecast in 

time 𝑡. SMAPE is particularly advantageous when volatility estimates are small or heterogeneous 

in scale, conditions under which percentage-based errors (e.g., MAPE) tend to exhibit bias or 

instability (Goodwin & Lawton, 1999; Makridakis, 1993). By symmetrizing the relative error, 

SMAPE ensures that over-predictions and under-predictions are treated with equal penalization, 

which is crucial when evaluating models such as GARCH-type processes, stochastic volatility 

models, or machine learning–based volatility forecasts (Hansen & Lunde, 2005; Taylor, 2004). 

This is particularly true in the evaluation of models that forecast volatility, where large shocks or 

outlier events can distort error measures that are not similarly bounded (Pereira et al., 2024). 

Furthermore, the debate regarding the optimal criteria for forecast evaluation extends beyond the 

use of traditional statistical loss functions. As highlighted by Degiannakis & Kafousaki (2023), 

the selection of an appropriate evaluation metric can lead to seemingly contradictory conclusions 

about model performance. In this context, SMAPE’s bounded nature ensures that forecast errors 

are confined within fixed limits, which facilitates a more consistent comparison across models and 

forecast horizons. Complementary insights from Sadorsky & McKenzie (2008) further underscore 

the importance of choosing an error metric that accurately reflects the relative forecasting 

performance over different horizons, which is critical in volatility forecasting given the dynamic 

nature of financial markets. Several studies have employed SMAPE to assess the out-of-sample 

predictive performance of volatility models. For instance, Makridakis & Hibon (2000) used 

SMAPE in large-scale forecast competitions to compare competing models under diverse volatility 

regimes. In financial econometrics, Taylor (2004) applied SMAPE in comparing realized volatility 

forecasts generated from GARCH and stochastic volatility models. The measure has also been 

adopted in more recent machine learning–based volatility forecasting literature, where it provides 

robustness to scale variations in neural networks and ensemble models (Bao et al., 2017; Kim & 

Won, 2018). Despite its practical appeal, some researchers have noted potential limitations of 

SMAPE, including non-differentiability at zero and boundedness that may understate large relative 

errors when actual values are small. Nevertheless, its interpretability and symmetry make it a 

valuable complement to traditional metrics such as RMSE or MAE, especially when the focus is 

on percentage-based relative error across varying volatility scales. 

The main objective of the study is to determine the usefulness of the Temporal Fusion 

Transformer in practical applications for predicting volatility under geopolitical shocks. With this 



in mind, I addressed the question of the extent to which presenting the results of a variety of 

different Forecast Evaluation Criteria (FEC) favors a decision-theoretically consistent model 

decision. I decided to use SMAPE solitary for the following reasons. Granger & Newbold (2014) 

and Elliot & Timmermann (2008) noted that a consistent decision-making process is only possible 

if the FEC corresponds to the actual loss function. In the analysis, I wanted to predict the volatility 

of various financial instruments to make portfolio adjustments and hedging for a portfolio, for 

example. Given this goal, I’m interested in the percentage deviation of the forecast. Furthermore, 

Diebold & Mariano (1995) showed that models can be ranked differently under different FECs, 

making model selection somewhat arbitrary. In addition, statistical tests are only defined within a 

consistent evaluation criterion, from which it follows that the statistical significance can only be 

calculated consistently for one type of FEC at a time. Consequently, the simultaneous use of 

multiple FECs can lead to contradictory model rankings, making rational model selection more 

difficult (Hansen et al., 2011). Including several FECs can also lead to overfitting of the prediction 

models (Timmermann, 2006). 

To assess the statistical significance of the difference in performance between two 

forecasting models, we use the Diebold-Mariano test statistics (Diebold & Mariano, 1995). The 

goal hereby is, to assess whether to competing forecasting models have equal predictive accuracy. 

Therefore, the null hypothesis can be described by: 

𝐻0: 𝐸[𝑑𝑡] = 0 

where 𝑑𝑡 = 𝐿(𝑦𝑡 , 𝑦̂1,𝑡) − 𝐿(𝑦𝑡 , 𝑦̂2,𝑡) and 𝐿 is a certain loss function, 𝑦𝑡 is the observed realization 

of the target variable in time 𝑡, which must be forecasted and 𝑦̂𝑖,𝑡 is a forecasting model to predict 

the value of 𝑦𝑡. To evaluate these hypothesis, Diebold and Mariano (1995) constructed the 

following test statistics: 

𝐷𝑀 =
𝑑̅

√𝑉̂(𝑑̅)
 

where 𝑑̅ =
1

𝑇
∑ 𝑑𝑡

𝑇
𝑡=1  is the mean loss differential and 𝑉̂(𝑑̅) is the estimated variance of the mean 

loss differential. To account for possible heteroskedasticity and autocorrelation effects in the data, 

we adjust the Diebold-Mariano test statistics for the variance estimation, proposed by Newey & 

West (1987): 

𝑉̂(𝑑̂) =
1

𝑇
(𝛾0 + 2 ∑ 𝑤𝑛𝛾𝑛

𝑁

𝑛

) 

where 𝛾𝑛 is the autocovariance of the time series 𝑑𝑡 with lag 𝑛 and 𝑤𝑛 = 1 −
𝑛

𝑁+1
 are the Bartlett-

weights (Bartlett, 1946). For small samples, the DM test statistic can be biased, so, we adjust it by 

the approach of Harvey et al. (1997): 



𝐷𝑀∗ =
𝐷𝑀

√𝑇 + 1 − 2ℎ + ℎ(ℎ − 1)/𝑇
𝑇

 

where ℎ is forecast horizon and 𝑇 is sample size. The DM* test statistics now follows a t-

distribution, for which the corresponding values for the evaluation of the DM* test must then be 

compared. 

3.6. Applied Datasets 

3.6.1. MSCI World Sector Indices for Identification of Abnormal Returns and Abnormal 

Volatility 

In the following, I will briefly discuss the dataset and present some statistical analysis. In 

the analysis I used the dataset and the description of Robus et al. (2024). “The dataset contains 11 

MSCI sector index time series (MSCI, 2024b) and the MSCI World (MSCI, 2024a) itself (Table 

2) with closing prices (in USD) from March 04, 2021, to March 31, 2022. Each series provides a 

total of 281 business days. The data was collected via MSCI (2024a, 2024b). I oriented at e.g., 

Federle et al. (2022), Izzeldin et al. (2023) and Yousaf (2022) by defining the event date to the 

February 24, 2022, and name it as t. 

For the event study, I have split the data set for each sector time series into three parts. 

First, the pre-event phase, contains 250 observations from March 4, 2021, to February 16, 2022” 

(Robus et al., 2024). I used this data (t – 255 to t – 6) to estimate the parameters for the OLS market 

model and the corresponding GARCH process. The event phase from February 17, 2022, to March 

03, 2022 (t – 5 to t + 5) contains the observations which provides the market development around 

the Russian attack. In accordance with Robus et al. (2024) and Yousaf et al., (2022), I used this 

period for the analysis of the market reaction. The post event phase, period contains observations 

from March 04, 2022, to March 31, 2022, and was used to examine whether the abnormal volatility 

is persistent and how long it remains at an above-average level compared to the pre-event phase. 

To achieve this, I combined the event phase and the post-event phase (t – 5 to t + 25). 

I also want to provide some summary statistics for MSCI sector indices shortly. Details are 

described at Robus et al., (2024). An illustration of the time series of log-returns is given by Figure 

4. As expected, I observed close to zero average and median daily returns for the MSCI World 

index in the pre-event phase (Table 3), positive post-event (Table 5) and strongly negative during 

event phase (Table 4). Overall, it can be seen from this that the Russian attack initially led to sell-

offs. However, one can see a strong recovery in the post-event phase, which is very different for 

the individual sectors, indicating a reallocation regarding the sectors. This is understandable 

insofar as the expectations of market participants regarding the development of business models 

within the sectors have changed and they are reacting accordingly. The highest daily losses during 

the event phase were recorded by the sectors: Financials (-3.41%), consumer staples (-2.82%), 

materials (-2.64%), telecommunications (-2.63%), consumer discretionary (-2.51%), utilities (-



1.97%), IT (-1.69%), real estate (-1.68%), industrials (-1.63%), energy (-1.46%) and health care 

(-1.25%). 

To compare sample variances between pre-event and event phase, I applied Levene’s test 

statistic (Table 6). The test is robust to deviations from the assumption that the samples to be 

compared must be normally distributed. Furthermore, the sample sizes of the two samples can be 

different. I found that almost all sector variances are significantly different from zero, which means 

that variances during the event phase are significantly higher. Data variability can also be seen, 

when looking at the range of the data (difference between minimum and maximum) for the 

individual sectors. I found that it widens for event- and post-event phase, comparing to the pre-

event phase. These are all signs of an increase in the fluctuation of share prices in connection with 

the Russian attack. 

 

Table 2: MSCI World Sector Indices. 

Index ISIN Abbreviation 

MSCI World Index MIWO00000PUS MSCI 

MSCI World Consumer Discretionary Index MIWO0CD00PUS CD 

MSCI World Consumer Staples Index MIWO0CS00PUS CS 

MSCI World Energy Index MIWO0EN00PUS EN 

MSCI World Financials Index MIWO0FN00PUS FN 

MSCI World Health Care Index MIWO0HC00PUS HC 

MSCI World Industrial Index MIWO0IN00PUS IN 

MSCI World Information Technology Index MIWO0IT00PUS IT 

MSCI World Materials Index MIWO0MT00PUS MT 

MSCI World Real Estate Index MIWO0RE00PUS RE 

MSCI World Telecommunications Index MIWO0TC00PUS TC 

MSCI World Utilities Index MIWO0TC00PUS UT 

Source: Morgan Stanley Capital International (MSCI, 2024b), Robus et al. (2024). 



 

Figure 4: Log-returns for MSCI World Sector Indices (07/01/2021 – 06/30/2022). Dashed line 

marks the day of the Russian attack on Ukraine at February 24, 2022. 

Source: Own illustration using Python Matplotlib (2025). 

 



Table 3: Summary statistics for daily MSCI World Sector Index log-returns (in %) for pre-event phase 03/04/21 – 02/16/22 

 MSCI CD CS EN FN HC IN IT MT RE TC UT 

Min -2.22% -2.92% -2.36% -4.54% -3.41% -1.92% -2.55% -2.22% -2.82% -2.22% -5.85% -2.20% 

1.Q -0.31% -0.47% -0.22% -0.77% -0.47% -0.34% -0.37% -0.33% -0.47% -0.33% -0.44% -0.40% 

Med. 0.10% 0.12% 0.07% 0.13% 0.10% 0.06% 0.02% 0.09% 0.08% 0.11% 0.01% 0.12% 

Mean 0.04% 0.03% 0.05% 0.11% 0.06% 0.05% 0.02% 0.03% 0.03% 0.04% -0.01% 0.03% 

3.Q 0.50% 0.68% 0.40% 1.00% 0.70% 0.45% 0.56% 0.50% 0.61% 0.50% 0.57% 0.53% 

Max 2.12% 3.20% 1.55% 3.38% 2.42% 1.68% 1.71% 2.12% 2.17% 2.12% 2.54% 1.64% 

StD 0.73% 1.00% 0.54% 1.47% 0.90% 0.66% 0.77% 0.73% 0.92% 0.74% 1.01% 0.70% 

Source: Morgan Stanley Capital International (MSCI, 2024b), Robus et al. (2024). 

 

Table 4: Summary statistics for daily MSCI World Sector Index log-returns (in %) for event phase 02/17/22 – 03/03/22 

 MSCI CD CS EN FN HC IN IT MT RE TC UT 

Min -1.69% -2.51% -2.82% -1.46% -3.41% -1.25% -1.63% -1.69% -2.63% -1.69% -2.63% -1.97% 

1.Q -1.13% -2.15% -0.72% -0.79% -1.64% -0.42% -1.14% -1.13% -0.72% -1.13% -1.12% -0.45% 

Med. -0.74% -0.91% -0.23% -0.17% -0.62% -0.29% -0.86% -0.74% -0.46% -0.74% -0.88% -0.11% 

Mean -0.36% -0.77% -0.14% 0.27% -0.77% -0.01% -0.29% -0.36% -0.09% -0.32% -0.37% 0.05% 

3.Q -0.10% 0.48% 0.13% 0.88% -0.30% -0.10% 0.23% -0.10% 0.50% 0.06% 0.29% 0.22% 

Max 2.52% 2.25% 3.20% 2.79% 2.95% 3.07% 2.94% 2.52% 3.24% 2.52% 1.87% 3.50% 

StD 1.19% 1.55% 1.36% 1.38% 1.73% 1.09% 1.29% 1.19% 1.43% 1.20% 1.30% 1.31% 

Source: Morgan Stanley Capital International (MSCI, 2024b), Robus et al. (2024).  



Table 5: Summary statistics for daily MSCI World Sector Index log-returns (in %) for post-event phase 03/04/22 – 03/31/22. 

 MSCI CD CS EN FN HC IN IT MT RE TC UT 

Min -2.69% -4.58% -2.28% -2.48% -3.46% -1.68% -2.11% -2.69% -1.84% -2.69% -3.56% -0.67% 

1.Q -0.81% -1.25% -0.89% -0.74% -0.46% -0.47% -0.47% -0.81% -0.59% -0.81% -1.08% -0.12% 

Med. 0.12% 0.12% 0.36% -0.04% 0.15% 0.36% 0.02% 0.12% 0.25% 0.12% -0.03% 0.45% 

Mean 0.18% 0.26% 0.03% 0.24% 0.14% 0.21% 0.14% 0.18% 0.19% 0.18% 0.12% 0.33% 

3.Q 1.10% 1.87% 0.63% 1.70% 1.21% 0.85% 0.51% 1.10% 0.81% 1.10% 1.41% 0.89% 

Max 2.96% 3.80% 2.14% 3.37% 4.04% 2.22% 2.72% 2.96% 2.41% 2.96% 3.43% 1.32% 

StD 1.39% 2.13% 1.12% 1.80% 1.71% 1.07% 1.18% 1.39% 1.15% 1.39% 1.74% 0.61% 

Source: Morgan Stanley Capital International (MSCI, 2024a, 2024b), Robus et al. (2024). 

 

Table 6: Levene’s test for equality of sample variances between pre-event and event phase 

(* test was rejected on a 5% level). 

 MSCI CD CS EN FN HC IN IT MT RE TC UT 

Levene’s 

test 
2.66* 2.40* 6.34* 0.88 3.69* 2.73* 2.81* 2.66* 2.42* 2.63* 1.66 3.50* 

Source: Robus et al. (2024) 

 



3.6.2. Dataset for Temporal Fusion Transformer Forecasting 

This section will present and discuss the dataset, I used to evaluate the forecasting performance of 

the Temporal Fusion Transformer and the different GARCH-type models. I collected daily time 

series data on closing prices for selected financial instruments (Table 7). 

 

Table 7. Financial instruments in scope for volatility forecasting analysis. 

Financial Instrument ISIN 

S&P 500 Index US78378X1072 

NASDAQ 100 Index US6311011026 

Nikkei 225 Index JP9010C00002 

Hang Seng Index HK0000004322 

Gold XC0009655157 

Brent Crude Oil XC0009677409 

EUR/USD EU0009652759 

10yr. Treasury-Bond US10YT 

Bitcoin CRYPT0000BTC 

Source: FRED (2024a, 2024b, 2024c, 2024d, 2024e, 2024f, 2024g, 2024h), Reuters (2024). 

The used dataset contains 9 time series with closing prices from the January 07, 2019 to 

the June 30, 2024 (Figure 3). Overall, I collected 1,388 business days for every financial 

instrument from Federal Reserve Bank of St. Louis (FRED): S&P500 (FRED, 2024a), NASDAQ 

100 (FRED, 2024b), Nikkei 225 (FRED, 2024c), Gold (FRED, 2024d), Brent Crude Oil (FRED, 

2024e), EUR-USD exchange rate (FRED, 2024f), 10-year Treasury Bond rate (FRED, 2024g) and 

Bitcoin (FRED, 2024h); and data for the Hang Seng stock index from Reuters database for 

historical data (Reuter, 2024) and calculated log-returns for the analysis. I computed summary 

statistics for daily log-returns of each financial instrument for the entire dataset and selected 

periods: COVID-19, the Russian attack and the Hamas terrorist attack on Israel (Tables 8-11). 

Furthermore, I collected historical data for the CBOE Volatility Index (VIX) (FRED, 2024i) and 

the Geopolitical Risk Index (2024), who was constructed by Caldara & Iacoviello (2022). Looking 

over the entire dataset, I found heavy daily losses: Bitcoin (-46.5%), 10-year Treasury Bond (-

32.4%), Brent Crude Oil (-28.0%), NASDAQ (-13.1%) and S&P 500 (-12.8%). But there were 

also profits. The maximum daily gains are led by the 10-year Treasury Bonds (+36.8%), followed 

by Brent Crude Oil (+27.4%) and Bitcoin: (+20.3%). I compared the periods of geopolitical shocks 

separately and found the following. The heaviest daily losses occurred during COVID-19 with 

average of daily losses across all financial instruments by -16.8%. It was -5.6% for the period of 

the Russian attack and -3.3% for the period of the Hamas terrorist attack on Israel. Bitcoin, Brent 

Crude Oil and Bonds suffered the most considerable daily losses in all three periods.  

Comparing volatility using the standard deviation of daily returns between different 

periods, one can observe the following. The period of COVID-19 has the highest volatility, with 

an average standard deviation of daily returns of 4.6%. This is followed by the period of the 



Russian attack with 2.2% and then the period of the Hamas attack with 1.4%. Bitcoin, bonds, and 

oil have been found to have the highest volatility in all three periods of analyzed geopolitical 

events. Bonds were 11.8% during COVID-19, Brent Crude oil was 7.7% during the Russian attack, 

and Bitcoin was 2.8% during the Hamas attack. In the next step, I checked whether I need to 

perform further transformations on the time series before the analysis. 

 

Figure 5: Daily log-returns for financial instruments in scope (01/07/2019 – 06/29/2024). Dashed 

lines mark geopolitical events: COVID-19 (03/09/20); Russian attack (02/24/22) and Hamas 

attack (10/08/23). Source: Own illustration using Python Matplotlib (2025). 

This may be the case if a time series is not stationary. I tested this with the Augmented 

Dickey-Fuller test (Dickey & Fuller, 1979; Said & Dickey, 1984) and found that for all financial 

instruments, the null hypothesis, that a time series is not stationary, could rejected (Table 12). In 

the last step, I wanted to test the feasibility of modeling volatility using GARCH models, i.e., 

whether the effects of heteroskedasticity can be observed in the time series. I use Engle's ARCH 

Lagrange Multiplier test (Engle, 1982). The null hypothesis assumes that there is no 

heteroscedasticity, whereby the parameters of an ARCH model are estimated using the data to be 

equal to zero. I could observe the following by applying Engle's ARCH test to the time series. The 

test could not be rejected for the EUR-USD exchange rate and Bitcoin but could rejected for all 

other financial instruments (Table 13). This is an important indication that the current variance of 

the residuals of daily returns can be explained by the variance of the residuals of the past and 

provides the foundation for the further analysis. Furthermore, heteroscedasticity may also be 

present if the test is rejected. This may be because the time series under consideration has a high 

persistence in volatility. In this case, a GARCH model should be used for modeling. A second 

possibility is the presence of structural breaks that an ARCH model cannot sufficiently represent. 

In this case, the GJR-GARCH model shall be used.



Table 8: Summary statistics of daily log-returns for financial instruments in research scope (01/07/2019 - 06/30/2024). 

 S&P 500 NASDAQ Nikkei225 Hang Seng Gold Oil 10yr. T-Bond EUR/USD BTC Average 

Minimum -0.128 -0.131 -0.063 -0.066 -0.051 -0.280 -0.324 -0.028 -0.465 -0,171 

25% Quantile -0.005 -0.006 -0.006 -0.008 -0.004 -0.010 -0.016 -0.002 -0.016 -0,008 

50% Quantile 0.001 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0,001 

Mean 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.002 0,001 

75% Quantile 0.007 0.009 0.007 0.007 0.006 0.013 0.017 0.002 0.021 0,010 

Maximus 0.090 0.089 0.077 0.087 0.058 0.274 0.368 0.018 0.203 0,140 

Std. 0.013 0.015 0.012 0.014 0.010 0.028 0.037 0.005 0.042 0,020 

Skewness -0.866 -0.664 0.023 0.247 -0.239 -0.789 0.052 -0.250 -1.033 -0,391 

Kurtosis 15.522 7.847 3.586 2.943 4.157 23.166 22.777 2.814 13.863 10,742 

Source: FRED (2024a, 2024b, 2024c, 2024d, 2024e, 2024f, 2024g, 2024h), Reuters (2024), own calculations using Matlab (2025). 

 

Table 9: Summary statistics of daily log-returns for financial instruments in research scope in period of COVID-19 (02/01/2022 - 04/30/2022). 

 
S&P 500 NASDAQ Nikkei225 Hang Seng Gold Oil 10yr. T-Bond EUR/USD BTC Average 

Minimum -0.128 -0.131 -0.063 -0.050 -0.047 -0.280 -0.324 -0.028 -0.465 -0.168 

25% Quantile -0.020 -0.017 -0.015 -0.012 -0.007 -0.041 -0.056 -0.004 -0.010 -0.020 

50% Quantile -0.001 0.001 -0.004 0.000 0.001 -0.006 -0.012 0.000 0.000 -0.002 

Mean -0.002 -0.001 -0.003 -0.002 0.001 -0.017 -0.015 0.000 -0.003 -0.005 

75% Quantile 0.014 0.016 0.009 0.009 0.007 0.009 0.034 0.003 0.024 0.014 

Maximum 0.090 0.089 0.077 0.049 0.058 0.274 0.368 0.014 0.167 0.132 

Std. 0.039 0.038 0.025 0.020 0.020 0.077 0.118 0.006 0.074 0.046 

Skewness -0.352 -0.543 0.492 -0.116 0.301 -0.252 0.380 -0.988 -3.944 -0.558 

Kurtosis 1.727 2.045 1.682 0.684 1.620 5.831 2.867 5.266 25.251 5.219 

Source: FRED (2024a, 2024b, 2024c, 2024d, 2024e, 2024f, 2024g, 2024h), Reuters (2024), own calculations using Matlab (2025). 

  



Table 10: Summary statistics of daily log-returns for financial instruments in research scope in period around Russian invasion of Ukraine (02/01/2022 

– 04/29/2022). 

 
S&P 500 NASDAQ Nikkei225 Hang Seng Gold Oil 10yr. T-Bond EUR/USD BTC Average 

Minimum -0.030 -0.040 -0.032 -0.059 -0.027 -0.141 -0.078 -0.018 -0.081 -0.056 

25% Quantile -0.012 -0.017 -0.010 -0.014 -0.007 -0.019 -0.014 -0.005 -0.023 -0.013 

50% Quantile -0.002 -0.002 0.000 -0.002 0.002 0.000 0.003 -0.001 0.006 0.001 

Mean -0.001 -0.001 0.000 -0.003 0.001 0.002 0.006 -0.001 0.001 0.000 

75% Quantile 0.011 0.016 0.010 0.006 0.008 0.025 0.028 0.002 0.020 0.014 

Maximum 0.025 0.037 0.039 0.087 0.023 0.113 0.090 0.016 0.111 0.060 

Std. 0.014 0.020 0.015 0.023 0.011 0.040 0.035 0.006 0.038 0.022 

Skewness -0.105 0.102 0.153 0.993 -0.300 -0.405 -0.074 0.142 0.300 0.089 

Kurtosis -0.793 -1.004 -0.147 4.372 -0.116 2.273 -0.030 1.185 0.914 0.739 

Source: FRED (2024a, 2024b, 2024c, 2024d, 2024e, 2024f, 2024g, 2024h), Reuters (2024), own calculations using Matlab (2025). 

 

Table 11: Summary statistics of daily log-returns for financial instruments in research scope in period around Hamas attack (10/01/2023 - 12/30/2023). 

 
S&P 500 NASDAQ Nikkei225 Hang Seng Gold Oil 10yr. T-Bond EUR/USD BTC Average 

Minimum -0.015 -0.025 -0.023 -0.027 -0.023 -0.058 -0.045 -0.009 -0.068 -0.033 

25% Quantile -0.002 -0.002 -0.006 -0.010 -0.003 -0.017 -0.016 -0.002 -0.007 -0.007 

50% Quantile 0.002 0.003 0.000 -0.001 0.001 -0.001 -0.001 0.000 0.005 0.001 

Mean 0.002 0.002 0.000 -0.001 0.001 -0.002 -0.002 0.001 0.008 0.001 

75% Quantile 0.006 0.007 0.006 0.008 0.006 0.017 0.011 0.003 0.020 0.009 

Maximum 0.019 0.023 0.025 0.038 0.031 0.055 0.031 0.016 0.109 0.039 

Std. 0.008 0.010 0.012 0.014 0.009 0.024 0.018 0.005 0.028 0.014 

Skewness -0.206 -0.497 0.114 0.337 0.356 -0.187 -0.217 0.464 0.676 0.093 

Kurtosis 0.194 0.366 -0.337 -0.207 1.856 -0.133 -0.449 1.339 2.588 0.580 

Source: FRED (2024a, 2024b, 2024c, 2024d, 2024e, 2024f, 2024g, 2024h), Reuters (2024), own calculations using Matlab (2025). 

  



Table 12: Augmented Dickey-Fuller test for stationarity of daily log-returns for financial instruments in research scope (01/07/2019 – 06/30/2024). 

 Augmented Dickey-Fuller Test cValue pValue Reject H0 

S&P 500 -44.43 -1.94 0.001 yes 

NASDAQ -43.03 -1.94 0.001 yes 

Nikkei 225 -37.38 -1.94 0.001 yes 

Hang Seng -36.87 -1.94 0.001 yes 

Gold -37.84 -1.94 0.001 yes 

Brent Oil -35.08 -1.94 0.001 yes 

10yr T-Bond -40.36 -1.94 0.001 yes 

EUR/USD -36.77 -1.94 0.001 yes 

BTC -38.48 -1.94 0.001 yes 

Source: FRED (2024a, 2024b, 2024c, 2024d, 2024e, 2024f, 2024g, 2024h), Reuters (2024), own calculations using Matlab (2025). 

 

  



Table 13: Engle’s test for heteroskedasticity of daily log-returns for financial instruments in research scope (01/07/2019 – 06/30/2024). 

 Engle’s Test Statistic cValue pValue Reject H0 

S&P 500 333.14 3.84 0.000 yes 

NASDAQ 274.68 3.84 0.000 yes 

Nikkei 225 230.83 3.84 0.000 yes 

Hang Seng 113.92 3.84 0.000 yes 

Gold 34.54 3.84 0.000 yes 

Brent Oil 46.37 3.84 0.000 yes 

10yr T-Bond 382.06 3.84 0.000 yes 

EUR/USD 2.18 3.84 0.140 no 

BTC 2.63 3.84 0.110 no 

Source: FRED (2024a, 2024b, 2024c, 2024d, 2024e, 2024f, 2024g, 2024h), Reuters (2024), own calculations using Matlab (2025). 



 
Figure 6: Daily log-returns for financial instruments in research scope in period of COVID-19 (02/03/2020 – 04/30/2020). 

Source: Own illustration using Python Matplotlib (2025). 



 
Figure 7: Daily log-returns for financial instruments in research scope around period of the Russian invasion of Ukraine (02/01/2022 – 04/29/2022). 

Source: Own illustration using Python Matplotlib (2025). 



 
Figure 8: Daily log-returns for analyzed for financial instruments in research scope during period of the Hamas attack (10/02/2023 – 12/29/2023). 

Source: Own illustration using Python Matplotlib (2025). 



4. RESULTS 

4.1. Abnormal Returns for MSCI World Sector Indices 

Here I present the findings of abnormal returns (AR) of MSCI World sector indices 

surrounding the Russian invasion of Ukraine on February 24, 2022 in Table 14. The event window 

extends from t−5 to t+5 days to capture immediate market responses. To assess the statistical 

significance of these abnormal returns, I conducted t-tests, the results of which are also presented 

in Table 14. The data reveal a pronounced concentration of significant abnormal returns occurring 

on the event day and immediately thereafter. Specifically, on February 24, 2022, seven out of the 

eleven analyzed MSCI World sector indices exhibited statistically significant abnormal returns. 

The following day, February 25, 2022 (t+1), five indices showed significant effects, while the 

number of significant responses declined notably on subsequent days (t+2 to t+4). Interestingly, 

even prior to the invasion, a significant AR was observed in the materials sector. Beyond these 

focal dates, during the broader event window (t−5 to t+5), only two additional significant abnormal 

returns were recorded, specifically in the consumer staples and materials sectors. 

Turning to the analysis of average abnormal returns (AAR), summarized in Table 15, 

fluctuations are evident in the days preceding the invasion, although none of these were 

statistically significant. On the event day itself, the market registered a significant negative AAR 

of −0.85%, highlighting the immediate adverse reaction to geopolitical developments. However, 

this loss was offset on the following day (t+1), which saw a significant positive AAR of +1.32%. 

In the days that followed (t+2 to t+5), AARs remained minor and statistically insignificant, 

oscillating between gains and losses. Several factors may account for these short-term market 

dynamics. First, it is plausible that the initial sell-off reflected an overreaction to geopolitical 

uncertainty, a phenomenon often exacerbated by intense media coverage. Subsequently, more 

rational behavior prevailed, with investors taking advantage of perceived undervaluations. 

Moreover, given the significant U.S. weighting in the MSCI World and its sectoral indices, the 

post-event rally may have been driven by expectations that U.S.-based firms would benefit from 

a reconfiguration of global trade and investment flows, consistent with the findings of Ali et al. 

(2023). Comparable results have been documented in related studies. For instance, Ahmed et al. 

(2023) analyzed the STOXX Europe 600 Index around the same event and reported a decline of 

−0.41% on February 24, 2022. Although this movement mirrors the trend observed in the study, it 

is less pronounced, and their findings diverge more significantly in the pre- and post-event periods. 

Their data suggest sustained negative AARs leading up to the invasion and only modest recovery 

afterward. This contrast is likely due to the STOXX Europe 600’s geographic proximity to the 

conflict, which may have heightened investor sensitivity compared to the globally diversified 

MSCI indices. 

A sector-level analysis (Table 14) reveals heterogeneous responses across industries. The 

materials sector recorded the highest number of statistically significant abnormal returns, followed 

by the financials and utilities sectors. No significant ARs were observed in the consumer 

discretionary or energy sectors. On the event day, significant negative abnormal returns were found 

in consumer staples (−2.76%), financials (−3.01%), industrials (−0.87%), materials (−1.66%), and 



information technology (−2.53%). Conversely, real estate (+1.66%) and telecommunications 

(+2.00%) registered significant positive abnormal returns. Among the remaining sectors, non-

significant negative returns were observed in consumer discretionary (−0.14%), energy (−1.35%), 

healthcare (−0.36%), and utilities (−0.30%). These findings confirm the presence of sector-specific 

abnormal returns on the day of the invasion, thereby addressing the first research question. 

A closer examination of the temporal patterns in abnormal and cumulative abnormal 

returns (CAR) provides further insights into how sectoral performance evolved beyond the initial 

shock (Table 16). For instance, the consumer discretionary sector experienced a significant decline 

even before the invasion (𝐶𝐴𝑅𝑡−1 = −2.27%), followed by an insignificant increase on the event 

day (𝐴𝑅𝑡 = +0.63%) and a further decline by t+25 (𝐶𝐴𝑅𝑡+25 = −2.94%). This sector comprises 

goods and services deemed non-essential, such as leisure, travel, and automotive products—areas 

likely to see demand contraction during crises due to changes in consumption priorities. The 

consumer staples sector, by contrast, exhibited a more resilient profile. While it experienced a 

sharp sell-off on the event day (𝐴𝑅𝑡 = −2.76%), this was immediately followed by a significant 

rebound (𝐴𝑅𝑡+1 = +2.07%), suggesting an overreaction had occurred. Over the longer term, the 

sector’s CAR remained slightly negative (𝐶𝐴𝑅𝑡+25 = −0.73%), reflecting the non-cyclical nature 

of demand for everyday essentials. The energy sector saw a modest positive trend in the pre-event 

period (𝐶𝐴𝑅𝑡−1 = +1.64%), followed by an insignificant drop on the event day (𝐴𝑅𝑡 = −1.35%). 

Thereafter, it experienced substantial and significant cumulative gains (𝐶𝐴𝑅𝑡+25 = +8.02%). This 

can be attributed to anticipated supply disruptions due to sanctions on Russian energy exports, as 

well as increased demand arising from military activity and reallocation toward western energy 

producers. The financial sector showed a neutral stance prior to the invasion (𝐶𝐴𝑅𝑡−1 = +0.11%) 

but suffered a significant decline on the event day (𝐴𝑅𝑡 = −3.00%), continuing into the post-event 

period (𝐶𝐴𝑅𝑡+25 = −5.50%). This negative trajectory likely reflects concerns over increased credit 

risk, loan defaults, and reduced lending activity, as well as broader economic uncertainty adversely 

affecting financial institutions. In contrast, the healthcare sector recorded a small decline on the 

event day (𝐴𝑅𝑡 = −0.36%) but posted significant positive CAR over the long term (𝐶𝐴𝑅𝑡+25 = 

+4.12%). This trend may be linked to expectations of heightened demand for pharmaceuticals and 

medical services, as well as a general shift of capital toward defensive sectors. The real estate 

sector, which initially experienced investor uncertainty (𝐶𝐴𝑅𝑡−1 = −3.19%), responded positively 

to the invasion (𝐴𝑅𝑡= +1.65%) and continued to appreciate in value (𝐶𝐴𝑅𝑡+25 = +4.74%). A 

breakdown of the sector reveals a strong representation of conservative sub-sectors such as 

industrial and telecommunications real estate, which may have benefited from capital reallocation 

away from riskier assets. Industrials remained relatively stable throughout the event window. 

While the sector exhibited minor setbacks, both before (𝐶𝐴𝑅𝑡−1 = −0.53%) and on the day of the 

invasion (𝐴𝑅𝑡 = −0.87%), these were not significant, and long-term effects remained muted 

(𝐶𝐴𝑅𝑡+25 = −0.29%). Despite some defense firms being included in this category, the sector’s 

geographically diversified composition may have diluted potential gains. The information 

technology sector showed elevated pre-event volatility (𝐶𝐴𝑅𝑡−1 = +0.32%) and suffered a 

significant drop on the event day (𝐴𝑅𝑡= −1.68%). However, its long-term performance was 



positive (𝐶𝐴𝑅𝑡+25 = +2.44%), likely driven by expectations that technology firms—particularly 

those in software and semiconductors—would play a pivotal role in post-crisis economic 

adjustment. The materials sector gained in the days leading up to the invasion (𝐶𝐴𝑅𝑡−1 = +1.64%) 

but recorded a significant event-day loss (𝐴𝑅𝑡= −2.53%), which was likely part of a broader market 

sell-off. Nevertheless, the sector recovered strongly thereafter (𝐶𝐴𝑅𝑡+25 = +3.02%), reflecting 

anticipated benefits from supply constraints and market consolidation in response to geopolitical 

realignments. Telecommunications, which includes large-cap firms such as Alphabet, Meta, and 

Netflix, also responded positively on the event day (𝐴𝑅𝑡= +1.99%), despite modest pre-event 

losses (𝐶𝐴𝑅𝑡−1 = −0.20%). These firms are often perceived as risky, yet their strong cash flows 

and low leverage likely insulated them from acute financial stress, contributing to the sector’s 

subsequent resilience. The utilities sector displayed volatility before the invasion (𝐶𝐴𝑅𝑡−1 = 

+0.64%) and experienced an insignificant decline on the event day (𝐴𝑅𝑡= −0.30%). However, it 

emerged as one of the strongest performers over the longer term (𝐶𝐴𝑅𝑡+25 = +7.29%). The sector 

includes firms involved in electricity generation and grid infrastructure, which were perceived as 

critical and stable in the face of potential energy shortages—paralleling the dynamics observed in 

the energy sector.  

Overall, using the event study methodology, I have demonstrated that the Russian invasion 

had a clear and differentiated impact on sector-specific returns within the MSCI World Index. 

Notably, the energy, financials, healthcare, and utilities sectors exhibited significant cumulative 

abnormal returns by t+25, suggesting that market participants revised their expectations for these 

sectors in light of the geopolitical shock. These results confirm the second research question, 

indicating that the invasion had a sustained and heterogeneous influence across global equity 

markets.



Table 14: Abnormal returns around Russian invasion of Ukraine (in %) for MSCI World Sector Indices. T-test significance levels 10% (*), 5% (**) and 

1% (***). 

 CD CS EN FN HC IN IT MT RE TC UT 

t-5 0.00% 1.41%* 1.04% -0.36% -0.15% 0.34% 0.88% 0.58% 1.14% -0.71% 1.09% 

t-4 0.12% 0.54% -0.24% 0.26% -0.41% -0.33% 0.20% -0.97% -1.72% 0.06% -0.07% 

t-3 -0.11% -0.11% 0.06% 0.02% 0.07% -0.40% -0.07% -0.65% -1.60% 0.23% -0.29% 

t-2 -1.44% -0.33% -0.04% 0.16% 0.48% -0.06% -0.09% -0.43% 1.99%** 0.13% 0.32% 

t-1 -0.84% 0.29% 1.64% 0.03% 0.50% -0.09% 0.74% -1.72%* 0.51% 0.09% -0.41% 

t -0.14% -2.76%*** -1.35% -3.01%*** -0.36% -0.87%** -2.53%*** 1.66%* -1.69%* 2.00%*** -0.30% 

t+1 3.04% 2.08%*** 0.50% 0.70% 1.43%*** 0.66% 1.05% 2.44%*** 1.54% -1.16%** 2.28%*** 

t+2 -0.09% -0.69% 1.38% -1.35%** -0.24% 0.71% 0.48% -1.55% 0.80% 0.17% 1.01%* 

t+3 -1.92% -0.14% 1.73% -1.99%*** 0.66% -0.19% 0.29% -0.42% 0.22% 0.55% -1.19%** 

t+4 1.37% -0.40% 1.80% 0.32% 0.08% 0.05% 0.29% 1.88%** -0.50% -0.79% -0.49% 

t+5 -0.89% 0.34% -0.13% 0.27% 0.36% 0.48% 1.22% 0.80% 0.13% -0.12% 0.53% 

Source: Robus et al. (2024). 

 

Table 15: Average abnormal returns during Russian invasion of Ukraine (AAR %) for MSCI sector indices around event day t. T-test statistics 

with significance levels at 10% (*), 5% (**) and 1% (***). 

 t-5 t-4 t-3 t-2 t-1 t t+1 t+2 t+3 t+4 t+5 

AAR 0.29% -0.34% -0.28% 0.10% -0.01% -0.85%** 1.32%*** 0.06% -0.22% 0.33% 0.27% 

t-test 0.81 -0.94 -0.77 0.27 -0.02 -2.37 3.68 0.15 -0.61 0.91 0.76 

Source: Robus et al. (2024). 

 

  



Table 16: Cumulative abnormal returns (%) during Russian invasion of Ukraine for MSCI World Sector Indices around event day. T-test statistics with 

significance levels at 10% (*), 5% (**) and 1% (***). 

 CD CS EN FN HC IN IT MT RE TC UT 

t-5 0.00% 1.41% 1.04% -0.36% -0.15% 0.34% 0.88% 0.58% 1.14% -0.71% 1.09% 

t-4 0.11% 1.95% 0.80% -0.10% -0.56% 0.01% 1.07% -0.39% -0.58% -0.65% 1.02% 

t-3 0.00% 1.84% 0.86% -0.08% -0.49% -0.39% 1.00% -1.04% -2.18% -0.42% 0.73% 

t-2 -1.43% 1.51% 0.82% 0.08% -0.01% -0.45% 0.91% -1.47% -0.19% -0.29% 1.05% 

t-1 -2.27% 1.79% 2.46% 0.11% 0.49% -0.54% 1.64% -3.19% 0.32% -0.20% 0.64% 

t -1.65% -0.97% 1.11% -2.89% 0.13% -1.40% -0.89% -1.53% -1.37% 1.79% 0.34% 

t+1 -2.44% 1.11% 1.61% -2.19% 1.56% -0.75% 0.16% 0.90% 0.18% 0.63% 2.62% 

t+2 -1.86% 0.42% 2.99% -3.55% 1.31% -0.04% 0.64% -0.65% 0.98% 0.80% 3.63%** 

t+3 -1.88% 0.28% 4.72% -5.54%*** 1.97% -0.23% 0.93% -1.07% 1.19% 1.35% 2.44% 

t+4 -2.37% -0.12% 6.51% -5.22%*** 2.06% -0.18% 1.21% 0.81% 0.69% 0.56% 1.94% 

t+5 -3.75% 0.21% 6.39% -4.95%*** 2.42% 0.30% 2.44% 1.61% 0.82% 0.44% 2.48% 

t+10 -3.81% -2.93%** 11.79%*** -5.69%*** 2.49% 0.83% 2.28% 1.25% -2.21% 0.51% 5.26%*** 

t+15 -3.31% -1.85% 5.87% -3.16%* 4.46%*** 1.91% 1.58% 2.87% -2.21% -1.10% 4.79%*** 

t+20 -3.27% -2.36% 8.79%** -4.22%** 3.25%** 0.46% 3.03% 1.45% 0.00% -0.53% 3.71%** 

t+25 -2.94% -0.74% 8.03%** -5.50%*** 4.13%*** -0.29% 3.03% 4.74% 2.44% -1.38% 7.30%*** 

Source: Robus et al. (2024).



4.2. Identification of Abnormal Volatility 

4.2.1. Abnormal Volatility 

This section presents my findings on the presence of abnormal volatility surrounding 

the Russian invasion of Ukraine in February 2022 (Robus et al., in press). The results are 

summarized in Table 17. I begin with an aggregated analysis by examining the sector-level 

mean abnormal volatility across the event window (t−5 to t+5). To obtain robust estimates that 

are not unduly influenced by extreme values, I computed the truncated mean (TMean), which 

excludes the minimum and maximum observations for each time point Robus et al. (in press). 

This approach mitigates the distortionary effect of outlier volatility spikes in individual sectors, 

thereby providing a more representative measure of central tendency. The abnormal volatility 

values (AVOLA) are expressed as multiplicative factors relative to volatility forecasts generated 

by a GARCH(1,1) model. For instance, an AVOLA value of 1.99 implies that realized volatility 

was 1.99 times—or 199%—greater than the model-based forecast derived from pre-event data. 

To assess the statistical significance of these deviations, I performed F-tests for each time point. 

The results show that, for most days within the event window, the sector-level AVOLA-TMean 

values exceed unity, indicating that realized volatility was systematically higher than predicted 

by the GARCH(1,1) baseline. Notably, elevated AVOLA values prior to the event—specifically 

on t−5, t−2, and t−1—suggest heightened market uncertainty in anticipation of a potential 

military conflict. The pronounced increase in abnormal volatility on t−2 and t−1, following 

relatively subdued values on t−4 and t−3, likely reflects geopolitical developments that 

intensified investor concerns. In particular, on February 21, 2022, the Russian government 

officially recognized the independence of pro-Russian separatist-held territories in Donetsk and 

Luhansk Oblasts—territories proclaimed as the “People’s Republics”—and subsequently 

deployed military forces to these regions under the pretext of protection (Bocquillon et al., 

2024; Sakwa, 2022). 

On the event day t) itself, the AVOLA-TMean reached an exceptionally high value of 

8.99, indicating that realized volatility was nearly nine times greater than the GARCH(1,1) 

forecast. This heightened volatility persisted into the following day (t+1), with an AVOLA-

TMean of 8.50. Both values are statistically significant, underscoring the extraordinary 

magnitude of market reactions across sectors in response to the invasion. It is important to note 

that abnormal volatility reflects the intensity of price fluctuations, irrespective of direction 

(Robus et al., in press). Therefore, these findings denote the scale of market turbulence, rather 

than uniformly negative returns, as an immediate reaction to the geopolitical shock. Robus et 

al., (2024), showed that there are abnormally negative returns for most sectors on the event day. 

Next day, however, one can see that there are many positive abnormal returns. Here one can see 

the corresponding fluctuations. These price fluctuations are a reaction of market participants to 

the changed geopolitical conditions and their expectations regarding their respective sector 

investment. This results in the liquidation of share portfolios as well as shifts from shares in 



one sector to shares in another sector, considering the individual expectations of the respective 

business model. For example, in times of crisis one often see stocks in the IT sector being sold 

off and stocks of the consumer staples sector being bought up (e.g., Prasad et al., 2021). After 

the event day, at t+2 up to t+5 one see AVOLA-TMean values are less or close to one which 

means that the observed volatility is smaller or corresponds to the forecast volatility and that 

the market moves less than forecast, values less than one (t+2; t+5). Figure 1 visually 

underscores the pronounced spike in truncated mean abnormal volatility (AVOLA-TMean) on 

both the event day (t) and the following day (t+1). This observation reinforces my earlier 

findings and provides additional support for the presence of abnormal volatility around 

February 24, 2022, thus empirically validating Research Question 3 from an aggregated, cross-

sectoral perspective (Robus et al., in press). 

I now turn to the sector-specific results. On the event day, abnormal volatility (defined 

as AVOLA > 1) was observed in 8 out of the 11 MSCI World sector indices. The most 

pronounced deviations occurred in the financials (AVOLA = 57.46) and consumer staples 

(AVOLA = 56.46) sectors, followed by materials (AVOLA = 6.28), utilities (AVOLA = 4.91), 

telecommunications (AVOLA = 2.70), information technology (AVOLA = 1.83), industrials 

(AVOLA = 1.67), and real estate (AVOLA = 1.45). Among these, the financials, consumer 

staples, and materials sectors exhibited statistically significant deviations, indicating a robust 

market response to the geopolitical event. Interestingly, the reaction of market participants 

appears to have intensified on the day following the invasion (t+1), suggesting a delayed 

adjustment process and further underscoring the magnitude of the shock across global equity 

markets. Here, all sectors have an AVOLA > 1. These are statistically significant for 8 sectors: 

utilities (48.90), health care (26.72), consumer staples (19.59), industrials (15.39), IT (9.50), 

financials (8.15), materials (5.95) and real estate (3.12) (Robus et al., in press).  

Possible explanations for the behavior of the individual sectors around the event day t 

are as follows. consumer discretionary, which represent companies for e.g., cars, household 

appliances, specialty goods, luxury goods and leisure goods, would be affected, as consumers 

tend to postpone major consumer spending in times of war, which has a negative impact on 

companies' sales. Uncertainty at consumer staples sector arose by the sanctions imposed on 

Russia, where the loss of the Russian market is now expected to result in a major decline in 

sales, particularly for consumer goods in the mass market (e.g., Coca-Cola, Nestlé and 

Unilever). The energy sector showed relatively small abnormal volatility over the analyzed 

period especially at t and t+1, which indicates a low level of uncertainty overall. This is possibly 

because investments in energy companies are less speculative and long-term oriented. Another 

possible explanation is, that market participants feel little uncertainty about the business model 

of companies in the energy sector and that no significant changes are expected as a result of the 

war. Also, it could be that this uncertainty had already arisen before the observation t-5 and any 

changes were already reflected in the share price. Regarding the behavior of the energy sector, 

I found comparable results to the analysis of abnormal returns in Robus et al. (2024). Financials 

sector include global operating banks and insurance companies to a large extent. During times 



of war, economic losses are anticipated, often resulting in loan defaults and increased claims 

for insurance payouts. Additionally, the heightened uncertainty typically causes a decline in 

investment activity, adversely affecting banks commission-based revenue streams. Declining 

investment is also leading to a fall in demand for capital goods, which is having a negative 

impact on the industrial sector. The health care sector comprises companies involved in 

delivering medical services, manufacturing medical equipment or pharmaceuticals, offering 

medical insurance, or supporting healthcare provision to patients in various capacities. In 

particular, the expected increase in demand for products and services from companies in the 

health care sector during a realized conflict is a plausible explanation for the reaction of the 

sector index (Robus et al., in press). 

The industrials sector covers a broad range of business models, including aerospace & 

defense, electronic equipment, infrastructure building, machinery and transportation. Abnormal 

volatility around the event day could be attributed to the relatively lower country weighting of 

U.S. companies in the industrials sector compared to other sectors. Potential share price 

declines of companies based outside the U.S., such as those in France and the UK, may also 

have contributed to this volatility (Robus et al., 2024). Companies in the IT sector are classically 

more speculative than companies in other sectors, as they are often young companies with high 

potential, but the return on sales is small in comparison. In addition, they often have a high debt 

ratio, which makes them susceptible to interest rate increases. The Russian attack increases the 

cost risk and profitability for these companies. As a result, investors often adjust their portfolios 

towards more conservative business models in times of crisis. The materials sector comprises 

companies involved in the production of chemical products, metal processing, industrial gases, 

and the mining of gold and other metals (Assefa et al., 2022). Potential opportunities may 

emerge from the exclusion of Russian companies, leading to supply shortages that could 

enhance the market position and profitability of the companies included in the index. real estates 

are very conservative investments but also affected by interest rate risk. Inflation in the USA, 

which began in 2021 after the COVID-19 pandemic had begun to subside, combined with the 

Russian attack, increased uncertainty in this sector. The utilities sector represents companies 

that supply electric power, natural gas, steam supply, water supply and sewage removal. 

Significant disruptions in the natural gas supply chain are to be expected, particularly as the 

onset of war places the long-standing energy partnership between Europe and Russia under 

considerable strain. This geopolitical realignment simultaneously creates strategic 

opportunities for alternative suppliers, most notably U.S.-based exporters of liquefied natural 

gas. In line with this context, the analysis revealed substantial abnormal volatility across sectors 

on both the event day and the subsequent trading day. However, the degree of sectoral response 

was heterogeneous. Notably, certain sectors—such as Energy—did not exhibit statistically 

significant abnormal volatility across the event window, suggesting a more muted or stabilized 

market reaction in light of pre-existing expectations or longer-term structural positioning within 

the sector. Sectors with strong abnormal volatility before the event: financials, health care and 

telecommunications. Sectors with abnormal volatility after the event day: e.g., consumer 



discretionary and industrials. Another case of sector behavior is, that there is several abnormal 

volatility (AVOLA > 1) before the event day. These findings are consistent to the findings 

Prasad et al., (2021) which found evidence for stock market sector abnormal volatility during 

the dot-com boom, the global financial crisis and COVID-19.  

 

Table 17: Abnormal volatility (AVOLA) for MSCI Sector Indices around Russian invasion of 

Ukraine (02/17/22 – 03/03/22). Statistical significance is indicated by * using an F-Test with 

95% level. 

 CD CS EN FN HC IN 

t-5 2.53 2.76 0.09 45.77* 3.19* 2.42 

t-4 0.46 0.15 0.48 0.65 1.78 2.03 

t-3 0.11 0.34 0.01 0.29 0.02 0.67 

t-2 4.44* 3.80* 0.32 7.05* 0.02 1.34 

t-1 3.48* 0.70 0.10 24.13* 0.37 3.30* 

t 0.11 56.46* 1.04 57.46* 0.51 1.67 

t+1 2.74 19.59* 3.60 8.15* 26.72* 15.39* 

t+2 0.11 0.53 0.85 1.60 0.11 0.44 

t+3 2.10 0.80 0.06 18.60* 0.20 3.10** 

t+4 0.41 0.01 3.83* 1.24 1.04 1.27 

t+5 3.00* 0.00 0.29 0.23 0.02 0.04 

 IT MT RE TC UT TMean 

t-5 0.31 0.29 0.26 4.18* 0.22 1.99 

t-4 4.85* 0.26 0.78 0.40 0.77 0.86 

t-3 1.51 0.08 0.31 0.00 0.62 0.23 

t-2 0.41 0.68 0.15 0.52 0.05 1.46 

t-1 0.49 0.18 2.56 1.69 4.91* 1.60 

t 1.83 6.28* 1.45 2.70 0.47 8.99* 

t+1 9.50* 5.95* 3.12* 2.06 48.90* 8.50* 

t+2 0.11 0.08 0.88 0.00 1.13 0.39 

t+3 0.63 1.03 0.10 1.34 4.82 1.16 

t+4 0.17 1.34 2.91 0.22 0.00 1.07 

t+5 0.17 0.27 0.31 0.94 0.04 0.28 

Source: Robus et al. (in press). 



 
Figure 9: Trimmed mean for abnormal volatility (%) of MSCI Sector Indices 

around Russian invasion of Ukraine (02/17/22 – 03/03/22). 

Source: Robus et al. (in press). 

 

4.2.2. Cumulated Abnormal Volatility 

I now want to discuss the second question of this paper and examine whether the 

abnormal volatility remains persistent over a longer period after the event day. I do this by 

analyzing the cumulated abnormal volatility (CAVOLA), which is defined by equation (10). 

The idea here is that if the ratio of the sum of actual volatility and the sum of volatility predicted 

by GARCH(1,1) increases, abnormal volatility > 1 has occurred over the period. If this ratio 

does not change, the actual volatility corresponds to the forecast volatility. If the ratio is even 

lower, this means that the actual volatility over the period under review is lower than the 

forecast volatility. I start again with the analysis of the mean value. For reasons of consistency, 

I also used the TMean here. The results are presented in Table 18 and illustrated in Figure 10. I 

have calculated cumulative abnormal volatility for t-1 (sum of AVOLA of the observations t-5 

to t-1) as an initial value. This gives us also a benchmark for the abnormal volatility before the 

event day (Robus et al., in press). 

I was able to observe the following for the CAVOLA-TMean. Starting from a value of 

2.42 in t-1, it increases to 3.04 up to t+5. This is understandable, as although there are some 

sectors with increased abnormal volatility up to t-1, the majority can be observed in t and t+1, 

as shown in the previous analysis. What is surprising now is that the CAVOLA-TMean 

increases further to 3.24 by t+10 compared to t+5. This means that further abnormal volatility 

occurs in the time periods t+6 to t+10 and that there continue to be strong price fluctuations 

even days after the event day. In other words, the abnormal volatility is 20% higher than that 

around the event day. This also implies that there was a longer-term uncertainty regarding 

further developments among investors. From t+11 to t+20 one now see a decreasing values for 

CAVOLA-TMean (t+15: 3.01 and t+20: t+20). This suggests a calming of market participants, 

whose actions on the markets produce less volatility than the GARCH(1,1) model predicts. In 

the further observation period, one see that the CAVOLA-TMean of t+20 roughly corresponds 

to the CAVOLA of t+25. This means that the CAVOLA-TMean added from t+21 to t+25 is 



approximately one, which is the value where the actual volatility corresponds to the estimated 

volatility and has therefore returned to a long-term level. From a mean value perspective, I was 

thus able to show that the abnormal volatility was persistent up to the period t+10 and thus 

lasted longer than shortly after the event day. I will now look at the behavior of individual 

sectors. I observed the CAVOLA-TMean behavior just described for the following sectors: 

consumer staples, energy, health care, industrials, IT, materials and telecommunications (Robus 

et al., in press).  

However, I also found different behavior in individual sectors. The persistence was 

particularly strong in the sectors: IT, telecommunications, health care, industrials and materials. 

In Financials, an already high CAVOLA value was observed at time t-1, followed by a sharp 

decline up to time t+5, after which CAVOLA rose again, as in other sectors. The zig-zag 

movement here up to t+25, suggests that the uncertainty in this sector will persist for longer or 

increase again after a certain time. 

 

Table 18: Cumulated Abnormal volatility (CAVOLA) for MSCI sector indices from 

02/17/22 – 03/31/22. 

 CD CS EN FN HC IN 

t-1 2.14 1.50 0.20 7.63 1.11 1.93 

t+5 1.67 4.16 0.97 6.66 2.24 2.56 

t+10 2.12 3.96 1.08 6.90 2.61 2.79 

t+15 1.95 2.97 1.37 6.72 2.52 2.50 

t+20 1.62 2.45 1.39 6.43 2.13 2.04 

t+25 1.58 2.27 1.39 6.62 1.97 2.00 

 IT MT RE TC UT TMean 

t-1 1.30 0.30 0.77 1.29 1.17 2.42 

t+5 1.37 1.57 1.13 1.25 3.56 3.04 

t+10 1.75 1.71 1.07 1.93 2.46 3.24 

t+15 1.44 1.67 1.01 1.85 2.11 3.01 

t+20 1.27 1.44 0.90 1.65 1.94 2.68 

t+25 1.23 1.28 0.99 1.60 2.01 2.64 

Source: Robus et al. (in press). 

One can see little persistence of abnormal volatility due to declining CAVOLA after t+5 at the 

real estate and utilities sector. My analysis showed that abnormal volatility was persistent in 

many sectors until t+10. With these findings, I can confirm research question 4. 



 
Figure 10: Trimmed mean cumulated abnormal volatility (CAVOLA-TMean) for MSCI 

Sector Indices around Russian invasion of Ukraine (02/17/22 – 03/31/22). Source: Robus et 

al. (in press). 

4.2.3. Statistically significant differences of Abnormal Volatility 

For the fifth research question, whether statistically significant differences in abnormal 

volatility between the sectors were observed. I carried out this analysis for the most prominent 

days, the event day t and the following day t+1. To evaluate statistical significance, I performed 

an F-test for all pairs of sectors, for t (Table 19) and t+1 (Table 21) respectively. For example, 

the F-test regarding the equality of variances between consumer discretionary and consumer 

staples is equal to 505.71, was rejected at a 95% level and is thus statistically significant. As 

one can see, there are more significant differences in abnormal volatility between the sectors 

on the event day than on the following day. This was already seen in the previous analysis, 

where I observed various sector behavior on the day of the event. Now, I want to quantify a 

little more. Therefore, I counted the number of statistically significant differences in abnormal 

volatility between the sectors. and ordered them (Table 20 and Table 22) (Robus et al., in press). 

Further, I defined sectors with a frequency of up to 5 significant differences in abnormal 

volatility as similar regarding abnormal volatility to other sectors. Sectors with a higher 

frequency are dissimilar to other sectors. As one can see here, at event day t, 8 out of 11 sectors 

are dissimilar in terms of abnormal volatility according to the definition. This is also reflected 

in the average value of 6.82 (Table 20). In contrast, only the three sectors real estate, 

telecommunications and energy are similar. A different picture emerges for the following day 

of the event. I only observed two dissimilar sectors here: utilities and telecommunications. The 

remaining sectors are similar in terms of abnormal volatility on the day after the event. This is 

shown by the average value of 4.55 (Table 22). Using this approach, I demonstrated that 

statistically significant differences in abnormal volatility existed between sectors on the event 

day and the day after (Robus et al., in press). 

My results provide new insights into the volatility dynamics of the global financial 

markets. For researchers, this study is insightful as there is little evidence on the volatility 

dynamics of current geopolitical shocks at the sector level of financial markets. In particular, 

the short-term behavior of volatility around the geopolitical event of the Russian attack has 



received little attention in the literature. The specific detailed view on the sectors and thus on 

different business models is particularly interesting. The shown results can also be compared 

with those of past events, e.g., the COVID-19 pandemic. This can generate new insights into 

the behavior of capital markets in crises. It is also much more feasible to compare the impact 

of geopolitical events. For practitioners, such as fund managers, investment advisors or 

investors, I provided important insights into how equities behave around geopolitical shocks. 

In particular, my insights into the behavior of individual sectors can be used to assess the risk 

of potential market price fluctuations. This can be used to categorize individual stocks into 

different risk classes with regard to geopolitical shocks and accordingly serve as a basis for the 

weighting of the portfolio or as an indication of the scale of hedging positions (Robus et al., in 

press). 

 

Table 19: F-Test statistics for differences between MSCI sector indices abnormal volatility at 

event day February 24, 2022 (* indicates statistical significance on a 95% level). 

 CD CS EN FN HC IN IT MT RE TC UT 

CD 1.00 505.71* 9.34* 514.69* 4.57* 14.93* 16.37* 56.09* 12.98* 24.14* 4.22* 

CS  1.00 54.13* 1.02 110.67* 33.88* 30.90* 9.02* 38.97* 20.95* 119.81* 

EN   1.00 55.09* 2.04 1.60 1.75 6.00* 1.39 2.58 2.21 

FN    1.00 112.64* 34.48* 31.45* 9.18* 39.66* 21.32* 121.93* 

HC     1.00 3.27* 3.58* 12.27* 2.84 5.28* 1.08 

IN      1.00 1.10 3.76* 1.15 1.62 3.54* 

IT       1.00 3.43* 1.26 1.47 3.88* 

MT        1.00 4.32* 2.32 13.29* 

RE         1.00 1.86 3.07* 

TC          1.00 5.72* 

UT           1.00 

Source: Robus et al. (in press). 

  



Table 20: Frequencies (f) of rejected F-Tests regarding similar abnormal volatility at event 

day (February 24, 2022) between MSCI sector indices. 

 CD FN MT CS UT HC IN IT RE TC EN Avg. 

f 10 9 9 8 8 7 6 6 5 5 2 6.82 

Source: Robus et al. (in press). 

 

The results also serve as a possible benchmark for the volatility dynamics of other 

sector indices, e.g., for emerging markets or other regional markets. This in turn provides 

information about possible excess volatility, which must then be classified in relation to the 

resulting returns (Robus et al., in press). 
 

Table 21: F-Test statistics for differences between MSCI sector indices Abnormal volatility on 

February 25, 2022 (* indicates statistical significance on a 95% level). 

 CD CS EN FN HC IN IT MT RE TC UT 

CD 1.00 7.16* 1.31 2.98 9.76* 5.62* 3.47* 2.17 1.14 1.33 17.87* 

CS  1.00 5.45* 2.40 1.36 1.27 2.06 3.29* 6.28* 9.53* 2.50 

EN   1.00 2.27 7.43 4.28 2.64 1.66 1.15 1.75 13.60* 

FN    1.00 3.28* 1.89 1.17 1.37 2.61 3.96* 6.00* 

HC     1.00 1.74 2.81 4.49* 8.57* 13.00* 1.83 

IN      1.00 1.62 2.59 4.93* 7.48* 3.18* 

IT       1.00 1.60 3.04* 4.62* 5.15* 

MT        1.00 1.91 2.89 8.22* 

RE         1.00 1.52 15.68* 

TC          1.00 23.78* 

UT           1.00 

Source: Robus et al. (in press). 

 

Table 22: Frequencies (f) of rejected F-Tests regarding similar abnormal volatility on 

February 25, 2022 between MSCI sector indices. 

 UT TC CD CS HC RE IN IT FN MT EN Avg. 

f 8 6 5 5 5 5 4 4 3 3 2 4.55 

Source: Robus et al. (in press). 

 

4.3. Univariate Volatility Modeling and Forecasting of Financial Time Series during 

Geopolitical Shocks 

4.3.1. In-Sample Analysis 

This study aimed to assess the effectiveness of various GARCH models in fitting 

financial data during periods of significant geopolitical events. The analysis was divided into 

two main parts. In the first part, I focused on how well these models captured the volatility of 



financial instruments during three specific periods: the COVID-19 pandemic (63 business 

days), the period around the Russian attack on Ukraine (62 business days), and the time of the 

Hamas attack (64 business days). From a total of 75 different GARCH model configurations, I 

estimated 25 GARCH models, 25 EGARCH models, and 25 GJR-GARCH models over these 

three periods. I evaluated the performance of each model by comparing the goodness of fit for 

a single financial instrument. The selection of the best-fitting model in a class was based on the 

Akaike Information Criterion (AIC). 

Here, I present the best model from the three GARCH classes for every financial 

instrument and period. In addition to comparing the AIC value, I also calculated the AIC 

weights, e.g., Akaike (1978), Akaike (1979), and Bozdogan (1987). The AIC weights weigh the 

differences in the AICs between the models to be compared and thus provide information on 

the likelihood of a model being the best (Burnham et al., 2011; Wagenmakers & Farrell, 2004). 

I present the results in Table 23. These results show that the EGARCH model consistently 

outperforms the standard GARCH and the GJR-GARCH models across all financial 

instruments and periods in terms of the lowest AIC value. Specifically, the Akaike weights 

showed that the EGARCH model was, in almost all cases, more than 90% likely to provide the 

best fit than the second-best model in most cases. One explanation for this superiority of the 

EGARCH model can be found in the design purpose of the model. It was developed to reflect 

the so-called leverage effect better than the standard GARCH model. As previously mentioned, 

the leverage effect is when volatility increases when the price falls, i.e., negative returns are 

realized, so there is an asymmetric return-volatility relationship (Black, 1976; Campbell & 

Hentschel, 1992; French et al., 1987). 

The three geopolitical events I analyzed are characterized by multiple sharp daily losses 

across all financial instruments, especially during COVID-19 (Table 3 and Table 4). In the 

COVID-19 phase analyzed, one can see this effect particularly well in the S&P 500, NASDAQ, 

Brent Crude Oil, and 10-year Treasury bonds. Here, a sharp daily loss is followed by a phase 

of higher volatility than previously. The EGARCH model can also describe high levels of 

volatility very well (Nelson, 1991). One can recognize this volatility level increase visually in 

the time series plots for the different periods and as a standard deviation in the summary 

statistics. The S&P 500 index's standard deviation for the whole dataset is 0.013. During the 

COVID-19 period, it was 0.039 and thus significantly increased. One can observe this for 

almost all financial instruments I analyzed. The effect is most vital for COVID-19, followed by 

the Russian attack. For the period of the Hamas attack, the effect is hardly recognizable. 

Moreover, the best-fitting EGARCH models tended to have a higher number of lags. This 

suggests that the capability of the higher-order EGARCH model to capture asymmetric effects, 

incorporation of historic volatility shocks, and volatility persistence is better suited to the 

complexities observed during periods of heightened geopolitical instability. 

By showing that the EGARCH model achieved the best in-sample fit for the financial 

instruments in scope and periods of geopolitical shocks, I was able to answer my research 

question (Research Question 6). The literature supports my findings. Gharaibeh & Kharabsheh 



(2023) examined the impact of geopolitical shocks, especially the repercussions during the Arab 

Spring and the Russian attack on Ukraine, on the volatility of the leading stock indices of the 

Mena region. They found that EGARCH outperforms the simple GARCH model regarding the 

goodness-of-fit in these periods. Mitsas et al. (2022) analyzed the impact of geopolitical risk 

indices on volatility using different GARCH models during geopolitical turbulences. At this, 

the EGARCH model outperformed the GJR-GARCH and the simple GARCH model regarding 

the lowest value of the AIC. The behavior of stock market volatility and structural breaks for 

fragile emerging markets was investigated by Yildirim & Celik (2020). They found evidence 

for the outperformance of the EGARCH model over the simple GARCH model in times with 

sharp volatility shifts, which is the case for geopolitical shocks. Khan et al. (2023) analyzed 

several important financial instruments during the period of COVID-19 and found high 

persistence in volatility. Also, they showed that the EGARCH model outperformed the GJR-

GARCH and simple GARCH model for Bitcoin and EUR-USD exchange rate volatility.



Table 23: Best in-sample fit GARCH-type models regarding AIC and AIC weights (in %) for periods in COVID-19, during the Russian invasion and 

the Hamas attack on Israel (own calculations using Matlab). 

 S&P 500 NASDAQ Nikkei 225 Hang Seng Gold Brent Oil 10yr. T-Bond EUR/USD BTC 

 

 

 

COVID-19 

 

 

GARCH(2,1) 

-242.11 (0.00%) 

 
 

EGARCH(3,4) 

-279.78 (99.95%) 

 

GJR(2,1) 

-264.24 (0.04%) 

GARCH(2,1) 

-252.42 (0.01%) 

 

EGARCH(3,4) 

-270.55 (99.60%) 

 

GJR(1,1) 

-259.47 (0.39%) 

GARCH(1,1) 

-290.52 (0.03%) 

 

EGARCH(3,3) 

-307.01 (99.94%) 

 

GJR(3,1) 

-290.74 (0.03%) 

GARCH(1,1) 

-328.91 (0.00%) 

 

EGARCH(3,3) 

-348.85 (99.98%) 

 

GJR(1,1) 

-331.67 (0.02%) 

GARCH(1,2) 

-316.59 (0.00%) 

 

EGARCH(5,5) 

-342.25 (99.99%) 

 

GJR(1,1) 

-317.73 (0.00%) 

GARCH(1,1) 

-137.34 (0.00%) 

 

EGARCH(3,3) 

-165.97 (99.98%) 

 

GJR(1,3) 

-148.96 (0.02%) 

GARCH(1,1) 

-119.88 (0.01%) 

 

EGARCH(4,2) 

-137.85 (99.97%) 

 

GJR(1,1) 

-120.18 (0.01%) 

GARCH(1,1) 

-453.24 (0.00%) 

 

EGARCH(5,2) 

-475.21 (99.99%) 

 

GJR(1,1) 

-451.24 (0.00%) 

GARCH(3,1) 

-181.41 (0.00%) 

 

EGARCH(3,3) 

-230.16 (99.99%) 

 

GJR(3,1) 

-192.40 (0.00%) 

 

 

Russian 

Invasion 

GARCH(2,1) 

-242.11 (0.00%) 

 

EGARCH(1,2) 

-346.40 (92.13%) 

 

GJR(1,1) 

-341.48 (7.87%) 

GARCH(1,1) 

-300.39 (16,19%) 

 

EGARCH(2,1) 

-303.40 (72,91%) 

 

GJR(1,1) 

-299.60 (10.90%) 

GARCH(1,1) 

-342.53 (0.62%) 

 

EGARCH(1,1) 

-352.63 (97.30%) 

 

GJR(1,1) 

-344.94 (2.08%) 

GARCH(1,2) 

-300.83 (0.01%) 

 

EGARCH(5,5) 

-318.63 (99.96%) 

 

GJR(1,1) 

-302.06 (0.03%) 

GARCH(1,1) 

-385.92 (0.31%) 

 

EGARCH(3,4) 

-397.47 (99.53%) 

 

GJR(1,1) 

-384.62 (0.16%) 

GARCH(2,1) 

-223.09 (0.10%) 

 

EGARCH(3,5) 

-236.89 (99.87%) 

 

GJR(2,1) 

-220.82 (0.03%) 

GARCH(1,1) 

-234.23 (0.99%) 

 

EGARCH(1,1) 

-243.41 (97.70%) 

 

GJR(1,1) 

-234.79 (1.31%) 

GARCH(1,1) 

-454.81 (0.00%) 

 

EGARCH(3,2) 

-477.72 (99.99%) 

 

GJR(1,1) 

-452.81 (0.00%) 

GARCH(1,1) 

-223.55 (0.00%) 

 

EGARCH(3,2) 

-236.12 (99.99%) 

 

GJR(1,1) 

-221.61 (0.00%) 

 

 

Hamas 

Attack 

GARCH(1,1) 

435.71 (0.01%) 

 

EGARCH(1,1) 

-455.71 (99.94%) 

 

GJR(1,2) 

-440.65 (0.05%) 

GARCH(1,1) 

-405.58 (0.00%) 

 

EGARCH(4,2) 

-426.67 (99.93%) 

 

GJR(1,2) 

-412.06 (0.07%) 

GARCH(1,1) 

-381.56 (0.05%) 

 

EGARCH(1,1) 

-396.86 (99.83%) 

 

GJR(1,1) 

-383.45 (0.12%) 

GARCH(1,1) 

-360.15 (1.09%) 

 

EGARCH(1,1) 

-369.15 (98.51%) 

 

GJR(1,1) 

-358.14 (0.40%) 

GARCH(4,1) 

-420.19 (0.00%) 

 

EGARCH(4,3) 

-444.65 (99.99%) 

 

GJR(1,1) 

-415.67 (0.00%) 

GARCH(1,1) 

-291.43 (0.01%) 

 

EGARCH(4,3) 

-309.29 (99.99%) 

 

GJR(1,1) 

-289.48 (0.00%) 

GARCH(1,1) 

-322.95 (1.48%) 

 

EGARCH(1,1) 

-331.33 (97.92%) 

 

GJR(1,1) 

-321.13 (0.60%) 

GARCH(1,1) 

-496.06 (0.01%) 

 

EGARCH(2,2) 

-514.96 (99.99%) 

 

GJR(1,1) 

-494.06 (0.00%) 

GARCH(1,1) 

-267.25 (0.07%) 

 

EGARCH(3,3) 

-281.86 (99.88%) 

 

GJR(1,1) 

-266.71 (0.05%) 

Source: Own calculations using Matlab (2025). 



4.3.2. Univariate Out-of-Sample Volatility Forecasting 

Time series models are widely utilized in financial research and practice, primarily for 

forecasting. While accurately modeling known historical data is crucial for achieving the best 

in-sample fit, this step is merely an intermediate phase in the broader context of predictive 

modeling. The ultimate objective is the model’s performance in forecasting future, unseen data. 

Simkins (1995) highlights that models demonstrating the best in-sample fit do not necessarily 

yield the best out-of-sample forecasting performance. Therefore, evaluating a model’s accuracy 

and effectiveness must be contextualized within its ability to predict out-of-sample data. In this 

study, I aimed to test the predictive performance of GARCH models selected during my initial 

analysis, particularly their ability to forecast volatility under conditions of geopolitical 

uncertainty. I employed a rolling window approach with 250 trading days of historical data for 

the financial instruments under analysis to achieve this. For each iteration of the rolling window, 

I estimated the GARCH models, which provided the best in-sample fit for a given financial 

instrument and period and generated point forecasts for volatility across a forecast horizon of 

1- to 10-step-ahead. This iterative process is repeated for each step within the rolling window, 

ensuring a robust evaluation of the model’s performance across different periods. 

To assess the accuracy of the forecasts, I applied two evaluation measures. The first is 

the Symmetric Mean Absolute Percentage Error (SMAPE), which quantifies how close the 

point forecast is to the true observed value. SMAPE is selected for its ease of interpretation, as 

it is scale-independent and offers an intuitive measure of forecast accuracy. Additionally, unlike 

metrics such as the Mean Squared Error (MSE), SMAPE does not penalize large forecast errors 

disproportionately, offering a more balanced assessment of forecast deviations. Given the focus 

on point forecasts, I intentionally limit the performance evaluation to SMAPE alone. Including 

multiple evaluation criteria can lead to inconsistencies and complications in decision-making, 

mainly when different measures yield contradictory conclusions. Second, I wanted to assess the 

accuracy of the GARCH models in forecasting the movement of volatility. Regarding 

reallocating or hedging portfolios, knowing whether volatility is increasing or decreasing is 

essential. Lai (1990) remarks that there are many cases, where, from an investor’s perspective, 

it is sufficient, to be frequently on the “right” side of the movement. To assess the usefulness of 

economic forecasts, the economic return must be evaluated rather than a statistical value 

(Blaskowitz & Herwartz, 2011; Granger & Pesaran, 2000). The economic return can be 

determined using directional accuracy measures. This measure is also easy to interpret, as the 

measure is to be considered as a percentage frequency for a correct directional forecast. I start 

by evaluating the forecasting performance using SMAPE, by considering the SMAPE of the 1-

, 5- and 10-step-ahead forecasts. These are relevant values in that they correspond to the forecast 

for one trading day (T+1), one trading week (T+5), and two trading weeks (T+10). I also 

considered the mean value over the 1- to 10-step-ahead forecasts. This is the summary of a 

model's performance across all forecasting horizons. Additionally, I calculated the Diebold-



Mariano test for a statistically significant difference in forecasting performance between the 

model with the lowest SMAPE and the second-lowest SMAPE. I summarized the results of the 

SMAPE values for the analyzed financial instruments concerning the best GARCH model in a 

frequency table (Table 24). This shows which GARCH model class best predicted the financial 

instruments by the h-step ahead forecast in which frequency occurred. 

The detailed results, I provide in Table 25-27. I found that in 51.85% (Table 24: Avg. 1-

10-step-ahead Forecast) of all analyzed financial instruments, the EGARCH model class had 

the smallest percentage deviation from the observed value on average across all 1- to 10-step-

ahead forecasts and thus the smallest SMAPE on average. This was followed by the GJR-

GARCH model class, which had the lowest average percentage deviation from the true value 

in 33.33% of all cases. The simple GARCH model ranked last with 14.81%. Furthermore, I 

found that EGARCH best provided the 1-step-ahead forecast in 44.44% of cases, which the 

GJR-GARCH model followed with 33.33%. The simple GARCH model performed worst in 

predicting the 1-step-ahead volatility, with 22.22%. For the 5-step-ahead forecast, EGARCH 

and GJR-GARCH have the same performance at 40.74%; simple GARCH forecasting 

performance was poor again. Looking at the 10-step-ahead forecast EGARCH performed best 

with a frequency of 51.85%. So, one can see that the EGARCH model produces the most 

accurate volatility point forecast on average across all three geopolitical events. 

In this section, I examined the performance of various GARCH models in forecasting 

financial markets during the COVID-19 pandemic, a period marked by heightened uncertainty 

and increased volatility due to geopolitical disturbances. The analysis covers forecast horizons 

ranging from 1- to 10- step-ahead, providing valuable insights into how these models perform 

under conditions of geopolitical shocks. For the average 1- to 10-step-ahead forecasts, the 

results indicate that the Exponential GARCH (EGARCH) model produced the most accurate 

point forecasts in 55.56% of cases across all forecast horizons. This was closely followed by 

the GJR-GARCH model, which was the top performer for 44.44% of the instruments. 

Interestingly, the simple GARCH model did not outperform either EGARCH or GJR-GARCH 

for any of the financial instruments considered. These results can be attributed to the underlying 

characteristics of the models. EGARCH, known for its ability to capture the leverage effect, 

performed exceptionally well during this period of regime shifts in volatility, which were 

largely driven by the pandemic’s impact. The GJR-GARCH model, designed to handle regime 

switches, also fared well as volatility escalated from relatively low to high levels due to the 

ongoing geopolitical turmoil. Specifically, EGARCH significantly outperformed the other 

models for the NASDAQ index and Bitcoin, while GJR-GARCH emerged as the top performer 

for the Hang Seng index and the 10-year Treasury Bond (Table 25). When focusing on the 1-

step-ahead forecasts, the EGARCH model showed strong performance by delivering the lowest 

SMAPE for 44.44% of the financial instruments, including the Nikkei 225, Brent Crude Oil, 

the 10-year Treasury Bond, and Bitcoin (Table 25). Meanwhile, the GJR-GARCH model 

provided the lowest SMAPE for 33.33% of the instruments, (Table 24), particularly the S&P 

500, NASDAQ, and Gold (Table 25). The simple GARCH model showed an advantage in one-



step-ahead forecasts for the Hang Seng index and the EUR/USD exchange rate. In this context, 

EGARCH showed significant improvements over other models, especially for Brent Crude Oil 

and Bitcoin, whereas the GARCH model outperformed the others for the Hang Seng index 

(Table 25). For the five-step-ahead forecasts, the GJR-GARCH model emerged as the best 

performer for 55.56% of the instruments (Table 24), including the S&P 500, NASDAQ, Hang 

Seng, Gold, and the EUR/USD exchange rate. However, the EGARCH model still 

outperformed the competition for the Nikkei 225, the 10-year Treasury Bond, and Bitcoin, 

reflecting its strength in periods of volatility shifts. Notably, the simple GARCH model did not 

deliver superior results for any financial instrument at this horizon, reinforcing the dominance 

of the more advanced GARCH variants. Once again, GJR-GARCH showed its strength in 

forecasting for the Hang Seng index (Table 25). At the 10-step-ahead forecast horizon, the 

EGARCH model performed well, providing the lowest SMAPE for 44.44% of the instruments 

(Table 24), including the S&P 500, NASDAQ, 10-year Treasury Bond, and Bitcoin. The GJR-

GARCH model proved effective for 33.33% of the instruments, such as the Nikkei 225, Hang 

Seng index, and Brent Crude Oil. Meanwhile, the simple GARCH model outperformed the 

others for Gold and the EUR/USD exchange rate, suggesting that its simplicity may still have 

value in specific contexts (Table 25). 

Next, I analyzed the performance of GARCH models during the period of the Russian 

attack, another period marked by elevated market volatility and geopolitical uncertainty. I 

evaluated the models’ forecast performance on average across horizons from 1- to 10- step-

ahead. The results indicated that both the EGARCH and GJR-GARCH models performed 

equally well, each providing the most accurate point forecasts on average for 44.44% of the 

financial instruments (Table 24). However, the simple GARCH model only outperformed the 

others for Gold, accounting for 11.11% of the instruments (Table 24 and Table 26). Upon closer 

inspection, EGARCH significantly outperformed the competing models for the Nikkei 225 

index, while the GJR-GARCH model showed the best performance for the Hang Seng index 

(Table 26). When examining the one-step-ahead forecast results in more detail, I observed that 

the GJR-GARCH model produced the lowest SMAPE for 44.44% of the instruments (Table 

24), including the S&P 500, Nikkei 225, Hang Seng index, and the 10-year Treasury Bond. 

Meanwhile, EGARCH exhibited superior forecasting accuracy for 33.33% of the instruments, 

such as the NASDAQ index, Oil, and the EUR/USD exchange rate. Interestingly, the simple 

GARCH model performed best for Gold and Bitcoin (Table 26). Looking at the 5-step-ahead 

forecast, the results were more evenly distributed. No model consistently outperformed the 

others across the majority of financial instruments (Table 24). The simple GARCH model 

performed best for 33.33% of the instruments, specifically the NASDAQ, Gold, and Bitcoin. 

Similarly, EGARCH provided the lowest SMAPE for the Nikkei 225, Oil, and the 10-year 

Treasury Bond, also covering 33.33% of the instruments. The GJR-GARCH model performed 

best for the remaining 33.33%, including the S&P 500, Hang Seng index, and the EUR/USD 

exchange rate (Table 26). For the 10-step-ahead forecast, however, EGARCH clearly emerged 

as the top performer. It provided the most accurate forecasts for 55.56% of the financial 



instruments (Table 24), including the S&P 500, NASDAQ, Nikkei 225, Oil, and the 10-year 

Treasury Bond. The simple GARCH model performed best for 22.22% of the instruments, 

namely Gold and the EUR/USD exchange rate, while GJR-GARCH provided the lowest 

SMAPE for the remaining 22.22%, particularly for the Hang Seng index and Bitcoin (Table 

26). Notably, GJR-GARCH significantly outperformed the other models when forecasting the 

Hang Seng index at this forecast horizon, emphasizing its strength in capturing volatility 

patterns specific to this market. 

In the final period with a geopolitical shock under consideration, which corresponds to 

the time of the Hamas attack on Israel, I again evaluated the performance of various GARCH 

models in forecasting financial instruments. The results for the average 1- to 10-step-ahead 

forecasts reveal that the EGARCH model provided the most accurate point forecasts for 55.56% 

of the financial instruments (Table 24), including the S&P 500, Gold, Oil, EUR/USD, and 

Bitcoin. In comparison, the simple GARCH model performed best for the NASDAQ, Nikkei 

225, and the 10-year Treasury Bond, while the GJR-GARCH model only outperformed the 

others for the Hang Seng index. Notably, EGARCH significantly outperformed its counterparts 

for Gold, EUR/USD, and Bitcoin, indicating its strength in capturing the dynamics of these 

assets during this volatile period (Table 27). When examining the performance for individual 

forecast horizons, I begin with the one-step-ahead forecasts. EGARCH delivered the lowest 

SMAPE for 44.44% of the financial instruments (Table 24), including the NASDAQ, Hang 

Seng, Gold, and EUR/USD. The simple GARCH model performed best for the Nikkei 225 and 

the 10-year Treasury Bond, accounting for 22.22% of the cases, while the GJR-GARCH model 

showed superiority for the S&P 500 and Bitcoin, covering another 22.22%. In this horizon, 

EGARCH significantly outperformed the other models for the NASDAQ, Gold, and 

EUR/USD, while GJR-GARCH provided the significantly best forecasts for Bitcoin (Table 27). 

Moving to the 5-step-ahead forecasts, the EGARCH model again demonstrated strong 

performance, delivering the most accurate forecasts for 44.44% of the financial instruments 

(Table 24), specifically for the S&P 500, Nikkei 225, Gold, and Bitcoin. The GJR-GARCH 

model performed best for 33.33% of the instruments, particularly the Hang Seng index, Oil, 

and EUR/USD, while the simple GARCH model performed best for the NASDAQ and the 10-

year Treasury Bond, covering 22.22% of the cases. In this scenario, EGARCH significantly 

outperformed the other models for the S&P 500, Gold, and Bitcoin, while the simple GARCH 

model remained the best option for the NASDAQ (Table 27). Finally, for the 10-step-ahead 

forecasts, EGARCH maintained its superior forecasting accuracy for 55.56% of the financial 

instruments (Table 24), including the Nikkei 225, Gold, Oil, EUR/USD, and Bitcoin. The 

simple GARCH model performed best for the S&P 500, Hang Seng, and 10-year Treasury 

Bond, accounting for 33.33% of the forecasts, while the GJR-GARCH model only 

outperformed the others for the NASDAQ, covering 11.11% of the instruments. EGARCH once 

again stood out for its performance on Gold and Bitcoin (Table 27), clearly outperforming the 

other models during this extended forecast horizon. 



In summary, I found that on average over analyzed financial instruments and periods if 

geopolitical shocks, the EGARCH-type models provided the smallest SMAPE across 1- to 10 

step ahead forecasts and thus the smallest percentage deviation from the observed value. This 

was followed by the GJR-GARCH model class. The simple GARCH model came in last. 

However, the results for the individual financial instruments and prediction horizons vary over 

financial instruments, forecast horizon and period. However, we found that the model class for 

a selected financial instrument is often the same for predicting the various periods of 

geopolitical shocks. This is also in accordance with my results of the best model for the in-

sample fit. I found support for my findings in e.g. Chong et al. (1999), Cumby et al. (1993), 

Lama et al. (2015), Najand (2002), Pagan & Schwert (1990) and Thenmozhi & Radha (2008). 

This allowed me to answer the first part of my research question (Research Question 7). 

 

 



Table 24: Frequency of lowest SMAPE of a GARCH type model for examined periods over all financial instruments (own calculations).  

 1-step ahead Forecast 5-step ahead Forecast 10-step ahead Forecast Avg. 1-10-step ahead Forecast 

 GARCH EGARCH GJR GARCH EGARCH GJR GARCH EGARCH GJR GARCH EGARCH GJR 

COVID-19 22.22% 44.44% 33.33% 0.00% 44.44% 55.56% 22.22% 44.44% 33.33% 0.00% 55.56% 44.44% 

Russian War 22.22% 33.33% 44.44% 33.33% 33.33% 33.33% 22.22% 55.56% 22.22% 11.11% 44.44% 44.44% 

Hamas Attack 22.22% 55.56% 22.22% 22.22% 44.44% 33.33% 33.33% 55.56% 11.11% 33.33% 55.56% 11.11% 

Average 22.22% 44.44% 33.33% 18.52% 40.74% 40.74% 25.93% 51.85% 22.22% 14.81% 51.85% 33.33% 

Source: Own calculations using Matlab (2025). 

  



Table 25: SMAPE for GARCH-type multi-step ahead out-of-sample forecasting during the period of COVID-19 (02/03/2020 – 04/30/2020). 

Diebold-Mariano test for significant difference between best and second-best performing GARCH model for given financial instrument and forecast 

horizon (h) on 5% level (*) and 1% level (**). 

 Modell / h 1 2 3 4 5 6 7 8 9 10 Average 

S&P 500 

GARCH(2,1) 

EGARCH(3,4) 

GJR(2,1) 

0.839 

0.901 

0.782* 

0.963 

0.907 

0.849 

1.131 

0.900 

0.918 

1.203 

0.924 

0.964 

1.001 

0.948 

0.913 

1.281 

0.917 

0.980 

1.183 

0.932 

1.028 

1.656 

0.931 

1.207 

1.701 

0.936 

1.266 

1.502 

0.952 

0.970 

1.246 

0.924* 

0.987 

NASDAQ 

GARCH(2,1) 

EGARCH(3,4) 

GJR(1,1) 

0.905 

0.900 

0.817* 

0.959 

0.916 

0.889 

0.992 

0.899 

0.923 

0.944 

0.924 

0.875 

0.948 

0.955 

0.869* 

0.970 

0.962 

0.939 

1.306 

0.963 

1.215 

1.606 

0.952 

1.621 

1.540 

0.971 

1.703 

2.366 

0.968** 

1.505 

1.253 

0.941* 

1.135 

Nikkei 225 

GARCH(1,1) 

EGARCH(3,3) 

GJR((3,1) 

0.938 

0.877* 

1.137 

1.420 

0.955 

2.086 

1.032 

0.921 

1.100 

1.004 

0.925 

1.618 

1.004 

0.867* 

1.232 

1.073 

0.895 

1.043 

0.959 

0.927 

1.354 

1.021 

0.944 

1.056 

0.992 

0.940 

0.933 

0.946 

0.942 

0.919* 

1.038 

0.919* 

1.247 

Hang Seng 

GARCH(1,1) 

EGARCH(3,3) 

GJR(1,1) 

1.595* 

2.210 

2.412 

1.253 

1.222 

0.872 

1.270 

1.612 

1.144 

1.797 

1.664 

1.396 

2.450 

1.992 

1.646** 

2.423 

1.566 

1.397 

1.839 

1.448 

1.216 

2.030 

1.587 

1.115 

2.502 

1.767 

1.296 

2.558 

1.878 

1.406** 

1.971 

1.694 

1.390** 

Gold 

GARCH(1,2) 

EGARCH(5,5) 

GJR(1,1) 

0.858 

0.887 

0.824* 

0.868 

0.903 

0.874 

0.866 

0.905 

0.872 

0.874 

0.925 

0.876 

0.878 

0.931 

0.874 

0.878 

0.920 

0.880 

0.886 

0.940 

0.887 

0.886 

0.932 

0.888 

0.876 

0.943 

0.877 

0.883 

0.959 

0.884 

0.875 

0.924 

0.873 

Brent Oil 

GARCH(1,1) 

EGARCH(3,3) 

GJR(1,3) 

1.352 

0.961* 

1.505 

0.953 

0.914 

1.596 

1.205 

0.934 

1.002 

1.071 

0.930 

1.344 

1.556 

0.967* 

1.141 

1.225 

0.945 

0.988 

1.245 

0.911 

0.947 

1.248 

0.889 

0.916 

1.170 

0.948 

0.903 

0.966 

0.935 

0.903 

1.199 

0.933* 

1.124 

10yr.  

T-Bond 

GARCH(1,1) 

EGARCH(4,2) 

GJR(1,1) 

1.211 

0.977* 

1.065 

0.876 

0.991 

0.834 

1.146 

0.987 

0.921 

1.168 

10.974 

1.216 

1.592 

0.960* 

1.390 

2.205 

0.972 

1.873 

2.160 

0.955 

1.654 

1.924 

0.969 

1.602 

1.957 

0.977 

1.416 

2.402 

0.971** 

1.946 

1.664 

1.973 

1.391** 

EUR/USD 

GARCH(1,1) 

EGARCH(5,2) 

GJR(1,1) 

0.755* 

0.949 

0.823 

0.798 

0.882 

0.835 

0.797 

0.879 

0.794 

0.789 

0.889 

0.706 

0.785 

0.780 

0.725* 

0.800 

0.820 

0.781 

0.841 

0.833 

0.874 

0.879 

0.774 

0.871 

0.859 

0.836 

0.864 

0.859 

0.882 

0.863 

0.816 

0.852 

0.813 

BTC 

GARCH(1,1) 

EGARCH(5,2) 

GJR(1,1) 

5.603 

1.849** 

4.769 

6.107 

3.185 

5.037 

5.922 

3.184 

4.523 

7.482 

2.551 

5.490 

7.353 

1.399** 

9.360 

8.376 

1.801 

10.916 

7.406 

2.133 

12.218 

7.355 

1.567 

11.932 

8.073 

1.876 

16.373 

10.475 

1.960** 

12.123 

7.415 

2.150** 

9.274 

Source: Own calculations using Matlab (2025). 

  



Table 26: SMAPE for GARCH-type multi-step ahead out-of-sample forecasting during the period of the Russian invasion on Ukraine (02/01/2022 – 

04/29/2022). Diebold-Mariano test for significant difference between best and second-best performing GARCH model for given financial 

instrument and forecast horizon (h) on 5% level (*) and 1% level (**). 

 Modell / h 1 2 3 4 5 6 7 8 9 10 Average 

S&P 500 

GARCH(2,1) 

EGARCH(1,2) 

GJR(1,1) 

0.805 

0.676 

0.642* 

0.778 

0.640 

0.774 

0.739 

0.727 

0.731 

0.778 

0.688 

0.757 

0.773 

0.766 

0.729* 

0.805 

0.744 

0.830 

0.786 

0.784 

0.797 

0.836 

0.804 

0.801 

0.866 

0.826 

0.769 

0.871 

0.826* 

0.856 

0.804 

0.748* 

0.769 

NASDAQ 

GARCH(1,1) 

EGARCH(2,1) 

GJR(1,1) 

0.663 

0.575* 

0.601 

0.651 

0.607 

0.581 

0.660 

0.559 

0.582 

0.711 

0.639 

0.658 

0.656* 

0.682 

0.691 

0.690 

0.672 

0.701 

0.662 

0.685 

0.699 

0.680 

0.658 

0.660 

0.716 

0.730 

0.689 

0.720 

0.704 

0.718 

0.681 

0.651 

0.658 

Nikkei 225 

GARCH(1,1) 

EGARCH(1,1) 

GJR((1,1) 

0.995 

0.900 

0.883 

0.883 

0.875 

0.865 

0.978 

0.879 

0.948 

1.097 

0.869 

1.024 

1.056 

0.901* 

1.053 

1.027 

0.894 

1.007 

1.040 

0.897 

1.026 

1.166 

0.970 

1.167 

1.057 

0.917 

1.022 

1.046 

0.934* 

0.987 

1.035 

0.904* 

0.998 

Hang Seng 

GARCH(1,2) 

EGARCH(5,5) 

GJR(1,1) 

2.069 

1.138 

0.899* 

2.204 

1.980 

0.902 

1.642 

2.018 

0.936 

2.474 

0.972 

0.934 

2.898 

1.567 

0.954** 

2.645 

0.937 

0.952 

2.648 

2.576 

0.969 

2.982 

1.533 

0.959 

1.973 

1.040 

0.942 

1.723 

1.129 

0.952* 

2.326 

1.489 

0.940* 

Gold 

GARCH(1,1) 

EGARCH(3,4) 

GJR(1,1) 

0.801* 

4.298 

0.873 

0.799 

3.662 

0.844 

0.754 

2.733 

0.834 

0.754 

1.775 

0.833 

0.755 

1.722 

0.834 

0.799 

2.490 

0.852 

0.798 

3.819 

0.851 

0.798 

3.909 

0.853 

0.764 

2.703 

0.785 

0.731* 

1.546 

0.785 

0.775* 

2.866 

0.831 

Brent Oil 

GARCH(2,1) 

EGARCH(3,5) 

GJR(2,1) 

0.899 

0.804* 

0.884 

0.850 

0.797 

0.861 

0.809 

0.793 

0.853 

0.815 

0.809 

0.848 

0.901 

0.821* 

0.907 

0.822 

0.816 

0.838 

0.893 

0.794 

0.860 

0.902 

0.807 

0.907 

0.908 

0.791 

0.890 

0.861 

0.812* 

0.867 

0.866 

0.804* 

0.872 

10yr. 

T-Bond 

GARCH(1,1) 

EGARCH(1,1) 

GJR(1,1) 

0.827 

0.841 

0.819 

0.827 

0.826 

0.837 

0.773 

0.825 

0.799 

0.823 

0.809 

0.829 

0.875 

0.821* 

0.875 

0.820 

0.804 

0.795 

0.845 

0.806 

0.783 

0.816 

0.793 

0.781 

0.818 

0.784 

0.774 

0.853 

0.808 

0.819 

0.828 

0.812 

0.811 

EUR/USD 

GARCH(1,1) 

EGARCH(3,2) 

GJR(1,1) 

0.930 

0.906* 

0.936 

0.930 

0.898 

0.936 

0.952 

0.953 

0.936 

0.954 

0.946 

0.933 

1.094 

1.129 

0.954* 

0.954 

0.917 

0.914 

0.888 

0.869 

0.873 

0.873 

0.853 

0.874 

0.874 

0.882 

0.876 

0.873 

0.877 

0.874 

0.932 

0.923 

0.911 

BTC 
GARCH(1,1) 

EGARCH(3,2) 

GJR(1,1) 

2.084* 

2.449 

2.172 

2.167 

2.617 

2.252 

2.242 

2.915 

2.319 

2.359 

2.950 

2.430 

2.359** 

3.089 

2.518 

2.323 

2.530 

2.116 

2.245 

2.457 

2.157 

2.341 

2.368 

2.198 

2.335 

2.354 

2.195 

2.440 

2.454 

2.268** 

2.289 

2.618 

2.263 

Source: Own calculations using Matlab (2025). 

  



Table 27: SMAPE for GARCH-type multi-step ahead out-of-sample forecasting during the period around the Hamas attack on Israel (10/01/2023 – 

12/29/2023). Diebold-Mariano test for significant difference between best and second-best performing GARCH model for given financial 

instrument and forecast horizon (h) on 5% level (*) and 1% level (**). 

 Modell / h 1 2 3 4 5 6 7 8 9 10 Average 

S&P 500 

GARCH(1,1) 

EGARCH(1,1) 

GJR(1,2) 

1.503 

1.257 

1.142* 

1.595 

1.574 

1.453 

1.710 

1.730 

1.837 

1.812 

1.836 

1.921 

1.867 

1.599** 

1.772 

1.838 

1.735 

1.910 

1.955 

2.167 

2.016 

2.042 

1.559 

2.125 

1.926 

1.858 

2.257 

1.974* 

2.041 

2.305 

1.822 

1.736* 

1.874 

NASDAQ 

GARCH(1,1) 

EGARCH(4,2) 

GJR(1,2) 

1.549 

1.012** 

1.705 

1.870 

1.534 

2.093 

2.053 

1.500 

2.461 

2.241 

2.415 

2.637 

2.102** 

2.593 

2.335 

2.071 

2.519 

2.454 

2.034 

2.181 

1.949 

1.954 

2.050 

2.103 

2.064 

2.362 

2.299 

2.118 

2.362 

1.954* 

2.006* 

2.067 

2.195 

Nikkei 225 

GARCH(1,1) 

EGARCH(1,1) 

GJR((1,1) 

1.217* 

1.261 

1.288 

1.408 

1.636 

1.545 

1.637 

1.677 

1.746 

1.825 

1.827 

1.921 

2.084 

2.078 

2.247 

2.192 

2.177 

2.252 

2.201 

2.219 

2.225 

2.097 

2.145 

2.1543 

2.299 

2.272 

2.320 

2.272 

2.176 

2.251 

1.923* 

1.947 

1.995 

Hang Seng 

GARCH(1,1) 

EGARCH(4,3) 

GJR(1,1) 

1.230 

1.098* 

1.215 

1.219 

1.052 

1.232 

1.200 

1.522 

1.215 

1.124 

1.366 

1.088 

1.210 

1.570 

1.191 

1.309 

1.424 

1.243 

1.156 

1.048 

1.172 

1.133 

1.289 

1.141 

1.330 

1.578 

1.351 

1.240 

1.431 

1.275 

1.215 

1.338 

1.212 

Gold 

GARCH(4,1) 

EGARCH(4,3) 

GJR(1,1) 

2.228 

1.711** 

2.534 

2.454 

1.252 

2.470 

2.311 

1.438 

2.077 

2.244 

1.567 

2.104 

1.879 

1.012** 

2.116 

2.096 

1.604 

2.294 

2.235 

1.542 

2.457 

2.517 

1.297 

2.519 

2.752 

1.813 

2.649 

2.490 

1.705** 

2.643 

2.320 

1.494** 

2.386 

Brent Oil 

GARCH(1,1) 

EGARCH(4,3) 

GJR(2,1) 

0.903 

0.855* 

1.092 

0.941 

0.918 

0.865 

0.950 

0.938 

0.899 

0.814 

0.830 

0.783 

0.823 

0.924 

0.797 

0.810 

0.785 

0.787 

0.827 

0.792 

0.796 

0.859 

0.822 

0.836 

0.847 

0.805 

0.862 

0.810 

0.787 

0.837 

0.859 

0.845 

0.855 

10yr. 

T-Bond 

GARCH(1,1) 

EGARCH(1,1) 

GJR(1,1) 

0.785 

0.984 

0.791 

0.758 

1.076 

0.781 

0.755 

0.906 

0.764 

0.726 

0.910 

0.709 

0.716 

1.000 

0.742 

0.754 

0.909 

0.730 

0.753 

0.788 

0.754 

0.739 

0.909 

0.754 

0.785 

1.000 

0.792 

0.800 

1.449 

0.824 

0.757 

0.993 

0.764 

EUR/USD 

GARCH(1,1) 

EGARCH(2,2) 

GJR(1,1) 

2.180 

1.771** 

1.922 

2.443 

1.903 

2.451 

2.061 

1.958 

2.081 

2.130 

2.062 

2.035 

2.174 

2.278 

1.954* 

2.140 

1.814 

2.084 

2.286 

1.896 

2.170 

2.237 

2.098 

2.137 

2.242 

1.902 

2.236 

2.354 

2.128 

2.242 

2.225 

1.981* 

2.131 

BTC 

GARCH(1,1) 

EGARCH(3,3) 

GJR(1,1) 

2.367 

2.243 

2.003** 

2.595 

2.422 

2.573 

3.268 

2.610 

2.940 

3.528 

2.692 

3.057 

4.218 

3.328** 

3.990 

3.070 

2.855 

3.184 

3.362 

2.485 

3.069 

2.736 

2.186 

2.610 

3.438 

2.764 

3.327 

2.989 

2.217** 

3.091 

3.157 

2.580** 

2.985 

Source: Own calculations using Matlab (2025). 



Now I turn attention to evaluating the models’ accuracy in predicting the direction of 

volatility movement during the COVID-19 pandemic. When examining the average 1- to 10-

step-ahead forecasts, the GJR-GARCH model provided the most accurate directional 

predictions across 66.67% of the financial instruments (Table 28), including the S&P 500, 

Nikkei 225, Hang Seng, Gold, Oil, and EUR/USD. In contrast, the EGARCH model showed 

the highest accuracy for the NASDAQ, 10-year Treasury Bond, and Bitcoin, covering 33.33% 

of the instruments. The simple GARCH model performed well for Gold and the 10-year 

Treasury Bond. For the 1-step-ahead forecasts, GJR-GARCH demonstrated strong 

performance, with an average directional accuracy for 77.78% of the financial instruments, 

which included the S&P 500, Nikkei 225, Hang Seng, Gold, Oil, 10-year Treasury Bond, and 

Bitcoin. On the other hand, both the simple GARCH and EGARCH models also exhibited 

notable results in specific instances, with simple GARCH performing well for the Hang Seng, 

Gold, and Bitcoin (33.33%) and EGARCH providing strong forecasts for NASDAQ, 

EUR/USD, and Bitcoin (33.33%) (Table 30). Looking at the 5-step-ahead forecasts, EGARCH 

model class provided the best directional volatility forecasts for 55.56% of the instruments 

(Table 28), including the Hang Seng index, Gold, Oil, EUR/USD, and Bitcoin (Table 30). The 

GJR-GARCH model was also effective, delivering the best directional forecasts for NASDAQ, 

Nikkei 225, Gold, and the 10-year Treasury Bond, accounting for 44.44% of the instruments. 

The simple GARCH model showed less frequent accuracy but still provided the best forecasts 

for the S&P 500 and Gold, covering 22.22% of the cases. Finally, for the 10-step-ahead 

forecasts, the GJR-GARCH model showed the highest directional forecasting accuracy, for 

77.78% (Table 28) of the financial instruments, which included the S&P 500, Nikkei 225, Hang 

Seng, Gold, Oil, 10-year Treasury Bond, and EUR/USD (Table 30). EGARCH also performed 

well, delivering the best predictions for NASDAQ, Gold, the 10-year Treasury Bond, 

EUR/USD, and Bitcoin, covering 55.56% of the instruments. The simple GARCH model, 

although less dominant, still provided accurate forecasts for Hang Seng, Gold, and Oil, 

accounting for 33.33% of the cases. 

Next, I examined the forecasting performance for the GARCH models in scope during 

the period of the Russian invasion on Ukraine. For the average 1- to 10-step-ahead forecasts, 

the GJR-GARCH model provided the most accurate directional predictions across 55.56% of 

the financial instruments (Table 28). The model performed well for the S&P 500, NASDAQ, 

Hang Seng, EUR/USD, and Bitcoin (Table 31). The EGARCH model followed by providing 

the highest accuracy for 33.00% of the instruments, including the Nikkei 225, Oil, and the 10-

year Treasury Bond. The simple GARCH model provided the best for Gold and Bitcoin 

(22.00%). When examining the one-step-ahead directional forecasts, the simple GARCH model 

stood out by providing the highest accuracy for 66.67% of the financial instruments (Table 28). 

This included the S&P 500, Nikkei 225, Gold, Oil, the 10-year Treasury Bond, and Bitcoin 

(Table 31). The GJR-GARCH model outperformed the other models for 44.44% of the 

instruments, particularly the S&P 500, NASDAQ, Nikkei 225, and Bitcoin. EGARCH also 

contributed, offering directional solid forecasts for the Nikkei 225, Hang Seng, and EUR/USD 



(33.33%). For the 5-step-ahead forecasts, both EGARCH and GJR-GARCH models delivered 

the highest directional accuracy, each covering 55.56% of the financial instruments (Table 28). 

EGARCH performed best for the S&P 500, Gold, Oil, the 10-year Treasury Bond, and 

EUR/USD, while GJR-GARCH excelled for NASDAQ, Hang Seng, the 10-year Treasury 

Bond, EUR/USD, and Bitcoin (Table 31). The simple GARCH model, although less frequent, 

performed well for 44.44% of the instruments, including the S&P 500, Nikkei 225, EUR/USD, 

and Bitcoin. Finally, for the ten-step-ahead forecasts, the GJR-GARCH model emerged as the 

top performer, providing the highest directional accuracy for 77.78% of the financial 

instruments. This included the S&P 500, Nikkei 225, Hang Seng, Gold, the 10-year Treasury 

Bond, EUR/USD, and Bitcoin. EGARCH was also effective, delivering the best forecasts for 

55.56% of the instruments (Table 28), particularly the S&P 500, Nikkei 225, Oil, the 10-year 

Treasury Bond, and EUR/USD. The simple GARCH model also performed well for a subset of 

the instruments, including NASDAQ, Gold, the 10-year Treasury Bond, EUR/USD, and Bitcoin 

(Table 31). 

The final period under analysis focuses on the time of the Hamas attack on Israel. During 

this highly volatile period, the forecasting performance of various GARCH models was also 

evaluated across multiple time horizons. For the average 1- to 10-step-ahead forecasts, both the 

GJR-GARCH and EGARCH models provided the most accurate directional predictions for 

44.44% of the financial instruments (Table 28). Specifically, the EGARCH model excelled in 

predicting the S&P 500, NASDAQ, Nikkei 225, Gold, and Bitcoin (Table 32), while GJR-

GARCH performed best for NASDAQ, Hang Seng, Oil, and EUR/USD. The simple GARCH 

model showed its strength primarily with the Nikkei 225, Hang Seng, and the 10-year Treasury 

Bond. In the case of one-step-ahead forecasts, both EGARCH and GJR-GARCH once again 

proved to be the most accurate, each covering 66.67% of the financial instruments (Table 28). 

EGARCH provided the best directional forecasts for the S&P 500, NASDAQ, Nikkei 225, 

Hang Seng, Gold, and Oil (Table 32). Similarly, GJR-GARCH excelled with NASDAQ, Nikkei 

225, Gold, Oil, EUR/USD, and Bitcoin. The simple GARCH model was also effective in some 

cases, particularly for NASDAQ, Nikkei 225, and the 10-year Treasury Bond, accounting for 

33.33% (Table 28) of the instruments. For the 5-step-ahead forecasts, the simple GARCH and 

EGARCH models both showed high directional accuracy, each performing best for 55.56% of 

the instruments (Table 28). The simple GARCH model succeeded with NASDAQ, Nikkei 225, 

Gold, the 10-year Treasury Bond, EUR/USD, and Bitcoin, while EGARCH provided the most 

accurate predictions for the S&P 500, NASDAQ, Nikkei 225, Hang Seng, and EUR/USD (Table 

32). The GJR-GARCH model followed closely, performing best for NASDAQ, Nikkei 225, 

Oil, and EUR/USD, covering 44.44% of the instruments. Lastly, for the 10-step-ahead 

forecasts, EGARCH demonstrated the highest accuracy for 66.67% of the financial instruments, 

including the S&P 500, NASDAQ, Nikkei 225, Gold, the 10-year Treasury Bond, EUR/USD, 

and Bitcoin. GJR-GARCH also performed well, offering strong forecasts for NASDAQ, Nikkei 

225, Hang Seng, Oil, the 10-year Treasury Bond, and EUR/USD, covering 55.56% of the 

instruments. The simple GARCH model maintained solid performance, excelling with 



NASDAQ, Nikkei 225, Hang Seng, the 10-year Treasury Bond, and EUR/USD, matching the 

55.56% accuracy rate seen with GJR-GARCH. This analysis of forecasting performance during 

the Hamas attack on Israel highlights the strengths of each GARCH model in predicting 

directional volatility movements, with EGARCH and GJR-GARCH consistently delivering 

strong results across different horizons. 

Summarizing, I found that the GJR-GARCH-class models outperformed other 

forecasting models in scope regarding the accuracy of predicting correct directional movements 

of the volatility during periods of political shocks. This result was most pronounced during the 

COVID-19 phase. It can be assumed that the GJR-GARCH model is better able to predict 

volatilities due to its asymmetric structure, especially after strong negative shocks, which we 

observed most strongly in COVID-19, leading to higher directional accuracy. In addition, the 

model performed particularly well in predicting short-term volatility. Our results are in line with 

the other literature (e.g., OU et al., 2022; Ramasamy, 2012). 

In our analysis, we examined various GARCH-type models for their ability to predict 

the volatility of various financial instruments and prediction horizons in different periods of 

geopolitical shocks. We found that the objective of the prediction (point prediction or prediction 

of directional accuracy) has an influence on which model should be selected for the prediction. 

For point forecasting, the EGARCH model turned out to be the best model. For forecasting 

directional accuracy, the GJR-GARCH model. This led me to answer my research question 

(Research Question 7). 

 

 



 

Table 28: Frequency of highest directional accuracy of a GARCH-type model for examined periods and financial instruments. 

 1-step ahead Forecast 5-step ahead Forecast 10-step ahead Forecast Avg. 1-10-step ahead Forecast 

 GARCH EGARCH GJR GARCH EGARCH GJR GARCH EGARCH GJR GARCH EGARCH GJR 

COVID-19 33.33% 33.33% 77.78% 22.22% 55.56% 44.44% 33.33% 55.56% 77.78% 11.11% 33.33% 66.67% 

Russian Invasion 66.67% 33.33% 44.44% 44.44% 55.56% 55.56% 55.56% 55.56% 77.76% 22.22% 33.33% 55.56% 

Hamas Attack 33.33% 66.66% 66.66% 55.56% 55.56% 44.44% 55.556% 66.67% 55.56% 33.33% 44.44% 44.44% 

Average 44.44% 44.44% 62.96% 40.74 55.56% 48.15% 48.15% 59.26% 70.37% 25.93% 37.04% 55.56% 

Source: Own calculations using Matlab (2025). 

 

Table 29: Best performing GARCH-type model for multi-step ahead out-of-sample forecasting in examined periods and financial instruments. 

 
 

S&P 500 NASDAQ Nikkei225 Hang Seng Gold Oil 10yr. T-Bond EUR/USD BTC 

SMAPE COVID-19 EGARCH EGARCH EGARCH GJR GJR EGAR GJR GJR EGARCH 

 Russian Invasion EGARCH EGARCH EGARCH GJR GARCH GJR GJR GJR EGARCH 

 Hamas Attack EGARCH GARCH GARCH GJR EGARCH EGAR GAR EGARCH EGARCH 

 
          

Directional COVID-19 GJR EGARCH GJR GJR GAR/GJR GJR EGARCH GJR EGARCH 

Accuracy Russian Invasion GJR GJR EGARCH GJR EGARCH EGARCH EGARCH GJR GAR/GJR 

 Hamas Attack EGARCH GJR GAR/EGARCH GARCH/GJR EGARCH GJR GARCH GJR EGARCH 

Source: Own calculations using Matlab (2025). 

  



Table 30: Directional accuracy of GARCH-type multi-step ahead out-of-sample forecasting in period of COVID-19 (02/03/2020 – 04/30/2020). 

Adjusted Diebold-Mariano test (DM*) for significant difference between best and second-best performing GARCH-type model for given financial 

instrument and forecast horizon (h) on 5% level (*) and 1% level (**). 

 Modell / h 1 2 3 4 5 6 7 8 9 10 Average 

S&P 500 

GARCH(2,1) 

EGARCH(3,4) 

GJR(2,1) 

0.700 

0.716 

0.800** 

0.733 

0.700 

0.750 

0.667 

0.667 

0.716** 

0.700 

0.616 

0.783** 

0.667 

0.583 

0.650 

0.650 

0.616 

0.733** 

0.633 

0.566 

0.683** 

0.550 

0.650** 

0.600 

0.616 

0.783** 

0.700 

0.683 

0.683 

0.700 

0.660 

0.658 

0.711* 

NASDAQ 

GARCH(2,1) 

EGARCH(3,4) 

GJR(1,1) 

0.667 

0.783** 

0.733 

0.616 

0.667 

0.716** 

0.700 

0.700 

0.700 

0.633 

0.667 

0.766** 

0.633 

0.650 

0.733** 

0.650 

0.700 

0.733* 

0.633 

0.700** 

0.650 

0.633 

0.683** 

0.633 

0.616 

0.667** 

0.600 

0.650 

0.733** 

0.667 

0.643 

0.695 

0.693 

Nikkei 225 

GARCH(1,1) 

EGARCH(3,3) 

GJR((3,1) 

0.683 

0.650 

0.700 

0.716 

0.667 

0.716 

0.667 

0.616 

0.716** 

0.683* 

0.633 

0.650 

0.750 

0.700 

0.766 

0.766 

0.750 

0.766 

0.733** 

0.683 

0.683 

0.633 

0.650 

0.683* 

0.583 

0.633 

0.633 

0.733 

0.716 

0.750 

0.695 

0.670 

0.706 

Hang Seng 

GARCH(1,1) 

EGARCH(3,3) 

GJR(1,1) 

0.716 

0.650 

0.716 

0.716 

0.700 

0.733 

0.766 

0.733 

0.766 

0.683 

0.633 

0.700 

0.650 

0.683* 

0.633 

0.700 

0.667 

0.733* 

0.783 

0.733 

0.783 

0.783 

0.750 

0.816* 

0.616 

0.650 

0.650 

0.683 

0.667 

0.683 

0.710 

0.686 

0.721* 

Gold 

GARCH(1,2) 

EGARCH(5,5) 

GJR(1,1) 

0.750 

0.700 

0.750 

0.750 

0.700 

0.750 

0.700 

0.550 

0.700 

0.600 

0.600 

0.600 

0.550 

0.550 

0.550 

0.700 

0.700 

0.700 

0.700 

0.650 

0.700 

0.850 

0.800 

0.850 

0.750 

0.750 

0.750 

0.800 

0.800 

0.800 

0.715 

0.680 

0.715 

Brent Oil 

GARCH(1,1) 

EGARCH(3,3) 

GJR(1,3) 

0.650 

0.667 

0.700* 

0.750* 

0.667 

0.716 

0.733 

0.750 

0.750 

0.733 

0.733 

0.700 

0.650 

0.733 

0.716 

0.667 

0.783** 

0.700 

0.650 

0.683 

0.716* 

0.750* 

0.700 

0.716 

0.733 

0.733 

0.766* 

0.700 

0.667 

0.700 

0.701 

0.711 

0.718 

10yr 

T-Bond 

GARCH(1,1) 

EGARCH(4,2) 

GJR(1,1) 

0.616 

0.566 

0.633 

0.716** 

0.667 

0.616 

0.700 

0.716 

0.616 

0.650 

0.633 

0.616 

0.566 

0.600 

0.616 

0.633 

0.667* 

0.633 

0.700 

0.750** 

0.633 

0.633 

0.683** 

0.633 

0.716 

0.716 

0.633 

0.616 

0.650 

0.650 

0.655 

0.665 

0.663 

EUR/USD 

GARCH(1,1) 

EGARCH(5,2) 

GJR(1,1) 

0.716 

0.766** 

0.716 

0.800 

0.750 

0.816 

0.716 

0.700 

0.716 

0.700 

0.716 

0.700 

0.683 

0.700 

0.683 

0.750 

0.733 

0.750 

0.800 

0.766 

0.800 

0.783 

0.766 

0.783 

0.633 

0.650 

0.616 

0.716 

0.733 

0.733 

0.730 

0.728 

0.731 

BTC 

GARCH(3,1) 

EGARCH(3,3) 

GJR(3,1) 

0.633 

0.633 

0.633 

0.600 

0.600 

0.583 

0.650 

0.683 

0.667 

0.583 

0.600 

0.600 

0.616 

0.700** 

0.650 

0.600 

0.650 

0.616 

0.566 

0.667** 

0.583 

0.516 

0.583** 

0.533 

0.616 

0.683** 

0.633 

0.616 

0.683** 

0.633 

0.600 

0.648* 

0.613 

Source: Own calculations using Matlab (2025).



Table 31: Directional accuracy of GARCH-type multi-step ahead out-of-sample forecasting for period around the Russian invasion on Ukraine 

(02/01/2022 – 04/29/2022). Adjusted Diebold-Mariano test (DM*) for significant difference between best and second-best performing GARCH-type 

model for given financial instrument and forecast horizon (h) on 5% level (*) and 1% level (**). 

 Modell 1 2 3 4 5 6 7 8 9 10 Average 

S&P 500 

GARCH(2,1) 

EGARCH(1,2) 

GJR(1,1) 

0.783 

0.733 

0.783 

0.716 

0.733 

0.750 

0.766 

0.816 

0.816 

0.733 

0.733 

0.750 

0.650 

0.650 

0.633 

0.700 

0.733 

0.716 

0.766 

0.750 

0.750 

0.700 

0.750 

0.750 

0.616 

0.616 

0.633 

0.700 

0.716 

0.716 

0.713 

0.723 

0.730 

NASDAQ 

GARCH(1,1) 

EGARCH(2,1) 

GJR(1,1) 

0.733 

0.750 

0.766 

0.700 

0.766 

0.766 

0.750 

0.733 

0.783* 

0.700 

0.783** 

0.733 

0.633 

0.650 

0.667 

0.716 

0.766 

0.750 

0.700 

0.667 

0.700 

0.733 

0.766 

0.766 

0.667 

0.650 

0.633 

0.716 

0.700 

0.683 

0.705 

0.723 

0.725 

Nikkei 225 

GARCH(1,1) 

EGARCH(1,1) 

GJR((1,1) 

0.650 

0.650 

0.650 

0.783 

0.816* 

0.766 

0.716 

0.750 

0.733 

0.650 

0.683 

0.667 

0.683 

0.650 

0.667 

0.783 

0.783 

0.800 

0.766 

0.800 

0.783 

0.633 

0.667 

0.650 

0.766 

0.783 

0.783 

0.766 

0.783 

0.783 

0.720 

0.736 

0.728 

Hang Seng 

GARCH(1,2) 

EGARCH(5,5) 

GJR(1,1) 

0.683 

0.745* 

0.716 

0.683 

0.727 

0.733 

0.650 

0.600 

0.667 

0.716 

0.781* 

0.750 

0.667 

0.618 

0.700* 

0.667 

0.636 

0.716* 

0.650 

0.690 

0.700 

0.700 

0.745* 

0.716 

0.550 

0.636 

0.633 

0.667* 

0.709 

0.716 

0.663 

0.689 

0.705 

Gold 

GARCH(1,1) 

EGARCH(3,4) 

GJR(1,1) 

0.750 

0.607 

0.733 

0.650 

0.549 

0.650 

0.683 

0.725* 

0.683 

0.750 

0.784* 

0.750 

0.683 

0.686 

0.683 

0.733 

0.725 

0.733 

0.683 

0.588 

0.683 

0.616 

0.549 

0.616 

0.733 

0.725 

0.733 

0.700 

0.686 

0.700 

0.698 

0.662* 

0.696 

Brent Oil 

GARCH(2,1) 

EGARCH(3,5) 

GJR(2,1) 

0.816* 

0.783 

0.783 

0.716 

0.750 

0.733 

0.783 

0.766 

0.800 

0.700 

0.716 

0.700 

0.650 

0.683 

0.667 

0.783 

0.783 

0.766 

0.633 

0.650 

0.650 

0.733 

0.716 

0.700 

0.700 

0.716 

0.700 

0.700 

0.750 

0.733 

0.725 

0.731 

0.723 

10yr T-Bond 

GARCH(1,1) 

EGARCH(1,1) 

GJR(1,1) 

0.683 

0.667 

0.616 

0.800 

0.866* 

0.833 

0.650 

0.700 

0.683 

0.800 

0.783 

0.816 

0.733 

0.750 

0.750 

0.733 

0.750 

0.766 

0.700 

0.750 

0.733 

0.716 

0.716 

0.716 

0.783 

0.783 

0.783 

0.750 

0.750 

0.750 

0.735 

0.751 

0.745 

EUR/USD 

GARCH(1,1) 

EGARCH(3,2) 

GJR(1,1) 

0.766 

0.783 

0.750* 

0.750 

0.733 

0.750 

0.750 

0.733 

0.766 

0.816 

0.833 

0.833 

0.783 

0.783 

0.783 

0.750 

0.750 

0.750 

0.800 

0.800 

0.800 

0.716 

0.716 

0.716 

0.683 

0.683 

0.683 

0.716 

0.716 

0.716 

0.753 

0.733 

0.755 

BTC 
GARCH(1,1) 

EGARCH(3,2) 

GJR(1,1) 

0.716 

0.700 

0.716 

0.667 

0.650 

0.667 

0.633 

0.616 

0.663* 

0.733 

0.750 

0.733 

0.683 

0.667 

0.683 

0.733 

0.716 

0.733 

0.700 

0.683 

0.700 

0.633 

0.650 

0.633 

0.683 

0.667 

0.683 

0.667 

0.650 

0.667 

0.685 

0.675 

0.685 

Source: Own calculations using Matlab (2025). 

  



Table 32: Directional accuracy of GARCH-type multi-step ahead out-of-sample forecasting for period around Hamas attack on Israel (10/01/2023 – 

12/29/2023). Adjusted Diebold-Mariano test (DM*) for significant difference between best and second-best performing GARCH model for given 

financial instrument and forecast horizon (h) on 5% level (*) and 1% level (**). 

 Modell / h 1 2 3 4 5 6 7 8 9 10 Average 

S&P 500 

GARCH(1,1) 

EGARCH(1,1) 

GJR(1,2) 

0.683 

0.700 

0.683 

0.750 

0.750 

0.700 

0.733 

0.733 

0.716 

0.650 

0.650 

0.650 

0.633 

0.733** 

0.667 

0.667 

0.667 

0.633 

0.716 

0.783* 

0.750 

0.683 

0.667 

0.650 

0.650 

0.650 

0.650 

0.667 

0.700 

0.667 

0.683 

0.703 

0.676 

NASDAQ 

GARCH(1,1) 

EGARCH(4,2) 

GJR(1,2) 

0.850 

0.850 

0.850 

0.733 

0.766 

0.766 

0.750 

0.783 

0.783 

0.667 

0.700 

0.700 

0.633 

0.633 

0.633 

0.633 

0.616 

0.633 

0.716 

0.700 

0.716 

0.667 

0.650 

0.667 

0.683 

0.700 

0.716 

0.750 

0.750 

0.750 

0.708 

0.715 

0.721 

Nikkei 225 

GARCH(1,1) 

EGARCH(1,1) 

GJR((1,1) 

0.783 

0.783 

0.783 

0.667 

0.667 

0.650 

0.816 

0.800 

0.800 

0.783 

0.800 

0.800 

0.783 

0.783 

0.783 

0.783 

0.783 

0.783 

0.633 

0.633 

0.633 

0.766 

0.766 

0.766 

0.733 

0.733 

0.733 

0.750 

0.750 

0.750 

0.750 

0.750 

0.748 

Hang Seng 

GARCH(1,1) 

EGARCH(4,3) 

GJR(1,1) 

0.716 

0.724 

0.716 

0.816 

0.810 

0.816 

0.683 

0.689 

0.683 

0.683 

0.672 

0.683 

0.683 

0.689 

0.683 

0.716 

0.724 

0.716 

0.766 

0.758 

0.766 

0.633 

0.637 

0.633 

0.716 

0.724 

0.716 

0.700 

0.672 

0.700 

0.711 

0.710 

0.711 

Gold 

GARCH(4,1) 

EGARCH(4,3) 

GJR(1,1) 

0.700 

0.716 

0.716 

0.716 

0.683 

0.716 

0.667 

0.700 

0.700 

0.633 

0.716** 

0.667 

0.733* 

0.667 

0.700 

0.716 

0.700 

0.733 

0.733 

0.783 

0.766 

0.600 

0.667 

0.600 

0.583 

0.600 

0.616 

0.700 

0.750** 

0.700 

0.678 

0.698 

0.691 

Brent Oil 

GARCH(1,1) 

EGARCH(4,3) 

GJR(2,1) 

0.700 

0.716 

0.716 

0.750 

0.733 

0.750 

0.733 

0.716 

0.733 

0.783 

0.733 

0.733 

0.750 

0.766 

0.783 

0.733 

0.750 

0.750 

0.733 

0.716 

0.750 

0.733 

0.700 

0.750 

0.783 

0.800 

0.766 

0.750 

0.750 

0.766 

0.745 

0.738 

0.750 

10yr 

T-Bond 

GARCH(1,1) 

EGARCH(1,1) 

GJR(1,1) 

0.766** 

0.667 

0.716 

0.766 

0.733 

0.716 

0.716 

0.633 

0.683 

0.650 

0.667 

0.650 

0.733 

0.633 

0.716 

0.700 

0.716 

0.716 

0.766 

0.700 

0.750 

0.700 

0.700 

0.700 

0.750 

0.700 

0.750 

0.667 

0.667 

0.667 

0.721 

0.681 

0.706 

EUR/USD 

GARCH(1,1) 

EGARCH(2,2) 

GJR(1,1) 

0.633 

0.650 

0.667 

0.667 

0.667 

0.667 

0.683 

0.667 

0.667 

0.683 

0.683 

0.683 

0.683 

0.683 

0.683 

0.733 

0.733 

0.733 

0.766 

0.716 

0.766 

0.667 

0.633 

0.667 

0.667 

0.667 

0.667 

0.700 

0.700 

0.700 

0.688 

0.680 

0.690 

BTC 
GARCH(1,1) 

EGARCH(3,3) 

GJR(1,1) 

0.667 

0.650 

0.683 

0.667 

0.667 

0.650 

0.616 

0.633 

0.600 

0.600 

0.600 

0.583 

0.716 

0.700 

0.683 

0.716 

0.733 

0.716 

0.683 

0.700 

0.667 

0.683 

0.667 

0.667 

0.667 

0.667 

0.683 

0.716 

0.750 

0.700 

0.673 

0.676 

0.663 

Source: Own calculations using Matlab (2025).



4.4. Multivariate Volatility Modeling and Forecasting using the Temporal Fusion 

Transformer 

Time series forecasting, a fundamental task in econometrics, finance, and machine 

learning, is used to predict future values based on historical data. A time series prediction problem 

of a target variable 𝑦𝑡, 𝑡 ∈ {−∞, +∞} can be described as the conditional expectation of 𝑦𝑇+ℎ, 

given the information 𝐼𝑇 of the time points up to 𝑇, and 𝑇 + ℎ is the ℎ-th prediction step in the 

future (Diebold, 1998; Granger & Newbold, 2014): 

𝑦̂𝑇+ℎ = 𝐸[𝑦𝑇+ℎ|𝐼𝑇] 

The conditional expectation in time series forecasting can now be modeled in different 

ways. This distinction can be made in several ways. For example, a common distinction is that 

between linear (e.g. autoregressive, autoregressive integrated, vector autoregressive models and 

generalized linear models) and non-linear models (e.g. autoregressive conditional heteroskedastic 

model and neural networks). Another distinction is between parametric models (e.g. ARIMA), 

which define the forecasting function explicitly as a combination of function parameters, which 

are linked together in a certain way, and non-parametric models (e.g. neural networks) where the 

form of the forecasting function is not explicitly defined but approximated from the data sample 

(e.g., Sezer et al., 2020). Univariate forecasting models vs. multivariate forecasting models is also 

a common distinction. A univariate time series consists of observations of a single variable 

recorded over time. The key assumption is that the future values of the series depend solely on its 

past values, without considering any external or additional explanatory variables (e.g., Hamilton, 

2020). Mathematically, a univariate time series model can be expressed as (Diebold, 1998; 

Granger & Newbold, 2014): 

𝑦𝑡 = 𝑓(𝑦𝑡−1,𝑦𝑡−2,…,𝑦𝑡−𝑝,𝜀𝑡) 

where 𝑓(∙) is a function to model the dependency structure of the lagged target variable 

𝑦𝑡−1,𝑦𝑡−2,…,𝑦𝑡−𝑝 and a disturbance variable 𝜀𝑡. The ARIMA model class (Box & Jenkins, 1970) is 

a typical example of a univariate times series model and widely practically applied. A multivariate 

time series consists of multiple variables recorded over time that may influence each other 

(Lütkepohl, 2005). Instead of predicting a single variable solely, were predicting a k x 1 vector 

𝒚𝒕−𝒊 = (𝑦1,𝑡 , 𝑦2,𝑡 , … , 𝑦𝑘,𝑡)′ based on its past values and additional time-dependent variables. This 

can be represented as: 

𝒚𝒕 = 𝑔(𝒚𝒕−𝟏, … , 𝒚𝒕−𝒑, 𝒙𝒕−𝟏, … , 𝒙𝒕−𝒒, 𝜺𝒕) 

where 𝑔(∙) is a function to model the dependency structure of the lagged target variables 

𝒚𝒕−𝟏, 𝒚𝒕−𝟐, … , 𝒚𝒕−𝒑, with 𝒚𝒕−𝒊 = (𝑦1,𝑡−𝑖 , 𝑦2,𝑡−𝑖 , … , 𝑦𝑘,𝑡−𝑖,)′ for the exogenous variables 

𝒙𝒕−𝟏, 𝒙𝒕−𝟐, … , 𝒙𝒕−𝒒 with 𝒙𝒕−𝒋 = (𝑥1,𝑡−𝑗 , … , 𝑥𝑚,𝑡−𝑗)′ that influence 𝑦𝑡 and a disturbance variable 

𝜺𝒕 = (𝜀1,𝑡 , … , 𝜀𝑘,𝑡)′. Common multivariate models are the Vector Autoregressive Models (Sims, 



1980), Dynamic Factor Models (Geweke & Singleton 1981; Stock, 1989), Vector Error Correction 

Models (Engle & Granger, 1987). 

The neural networks I’m focusing on here, in particular the Temporal Fusion Transformer, 

can be implemented both as a univariate and as a multivariate model. This depends on whether 

other features or explanatory time series are considered in addition to the actual time series of the 

target variables. Multivariate time series forecasting (MTSF) in financial markets demonstrates 

significant advantages over univariate approaches through its ability to integrate multiple data 

streams and uncover complex interdependencies among financial variables (Lütkepohl, 2005; 

Tsay, 2013). By leveraging the correlations among different financial indicators, MTSF enhances 

the robustness of forecasts, particularly in volatile market environments. One key advantage of 

MTSF is its capacity to improve prediction accuracy by utilizing interconnected financial time 

series. Zhao et al. (2019) discussed multivariate directed graphical models that allow for the 

integration of one financial series as a predictor for others, effectively capturing the causal 

relationships often present in financial markets. This modeling approach is particularly beneficial 

for portfolio management, where the interplay between various asset classes significantly 

determines overall performance. The methodology employed by these models demonstrates how 

MTSF can uncover relationships that univariate models might overlook, thereby yielding superior 

forecasting results (Kolm et al., 2014). Additionally, MTSF approaches can incorporate advanced 

techniques such as machine learning and deep learning frameworks to harness the complexities of 

financial data (Ahmed et al., 2010; Lim et al., 2021). Kulendran & Witt (2003) conducted a 

comparative analysis illustrating how various multivariate and univariate models affect forecasting 

performance; their work emphasized that multivariate models often yielded more reliable 

outcomes when predicting different types of demand. This aligns with findings from Adebiyi et 

al. (2014) who articulated the practical applicability of ARIMA models in forecasting stock prices, 

noting that multivariate techniques generally lead to more robust forecasts compared to univariate 

counterparts. 

The inclusion of measures like realized volatility in MTSF further enhances its predictive 

capability. Research by Hansen et al. (2014) discusses the use of realized measures of volatility 

within a multivariate framework as a strategy to improve the accuracy of forecasts, subsequently 

elevating risk assessment in financial market applications. Their findings underscore the 

importance of combining multiple perspectives on volatility to influence investment decisions 

effectively. Moreover, combining forecasts from multiple indicators can yield improved accuracy 

and reliability. Studies have shown that integrating various financial metrics, including liquidity 

and profitability indicators through multivariate adaptive regression splines, can enhance 

predictive precision compared to univariate models that may focus solely on stock prices (Shah et 

al., 2019). This ability to incorporate diverse financial factors provides a holistic view that is 

invaluable for decision-makers, further establishing multivariate forecasting as a preferred method 

in complex financial contexts. In conclusion, multivariate time series forecasting in financial 

markets provides notable advantages over univariate methods by leveraging interdependencies 

among multiple time series, employing advanced machine learning techniques, utilizing realized 



volatility measures, and fostering improved accuracy through combined forecasting strategies. 

These attributes solidify MTSF as an essential tool for navigating the intricacies of financial 

markets effectively. The exploration of whether multivariate forecast models outperform 

univariate models is fundamentally intertwined with the structure of the conditional covariance 

matrix of the variables in question. A multivariate approach leverages the joint dynamics among 

multiple variables, potentially leading to more accurate forecasting outcomes. 

4.4.1. Dynamic correlation of the financial assets 

Dynamic correlation modeling of financial time series has gained considerable traction in 

financial econometrics due to its ability to capture time-varying relationships between asset 

returns. The foundation of such modeling lies in the extension of traditional univariate approaches, 

particularly Autoregressive Conditional Heteroskedasticity (ARCH) models (Engle, 1982), to 

multivariate frameworks. Engle's development of the Dynamic Conditional Correlation (DCC) 

model marked a significant advancement, allowing for more flexible estimates of variance and 

correlations across multiple asset returns (Engle, 2001; Engle & Sheppard, 2001). The DCC model 

operates under the premise of estimating univariate GARCH models for each asset while 

simultaneously modeling the correlations through a dynamic process. This framework 

accommodates the complexities of multivariate asset interactions by dynamically capturing the 

conditional correlations associated with varying states of market volatility (Engle, 2001; Engle & 

Sheppard, 2001). Evidence suggests that the DCC framework is advantageous for applications in 

portfolio management, financial risk assessment, and understanding complex market phenomena 

like financial contagion during crises (Kocaarslan et al., 2018; Rehman, 2016; Serletis & Xu, 

2016). 

Furthermore, recent research emphasizes the application of multivariate GARCH models 

to understand spillover effects in markets, particularly during times of heightened volatility. For 

example, the interaction between the crude oil market and financial markets is often analyzed 

through these models to gauge how shocks in one market affect others. This capability makes DCC 

models an essential tool in capturing co-movements and spillover effects during turbulent periods 

(Aduda et al., 2018; Rehman, 2016; Serletis & Xu, 2016). Additionally, the interplay between 

volatility and correlation, particularly in crisis scenarios, has highlighted how correlations between 

markets may shift based on external shocks (Kocaarslan et al., 2018; Thao et al., 2013). Recent 

developments have also integrated machine learning approaches into dynamic correlation 

modeling. This shift is recognized for its potential to better capture nonlinear relationships in 

financial time series without imposing strict parametric forms on the data, thereby allowing for 

richer dynamic structures (Bejger & Fiszeder, 2021; Wang et al., 2017). Such methodologies hope 

to overcome some limitations inherent in traditional econometric approaches by leveraging data-

driven insights to model volatility and correlations dynamically. In conclusion, dynamic 

correlation modeling provides a robust framework for analyzing financial time series, particularly 

through the DCC approach. It facilitates a deeper understanding of time-varying relationships 

among asset returns, essential for risk management and forecasting in complex financial 



environments. The continued evolution of these models, including the integration of machine 

learning techniques, promises to enhance their predictive capabilities and applicability in real-

world financial scenarios. 

The correlation among variables is crucial in enhancing the explainability and performance 

of forecasting models across diverse disciplines, including financial econometrics. Correlation 

drives the model's ability to accurately predict outcomes by establishing links and dependencies 

among predictors, which is foundational to forecasting accuracy and interpretability. Models have 

successfully applied this fact: ARIMA models (e.g., Box & Jenkins, 1970; Engle & Granger, 1987) 

and Vector Autoregressive Models (e.g., Lütkepohl, 2005). Another concept is the cointegration 

theory (Engle & Granger, 1987): if two or more non-stationary time series are cointegrated (i.e., 

share a long-term equilibrium relationship), their correlation structure enables better long-term 

forecasting. But there are also challenges and limitations. High correlation does not always imply 

causality or reliable predictability, particularly in financial markets where non-stationarity can 

distort relationships (Phillips & Perron, 1988). This is called spurious correlations. Further, 

financial data often exhibit regime shifts where correlations change over time (time-varying 

correlations), reducing the reliability of forecasts (Diebold & Rudebusch, 1996). Finally, 

correlation captures only linear relationships, whereas financial markets often exhibit nonlinear 

dependencies that traditional models might overlook. Machine learning approaches (e.g., neural 

networks) can sometimes improve forecasting beyond correlation-based methods. Before I used 

more sophisticated methods for modeling and forecasting the volatility of the financial 

instruments, I analyzed empirical dynamic correlation patterns for the volatility over time. 

Therefore, I calculated the pairwise exponential weighted Pearson correlation with a halflife of 10 

for every financial instrument in my research scope, and also the Geopolitical Risk Index (GPR) 

and the Volatility Index Future (VIX). I will only discuss the most important findings here. The 

complete results can be found in Appendix 2. With this analysis, I wanted to find out which 

instruments are high correlated and thus are able the contribute information to the respective h-

step ahead forecast. I also wanted to test whether the correlation between two instruments during 

the periods of geopolitical shocks differed significantly from the correlation of the entire data set. 

When one look at the average correlations over the complete dataset, the following stands 

out. The S&P 500 and NASDAQ show the highest correlation over all financial instruments 

(86.73%). This is followed by S&P 500 and VIX Future (37.55%), NASDAQ and VIX Future 

(32.60%), Gold and 10yr US-Treasury Bond (21.74%), S&P 500 and 10yr US-Treasury Bond, 

Nikkei and Hang Seng (18.34%), Nikkei and VIX Future (17.79%), NASDAQ and 10yr US-

Treasury Bond (17.27%). All further correlations decrease more and more, which is why I will not 

present a complete representation of the results here. The Geopolitical Risk Index shows no 

correlation with the major financial stocks over the entire data set: S&P 500 (2.61%), NASDAQ 

(2.72%), Nikkei (0.06%), Hang Seng (2.83%), gold (6.20%), EUR-USD (-3.14%), Brent Crude 

Oil (3.22%), US-Treasury Bonds (2.51%) and Bitcoin (-2.63%). 

However, as one can see, there is a correlation between the volatility of the financial 

instruments in my research scope. That may be suitable for the advantage of a multivariate 



forecasting model. I now want to look at which instruments were particularly strongly correlated 

during the geopolitical shocks, and also which volatility correlation increased during the analyzed 

geopolitical shocks. This will give us an indication of the explanatory power of the respective 

financial instrument in the multivariate forecasting model in the respective periods of shocks. 

Overall, one can see that the average dynamic correlation between the various financial 

stocks is higher during periods of geopolitical shock. In 40 of 55 (72.72%) analyzed correlation 

pairs, the average dynamic correlation during COVID-19 was statistically significantly higher than 

the overall average. I found the highest correlation between volatility for S&P 500 vs. NASDAQ 

(95.01%), S&P 500 vs. VIX (65.63%), NASDAQ vs. VIX (61.59%), S&P 500 vs. US T-Bonds 

(54.76%), US T-Bonds vs. VIX (54.60%), Nikkei vs. Hang Seng (51.89%), NASDAQ vs. US T-

Bonds (50.41%). The largest increases in relation to the total average were: 10yr US T-Bonds vs. 

VIX (+35.71%), S&P 500 vs. 10yr US T-Bonds (+34.88%), Nikkei vs. Hang Seng (+33.55%); 

NASDAQ vs. 10yr US T-Bond (+33.14%), NASDAQ vs. VIX (+28.99%), S&P 500 vs. VIX 

(+28.08%), EUR-USD vs. VIX (+26.86%) and Hang Seng vs. VIX (+23.47%). 

During the period of the Russian attack, one can see that there are fewer statistically 

significant deviations of the average dynamic correlation from the overall average. Only 33 out of 

55 (60.00%) in total. So, the contagion effect was weaker than in the period of COVID-19. The 

highest correlations between volatility between the financial instruments were S&P 500 vs. 

NASDAQ (86.41%), GPR vs. VIX (60.51%), Nikkei vs. EUR-USD (40.46%), Gold vs. VIX 

(35.61%), Gold vs. GPR (33.41), S&P vs. VIX (31.91%). The largest increases during this time 

were: GPR vs. VIX (+50.49%), Nikkei vs. EUR-USD (+29.89%), Gold vs. VIX (+28.28%), Gold 

vs. GPR (+27.22%). 

During the period of the Hamas attack, I found 25 out of 55 (45.45%) statistically 

significant deviations between average dynamic correlation of the period to the overall average. 

Therefore, in this period, the contagion effect was the smallest. The highest correlations in 

volatility were found at: S&P 500 vs. NASDAQ (91.39%), GPR vs. VIX (34.91%), Hang Seng 

vs. EUR-USD (29.86%), NASDAQ vs. VIX (29.07%), S&P 500 vs. VIX (28.47%), Gold vs. Brent 

Crude Oil (28.19%), S&P 500 vs. Hang Seng (-25.42%), S&P 500 vs. EUR-USD (-25.44%) and 

NASDAQ vs. EUR-USD (25.85%). The largest increases in absolute values were: S&P 500 vs. 

Hang Seng (+33.16%), NASDAQ vs. EUR-USD (30.19%), Nikkei vs. Gold (29.71%), S&P 500 

vs. Gold (27.46%), NASDAQ vs. Hang Seng (26.66%), GPR vs. VIX (24.89%), Nikkei vs. Hang 

Seng (24.73%) and S&P 500 vs. Brent Crude Oil (22.86%). 

Now, I want to interpret some of the patterns. The high correlation of the volatility between 

the S&P 500 and the NASDAQ reflects several underlying factors that can be attributed to their 

structural, behavioral, and economic characteristics. Both indices comprise large-cap stocks driven 

by similar market dynamics. The S&P 500 includes 500 of the largest companies in the U.S., while 

the NASDAQ Composite is heavily weighted toward technology and growth-oriented companies, 

many of which also appear in the S&P 500. This overlap contributes to their price movements 

being driven by comparable factors, including macroeconomic indicators and investor sentiment. 

Research has shown that daily return correlations between the S&P 500 and the NASDAQ are 



significant, with studies indicating that their return series exhibit a consistent pattern during 

periods of market stress or boom. For instance, it has been observed that extreme return clusters 

often overlap among the S&P 500 and NASDAQ, indicating that both indices tend to respond 

similarly to extreme market conditions (Sankaran et al., 2012). Additionally, correlations tend to 

be elevated in periods characterized by high volatility, driven by common risk factors affecting 

the technology and consumer discretionary sectors predominantly listed on both indices (Flood & 

Rose, 2005). 

Moreover, external economic variables, such as interest rates set by the Federal Reserve, 

impact both indices similarly. Research shows that increases in the Federal Funds Rate negatively 

influence stock prices across U.S. markets, including both the S&P 500 and the NASDAQ, 

indicating that shared macroeconomic influences contribute to their correlation (Zhao, 2023). 

Furthermore, the integration of these markets suggests that the covariance structure remains stable 

over time, indicating a strong interconnectedness between the two indices that affects their 

performance in response to economic changes (Qu & Perrón, 2013). I also found that the volatility 

of several assets is correlated with the VIX index future or increased strongly during the periods 

of geopolitical shocks. The VIX index is often interpreted as a barometer of fear in the market, 

reflecting significant predictive power for stock market returns, economic activity, and measures 

of financial instability. This characteristic comes into sharper focus during crises, such as the 

COVID-19 pandemic, when investor uncertainty escalates dramatically, resulting in closely 

correlated movements between the VIX and stock market indices (Dima et al., 2021). For instance, 

during the pandemic, the VIX indicated increased uncertainty surrounding future market 

conditions, echoing findings that noted market correlations tend to spike in response to VIX 

changes during crises (Badshah, 2017). During periods of heightened volatility, shocks to the VIX 

have been shown to induce increases in cross-country stock market correlations. For instance, one 

study found that a shock to the VIX led to increased correlations among major international stock 

markets, suggesting that global markets react similarly to perceived risk, thereby reinforcing the 

linkage driven by the VIX (Ceylan, 2021). Research has also indicated that volatility spillovers 

exist between the VIX and both developed and emerging markets, with the VIX acting as a conduit 

for information dissemination regarding market conditions (Badshah, 2018). This is particularly 

relevant when considering the variances in investor behavior and capital flow dynamics during 

financial stress, where VIX movements lead to significant implications for cross-market 

interactions (Vartanian & Neto, 2023). So, empirical evidence supports the notion that the 

correlation between the VIX and various financial markets intensifies during periods of stress, 

significantly affecting both equity and bond performance. Studies demonstrate that as volatility 

increases, so does the potential for interconnected market movements, which skews the 

implications for risk management strategies and underscores the critical role of the VIX in the 

global financial landscape during turbulent times (Bekaert et al., 2013; Smales, 2016). Moreover, 

the role of the VIX as a determinant of market behavior extends to various asset classes. Research 

by Tuna, 2022) investigates its interaction with commodities, specifically how fluctuations in the 



VIX index correlate with oil and gold prices, impacting markets such as Turkey’s BIST 100 during 

COVID-19 pandemic-induced economic disruptions. 

The volatility relation between gold and fixed income assets, like U.S. Treasury Bonds, is 

multifaceted, influenced by speculative behaviors, macroeconomic conditions, and systemic 

shocks. Both assets are traditionally viewed as safe havens, yet their volatility dynamics can reflect 

different market sentiments and economic conditions. From a macroeconomic perspective, factors 

such as fiscal deficits and monetary policy have been shown to significantly influence the yield 

curve of U.S. Treasury bonds. Research indicates that increases in fiscal deficits correlate with 

higher Treasury yields, which may simultaneously lead to increased volatility in gold prices, 

creating an interconnected dynamic (Jiang et al., 2024). Longstaff's examination of liquidity 

premiums in Treasury bonds illustrates how investor sentiment shifts during crises, impacting 

Treasury bond prices relative to gold (Longstaff, 2004). The relationship between the volatility of 

US Treasury bonds and other asset classes is influenced by various market dynamics. In times of 

economic or financial crisis, investors sell risky equity investments and invest in safe government 

bonds. This increases demand for bonds, their yields fall, and volatility in the bond market often 

decreases while equity markets experience greater fluctuations (flight to safety). Rising interest 

rates make government bonds more attractive, which diverts capital from equities. This can lead 

to increased volatility in the stock market. Conversely, falling interest rates lead to lower bond 

yields and increased investment in equities. In addition, central banks influence markets through 

interest rate policy and liquidity measures. Announcements by the Federal Reserve can cause both 

bonds and equities to move sharply. 

With this analysis, I was able to show the following. First, I empirically examined the 

relationships of volatility and their strength for the financial instruments I analyzed. This gives us 

an indication of which variables may have an explanatory power for other variables in the 

multivariate analysis. Thus, the NASDAQ may have a large influence on the S&P 500 forecast 

and vice versa. Also, the VIX index future may have explanatory power for several assets in the 

research scope. The same with the US Treasury Bonds, which volatility is also correlated with 

other asset classes. In addition, I was able to demonstrate the contagion effect for the periods of 

geopolitical shocks. As a result, the correlation of the volatility between financial instruments 

increases during periods of high volatility and volatility spillovers occur. For the subsequent 

analysis of forecasting performance. 

4.5. Multivariate direct multi-step out-of-sample Volatility Forecasting using the 

Temporal Fusion Transformer 

In the following, I discuss the results of the Temporal Fusion Transformer (TFT) 

forecasting examination. I trained three different TFT models with nine financial instruments in 

research scope (S&P 500, NASDAQ, Nikkei 225, Hang Seng, Gold, Brent Crude Oil, 10yr US-

Treasury Bond, EUR-USD exchange rate and Bitcoin) and then generated predictions for the 

volatility of these financial instruments in periods of geopolitical shocks: COVID-19, the Russian 

invasion of Ukraine and the attack of the Hamas in Israel. Therefore, I used three different 



modeling approaches for the training and forecasting: a univariate and a multivariate modeling 

approach, as well as a multivariate modeling approach with a volatility regime switching element. 

A rolling window approach is used to train the model and generate robust volatility forecasting 

results. In the univariate model approach, I modeled and forecasted the volatility of each financial 

instrument separately and only the historical data of the target variable is incorporated into the 

model, analogous to the GARCH forecasting. I compared the forecasting performance between 

the GARCH approach and the results of a TFT model. In doing so, I predicted the volatility values 

of all financial instruments under consideration simultaneously. As explanatory variables, I 

included the historical values of these financial instruments within a window of 250 days in the 

model training. In doing so, I included the mutual influences of the financial values (spill-over 

effects) on the explanatory power of the volatility forecast for the respective target variables. By 

comparing the forecasting performance between the univariate and multivariate TFT model 

approach, I wanted to analyze whether the complexity of implementing a multivariate TFT model 

is justified by the advantage in performance. 

Then I checked whether the performance of the multivariate model can be improved by 

adding an additional explanatory variable for the TFT that indicates whether a geopolitical shock 

is present. I’ll explain below how exactly this variable is defined in the setup. I generated forecasts 

for 1 to 10 steps ahead. And a special feature, the TFT can generate direct 𝑘-step-ahead forecasts, 

instead of creating them from the (𝑘 − 1)-step-ahead (recursive) forecast. Direct and recursive 

forecasting differ in how multi-step-ahead predictions are generated: iterative methods produce 

forecasts recursively using previous predictions, while direct methods estimate a separate model 

for each forecast horizon (Chevillon, 2007). Iterative forecasts are more efficient under correct 

model specification but suffer from error accumulation at longer horizons, whereas direct forecasts 

are more robust to misspecification and tend to perform better in nonlinear or unstable 

environments, like volatility forecasting (Marcellino et al., 2006). Empirical studies suggest that 

while iterative methods are preferable for short horizons, direct methods yield superior accuracy 

for longer-term forecasts, particularly in macroeconomic and financial contexts (Tashman, 2000).  

The evaluation of the forecasting performance is done by the Mean Absolute Percentage 

Error (SMAPE) for the TFT and GARCH-type models, as well as the directional accuracy for the 

GARCH-type models. Furthermore, I generated the forecasts for a defined hyperparameter grid of 

the TFT and then calculate the average SMAPE values from them. This gives the results additional 

robustness, as they cannot be generated with just one specific TFT configuration. In a further 

analysis, I examined whether a specific hyperparameter configuration of the TFT delivers 

significantly better forecasting performance than the average. 

4.5.1. Analysis of multi-step out-of-sample forecasting performance 

In the first analysis of the out-of-sample forecast performance of the Temporal Fusion 

Transformer (TFT), I examined the direct multi-step out-of-sample forecast performance, i.e. the 

ability of the neural network to generate correct forecasts several direct steps into the future. I 

generated and analyzed this for the financial instruments in scope. I used 250 trading days of the 



financial instruments under consideration as training for the Temporal Fusion Transformer. I used 

200 trading days only for training and 50 trading days for validating the weights of the neural 

network. After training the neural network, I generated predictions within the time periods for 

COVID-19 (02/03/20 - 04/30/2020), the Russian invasion of Ukraine (02/01/2022 - 29/04/2022) 

and for the period around the Hamas attack on Israel (10/01/2023 - 12/29/2023) for the volatility 

of financial instruments. The forecasts were each 1 to 10 trading days into the future. I used the 

rolling window approach, whereby for each step of the rolling window in the above-mentioned 

period, the Temporal Fusion Transformer was first trained with a combination of different 

hyperparameters (attention head = 1, 4, 8 and hidden size = 16, 32, 64) and then the predictions 

for the next 1 to trading days were generated. The rolling window was then shifted by one trading 

day. 

For this analysis, I generated and analyzed multivariate forecasts. I predicted the volatility 

of all financial instruments simultaneously and included them in the training accordingly. In 

addition to the variables to be predicted, which are both, exogenous (as an explanatory variable 

for another variable to be predicted) and endogenous (as a variable to be predicted), I included the 

volatility index (VIX) future and the geopolitical risk index (GPR) as explanatory variables. The 

formal presentation of the approach can be found above. I evaluated the forecasting performance 

using the Mean Average Percentage Error method (SMAPE). As a benchmark, I used the results 

of the out-of-sample forecast using different GARCH class models (Table 25-27). I evaluated the 

significance of the advantage of the Temporal Fusion Transformer compared to the best 

performing GARCH-class model using a adjusted Diebold-Mariano test (DM*-test) and a 

bootstrapping procedure. Accordingly, the null hypothesis is that there is no statistically significant 

difference between the forecasting performance of the Temporal Fusion Transformer and the 

forecasting performance of the best performing GARCH model. The phases I examined during the 

COVID-19 pandemic, the Russian attack on Ukraine and the Hamas attack on Israel were 

characterized by the fact that there was a strong regime switch in volatility and volatility was at a 

higher level from this point onwards. This can be seen for all financial instruments analyzed 

(Figure 5-8 and Table 8-11). 

I was able to demonstrate this in the analysis of the sectors of the MSCI World Index (see 

section 4.3.). The challenge for the methods used to predict volatility was therefore to ensure that 

the method quickly takes into account the regime switch in volatility and can adjust to the higher 

level of volatility. In summary, I gained the following insights from analyzing the results. The 

Temporal Fusion Transformer was able to outperform the GARCH class approach for predicting 

volatility in all three time periods of geopolitical shocks examined, for almost all financial 

instruments in all forecast horizons. I will now discuss the results systematically and will do so 

separately according to the examined time periods of geopolitical shocks. The TFT is better at 

forecasting small forecast horizons and the forecast performance for larger horizons decreases in 

comparison. Thus, the TFT is significantly better than the GARCH class models for small forecast 

horizons and relatively less good for larger forecast horizons. 

 



4.5.1.1. The COVID-19 period 

I start with the period within the COVID-19 pandemic (02/03/20 - 04/30/2020). This period 

was characterized by extreme uncertainty about the impact and consequences of the pandemic and 

a time of high volatility for all financial instruments considered. First, I compare the mean values 

for the individual financial instruments over time generated by the Temporal Fusion Transformer 

(Table 33) with those of the best-performing GARCH-type model (Table 25). 

First, I would like to begin with a brief description of the results tables. These are structured 

in a similar way throughout the rest of the text. The respective columns of the tables contain the 

financial instruments under consideration (S&P 500, etc.). The rows contain the SMAPE results 

for the respective forecast horizon and financial instrument evaluated. Accordingly, the SMAPE 

for the forecasting performance of the TFT for the instrument S&P 500 and the forecast horizon = 

1 is equal to 0.6699. The asterisk indicates that there is a statistically significant difference (via 

adjusted Diebold-Mariano test statistic at a 5% significance level) in the forecasting performance 

between the TFT model and the best GARCH-type model for the financial instrument and forecast 

horizon. The bottom row shows the aggregation across the individual forecast horizons using the 

average. 

For the S&P 500 stock index, the average SMAPE over the ten forecast horizons was 0.721. 

The best performing GARCH model was an EGARCH (3.4) and achieved an average SMAPE of 

0.924. The null hypothesis that the average performance of the TFT and the GARCH class model 

is the same could be rejected with a DM* statistic of 20.218 (p-value < 0.000). Moreover, one 

could observe this result for all prediction horizons. In addition, it is noticeable that the forecasting 

performance of the TFT decreases slightly with increasing forecast horizon, while it is rather 

constant for the EGARCH model. This suggests that the TFT is better able to reflect the variability 

of volatility, while the EGARCH model is smoother and tends to reflect the average volatility. For 

the NASDAQ stock index, the best GARCH class model is also the EGARCH(3,4) model, with 

an average SMAPE of 0.941. In contrast, the TFT achieved an average performance of 0.854. The 

DM*-test statistic was 11.384 with a p-value < 0.000. Accordingly, the null hypothesis could be 

rejected. However, when looking at the various prediction horizons, it is noticeable that the 

EGARCH(3,4) did not perform statistically significantly worse than the TFT for prediction 

horizon 5. 

For the Nikkei 225 stock index, the average SMAPE of the TFT was 0.703. The best 

GARCH class model, an EGARCH(3,3), achieved an average SMAPE of 0.919. The DM*-test 

statistic was 6.195 with a p-value < 0.000. This indicates that the null hypothesis could be rejected. 

When looking at the forecast performance of the individual forecast horizons for the TFT, it is 

noticeable that the forecasts for small forecast horizons are better than for larger ones. In 

comparison, the SMAPE for the EGARCH model is rather stable. For h=1, for example, the 

SMAPE for the TFT is 0.578 and for the EGARCH model 0.877, a difference of 0.299. For h=10, 

the SMAPE for the TFT is 0.841 and for the GJR-GARCH 0.919, a difference of 0.042. This again 

indicates that the TFT is much better at predicting the immediate future than the EGARCH model. 

For larger prediction horizons, the performance of the TFT approaches that of the EGARCH 



model. One possible explanation for this is, that the TFT, in contrast to EGARCH, has a stronger 

weighting on the immediate historical data, while EGARCH smoothes more strongly and predicts 

the average volatility. This is a significant difference, particularly in the case of regime-switching 

volatility. The average forecasting performance of the TFT for the Hang Seng stock index was 

0.613. The best GARCH class model was the GJR-GARCH(1,1) model, and achieved a SMAPE 

of 1.390. The DM*-test statistic was 5.889 (p-value < 0.000). Thus, the null hypothesis was clearly 

rejected and the TFT had a significantly better forecasting performance. Moreover, the null 

hypothesis could be rejected for all forecast horizons. There was no such clear difference in the 

prediction of the volatility of the commodity gold. The TFT achieved an average SMAPE of 0.707. 

The best GARCH model, a GJR-GARCH(1,1), achieved a SMAPE of 0.873. However, the DM*-

test statistic was 18.657 (p-value < 0.000), indicating, that the null hypothesis could be rejected. It 

is again noticeable that the TFT loses forecasting performance with the forecast horizon, while the 

SMAPE of the GJR-GARCH(1.1) remains rather stable. 

For Brent Crude Oil, the average SMAPE was 0.622. The best GARCH class model was 

an EGARCH(3,3) with an average SMAPE of 0.933. The DM* statistic was 24.247 (p-value < 

0.000). This clearly rejected the null hypothesis. Again, one can see a significantly better 

performance of the TFT for short prediction horizons than for longer ones, in contrast to the 

EGARCH model. The average performance of the TFT for predicting the volatility of 10-year US 

government bonds was 0.7900. The best GARCH model, a GJR-GARCH(1,1), achieved an 

average performance of 1.391. The DM* statistic was 4.627 (p-value < 0.000). This clearly 

rejected the null hypothesis. I was able to show that the TFT achieves a significantly better 

prediction performance on average than the GARCH model. With regard to the individual 

forecasting horizons, however, one can see a different picture compared to the results of other 

instruments. The forecasting performance tends to improve as the forecast horizon increases. This 

can be explained by the dynamics of volatility in the period under review. Compared to the other 

financial instruments, with the exception of Bitcoin, 10-year US government bonds recorded the 

strongest volatility in March 2020 (Figure 6). However, this decreased again in April. As a result, 

the TFT may be better able to make forecasts with a longer forecast horizon, as these are smoothed 

to a greater extent. 

The average performance of the TFT for the euro-dollar exchange rate was 1.204. The best 

GARCH model, a GJR-GARCH(1,1), achieved 0.813. The DM* statistic was -13.271 (p-value = 

2.000). Thus, the null hypothesis could not be rejected. However, not in the sense that the TFT 

outperformed the GARCH model, but vice versa. The GJR-GARCH achieved significantly better 

forecasts for this financial instrument. Looking at the individual forecast horizons, this picture 

remains the same - there is no forecast horizon for which the TFT outperformed the GJR-GARCH 

model. One possible explanation for this is, that the dynamics of volatility for the exchange rate 

are rather low compared to other financial instruments (Figure 5-6) and the prediction of smoothed 

volatility by the GJR-GARCH was more suitable than the TFT. The average performance of the 

TFT for Bitcoin was 0.929. The best GARCH class model was an EGARCH(5,2) model. Its 

performance was 2.150. The DM* statistic was 6.144 (p-value < 0.000) and thus the null 



hypothesis that the TFT and the EGARCH model achieved the same performance could be clearly 

rejected - the TFT achieved a significantly better performance. There is no clear structure with 

regard to the performance for the prediction horizons. The best predicted horizon is h=8 with 0.862 

and the worst is h=5 with 0.980. One also see no clear structure for the EGARCH model. 

4.5.1.2. The period of the Russian attack on Ukraine 

I continue the analysis with the period surrounding Russia's attack on Ukraine (02/01/2022 

-04/29/2022). This period was also characterized by uncertainty about the effects and 

consequences of a European war, the possible entry of other warring parties, such as the USA, 

Great Britain and Poland as supporters of Ukraine, as well as China and Belarus on the Russian 

side and thus the development of a global conflict. Overall, it was shown that the volatility of the 

financial instruments under consideration remained on average below the volatility during the 

COVID-19 pandemic (Table 9-10) and showed less pronounced peaks in volatility. For the 

forecasting methods, this implies, that they had to predict less extreme events and variability. This 

is then also reflected in the performance, which was better during the period of the Russian attack 

than in the period of COVID-19 for all financial instruments considered, except for the Hang Seng 

index. The results can be found in (Table 34) 

For the S&P 500 stock index, I found an average SMAPE of 0.519. The best GARCH 

model was an EGARCH (1.2) and achieved an average SMAPE of 0.748. The null hypothesis that 

the average performance of the TFT and the GARCH class model is the same could be rejected 

with the value of the DM*-test statistic of 14.329 (p-value < 0.001). Moreover, one can observe 

this result for all prediction horizons. In addition, it is noticeable that the forecasting performance 

of the TFT decreases slightly with increasing forecast horizon, which is similar for the EGARCH 

model. I observed similar results in the period of COVID-19. Furthermore, the null hypothesis 

could be rejected for all various forecast horizons. For the NASDAQ stock index, the best GARCH 

class model is an EGARCH(2,1), with an average SMAPE of 0.651, although this result is not 

significantly different from the result of the GJR-GARCH(1,1) model. In contrast, the TFT 

achieved an average performance of 0.449. The DM* statistic was 14.284 (p-value < 0.001). 

Accordingly, the null hypothesis could be rejected. The performance for all individual prediction 

horizons was also significantly different (better) than that of the EGARCH model. Furthermore, 

the performance of the EGARCH model tends to deteriorate for larger horizons, while it remained 

rather constant for the TFT. 

For the Nikkei 225 stock index, the average SMAPE of the TFT was 0.673. The best 

GARCH class model, an EGARCH(1,1), achieved an average SMAPE of 0.904. The DM*-test 

statistic was 12.486 with a (p-value < 0.001). Thus, the null hypothesis could be rejected, and so 

for all forecast horizons. When looking at the forecast performance of the individual forecast 

horizons for the TFT, it is again noticeable that the forecasts for small forecast horizons are better 

than for medium horizons (for h=1 the SMAPE is 0.570 and for h=5 the SMAPE is 0.773) and the 

performance of larger horizons is also better than for medium horizons (for h=10 the SMAPE is 

0.678). In comparison, the SMAPE for the EGARCH model is stable. The average SMAPE of the 



TFT for the Hang Seng was 0.800. The best GARCH class model, a GJR-GARCH(1,1), achieved 

a SMAPE of 0.940 and the DM*-test statistic was 9.427 (p-value < 0.001). So, The null hypothesis 

could be rejected for the average SMAPE and for the SMAPE of the individual prediction 

horizons. Furthermore, one cannot derive a clear structure regarding the dependence of the forecast 

performance and the forecast horizon for both the TFT and the GJR-GARCH model. The best 

performance by the TFT was achieved for h=7 and the worst for h=8. For the commodity gold, I 

was able to recognize a clear effect between the prediction methods. The TFT achieved an average 

SMAPE of 0.450. The best GARCH model, a simple GARCH(1,1) model, achieved a SMAPE of 

0.775. However, the DM* statistic was 30.640 (p-value < 0.001), meaning that the null hypothesis 

could be rejected. This also applies to all prediction horizons considered. For the performance of 

the TFT, depending on the forecast horizon, it is noticeable that the performance decreases for 

increasing h (up to h=6 and h=7) and then increases again. 

For Brent Crude Oil, the average SMAPE was 0.548. The best GARCH class model was 

an EGARCH(3,5) model with an average SMAPE of 0.804. The DM*-test statistic was 33.912 (p-

value < 0.001) and the null could be rejected clearly. I was also able to prove this for all prediction 

horizons. In addition, one can recognize better predictions for shorter prediction horizons. The 

average performance of the TFT for predicting the volatility of 10-year US government bonds was 

0.5504. The best GARCH model, a GJR-GARCH(1,1), achieved an average performance of 0.811. 

The DM*-test statistic was 16.341 (p-value < 0.001). This clearly rejected the null hypothesis. The 

null hypothesis could also be rejected for the individual horizons. I was able to show that the TFT 

outperforms the GARCH model on average and for the individual forecast horizons. For this 

financial instrument, one can also see that the prediction of shorter forecast horizons achieves a 

better performance than for longer ones. Even during the period of the Russian attack, the volatility 

of the 10-year US government bonds was at a high level compared to the equity indices, with 

strong swings in the squared daily returns (Figure 7). 

The average performance of the TFT for the euro-dollar exchange rate was 0.632. The best 

GARCH model, a GJR-GARCH(1,1) reached 0.811. The DM* statistic was 24.139 (p-value < 

0.001). Thus, the null hypothesis could be rejected. Likewise, the null hypothesis could be rejected 

for each individual forecast horizon, showing that the TFT outperformed the GJR-GARCH at each 

forecast horizon. Furthermore, I recognized that both short and long forecast horizons could be 

predicted better than medium ones (e.g. h=6, 7). In addition to Brent Crude Oil and the 10-year 

government bonds, Bitcoin also recorded high volatility during this period, which, after strong 

spikes in February, gradually declined again during March and April (Figure 7). The average 

performance of the TFT for Bitcoin was 0.529. The best GARCH class model was a GJR-

GARCH(1,1) model. Its performance was 2.263. The DM* statistic was 41.311 (p-value < 0.001) 

and thus the null hypothesis could be clearly rejected, i.e. the TFT achieved a significantly better 

performance. This also applies to the performance for the individual forecast horizons - the null 

hypothesis was rejected for all horizons. However, there is no clear structure with regard to the 

performance for the forecast horizons. However, long forecast horizons have a slightly better 

performance than short ones. 



4.5.1.3. The period of the Hamas attack on Israel 

I continue the analysis with the period around Hamas' terrorist attack on Israel (10/01/2023 

- 12/29/2023). The terrorist attack carried out by Hamas on October 7, 2023 against Israeli civilians 

on Israeli soil represents one of the most serious escalations in the Israeli-Palestinian conflict. In 

addition to the intensification of hostilities between the two parties to the conflict, the attack also 

harbored the risk of global expansion, as the USA, as Israel's ally, may be drawn into a conflict 

with Iran and Russia. This could also lead to other Gulf states distancing themselves from Israel 

and the USA, which could have far-reaching effects on the oil price, which has a significant impact 

on energy costs and therefore also on many financial stocks. Overall, the volatility of the financial 

instruments under review remained on average below the volatility during the COVID-19 

pandemic and the Russian attack (Table 11 and Figure 8) and showed less pronounced peaks in 

volatility. For example, the oil price, the financial asset with the highest volatility during this 

period, had a maximum daily loss of -5.8% (Table 11). In comparison, the value during COVID-

19 had a maximum daily loss of -28.0% (Table 9) and the Russian attack had a value of -14.1%. 

For the forecasting methods, this means that they need to predict less extreme events and 

variability. The results can be found in Table 35. 

For the S&P 500 stock index, the average SMAPE across the ten forecast horizons was 

0.856. The best GARCH model was an EGARCH (1,1) and achieved an average SMAPE of 1.736. 

The DM*-test statistic was 19.974 (p-value < 0.001) and so, the null hypothesis could be rejected. 

In addition, the null hypothesis could be rejected for all individual prediction horizons. In addition, 

it is noticeable that the forecasting performance of the TFT decreases slightly with increasing 

forecast horizon, which is similar for the EGARCH model. Compared to the other periods, the 

performance was the lowest. For the NASDAQ index, the best GARCH class model was a 

GARCH(1,1), with an average SMAPE of 2.006. In contrast, the TFT achieved an average 

performance of 0.809. The DM*-test statistic was 13.448 (p-value < 0.001) and accordingly, the 

null could be rejected. The performance for all individual prediction horizons was also 

significantly better than that of the GARCH model. Furthermore, it could be seen that the 

performance of the GARCH model improves slightly for larger horizons, while it deteriorates 

slightly for the TFT. Overall, the performance of the TFT in this period is slightly better than for 

COVID-19, but worse than in the period of the Russian attack. For the Nikkei 225 stock index, the 

average SMAPE of the TFT was 0.777. The best GARCH class model, a GARCH(1,1), achieved 

an average SMAPE of 1.923. The DM*-test statistic was 11.651 (p-value < 0.001). Thus, the null 

could be rejected and the TFT achieved a statistically significantly better forecast performance. 

The null hypothesis could also be rejected for all forecast horizons. When looking at the forecast 

performance of the individual forecast horizons for the TFT, it is noticeable that the forecasts for 

small forecast horizons are better than for medium and larger horizons. This structure can also be 

seen in the performance of the GARCH model. 

The Nikkei performed worse in this period than in previous periods. The average 

forecasting performance of the TFT for the Hang Seng index was 0.645. The best GARCH class 

model was the GJR-GARCH(1,1), and achieved an average SMAPE of 1.212. The DM*-test 



statistic was 31.922 (p-value < 0.001). The null hypothesis was thus clearly rejected and the TFT 

had a significantly better forecasting performance. Moreover, the null could be rejected for all 

forecast horizons. Furthermore, one cannot derive a clear structure regarding the dependence of 

the forecast performance and the forecast horizon for both the TFT and the GJR-GARCH model. 

In contrast to other results, I was unable to detect a clear effect between the prediction methods 

for the commodity gold. The TFT achieved an average SMAPE of 1.332. After Bitcoin, gold was 

the worst performing financial asset during this period. The best GARCH model, an 

EGARCH(4,3) model, achieved a SMAPE of 1.494. The DM* statistic was 1.718 (p-value = 

0.058), meaning that the null hypothesis could not be rejected. The null hypothesis could be 

rejected for the individual prediction horizons. For h=7 and h=8, however, the EGARCH model 

outperformed the TFT. In addition, the performance of the TFT decreased with increasing forecast 

horizon. The TFT thus achieved the worst average forecast for the volatility of gold in this period. 

For brent crude oil, the average SMAPE of the TFT was 0.561. The best GARCH class model was 

an EGARCH(4,3) model with an average SMAPE of 0.845. The DM* statistic was 15.208 (p-

value < 0.001). This clearly rejected the null hypothesis. I was also able to prove this for all 

prediction horizons. In addition, I was able to identify better predictions for shorter forecasting 

horizons. 

The forecasting performance for Brent Crude Oil is slightly worse than in the period of the 

Russian attack and slightly better than in the period of COVID-19. Compared to other financial 

stocks, however, the performance is rather stable. The average performance of the TFT for 

predicting the volatility of 10-year US government bonds was 0.548. The best GARCH model, a 

GARCH(1,1), achieved an average performance of 0.757. The DM* statistic was 28.978 (p-value 

< 0.001). This clearly rejected the null hypothesis. The null hypothesis could also be rejected for 

the individual horizons. I was able to show that the TFT outperforms the GARCH model on 

average and for the individual forecast horizons. A systematic dependence of the performance on 

the forecast horizon cannot be recognized. Compared to the other periods, government bonds 

recorded less volatility in the period around the Hamas attack (Figure 8) and the performance of 

the TFT is best in this period. 

The average performance of the TFT for the euro-dollar exchange rate was 0.503. The best 

GARCH model, a GJR-GARCH(1,1) reached 0.811. The DM* statistic was 30.408 (p-value < 

0.001). Thus, the null hypothesis could be rejected. Likewise, the null hypothesis could be rejected 

for each individual forecast horizon, showing that the TFT outperformed the GJR-GARCH model 

at each forecast horizon. Furthermore, one recognize that both short and long forecast horizons 

could be predicted better than medium ones (e.g. h=6, 7). In addition to Brent Crude Oil and the 

10-year government bonds, Bitcoin also recorded high volatility during this period, which, after 

sharp spikes in February, gradually declined again over the course of March and April (Figure 8). 

The average performance of the TFT for Bitcoin was 0,684. The best GARCH class model was a 

GJR-GARCH(1,1) model. Its performance was 2.263. The DM* statistic was 17.210 (p-value < 

0.001) and thus the null hypothesis could be clearly rejected. So, again, the TFT outperformed the 



GJR-GARCH. This also applies to the performance for the individual forecast horizons - the null 

hypothesis was rejected for all horizons. 

This study systematically evaluates the direct multi-step out-of-sample forecasting 

performance of the Temporal Fusion Transformer (TFT) relative to traditional GARCH-class 

models across three periods of pronounced geopolitical shocks: the COVID-19 pandemic, the 

Russian invasion of Ukraine, and the Hamas attack on Israel. All periods were marked by structural 

breaks in volatility, with each regime exhibiting elevated and unstable volatility patterns. Forecasts 

were generated for ten forward-looking trading days using a rolling-window approach, and the 

models were evaluated using Symmetric Mean Absolute Percentage Error (SMAPE) and Diebold-

Mariano tests with bootstrapping. Across all examined periods and asset classes, several robust 

patterns emerged from the analysis. First, I found a superior forecast accuracy of the TFT against 

the best-performing GARCH model across most assets and forecast horizons. The null hypothesis 

of equal predictive accuracy was rejected at the 1% level in the vast majority of cases, indicating 

statistically significant gains in forecast precision using the TFT. I also found a short-horizon 

Superiority of the TFT, as the TFT performed best at short forecast horizons (h = 1–3). Forecast 

accuracy generally declined with longer horizons, whereas GARCH models showed more stable, 

horizon-insensitive performance. This supports the hypothesis that the TFT’s architecture places 

greater emphasis on recent, high-frequency patterns—especially relevant under regime-switching 

volatility. 

During the COVID-19 period, the TFT significantly outperformed GARCH models for 

nearly all assets, with especially strong gains in equity indices. An exception was the EUR/USD 

exchange rate, where the GJR-GARCH model outperformed the TFT. For the period of the Russian 

war, the TFT outperformed across all instruments and horizons. And finally, during the Hamas 

attack, the TFT continued to outperform in most cases, although differences were less pronounced. 

Notably, GARCH models outperformed the TFT in forecasting the Gold volatility, suggesting that 

the TFT’s learning-based structure may be less effective in relatively stable markets with complex 

or erratic signals. Moreover, I analyzed the asset class sensitivity. Here, I found, that the TFT for 

equities and oil consistently outperformed the GARCH-class models across all periods and 

horizons. For fixed income, the TFT was especially effective during periods with sharp volatility 

reversals (e.g., March 2020) and outperformed the GARCH by wide margins. FX and Crypto: 

Results were more heterogeneous. In some cases, like EUR/USD (COVID-19), GARCH delivered 

superior performance, likely due to its robustness in low-volatility regimes. Further, I found that 

the forecast horizon dynamics showed, that the Performance of the TFT generally was declining 

with increasing horizon length but remained statistically superior in most settings. Some assets 

(e.g., Nikkei 225 and EUR-USD) exhibited non-monotonic horizon-performance patterns, 

particularly in less volatile periods, suggesting a complex interaction between horizon length, 

market conditions, and model responsiveness. This allowed me to answer my research question of 

whether the TFT can outperform the best GARCH-type model (Research Question 8). 

 

 



Table 33: SMAPE for multi-step out-of-sample multivariate forecasts during COVID-19 (02/03/2020 – 04/30/2020). SMAPE values are averages from 

different hyperparameter combinations (attention head = 1, 4, 8; hidden size = 16, 32, 64). Adjusted Diebold-Mariano test (DM*) for significant 

difference to the best performing GARCH model (Table 25) for given financial instrument and forecast horizon on 5% level (*). 

Forecast Horizon S&P 500 NASDAQ Nikkei225 Hang Seng Gold Brent Oil 10yr. T-Bond EUR/USD BTC 

1 0.6699* 0.8228* 0.5786* 0.6281* 0.6576* 0.5747* 0.8043* 1.0803 0.9790* 

2 0.7083* 0.8404* 0.5632* 0.6406* 0.6984* 0.6220* 0.8148 1.1819 0.9225* 

3 0.7182* 0.8069* 0.6185* 0.6405* 0.6779* 0.5995* 0.8585* 1.2188 0.9168* 

4 0.7222* 0.8204* 0.6392* 0.6609* 0.7328* 0.5949* 0.8230* 1.2125 0.9585* 

5 0.6906* 0.8829* 0.7180* 0.5911* 0.7135* 0.6077* 0.8042* 1.2535 0.9804* 

6 0.7542* 0.8765* 0.8538* 0.6162* 0.7421* 0.6461* 0.7964* 1.2236 0.8879* 

7 0.6908* 0.9137 0.7376* 0.6010* 0.7536* 0.6332* 0.7532* 1.2906 0.9439* 

8 0.7706* 0.8831* 0.6776* 0.6035* 0.6617* 0.6216* 0.7364* 1.2559 0.8621* 

9 0.7380* 0.8643* 0.8095* 0.5547* 0.7078* 0.6530* 0.7506* 1.2067 0.9386* 

10 0.7489* 0.8328* 0.8413* 0.5991* 0.7316* 0.6680* 0.7589* 1.1162 0.9047* 

Average 0.7212* 0.8544* 0.7037* 0.6136* 0.7077* 0.6221* 0.7900* 1.2040 0.9294* 

Source: Own calculations using Python PyTorch (2025).  



Table 34: SMAPE for multi-step out-of-sample forecasts around the Russian invasion on Ukraine (02/01/2022 – 04/29/2022). SMAPE values are 

averages from different hyperparameter combination outcomes (attention head = 1, 4, 8; hidden size = 16, 32, 64). Adjusted Diebold-Mariano test 

(DM*) for significant difference to the best performing GARCH model (Table 26) for given financial instrument and forecast horizon on 5% level (*). 

Forecast Horizon S&P 500 NASDAQ Nikkei225 Hang Seng Gold Brent Oil 10yr. T-Bond EUR/USD BTC 

1 0.5035* 0.4420* 0.5708* 0.8090* 0.4117* 0.5098* 0.5069* 0.5978* 0.5382* 

2 0.4982* 0.4007* 0.6156* 0.8439* 0.4367* 0.5343* 0.5293* 0.6417* 0.5648* 

3 0.5091* 0.4447* 0.6303* 0.7959* 0.4625* 0.5354* 0.5463* 0.6534* 0.5581* 

4 0.5106* 0.4374* 0.6715* 0.7974* 0.4585* 0.5402* 0.5430* 0.6341* 0.5063* 

5 0.5238* 0.4546* 0.7731* 0.8168* 0.4590* 0.5871* 0.5445* 0.6491* 0.5355* 

6 0.5069* 0.4466* 0.7061* 0.7807* 0.4775* 0.5508 0.5628* 0.6512* 0.5410* 

7 0.5167* 0.4694* 0.7152* 0.7485* 0.4867* 0.5850 0.6168* 0.6620* 0.5411* 

8 0.5440* 0.4592* 0.6829* 0.8475* 0.4510* 0.5334* 0.5136* 0.6419* 0.5032* 

9 0.5258* 0.4794* 0.6913* 0.8012* 0.4275* 0.5342* 0.5344* 0.5955* 0.5247* 

10 0.5574* 0.4606* 0.6787* 0.7658* 0.4364* 0.5750* 0.6058* 0.6006* 0.4801* 

Average 0.5190* 0.4495* 0.6735* 0.8007* 0.4508* 0.5485* 0.5504* 0.6327* 0.5293* 

Source: Own calculations using Python PyTorch (2025). 



Table 35: SMAPE for multi-step out-of-sample multivariate forecasts around the Hamas attack on Israel (10/01/2023 – 12/29/2023). SMAPE values 

are averages from different hyperparameter combination outcomes (attention head = 1, 4, 8; hidden size = 16, 32, 64). Adjusted Diebold-Mariano test 

(DM*) for significant difference to the best performing GARCH model (Table 27) for given financial instrument and forecast horizon on 5% level (*). 

Forecast Horizon S&P 500 NASDAQ Nikkei225 Hang Seng Gold Brent Oil 10yr. T-Bond EUR/USD BTC 

1 0.8322* 0.7484* 0.7274* 0.6590* 1.1068* 0.5575* 0.5399* 0.4626* 0.7519* 

2 0.8463* 0.7724* 0.7395* 0.6765* 0.9440* 0.5821* 0.5732* 0.4811* 0.6989* 

3 0.8041* 0.7037* 0.8034* 0.6387* 0.9762* 0.5753* 0.5291* 0.4938* 0.7057* 

4 0.8092* 0.7717* 0.7869* 0.6319* 1.1954* 0.5668* 0.5315* 0.4884* 0.7392* 

5 0.7978* 0.7168* 0.7709* 0.5852* 1.3700 0.5776* 0.5221* 0.5031* 0.6922* 

6 0.8070* 0.7711* 0.7711* 0.6626* 1.4771* 0.6060* 0.5426* 0.5321* 0.7072* 

7 0.7986* 0.7727* 0.7731* 0.6404* 1.7626 0.5641* 0.5736* 0.5037* 0.6392* 

8 0.9380* 0.8324* 0.7713* 0.6292* 1.3044 0.5077* 0.5361* 0.5310* 0.6597* 

9 0.9343* 0.9893* 0.7729* 0.6906* 1.6226 0.5146* 0.5759* 0.5262* 0.6300* 

10 1.0011* 1.0149* 0.8601* 0.6428* 1.5635* 0.5578* 0.5571* 0.5124* 0.6184* 

Average 0.8569* 0.8093* 0.7776* 0.6457* 1.3323* 0.5610* 0.5481* 0.5034* 0.6842* 

Source: Own calculations using Python PyTorch (2025). 

 

Table 36: Adjusted Diebold-Mariano test (DM*) statistic (p-value) for comparing the average 1-10 step-ahead out-of-sample forecasting performance 

of the TFT model with the best performing GARCH-type model. The null hypothesis assumes that the average 1-10 forecast horizon SMAPE of the 

TFT is equal to GARCH model. * indicates, that the null hypothesis could be rejected on a 5% significance niveau. 

Period S&P 500 NASDAQ Nikkei225 Hang Seng Gold Brent Oil 10yr. T-Bond EUR/USD BTC 

COVID-19  20.2181* 

(0.0000) 

11.3840* 

(0.0000) 

6.1960* 

(0.0001) 

5.8894* 

(0.0002) 

18.6579* 

(0.0000) 

24.2472* 

(0.0000) 

4.6274* 

(0.0009) 

-13.2712* 

2.0000 

6.1444* 

(0.0001)           

Russian Invasion 14.3296* 

(0.0000) 

14.2845* 

(0.0000) 

12.4864* 

(0.0000) 

9.4278* 

(0.0000) 

30.6403* 

(0.0000) 

33.9125* 

(0.0000) 

16.3416* 

(0.0000) 

24.1394* 

(0.0000) 

41.3117* 

(0.0000)           

Hamas Attack 19.9748* 

(0.0000) 

13.4482* 

(0.0000) 

11.6515* 

(0.0000) 

31.9221* 

(0.0000) 

1.7181 

(0.1165) 

15.2089* 

(0.0000) 

28.9784 

(0.0000) 

30.4088* 

(0.0000) 

17.2105* 

(0.0000) 

Source: Own calculations using Python PyTorch (2025). 



4.5.2. Regime switching multi-step out-of-sample forecasting performance 

As I discussed earlier, geopolitical shocks came along with a sudden increased uncertainty, 

which is expressed as a volatility jump. This means that the Volatility rises to a higher level and 

remains there, which is associated with stronger return-variations. In the previous section, I 

examined the ability of the TFT to adapt to the increased volatility caused by the geopolitical shock 

and to make correct predictions accordingly. But I did not give the TFT an explanatory variable 

that this is a phase of particularly high volatility but rather checked how the TFT managed to 

recognize this regime change and adapt to it on its own. In this section, I want to examine whether 

adding a “regime-switching” feature significantly improves the prediction quality. To do this, I 

examined and marked the historical volatility training values for the TFT. Values greater than the 

75% quantile were given a one as a characteristic, other values were given a zero. Then I proceed 

as follows for the forecast. Comparable to the autoregressive logic of the switching probabilities 

of a Markov switch model (Hamilton, 1988), I gave the TFT the information whether the last 

known volatility value had a 1 as a characteristic or not. In line with the phenomenon of volatility 

clustering, I then assumed that if the last value had the characteristic 1, then the future value would 

also have this characteristic and accordingly the volatility would be above the 75% quantile. This 

procedure is also called past covariate. 

I have done this again for all the financial instruments under consideration and for all 

periods of geopolitical shocks. For each financial instrument, again I used the rolling window 

approach, in which the TFT is first trained on the data from the last 250 trading days and then 

generates forecasts for the next 10 days. Each of these training sessions is carried out on the 

optimization grid of hyperparameters: attention size and hidden size. The rolling window goes 

through between 62 and 64 steps. However, the regime-switching feature is also to be implemented 

as a future covariate when the geopolitical shock is known. For the three geopolitical events I 

examined, all volatility values that occurred with and after the shock would be given a 

corresponding characteristic. I evaluated the forecasting performance by calculating the SMAPE. 

To evaluate if the regime-switching TFT (RS-TFT) outperforms the baseline multivariate TFT 

(BL-TFT, Table 33-35), I calculated the adjusted Diebold-Mariano test statistics and respective p-

values. In terms of results, I have the following expectations. The RS-TFT should perform better 

in particular when the time series to be forecasted shows significant non-linear patterns and 

structural breaks caused by geopolitical shocks or other exogenous factors. For example, when 

there are clear regimes with different statistical properties. For example, if the behavior of 

volatility during a geopolitical shock fundamentally differs from “normal” market phases. The 

model can learn from the regime feature that different dynamics prevail in different market 

regimes, while a standard TFT tries to learn a single, continuous model structure, which can lead 

to distortions. Furthermore, sudden and non-linear changes in the analyzed time series lead to a 

significant improvement in forecasting performance when a regime switch is implemented. When 

a geopolitical shock does not trigger stepwise but abrupt changes in the time series, a standard 

model may have difficulties to adapt quickly enough to the new data structure (e.g. sharp price 



drops following a shock). The regime-switching feature allows the model to immediately activate 

a different prediction pattern after a shock, rather than to apply the “old” pattern to new, unsuitable 

data. Finally, the relationships between variables in different regimes can also change. For 

example, in normal market phases, equity returns could depend heavily on corporate earnings, 

whereas in a geopolitical crisis, other external factors such as interest rate spreads or political risk 

dominate. I now discuss my findings (Tables 37-39).  

For the S&P 500, the RS-TFT outperformed the BL-TFT in all three analyzed periods of 

geopolitical shock and had the third largest effect among all analyzed financial instruments. The 

average difference in SMAPE was 3.93% (COVID-19), 1.68% (Russian War) and 9.62% (Hamas 

Attack) and overall, at 5.08%. Furthermore, all three were statistically significant. I was able to 

observe the largest advantage of the RS model with a difference of 18.73% for the 9-step-ahead 

forecast during the Hamas Attack. With an overall average difference in SMAPE of 5.91%, the 

RS-TFT had the second largest effect for the NASDAQ and outperformed the BL-TFT in all three 

periods with an average difference in SMAPE at 4.60% (COVID-19), 3.91% (Russian War) and 

9.22% (Hamas Attack). These differences were also statistically significant. The largest effect 

could be gained for the 9-step ahead forecast during the Hamas Attack with a difference of 22.65%.  

The RS-TFT also achieved an advantage for the forecasting performance of the Nikkei. 

The average difference in SMAPE between RS-TFT and BL-TFT over all periods considered was 

4.61% and 5.51% (COVID-19), 1.86% (Russian War) and 6.47% (Hamas Attack). All were 

statistically significant. I found the largest difference in SMAPE in the 6-step ahead forecast during 

COVID-19 (14.22%). For the Hang Seng, the RS-TFT was also able to achieve an advantage for 

the prediction performance. The average difference in SMAPE between RS-TFT and BL-TFT 

over all periods considered was 5.00% and 1.59% (COVID-19), 5.37% (Russian War) and 8.03% 

(Hamas Attack), respectively. All of them were statistically significant. Like for the S&P 500 and 

NASDAQ, I found the largest difference in SMAPE in the 9-step ahead forecast during the Hamas 

attack (12.59%). The largest difference between RS-TFT and BL-TFT was observed in the 

commodity gold - the average SMAPE difference across all periods was 9.04%. However, the 

effects are very unevenly distributed over the periods. During COVID-19, the SMAPE difference 

was very small at 0.38%, and the DM* test statistic could not be rejected. This was also the case 

during the Russian attack - the SMAPE difference here was only 0.08% and the DM* test statistic 

could not be rejected either. The effect originated from the period of the Hamas attack. Here, the 

average SMAPE difference across all forecast horizons between RS-TFT and BL-TFT was 

25.85%. The largest single SMAPE difference during this period was observed for the 7-step ahead 

forecast (52.94%). 

The usage of the RS-TFT had the smallest effect on the Brent Crude Oil commodity. The 

average SMAPE difference between RS-TFT and BL-TFT over all periods was 1.37%. Of this, 

1.44% was accounted for by the COVID-19 period, 0.97% by the period of the Russian attack, 

and 1.72% by the period during the Hamas attack. Accordingly, the effect was greatest for the 

period. The DM* test statistic could only be rejected during the Hamas attack. Based on the 

negative values for the DM* test statistics, it can be deduced that the BL-TFT model is to be 



preferred. The statistical significance can be found in Table 40. I observed the largest single 

SMAPE difference in this period of the Hamas attack for the 6-step ahead forecast (6.24%). For 

the 10yr US-Treasury Bond, the usage of the RS-TFT had an average SMAPE difference between 

RS-TFT and BL-TFT of 4.37%. In contrast to gold, the SMAPE differences between the individual 

periods were close: 4.56% during COVID-19, 3.95% during the Russian attack, and 4.60% during 

the Hamas attack. The null hypothesis of the DM* test could be rejected in all cases, thus showing 

that the forecasting performance of the RS-TFT model is statistically significantly different from 

that of the BL-TFT. I observed the largest single SMAPE difference in this period of the Russian 

attack for the 10-step ahead forecast (15.76%). 

I observed a rather small effect for the EUR-USD exchange rate. The average SMAPE 

difference between RS-TFT and BL-TFT was 3.25%. Specifically, 3.12% during COVID-19, 

3.02% during the Russian attack, and 3.61% during the Hamas attack. The null hypothesis of the 

DM* test could be rejected for all periods despite the relatively small difference. The largest single 

SMAPE difference was observed in this period of COVID-19 for the 8-step ahead forecast 

(9.67%). For Bitcoin, I found that using the RS-TFT also generated a small effect. Across all 

periods, the average SMAPE difference between RS-TFT and BL-TFT was 2.11%, of which -

1.53% during COVID-19, 1.78% during the Russian attack, and 6.09% during the Hamas attack. 

The null hypothesis of the DM* test could not be rejected for the period of COVID-19 and the 

BL-TFT provided better results. For both other periods, the null hypothesis of the DM* test could 

be rejected. The largest single SMAPE difference I observed in this period of the Hamas attack 

for the 4-step ahead forecast (13.98%). In summary, I found that the implementation of a regime-

switching feature in the Temporal Fusion Transformer (RS-TFT) has a positive effect on all 

financial instruments compared to the baseline TFT (BL-TFT). Furthermore, I found that this 

effect was greatest for the period of the Hamas attack. For the individual financial instruments, the 

effect was strongest for gold (albeit due to the strong effect during the Hamas period), the 

NASDAQ and the S&P 500. I found almost no effect for Brent Crude Oil. 

Overall, I saw, that the implementation of the regime-switching feature significantly 

improves model performance. On average across all financial stocks, forecast horizons and periods 

of geopolitical shocks, the regime-switch approach performed 4.53% better than the normal TFT 

approach. Furthermore, the null hypothesis that the forecasting performance of the regime-switch 

TFT for a selected financial instrument is identical to that of the baseline TFT could be rejected a 

total of 21 times out of 27 times (9 financial instruments each with three analyzed periods) over 

all three periods with geopolitical shocks. 

Across all assets, horizons, and shock periods, the RS-TFT outperformed the BL-TFT by 

an average SMAPE improvement of 4.53%. In 21 out of 27 cases the null hypothesis of the DM*-

test statistic could be rejected. Regarding the shock-period related results, the Hamas attack period 

yielded the strongest gains. This was surprising, since in this period the lowest volatility increase 

was observed. A possible explanation could be that the improved performance of the model 

incorporating the regime-switching feature during periods of low volatility response can be 

attributed to the features role in preventing the TFT from erroneously forecasting elevated 



volatility solely due to the presence of a geopolitical shock. In contrast, during highly volatile 

periods, the shock is already implicitly captured through other temporal patterns, rendering the 

additional signal provided by the dummy less informative. This highlights the TFT’s strength in 

modeling and leveraging non-linear contextual effects in an interpretable manner. During COVID-

19 and the Ukraine war, gains were positive but more modest, reflecting the variability in volatility 

dynamics across crises. Regarding the financial instruments, NASDAQ and S&P 500 showed 

consistent and statistically significant improvements, especially at longer forecast horizons. Nikkei 

225 and Hang Seng also benefited. Gold showed the largest average gain, but this effect was 

entirely driven by the Hamas period, with negligible gains during other crises. Brent Crude Oil 

exhibited minimal sensitivity to the regime-switching feature and in some cases performed better 

with the BL-TFT. For 10-year US Treasuries, RS-TFT achieved consistent gains across all periods. 

DM* tests rejected the null in every case. EUR-USD exchange rate showed modest gains and 

Bitcoin exhibited limited overall improvement with negative gains during COVID-19. Gains were 

present during later periods, but less stable than for other assets. The regime-switching feature had 

the strongest impact at longer forecast horizons, where the RS-TFT often achieved its maximum 

relative improvement. This supports the hypothesis that regime information is especially valuable 

for medium-to-long-term forecasts following structural breaks. This can be interpreted as 

relatively greater benefit of incorporating a geopolitical regime-switching feature at longer 

forecast horizons likely reflects the temporal nature of external shocks, whose effects on financial 

volatility often manifest with a delay. While short-term predictions can be effectively driven by 

local temporal patterns, longer-term forecasts benefit more from contextual signals that encode 

structural regime changes or latent risk factors. The dummy variable thus serves as a horizon-

sensitive contextual anchor that helps the TFT anticipate volatility dynamics beyond the 

autoregressive signal. 

This analysis showed that the introduction of an additional explanatory variable (regime-

switching feature) to identify high and low phases of volatility significantly improves the 

forecasting performance and thus answers my research question (Research Question 9). 

 

 

 



Table 37: SMAPE for regime-switching multi-step out-of-sample multivariate forecasts during COVID-19 (02/03/2020 – 04/30/2020). SMAPE values 

are averages from different hyperparameter combinations (attention head = 1, 4, 8; hidden size = 16, 32, 64). Adjusted Diebold-Mariano test (DM*) for 

significant difference between regime-switching TFT (RS-TFT) baseline TFT (BL-TFT) (Table 33) for given financial instrument and forecast horizon 

on 5% level (*). 

Forecast Horizon S&P 500 NASDAQ Nikkei225 Hang Seng Gold Brent Oil 10yr. T-Bond EUR/USD BTC 

1 0.6429 0.7021* 0.5023* 0.6174 0.6865 0.5836 0.7531* 1.1593 0.9739 

2 0.6352* 0.7848* 0.5418 0.6173 0.6623 0.5878 0.7889 1.1831 0.9173 

3 0.6778 0.8224 0.5817 0.5949* 0.7123 0.5739 0.7756* 1.1395* 1.0023 

4 0.6785 0.8529 0.6485 0.6010* 0.6810* 0.5589 0.7376* 1.1214* 0.9567 

5 0.6645 0.8129* 0.7424 0.5672* 0.7201 0.5988 0.7389* 1.1669* 0.9528 

6 0.6550* 0.8774 0.7116* 0.6148 0.7242 0.6162 0.7534 1.2736 0.8748 

7 0.7372 0.7849* 0.6209* 0.5975 0.7130 0.6183 0.7286 1.2392* 0.9530 

8 0.7186* 0.8148* 0.7076 0.5831 0.7101 0.6471 0.7092 1.1592* 0.9379 

9 0.7040 0.8325 0.7200* 0.5965 0.7202 0.6498 0.7517 1.1595* 0.9697 

10 0.7053 0.7990 0.7098* 0.5865 0.7093 0.6424 0.7073* 1.1266 0.9087 

Average 0.6819* 0.8084* 0.6487* 0.5976* 0.7039 0.6077 0.7444* 1.1728* 0.9447 

Source: Own calculations using Python PyTorch (2025).  



Table 38: SMAPE for regime-switching multi-step out-of-sample multivariate forecasts around the Russian invasion of Ukraine (02/01/2022 – 

04/29/2022). SMAPE values are averages from different hyperparameter combinations (attention head = 1, 4, 8; hidden size = 16, 32, 64). Adjusted 

Diebold-Mariano test (DM*) for significant difference between regime-switching TFT (RS-TFT) baseline TFT (BL-TFT) (Table 34) for given financial 

instrument and forecast horizon on 5% level (*). 

Forecast Horizon S&P 500 NASDAQ Nikkei225 Hang Seng Gold Brent Oil 10yr. T-Bond EUR/USD BTC 

1 0.4664* 0.3785* 0.5355* 0.7970 0.4116 0.5049 0.5237 0.5806 0.5422 

2 0.4833 0.3903 0.5931 0.7334* 0.4131 0.5241 0.5267 0.5802* 0.5421 

3 0.4998 0.4095* 0.5631* 0.7379* 0.4265* 0.5522 0.5650 0.6104* 0.5152* 

4 0.5226 0.4114 0.6780 0.7490* 0.4539 0.5249 0.5484 0.6127* 0.5562 

5 0.5094 0.4078* 0.7045* 0.7644* 0.4527 0.5477* 0.4971* 0.6170* 0.4962* 

6 0.4981 0.4219 0.6861 0.7409* 0.4382* 0.5624 0.5168* 0.6543 0.4918* 

7 0.4868* 0.4171* 0.7091 0.7401 0.4704 0.5825 0.5106 0.6309* 0.4787* 

8 0.5105* 0.4224* 0.6939 0.7759* 0.4696 0.5378 0.4937 0.6130 0.4950 

9 0.5143 0.4266* 0.7103 0.7368* 0.4312 0.5136 0.4782* 0.5562* 0.4996 

10 0.5365* 0.4174 0.6755 0.6945* 0.4519 0.5382* 0.4482* 0.5703* 0.4981 

Average 0.5028* 0.4103* 0.6549 0.7470* 0.4419 0.5388 0.5109* 0.6026 0.5115* 

Source: Own calculations using Python PyTorch (2025). 

  



Table 39: SMAPE for regime-switching multi-step out-of-sample multivariate forecasts around the Hamas attack on Israel (10/01/2023 – 12/29/2023). 

SMAPE values are averages from different hyperparameter combinations (attention head = 1, 4, 8; hidden size = 16, 32, 64). Adjusted Diebold-

Mariano test (DM*) for significant difference between regime-switching TFT (RS-TFT) baseline TFT (BL-TFT) (Table 35) for given financial 

instrument and forecast horizon on 5% level (*). 

Forecast Horizon S&P 500 NASDAQ Nikkei225 Hang Seng Gold Brent Oil 10yr. T-Bond EUR/USD BTC 

1 0.7881* 0.6956* 0.6216* 0.5406* 0.9079* 0.5684 0.5090* 0.4463 0.6887* 

2 0.7926* 0.7240* 0.6861* 0.6358* 0.7212* 0.5583 0.5367* 0.4624 0.6395* 

3 0.7033* 0.6562* 0.6724* 0.5626* 0.8237* 0.5618 0.4882* 0.4429* 0.6653* 

4 0.7153* 0.6635* 0.6850* 0.5447* 0.9131* 0.5753 0.4869* 0.4335* 0.5993* 

5 0.7736 0.6675* 0.7319 0.5595 1.0146* 0.5481 0.4962 0.4496* 0.5753* 

6 0.7159* 0.6920* 0.6780* 0.5663* 1.1306* 0.5435* 0.4668* 0.4698* 0.6576* 

7 0.7602 0.7492 0.7421 0.5353* 1.2331* 0.5274* 0.4678* 0.4821 0.6335 

8 0.7861* 0.7572* 0.7561 0.5835* 1.1695* 0.5335 0.5147 0.5203 0.6100* 

9 0.7469* 0.7628* 0.7571 0.5647 1.4378* 0.5055 0.5317* 0.4932 0.5867* 

10 0.8245* 0.8032* 0.7990* 0.5609* 1.3858* 0.5160* 0.5235* 0.4733** 0.5778* 

Average 0.7606* 0.7171* 0.7129* 0.5654* 1.0737* 0.5438* 0.5022* 0.4673* 0.6234* 

Source: Own calculations using Python PyTorch (2025). 

 

Table 40: Adjusted Diebold-Mariano test (DM*) statistic (p-value) for comparing the out-of-sample forecasting performance of the regime-switching 

TFT (RS-TFT) with the baseline TFT model (BL-TFT). The null hypothesis assumes that the average 1-10 forecast horizon SMAPE of the RS-TFT is 

equal to the BL-TFT. * indicates, that the null hypothesis could be rejected on a 5% significance niveau. 

Period S&P 500 NASDAQ Nikkei225 Hang Seng Gold Brent Oil 10yr. T-Bond EUR/USD BTC 

COVID-19  3.6888* 

(0.0021) 

3.0809* 

(0.0058) 

2.0781* 

(0.0322) 

3.1201* 

(0.0054) 

0.5910 

(0.2838) 

1.4154 

(0.0937) 

5.5399* 

(0.0001) 

2.0345* 

(0.0346) 

-1.3194 

(0.8918) 
          

Russian Invasion 2.6047* 

(0.0131) 

8.1822* 

(0.0000) 

0.9018 

(0.1942) 

6.1454* 

(0.0001) 

1.3186 

(0.1084) 

1.3122 

(0.1094) 

3.6980* 

(0.0021) 

3.1725* 

(0.0050) 

2.1472* 

(0.0287)           

Hamas Attack 7.6597* 

(0.0000) 

5.8571* 

(0.0001) 

3.8723* 

(0.0015) 

8.9136* 

(0.0000) 

3.4299* 

(0.0032) 

2.3570* 

(0.0201) 

5.8201* 

(0.0001) 

4.3295* 

(0.0007) 

4.8736* 

(0.0003) 

Source: Own calculations using Python PyTorch (2025). 



4.5.3. Influence of hyperparameter optimization on the multi-step out-of-sample 

forecasting performance 

An important task in adapting a neural network for a task is optimizing the 

hyperparameters. Hyperparameters are configurable parameters that govern the training process 

of a machine learning model but are not learned from the data. They are set before training and 

significantly influence the model’s performance, convergence speed, and generalization ability. In 

the context of the TFT or other deep learning models, hyperparameters include architecture-related 

hyperparameters (e.g. number of hidden layers, number of hidden units per layer and the number 

of attention heads), optimization-related hyperparameters (e.g. learning rate, batch size, weight 

decay and the gradient clipping threshold) and the training-specific parameters (e.g. numbers of 

epochs, early stopping patience and the loss function selection) (e.g., Bischl et al., 2023). In the 

analysis, I applied a grid search of the two important architecture hyperparameters of the TFT: 

attention head and hidden size. 

The hyperparameter attention head is a fundamental component of the multi-head attention 

mechanism used in Transformer-based architectures. It represents an independent attention 

mechanism that learns to focus on different parts of the input sequence during training. Instead of 

using a single attention head, Transformer architectures use multiple heads in parallel. Each head 

focuses on different aspects of the input data, capturing different dependencies. So, the number of 

attention heads determine how well the TFT can capture different dependencies of the data (e.g., 

short-term vs. long-term trends in time series). Although, the number improves the model 

robustness by attending to different input features. The hyperparameter hidden size (also called 

hidden dimension) refers to the number of neurons in a hidden layer of a neural network. It 

determines the dimensionality of the representations learned by the model at each layer. The 

hidden size determines the model capacity (larger hidden size allows the model to learn more 

complex patterns but increases computational cost) and the representation power (a small hidden 

size may lead to underfitting, while too large a size can cause overfitting). What does it mean, if a 

model with more attention heads outperforms a model with less? If a TFT model with more 

attention heads outperforms a model with fewer heads in forecasting financial time series, this 

suggests that the model benefits from enhanced pattern extraction, better feature selection, and 

improved temporal dependency learning. Improved feature representation: each attention head 

learns to focus on different aspects of the input time series. 

Financial time series are highly complex, often containing multiple interacting patterns 

such as: short-term fluctuations (e.g., intraday trading movements), long-term trends (e.g., market 

cycles), volatility clustering (e.g., periods of high or low market uncertainty) and cross-asset 

relationships (e.g., correlations between stocks, bonds, or commodities). So, more attention heads 

indicate the model can capture more diverse dependencies across different time scales and 

financial instruments, which enables an enhanced temporal dependencies learning, i.e. in a multi-

head attention mechanism, each head learns different types of temporal dependencies. More heads 

allow the model to extract finer details from past observations, leading to better trend detection 

(e.g., identifying sustained price movements), more precise volatility estimation (e.g., capturing 



GARCH-like patterns) and improved seasonality recognition (e.g., detecting cyclical market 

behaviors). So, with more heads, the model can track multiple independent financial signals, 

leading to better forecasting accuracy. Robustness to noise and market anomalies: financial 

markets exhibit high noise levels and non-stationarity. A model with fewer attention heads may 

be overfit to a dominant pattern and fail to generalize. More attention heads enable the model to 

distribute its focus, reducing the risk of overfitting to short-term fluctuations and missing sudden 

regime shifts (e.g., crashes, recoveries). The additional attention heads help create a more robust 

forecasting model by diversifying the learned representations. What does it mean, if a model with 

more attention heads outperforms a model with less? If a TFT with a higher hidden size 

outperforms a model with a smaller hidden size in forecasting financial time series, it suggests that 

the model benefits from increased representation capacity, better feature extraction, and improved 

temporal pattern recognition. Increased representation power: the hidden size defines the number 

of units (neurons) in each layer of the TFT. A higher hidden size means the model can learn more 

complex patterns from financial time series data. 

Financial time series are highly non-linear and often exhibiting sudden regime shifts (e.g., 

market crashes, bull runs), volatility clustering (e.g., GARCH-like behavior) and cross-asset 

correlations (e.g., stock-bond inverse relationships). A larger hidden size enables the TFT to model 

these complex relationships more effectively, leading to better forecasting performance. Improved 

feature interactions and selection: The TFT uses gated residual networks (GRNs) and variable 

selection networks (VSNs) to determine the most important features dynamically. A higher hidden 

size allows more expressive feature transformations, so the model can detect interactions between 

macroeconomic indicators, technical signals, and order flow data. Better attention-based selection 

means, that the model can allocate importance to the most relevant input features. With a higher 

hidden size, the model makes more precise decisions about which financial indicators drive future 

movements. Capturing long-term and short-term dependencies: financial markets operate at 

multiple time scales (e.g., microsecond trades, daily price movements, monthly trends). Temporal 

dependencies in financial data are complex and require short-term sensitivity (e.g., response to 

earnings reports) and long-term memory (e.g., interest rate cycle effects). A larger hidden size 

helps TFT maintain and process longer time dependencies, allowing it to capture both short-term 

fluctuations and long-term trends. A smaller hidden size may fail to learn deep temporal structures, 

leading to weaker forecasts. 

Now I discuss the methodology for the analysis. First, I selected the hyperparameter 

combination from the grid. After this, I trained the network and proceeded a multi-step out-of-

sample forecast for all financial time series in scope using the rolling window approach. I have 

done this for all the three different periods of geopolitical shocks. Then, I evaluated the forecasting 

performance by using the SMAPE. To identify statistically significant differences of the forecast 

performance of the TFT with a different hyperparameter setup, I computed a adjusted Diebold-

Mariano test statistic. Hereby I, compared the SMAPE of the best performing model (BP-TFT, 

model with the hyperparameter combination, that performed best in terms of the lowest SMAPE), 

with the average hyperparameter SMAPE, which I used the baseline TFT model for (BL-TFT, 



Table 33-35). Thereby I want to analyze whether the hyperparameter selection improved the 

forecast performance significantly. I now discuss the results (Table 41-44). Overall, I found the 

following: optimization of the hyperparameters had a statistically significant effect in predicting 

the financial values I looked at in times of geopolitical shocks. The largest effect, I found during 

the COVID-19 and Hamas attack periods. In these two phases, most of the BP-TFT had a 

statistically significant difference from the BL-TFT. During these two phases, the null hypothesis 

that the BP-TFT is not statistically significantly different from the average was rejected for all but 

one financial value. The average effect (average difference between BP-TFT and BL-TFT over all 

financial instruments) was 3.94% for the COVID-19 period and 6.13% for the Hamas period. 

During the Russian war period, the average effect was just 2.81%. For the phase of COVID-19, it 

was the Hang Seng stock index and for the phase of the Hamas attack, it was Bitcoin. For the 

Russian attack phase, it was the NASDAQ stock index, the Nikkei stock index, gold and Bitcoin. 

I also evaluated the frequency with which the BP-TFT has a particular hyperparameter value. 

These results are not quite as clear and are close to each other. The BP-TFT used a number of 8 

attention heads in 40.74% of cases. 33.33% of the BP-TFT used only one attention head. 25.92% 

of the best performing models used 4 attention heads. From this, one can deduce that for the 

observed volatility time series, it was advantageous that the TFT was able to capture different 

dependencies well. One can observe something similar for the hidden size hyperparameter. I found 

that 44.44% of the BP-TFT used 32 neurons per hidden layer. 29.63% of the BP-TFT used 64 

neurons per hidden layer and 25.93% used only 16 neurons per hidden layer. The number of 

neurons in a hidden layer controls the complexity of the TFT and thus its ability to fit the data. 

When choosing the number of hidden neurons, it is important to avoid both over- and underfitting. 

One can see here that most of the best performing models lied exactly in the middle with 32 

neurons per hidden layer. Accordingly, for the data, an attention head of 8 and a hidden size of 32 

showed the best forecasting results. 

Now I will discuss the results of individual financial stocks. For the S&P 500, I found, that 

in all periods, the SMAPE of the BP-TFT significantly outperformed the BL-TFT. The null 

hypothesis of the DM*-test statistic could be rejected for each period. Over the different periods, 

the average difference between BP-TFT and BL-TFT was 4.26%. Furthermore, I found that the 

optimal number of hidden size parameters was 32 for all three periods considered. In contrast, no 

clear structure could be derived for the number of attention heads. The NASDAQ BP-TFT 

significantly outperformed the BL-TFT during COVID-19 and the Hamas period. During the 

Russian attack the null hypothesis could not be rejected. The average difference in SMAPE over 

the periods was 2.87%. The BP-TFT used 1 attention head and 32 neurons per hidden layer the 

most frequent. However, it must be emphasized again that this is an isolated analysis and that the 

optimal hyperparameters cannot be chosen independently of each other and must not be re-

combined. Like the NASDAQ, the BP-TFT of the Nikkei index outperformed the average model 

during COVID-19 and the Hamas period. The null hypothesis could not be rejected for the 

forecasts during the Russian attack. The average difference in SMAPE over the periods was 

2.89%. The BP-TFT used 8 attention head and 32 neurons per hidden layer the most frequent. For 



the Hang Seng index, the null hypothesis could not be rejected during COVID-19, but for the two 

other periods in scope, it could be rejected. I also found an average difference of the best 

performing and average model at 4.24%. Looking at the hyperparameters, it was more straight. In 

all cases the BP-TFT used 32 neurons per hidden layer and in 2 of 3 cases they used 8 attention 

heads. For the commodity gold, the BP-TFT outperformed the BL-TFT significantly during 

COVID-19 and the Hamas attack. For the period of the Russian attack, the null hypothesis could 

not be rejected. The average difference in SMAPE was 4.44% In most cases the BP-TFT just used 

one attention head, but a hidden size of 64 most frequently. 

Considering the commodity brent crude oil, I found that the BP-TFT outperformed the BL-

TFT in every period in scope significantly. The average difference in SMAPE over the periods 

was at 3.00%. Moreover, I found that in most cases the architecture of the BP-TFT contains 4 

attention heads and a hidden size of 64. Similarly, for the US Treasury bond time series, the best 

performing models significantly outperformed the average model across all periods, thus the null 

hypothesis of the DM* test could be rejected in any time. The average difference in SMAPE was 

3.44%. From an architectural perspective, the network showed a rather inconsistent picture over 

the periods under review. Accordingly, the number of attention heads and hidden size for the best 

performing model varied. This indicates a rather changeable structure of the data in the different 

periods. The BP-TFT for the time series of the EUR-USD exchange rate significantly 

outperformed the average model in every period significantly, and the null hypothesis could 

always be rejected. The average difference in SMAPE was 4.77%. Furthermore, I found that most 

of the time the BP-TFT contain the maximal value of 8 attention heads, but the smallest number 

of neurons per hidden layer. 

My findings showed, that hyperparameter selection affect forecasting performance 

significantly. In particular, for the two important architectural hyperparameters, attention head and 

hidden size, a suitable choice is crucial for forecasting performance. However, the rule here is not 

the more complex the model, the better. The advantages and disadvantages of increasing the 

complexity of the model must be considered. Regarding the attention head, I found that a higher 

number in the optimization grid increased the forecasting performance. This may be due to the 

fact that a higher number have an improved feature representation and thus can better capture 

volatility clustering patterns, which occurs in the data. Furthermore, the correlation between the 

financial time series, i.e. the explanatory variables, can be better captured and used for forecasting. 

Furthermore, more attention heads enable the model to extract finer details from past observations, 

leading to more precise volatility estimation (e.g. capturing GARCH-like patterns). This also refers 

to the data. Regarding the hidden size parameter, I found that a mean value of 32 occurred on the 

grid for most of the best performing models. Moreover, a higher hidden size enables the model to 

learn more complex patterns like exhibiting sudden regime shifts, volatility clustering (e.g., 

GARCH-like behavior) and cross-asset correlations more effectively, which is leading to better 

forecasting performance. At the same time, the possibility of modeling a high level of complexity 

is also associated with the potential for overfitting. Accordingly, a trade-off must be made in this 

regard. The results show, however, that a higher level of complexity has a positive effect on the 



forecasting performance of volatility and the volatility clusters and regime switches that occur in 

the data. When evaluating the best performing models for Bitcoin, I found that the null hypothesis 

could be rejected just for the period of COVID-19. For the other two periods, there was no 

significant difference of the SMAPE of the best performing model and the average model. 

Nevertheless, the average difference was at 8.71%. However, this is due to the fact that the 

performance of the TFT for the period of the Hamas attack was extremely poor. 

My grid-optimization of the TFT architecture revealed that both the number of attention 

heads and the hidden layer size significantly influence model performance in forecasting financial 

time series volatility during geopolitical shocks. Models with 8 attention heads and a hidden size 

of 32 were most frequently among the best-performing configurations, suggesting that a balance 

between attention diversity and model capacity yields optimal predictive accuracy. The Diebold-

Mariano test confirmed that hyperparameter tuning led to statistically significant improvements in 

most cases, with the largest effects observed during the COVID-19 and Hamas attack periods. 

Asset-level analyses further highlighted that indices, Brent crude oil, and EUR-USD exchange rate 

consistently benefited from hyperparameter optimization across all periods, whereas other assets 

like Bitcoin showed mixed results due to period-specific dynamics. A higher number of attention 

heads allowed the model to better capture multi-scale temporal dependencies, volatility clustering, 

and cross-asset correlations, while a moderate hidden size provided sufficient expressiveness 

without overfitting. The findings emphasize that model complexity should be tailored to the data 

structure, as both under- and over-parameterization can reduce forecast accuracy. In conclusion, 

careful tuning of architectural hyperparameters enhances the TFT’s ability to model complex 

volatility patterns, especially in environments affected by structural shocks. These results 

underscore the importance of adaptive model configuration in time series forecasting under non-

stationary conditions (Research Question 10). 



Table 41: SMAPE for multi-step out-of-sample multivariate forecasts during COVID-19 (02/03/2020 – 04/30/2020) and combinations of different 

hyperparameter combinations (attention head = 1, 4, 8; hidden size = 16, 32, 64). The SMAPE values are averages from forecast horizons h=1,…,10. 

Adjusted Diebold-Mariano test (DM*) for significant difference of TFT (BP-TFT) and baseline TFT (BL-TFT) (Table 33). * indicates the best 

performing hyperparameter combination (BP-TFT). ** indicates that the BP-TFT performance is statistically significant different from BL-TFT for 

given financial instrument and averaged forecast horizons on 5% level. 

Attention 

Head 

Hidden 

Size 

S&P 500 NASDAQ Nikkei225 Hang Seng Gold Brent Oil 10yr. T-Bond EUR/USD BTC 

1 16 0.7763 0.8972 0.6992 0.6264     0.6848** 0.6311 0.7762 1.1615 0.9758 

1 32 0.7193 0.8563     0.6705** 0.6223 0.7050 0.6282 0.7754 1.1908 0.9517 

1 64 0.7239 0.8468 0.7005 0.6299 0.7186 0.6353 0.7761 1.1845 0.9433 

4 16 0.7028 0.8668 0.7211 0.6197 0.7029 0.6510 0.7872 1.1845 0.9308 

4 32 0.7032 0.8273 0.7061    0.5960* 0.7085 0.5961 0.7970 1.2643 0.9082 

4 64 0.7493     0.8214** 0.6817 0.5975 0.7102     0.5907** 0.7877 1.2656 0.9066 

8 16 0.7342 0.8588 0.7300 0.6151 0.7012 0.6429     0.7383**     1.1183** 0.9719 

8 32     0.6817** 0.8255 0.7374 0.6101 0.7173 0.6178 0.8120 1.2109     0.8874** 

8 64 0.6998 0.8894 0.6869 0.6051 0.7210 0.6054 0.8605 1.2347 0.8894 

Average  0.7211 0.8543 0.7037 0.6135 0.7077 0.6220 0.7900 1.2016 0.9294 

Source: Own calculations using Python PyTorch (2025).  



Table 42: SMAPE for multi-step out-of-sample multivariate forecasts during the Russian invasion (02/01/2022 – 04/29/2022) and combinations of 

different hyperparameter combinations (attention head = 1, 4, 8; hidden size = 16, 32, 64). The SMAPE values are averages from forecast horizons 

h=1,…,10. Adjusted Diebold-Mariano test (DM*) for significant difference of TFT (BP-TFT) and baseline TFT (BL-TFT) (Table 34). * indicates the 

best performing hyperparameter combination (BP-TFT). ** indicates that the BP-TFT performance is statistically significant different from BL-TFT 

for given financial instrument and averaged forecast horizons on 5% level. 

Attention 

Head 

Hidden 

Size 

S&P 500 NASDAQ Nikkei225 Hang Seng Gold Brent Oil 10yr. T-Bond EUR/USD BTC 

1 16 0.5003 0.4511 0.6554 0.8150 0.4683 0.5539 0.5610     0.6034** 0.5234 

1 32     0.4924**   0.4332* 0.6808 0.8234 0.4462 0.5566 0.5567 0.6587 0.5240 

1 64 0.5482 0.4511 0.6704 0.8126   0.4331* 0.5224** 0.5540 0.6181 0.5170* 

4 16 0.5068 0.4382 0.6698 0.8111 0.4666 0.5680 0.5686 0.6681 0.5387 

4 32 0.5561 0.4537 0.6947 0.8460 0.4402 0.5481 0.5460 0.6274 0.5329 

4 64 0.5180 0.4621 0.6958 0.8294 0.4477 0.5477    0.5261** 0.6278 05399 

8 16 0.5144 0.4483 0.6785 0.7728 0.4655 0.5460 0.5541 0.6489 0.5355 

8 32 0.5228 0.4636    0.6521*     0.7218** 0.4505 0.5480 0.5414 0.6184 0.5352 

8 64 0.5118 0.4439 0.6644 0.7740 0.4387 0.5460 0.5452 0.6238 0.5170 

Average  0.5190 0.4495 0.6735 0.8007 0.4508 0.5485 0.5504 0.6327 0.5293 

Source: Own calculations using Python PyTorch (2025). 

  



Table 43: SMAPE for multi-step out-of-sample multivariate forecasts during the Hamas attack (10/01/2023 – 12/29/2023) and combinations of 

different hyperparameter combinations (attention head = 1, 4, 8; hidden size = 16, 32, 64). The SMAPE values are averages from forecast horizons 

h=1,…,10. Adjusted Diebold-Mariano test (DM*) for significant difference of TFT (BP-TFT) and baseline TFT (BL-TFT) (Table 35). * indicates the 

best performing hyperparameter combination (BP-TFT). ** indicates that the BP-TFT performance is statistically significant different from BL-TFT 

for given financial instrument and averaged forecast horizons on 5% level. 

Attention 

Head 

Hidden 

Size 

S&P 500 NASDAQ Nikkei225 Hang Seng Gold Oil 10yr. T-Bond EUR/USD BTC 

1 16 0.8551     0.7722** 0.7829 0.6500 1.2667 0.5603 0.5287 0.5117 0.6872 

1 32 0.8621 0.8077 0.7782 0.6608 1.3122 0.5504 0.5690 0.4998 0.6863 

1 64 0.9137 0.8400 0.7718 0.6342 1.3795 0.5558 0.5435 0.5051 0.6908 

4 16 0.8717 0.7757 0.7834 0.6830 1.3619 0.5811 0.5587 0.5324 0.6866 

4 32    0.7950** 0.8226 0.7937 0.6420 1.3143 0.5637 0.5421 0.4988 0.6727 

4 64 0.8547 0.8170 0.7820 0.6499 1.3459    0.5282** 0.5742 0.4965   0.6635* 

8 16 0.8521 0.8119     0.7459** 0.6573 1.3649 0.5723 0.5354     0.4727** 0.6856 

8 32 0.8623 0.7954 0.7976     0.6147** 1.4053 0.5702     0.5207** 0.5099 0.7105 

8 64 0.8449 0.8415 0.7633 0.6192     1.2397** 0.5666 0.5606 0.5050 0.6748 

Average  0.8569 0.8093 0.7776 0.6457 1.3323 0.5610 0.5481 0.5034 0.6842 

Source: Own calculations using Python PyTorch (2025). 

  



Table 44: Adjusted Diebold-Mariano test (DM*) statistic (p-value) for comparing the multi-step out-of-sample forecasting performance of the best 

performing hyperparameter combination TFT (BP-TFT) model with the baseline TFT model (BL-TFT, Tables 33-35). The null hypothesis assumes that 

the average 1-10 forecast horizon SMAPE of the regime-switching multivariate TFT is equal to the baseline TFT. * indicates, that the null hypothesis 

could be rejected on a 5% significance niveau. 

Period S&P 500 NASDAQ Nikkei225 Hang Seng Gold Brent Oil 10yr. T-Bond EUR/USD BTC 

COVID-19  3.0308* 

(0.0018) 

2.5308* 

(0.0070) 

2.5923* 

(0.0059) 

1.3462 

(0.0916) 

1.7615* 

(0.0415) 

2.4077* 

(0.0095) 

3.9769* 

(0.0001) 

6.4077* 

(0.0000) 

3.2308* 

(0.0010)           

Russian Invasion 2.0461* 

(0.0224) 

1.2538 

(0.1073) 

1.6461 

(0.0523) 

6.0692* 

(0.0000) 

1.3615 

(0.0891) 

2.0076* 

(0.0245) 

1.8692* 

(0.0331) 

2.2538* 

(0.0138) 

0.9461 

(0.1738)           

Hamas Attack 4.7615* 

(0.0000) 

2.8538* 

(0.0029) 

2.4384* 

(0.0088) 

2.3846* 

(0.0100) 

7.1230* 

(0.0000) 

2.5230* 

(0.0071) 

2.1076* 

(0.0195) 

2.3615* 

(0.0106) 

1.5930 

(0.0581) 

Source: Own calculations uisng Python PyTorch (2025).



4.5.4. The added value of a multivariate structured volatility forecasting approach 

The Temporal Fusion Transformer (TFT) is particularly well-suited for multivariate time 

series modeling and forecasting due to its architectural features. However, a multivariate 

forecasting approach also involves complexity, and the question therefore arises as to whether 

implementing a multivariate forecasting approach adds value in the form of improved forecasting 

performance, or whether this approach can be used to explain more relationships than a univariate 

forecasting approach. In this section, I will discuss the answer to this question and evaluated 

whether a multivariate forecasting approach outperforms a univariate approach. To this end, I 

compared the results presented in section 4.5.1. (Tables 33-35) with those obtained using a 

univariate forecasting method. 

For the univariate forecast, I only used the time series itself as input, which is then also 

predicted. I conducted this analysis on time series data from nine financial assets: the S&P 500, 

NASDAQ, Nikkei 225, Hang Seng, Gold, Brent Crude Oil, the 10-year U.S. Treasury Bond, the 

EUR-USD exchange rate, and Bitcoin, covering three distinct periods characterized by 

geopolitical shocks. This is implemented using a rolling-window approach, wherein the TFT 

model is trained using input data from the past 250 trading days. The trained model is then used 

to generate forecasts for the next 1 to 10 trading days. Subsequently, the rolling window is shifted 

forward by one step, and the process is repeated. For each examined period of geopolitical shocks, 

about 60 iterations are conducted within the rolling-window framework. Additionally, I performed 

this procedure for a grid of nine different hyperparameter combinations. The forecasting 

performance is evaluated using the Symmetric Mean Absolute Percentage Error (SMAPE). I 

computed the average SMAPE across identical forecast horizons. To assess the statistical 

significance of the multivariate forecasting approach's superiority over the univariate approach, I 

computed an adjusted Diebold-Mariano test statistic (DM*-test). The null hypothesis, that the 

forecasting performance of the multivariate model (baseline TFT, BL-TFT) is equal to that of the 

univariate TFT (UV-TFT), is rejected if the DM*-test statistic exceeds the critical value of the t-

distribution at a predefined significance level of 0.05. Before analyzing the results, I first discuss 

the conditions under which a multivariate model is preferable to a univariate model. 

A multivariate model is likely to outperform a univariate model when the data exhibit 

properties that can be better captured through joint modeling of multiple time series (Engle, 2002). 

If the financial instruments under consideration exhibit high conditional correlation, a multivariate 

model can better capture the covariance structure, yielding more accurate volatility forecasts 

(Bollerslev, 1990). Furthermore, a multivariate model is superior when correlations among 

financial assets change systematically over time. Typical examples include crises, during which 

correlations tend to strengthen (e.g., contagion effects in financial crises)(Forbes & Rigobon, 

2002). The existence of volatility spillover effects between different markets or instruments (e.g., 

from equities to bonds or from currencies to commodities) also favors the use of a multivariate 

model, as it can better capture these dynamics (Diebold & Yilmaz, 2009). Examples of such 

volatility spillovers include interest rate changes and their impact on stock market volatility, or 

fluctuations in commodity prices (e.g. Brent Crude Oil) affecting the volatility of currencies in 



commodity-exporting countries (Andersen et al., 2007). Additionally, the presence of regime shifts 

or structural breaks suggests the use of multivariate models, as correlations between all assets often 

increase significantly during financial crises (Ang & Bekaert, 2002). Lastly, exogenous factors 

affecting multiple time series, such as macroeconomic or fundamental variables influencing 

several financial instruments simultaneously (e.g. interest rates, inflation, geopolitical risks), can 

be incorporated more consistently in a multivariate model (Chen et al., 1986). For instance, 

including interest rate changes in a model that jointly considers stocks and bonds can improve 

forecasting accuracy. However, there are also arguments in favor of a univariate forecasting model. 

If correlations among time series are low, the covariance structure adds little value to the forecast 

(Hamilton, 2020). This may occur when the data are dominated by idiosyncratic factors specific 

to individual financial instruments (e.g. firm-specific volatility). Additionally, if the data history 

is short, a multivariate model may not be estimated reliably, leading to biased parameter estimates. 

Finally, computational complexity may also play a decisive role, as multivariate models require 

significantly more resources than univariate models. As outlined in section 4.4., multiple 

indicators suggest that a multivariate forecasting approach is more appropriate for the data. I 

demonstrated that many of the financial assets analyzed are correlated over the entire dataset 

period (01/01/2019 to 06/30/2024). Notably, I observed correlations between the S&P 500 and 

NASDAQ, the S&P 500 and U.S. Treasury Bonds, Gold and U.S. Treasury Bonds, NASDAQ and 

U.S. Treasury Bonds, as well as between the Nikkei and Hang Seng indices. This indicates 

significant interdependencies in the volatility of the examined financial assets. My results showed 

that correlations among financial assets intensified during the geopolitical shock periods under 

analysis. Additionally, I observed regime shifts in the volatility of the data, particularly during the 

analyzed geopolitical shock periods. These findings provide strong evidence that a multivariate 

forecasting approach is superior to a univariate approach. 

Next, I discuss the empirical results in detail. I begin with an overview and then analyze 

individual financial assets. For most of the analyzed financial assets, I found that the BL-TFT 

model outperforms the UV-TFT during specific periods of geopolitical shocks. I evaluated the 

average SMAPE across forecast horizons 1-10 for each financial asset and each geopolitical shock 

period. Out of a total of 27 performance evaluations (9 financial assets across 3 periods), the BL-

TFT outperformed the UV-TFT in 23 cases (82.14%). The DM*-test statistic at a significance 

niveau of 0.05 further indicates that 20 of these 23 cases (86.95%) exhibit a statistically significant 

difference between the multivariate and univariate approaches. My results vary across the 

examined periods. During the COVID-19 crisis, the BL-TFT outperformed the UV-TFT for all 

financial assets, with statistically significant differences in all cases. During the Russian invasion 

of Ukraine, the BL-TFT outperformed the UV-TFT in 7 out of 9 SMAPE evaluations, with 6 of 

these 7 cases showing statistically significant differences. During the Hamas attack on Israel, the 

BL-TFT outperformed the UV-TFT for 6 out of 9 financial assets, with statistically significant 

differences in 5 of these cases. These findings indicate that during the COVID-19 period, which 

is characterized by the highest average financial market volatility (Table 9), the BL-TFT 

consistently outperformed the UV-TFT. During the Russian invasion, which exhibited the second-



highest average volatility, the BL-TFT outperformed the UV-TFT in fewer cases than during the 

COVID-19 period but more frequently than during the Hamas attack, which exhibited the lowest 

average volatility. This can be attributed to the increased correlations among financial assets 

during major crises, a phenomenon known as the contagion effect in financial markets. 

The contagion effect in financial markets arises from interconnectedness, where shocks 

propagate across different markets, creating a ripple effect. Understanding the mechanisms driving 

this phenomenon has gained significant traction in empirical studies, particularly in the context of 

financial crises and market volatilities (citation). Several studies have examined this effect and 

identified comparable patterns, e.g., Matkovskyy & Jalan (2019), Muzindutsi et al. (2022), Naeem 

et al. (2022), and Xu & Gao (2019). 

Finally, I discuss individual financial assets. The BL-TFT outperforms the UV-TFT for the 

S&P 500 and NASDAQ during the COVID-19 crisis and the Russian invasion. However, during 

the Hamas attack, the UV-TFT performed better. Although these two indices remain highly 

correlated during the Hamas attack, their correlation with other financial assets is lower, likely 

leading to overfitting in the BL-TFT and, consequently, worse performance than the UV-TFT. For 

the Nikkei and Hang Seng indices, the BL-TFT statistically significantly outperforms the UV-TFT 

during the COVID-19 crisis and the Hamas attack. Although the BL-TFT performs better during 

the Russian invasion, the difference is not statistically significant. For commodities such as Gold 

and Brent Crude Oil, the BL-TFT significantly outperforms the UV-TFT during the COVID-19 

crisis and the Russian invasion. Additionally, for Brent Crude Oil, the BL-TFT outperformed the 

UV-TFT during the Hamas attack. In contrast, for Gold, the BL-TFT performed better during the 

Hamas attack, but the difference is not statistically significant. Similar patterns are observed for 

other financial assets, reinforcing the findings. Summarizing, the analysis reveals that the 

multivariate approach consistently outperforms the univariate model across all considered 

financial instruments and crisis periods, including the COVID-19 pandemic, the Russian invasion 

of Ukraine, and the Hamas attack on Israel. The improvement in forecast accuracy was statistically 

significant in most cases, as confirmed by adjusted Diebold-Mariano tests. The performance 

advantage of the multivariate approach was especially pronounced during periods characterized 

by abrupt and nonlinear changes in volatility. A primary interpretation for this superiority lies in 

the multivariate model’s ability to account for interdependencies and co-movements between 

different financial instruments, which are particularly relevant during systemic events. 

Geopolitical shocks often trigger widespread reactions across markets, leading to simultaneous 

changes in volatility that a multivariate model can exploit. Furthermore, the inclusion of 

exogenous variables such as the VIX and the Geopolitical Risk Index enables the multivariate 

approach to integrate relevant macro-financial information, improving its responsiveness to 

structural breaks. In contrast, univariate models process each asset in isolation, thereby missing 

potential predictive signals from related markets and external indicators. This structural limitation 

makes them less effective in capturing the full dynamics of volatility during crises. Overall, the 

findings demonstrate that multivariate models offer a more robust and adaptive framework for 

volatility forecasting under conditions of elevated geopolitical risk (Research Question 11). 



Table 45: SMAPE for univariate multi-step out-of-sample forecasts during COVID-19 (02/03/2020 – 04/30/2020). SMAPE values are averages from 

different hyperparameter combinations (attention head = 1, 4, 8; hidden size = 16, 32, 64). Adjusted Diebold-Mariano test (DM*) for significant 

difference between baseline TFT (BL-TFT) (Table 33) and univariate TFT (UV-TFT) for financial instruments in scope and forecast horizon. 

* indicate that the multivariate TFT (BL-TFT) outperformed the UV-TFT significantly on 5% significance niveau. 

Forecast 

Horizon 

S&P 500 NASDAQ Nikkei225 Hang Seng Gold Brent Oil 10yr. T-Bond EUR/USD BTC 

1 0.7251* 1.0039* 0.6593* 0.7134* 0.7697* 0.7045* 0.8288 1.1153 1.4945* 

2 0.6950 1.0140* 0.6172* 0.7145* 0.8007* 0.7396* 0.8642* 1.2897* 1.4008* 

3 0.7397 1.0244* 0.6847* 0.7247* 0.7544* 0.7204* 0.9208* 1.2935* 1.4629* 

4 0.7504* 1.0297* 0.7896* 0.6716* 0.8368* 0.6772* 0.8322 1.2724* 1.4757* 

5 0.7474* 1.0373* 0.8192* 0.7139* 0.8281* 0.7071* 0.8124 1.3169* 1.3675* 

6 0.8001* 1.1022* 0.9892* 0.6780* 0.8324* 0.7672* 0.8223 1.2573 1.2607* 

7 0.7787* 0.9916* 0.8233* 0.6963* 0.8254* 0.7195* 0.8239* 1.3419* 1.2676* 

8 0.8447* 1.0387* 0.8470* 0.6774* 0.7897* 0.6957* 0.7989* 1.3592* 1.1986* 

9 0.8163* 0.9571* 0.8384* 0.6335* 0.8121* 0.7469* 0.8083* 1.3169* 1.2984* 

10 0.8283* 0.9863* 0.9502* 0.6670* 0.8215* 0.7984* 0.8068* 1.3181* 1.2131* 

Average 0.7726* 1.0185* 0.8018* 0.6890* 0.8071* 0.7277* 0.8349* 1.2919* 1.3440* 

Source: Own calculations using Python PyTorch (2025).  

  



Table 46: SMAPE for univariate multi-step out-of-sample forecasts during the Russian invasion (02/01/2022 – 04/29/2022). SMAPE values are 

averages from different hyperparameter combinations (attention head = 1, 4, 8; hidden size = 16, 32, 64). Adjusted Diebold-Mariano test (DM*) 

for significant difference between baseline TFT (BL-TFT) (Table 33) and univariate TFT (UV-TFT) for financial instruments in scope and forecast 

horizon. * indicate that the multivariate TFT (BL-TFT) outperformed the UV-TFT significantly on 5% significance niveau. 

Forecast 

Horizon 

S&P 500 NASDAQ Nikkei225 Hang Seng Gold Brent Oil 10yr. T-Bond EUR/USD BTC 

1 0.5459* 0.4252 0.6152* 0.8793* 0.4762* 0.5750* 0.5276* 0.8395* 0.6125* 

2 0.5286* 0.4310* 0.6361* 0.9195* 0.5083* 0.6029* 0.5636* 0.8223* 0.6050* 

3 0.5342* 0.4225 0.6633* 0.8615* 0.4799* 0.5991* 0.5733* 0.8673* 0.5937* 

4 0.5462* 0.4277 0.7788* 0.8953* 0.5051 0.6394* 0.5421 0.8142* 0.5781* 

5 0.5147 0.4113 0.7036 0.8601* 0.4738* 0.6526* 0.5474 0.7852* 0.5780* 

6 0.5283* 0.4128 0.6562 0.8602* 0.4898 0.6104* 0.5250 0.7377* 0.5448 

7 0.5840* 0.4242 0.6881 0.9254* 0.4705 0.5975 0.5346 0.7451* 0.5422 

8 0.5876* 0.4395 0.6864 0.8169 0.4632 0.5599* 0.5057 0.7103* 0.5237* 

9 0.5678* 0.4196 0.6966 0.8043 0.4637* 0.6313* 0.4995 0.7795* 0.5194 

10 0.5716 0.4399 0.6772 0.8124* 0.4697* 0.5857 0.5145 0.7737* 0.5463* 

Average 0.5509* 0.4254 0.6802 0.8635* 0.4800* 0.6054 0.5333 0.7875* 0.5642* 

Source: Own calculations using Python PyTorch (2025). 

  



Table 47: SMAPE for univariate multi-step out-of-sample forecasts during the Hamas attack (10/01/2023 – 12/29/2023). SMAPE values are averages 

from different hyperparameter combinations (attention head = 1, 4, 8; hidden size = 16, 32, 64). Adjusted Diebold-Mariano test (DM*) for significant 

difference between baseline TFT (BL-TFT) (Table 33) and univariate TFT (UV-TFT) for financial instruments in scope and forecast horizon. 

* indicate that the multivariate TFT (BL-TFT) outperformed the UV-TFT significantly on 5% significance niveau. 

Forecast 

Horizon 

S&P 500 NASDAQ Nikkei225 Hang Seng Gold Brent Oil 10yr. T-Bond EUR/USD BTC 

1 0.7932 0.7001 0.7425 0.7379* 1.1945 0.6400* 0.5967* 0.5813* 0.7506 

2 0.8061 0.7411 0.7990* 0.7123* 1.1211 0.6110 0.5681 0.5559* 0.6828 

3 0.7497 0.7078 0.8290 0.6436 1.1978 0.6710* 0.5669* 0.5295* 0.7099 

4 0.7456 0.6819 0.8516* 0.7115* 1.2239 0.6542* 0.5301 0.5488* 0.6592 

5 0.7650 0.7168 0.8525* 0.6379* 1.4343 0.6112* 0.5496* 0.5639* 0.6960 

6 0.7613 0.7660 0.8297* 0.6300 1.5244 0.6458* 0.5499 0.6000* 0.7024 

7 0.8025 0.7673 0.8703* 0.7302* 1.9006 0.5871 0.5928 0.6090* 0.6564 

8 0.8151 0.7866 0.8894* 0.7340* 1.3971 0.5836* 0.6049* 0.6258* 0.6470 

9 0.8769 0.8580 0.8927* 0.6784 1.7110 0.5850* 0.6301* 0.5546 0.6375 

10 0.9336 0.9385 0.8840 0.7424* 1.6738 0.5876 0.5874* 0.5793* 0.6441 

Average 0.8049 0.7664 0.8441 0.6958* 1.4378 0.6176* 0.5776* 0.5748* 0.6786 

Source: Own calculations using Python PyTorch (2025). 

  



 

Table 48: Adjusted Diebold-Mariano test (DM*) statistic (p-value) for comparing the multi-step out-of-sample forecasting performance of the 

univariate TFT (UV-TFT) model with the baseline TFT model (BL-TFT, Tables 33-35). The null hypothesis assumes that the average 1-10 forecast 

horizon SMAPE of the UV-TFT is equal to the BL-TFT. * indicates, that the null hypothesis could be rejected on a 5% significance niveau and thus the 

multivariate forecasting model of the BL-TFT outperformed the univariate forecasting model of the UV-TFT for financial instruments in scope. 

Period S&P 500 NASDAQ Nikkei225 Hang Seng Gold Brent Oil 10yr. T-Bond EUR/USD BTC 

COVID-19  5.0707* 
(0.0002) 

14.9754* 
(0.0000) 

2.9206* 
(0.0076) 

7.8326* 
(0.0000) 

9.3694* 
(0.0000) 

11.5922* 
(0.0000) 

3.4041* 
(0.0034) 

4.1586* 
(0.0010) 

34.1380* 
(0.0000) 

          

Russian Invasion 5.2819* 
(0.0002) 

-3.5481 
(0.9974) 

0.3682 
(0.3602) 

6.3669* 
(0.0000) 

4.0320* 
(0.0012) 

7.0214* 
(0.0000) 

-1.4928 
(0.9168) 

19.4486* 
(0.0000) 

4.2475* 
(0.0008) 

          

Hamas Attack -2,2376 
(0.9754) 

-1,2617 
(0.8822) 

5,8248* 
(0.0001) 

5,4425* 
(0.0001) 

1,2031 
(0.1283) 

6,0103* 
(0.0001) 

4,6145* 
(0.0005) 

9,9126* 
(0.0000) 

-0,3936 
(0.6489) 

Source: Own calculations using Python PyTorch (2025).



4.5.5. Model comparison between GARCH and Temporal Fusion Transformer 

Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models have long 

served as the methodological standard for capturing time-varying conditional variances in asset 

returns (Bollerslev, 1986; Engle, 1982). GARCH models are parametric econometric models 

predicated on a recursive structure that captures volatility clustering in financial returns by 

modeling the conditional variance as a function of past squared residuals and previous conditional 

variances. These models are typically estimated using maximum likelihood methods, and their 

asymptotic properties are well established (Francq & Zakoian, 2019). Moreover, extensions such 

as EGARCH (Nelson, 1991) and GJR-GARCH (Glosten et al., 1993) allow for asymmetric 

responses to positive and negative shocks, capturing the so-called leverage effect observed in 

equity markets. In recent years, however, the rise of deep learning has introduced novel model 

classes, such as the Temporal Fusion Transformer (TFT), which offer an unprecedented level of 

flexibility in processing complex, high-dimensional, and non-stationary time series data (Lim et 

al., 2021). The TFT is a non-parametric, data-driven deep learning architecture designed for multi-

horizon forecasting. It integrates recurrent neural networks (GRUs), attention mechanisms, gating 

layers, and static covariate encoders within a unified sequence-to-sequence learning framework 

(Lim et al., 2021). 

Unlike GARCH models, which target the second moment of a univariate series, the TFT is 

capable of forecasting multiple targets and can flexibly incorporate both temporal and cross-

sectional covariates, rendering them suitable for high-dimensional forecasting tasks where 

explanatory variables may exhibit non-linear interactions. A key axis of differentiation between 

these two model families lies in the nature and extent of their data requirements. GARCH-type 

models are most effective when applied to stationary, univariate financial return series. The 

underlying assumptions typically include weak stationarity and finite conditional moments, and 

thus the model performance is highly sensitive to deviations from these assumptions (Tsay, 2010). 

As such, financial price series are generally transformed into logarithmic returns prior to modeling. 

Furthermore, GARCH models require equally spaced, regularly sampled data and perform poorly 

in the presence of missing values or irregular observation intervals unless explicit adjustments are 

made. In contrast, the Temporal Fusion Transformer is explicitly designed to handle more complex 

data environments. It does not require stationarity or any pre-specified data distribution, and it can 

incorporate missing values through learned embeddings and temporal masks. TFTs distinguish 

between observed historical values, known future inputs, and static features, thus allowing for rich 

context-dependent learning (Lim et al., 2021). However, this modeling power necessitates 

substantial data availability. Due to their high parameterization, TFTs are data-intensive and 

require large-scale datasets for effective training and generalization. Regularization strategies such 

as dropout and early stopping are essential to mitigate the risk of overfitting (Goodfellow et al., 

2016). 

There are also differences with regard to the applicability of the two models. GARCH 

models are designed explicitly for volatility forecasting and serve as foundational tools for Value-



at-Risk (VaR) estimation, option pricing, and stress testing in regulatory contexts (Jorion, 1997). 

Their parameters are economically interpretable, providing direct insights into volatility 

persistence, mean-reversion, and shock asymmetry. In contrast, the TFT is a general-purpose 

forecasting model. While it can be applied to volatility forecasting, its primary strength lies in 

handling complex temporal patterns across multiple time series and covariates. Recent 

advancements in model interpretability, particularly the use of attention scores and variable 

importance metrics, have enhanced the transparency of deep learning models, including the TFT 

(Lim et al., 2021). Nevertheless, the economic interpretability of TFT remains limited relative to 

GARCH models due to its black-box nature and absence of a structural economic foundation. On 

the other hand, GARCH-type models exhibit limited robustness to missing data, as their estimation 

procedures typically assume a complete and regularly spaced time series. Gaps in the data often 

necessitate imputation or interpolation prior to estimation, which may introduce biases or distort 

volatility dynamics (Tsay, 2010). In contrast, the Temporal Fusion Transformer is inherently more 

robust to missingness, employing temporal masking and learned embeddings that allow it to model 

incomplete sequences without requiring explicit imputation (Lim et al., 2021). This feature renders 

the TFT particularly advantageous in real-world financial environments, where data irregularities 

and reporting lags are common. Regarding the computational burden, the GARCH models have 

an advantage, due to its relatively low, owing to their parsimonious structure and closed-form 

likelihood functions, which facilitate efficient numerical optimization even in rolling-window or 

high-frequency settings. By contrast, the Temporal Fusion Transformer entails substantially higher 

computational complexity. Its training involves backpropagation through multiple layers of 

recurrent units, attention heads, and gating mechanisms, often requiring specialized hardware (e.g., 

GPUs) and considerable training time (Goodfellow et al., 2016; Lim et al., 2021). This increased 

complexity, while justifiable in large-scale forecasting tasks, may limit the practicality of TFTs in 

time-sensitive or resource-constrained financial applications. 

Summarizing, GARCH models require stationary, univariate time series with complete 

data and are highly interpretable due to their economically meaningful parameters. In contrast, the 

Temporal Fusion Transformer (TFT) handles non-stationary, multivariate data with missing values 

and can incorporate rich covariate information, but at the cost of high computational complexity. 

While GARCH models are efficient and transparent, TFTs demand large datasets and significant 

resources, offering flexibility in exchange for reduced interpretability.  



5. CONCLUSION AND RECOMMENDATIONS 

The world is experiencing repeated shocks that do not remain local in scope but have a 

global impact. These geopolitical shocks often arise from military conflicts, political unrest, or 

sudden changes in international relations and affect the most diverse facets of the social life, 

including economics and thus financial markets. Furthermore, geopolitical shocks impact the 

volatility of all assets, asset classes, sectors, and countries worldwide which in turn leads to 

changes in the behavior of international market players. It is obvious that these phases must be 

managed very cautiously by market participants and financial market supervisors to avoid 

devastating crashes. This dissertation has presented a comprehensive empirical investigation into 

the identification and forecasting of market dynamics under the influence of major geopolitical 

shocks. Across four methodologically distinct but thematically interrelated chapters, this work 

examined the behavior of abnormal returns in global equity sectors, the emergence and persistence 

of abnormal volatility, the performance of GARCH-class volatility forecasting models, and, as the 

main part of the analysis, the predictive capacity of deep learning model Temporal Fusion 

Transformer (TFT), under crisis conditions. Using the COVID-19 pandemic, the Russian invasion 

of Ukraine, and the Hamas attack on Israel as temporal anchors for geopolitical stress, the analysis 

provides new insights into both, the empirical behavior of financial markets and the 

methodological tools suitable for capturing such behavior. To provide the most comprehensive 

assessment of the results, I have evaluated major capital markets financial assets. I used the 

important MSCI World Sector indices to analyze the abnormal returns and abnormal volatility. 

These indices provide a classification of the most common business models worldwide. To 

examine forecasting performance in times characterized by geopolitical events, I considered a 

wide range of the most essential financial instruments from different investment classes: major 

stock indices (S&P 500, NASDAQ, Nikkei 225 and Hang Seng), commodities (Gold, Brent Crude 

Oil), fixed income instruments (10 year US-Treasuries), foreign exchange rates (EUR-USD 

exchange rate) and cryptocurrency (Bitcoin). 

This research has explored financial market dynamics in the context of major geopolitical 

shocks by analyzing the emergence of abnormal and cumulative abnormal returns, the detection 

and persistence of abnormal volatility, and the efficacy of econometric volatility forecasting 

models. Focusing primarily on the Russian invasion of Ukraine in February 2022 but also 

extending to other important geopolitical stress events such as the COVID-19 pandemic and the 

Hamas-Israel conflict, the three empirical sections contribute distinct perspectives on how global 

financial markets absorb and respond to sudden geopolitical disruptions. First, I employed an event 

study methodology, examined abnormal returns across eleven sector indices of the MSCI World 

index. The empirical results demonstrate that the invasion triggered an immediate and 

predominantly negative response among investors, with statistically significant negative abnormal 

returns concentrated on the event day in sectors such as energy, financials, and materials (Research 

Question 1). However, market reactions varied substantially across sectors. Several sectors, 

including healthcare, information technology, and real estate, exhibited positive cumulative 

abnormal returns over the subsequent 25 trading days, suggesting divergent investor expectations 



regarding the long-term sectoral impact of the conflict (Research Question 2). Notably, the 

analysis revealed a short-lived corrective effect on the day following the invasion, during which 

most sectors showed positive abnormal returns, potentially reflecting rapid re-evaluation of risk 

or market overreaction. These findings indicate the importance of sectoral heterogeneity in return 

dynamics and underscore the role of investor sentiment in the immediate aftermath of geopolitical 

shocks. 

Second, I focused on the volatility dimension of the same event, applying the Abnormal 

Volatility and Cumulative Abnormal Volatility frameworks to analyze excess volatility beyond 

GARCH(1,1)-based forecasts. The results confirmed that the event induced significant spikes in 

volatility across nearly all sectors, with the most pronounced reactions observed in financials, 

consumer staples, and materials (Research Question 3). The persistence of abnormal volatility was 

evident for up to ten trading days post-event in several sectors, including healthcare, IT, and 

industrials. These dynamics reflect both heightened investor uncertainty and the varying temporal 

profiles of volatility normalization across sectors (Research Question 4). Furthermore, sector 

pairwise comparisons of volatility behavior revealed increased convergence in volatility levels 

over time, indicating a gradual alignment of market participants’ risk assessments in the post-

shock period (Research Question 5). Third, I evaluated the forecasting performance of 75 different 

GARCH-type models, including standard GARCH, EGARCH, and GJR-GARCH variants, across 

nine major financial instruments during episodes of geopolitical turmoil. The empirical analysis 

found that the EGARCH model consistently outperformed its counterparts in terms of in-sample 

fit (Research Question 6) and out-of-sample point forecasting accuracy, particularly over medium 

and longer forecast horizons (Research Question 7). This superior performance is attributed to the 

EGARCH model’s ability to capture asymmetric responses (leverage effects) and the long memory 

structure of volatility. In contrast, for directional forecasting accuracy, the GJR-GARCH model 

often performed better, especially for short-horizon forecasts and during high-volatility regimes. 

These findings reinforce the need to tailor model choice to the specific decision-making context, 

whether for risk estimation, hedging, or speculative positioning. 

The fourth and most extensive empirical chapter extended the analysis into the domain of 

deep learning-based volatility forecasting, leveraging the Temporal Fusion Transformer (TFT) for 

direct multi-step, multivariate out-of-sample prediction. Across the COVID-19 pandemic, the 

Russian invasion, and the Hamas attack on Israel, the TFT consistently outperformed GARCH-

class models in forecasting volatility for most financial instruments and forecast horizons. 

Statistical superiority was established using robust Diebold-Mariano tests, with the TFT showing 

particular strength in short-horizon forecasts, likely due to its architectural emphasis on recent 

high-frequency dynamics and ability to adapt to regime shifts (Research Question 8). Beyond 

baseline multivariate TFT, the study introduced two enhancements: a regime-switching variant 

(RS-TFT) incorporating structural shift information, and hyperparameter-optimized architectures. 

The RS-TFT model achieved statistically significant improvements in 78% of cases over the 

baseline TFT, with an average SMAPE reduction of 4.53%. The gains were particularly 

pronounced during the Hamas conflict, despite its relatively lower volatility regime, suggesting 



that regime labels can serve as corrective signals that improve long-horizon performance 

(Research Question 9). The hyperparameter optimization analysis further demonstrated that 

architectural decisions (e.g., attention heads and hidden size) substantially affect forecast accuracy. 

The best-performing models commonly featured 8 attention heads and a hidden size of 32, striking 

a balance between representational power and regularization (Research Question 10). 

Finally, a comparative analysis of univariate versus multivariate TFT setups demonstrated 

the superiority of the multivariate approach in 82% of evaluations, with statistically significant 

differences in most cases (Research Question 11). These findings are attributed to volatility 

contagion effects, co-movement in financial instruments, and the advantage of incorporating 

macro-financial exogenous variables such as the VIX and Geopolitical Risk Index (GPR). 

The results of this research provide important implications for both academic work in 

financial econometrics and practical applications in risk management, asset allocation, and 

financial supervisory. The methodological contributions of this study lied primarily in the 

integration of classical econometric models with modern deep learning architectures in the context 

of geopolitical shocks. Empirically, the work shows that market reactions to geopolitical events 

are characterized by significant and heterogeneous shifts in returns and volatility, both of which 

demand flexible and adaptive forecasting approaches. The incorporation of regime-dependent 

modeling, hyperparameter optimization, and multivariate forecasting strategies into the volatility 

modeling framework offers several valuable insights into how financial forecasting models can be 

improved under conditions of structural instability. 

From a methodological standpoint, the analysis demonstrated the limitations of traditional 

GARCH-type models in capturing the full dynamics of financial volatility during crisis periods. 

While EGARCH and GJR-GARCH models remain useful, particularly for capturing leverage 

effects and directional changes in volatility, their capacity to accommodate sudden regime changes 

is limited. These models tend to respond gradually to abrupt shifts in volatility, making them less 

suitable in environments characterized by non-linearities, contagion, and structural breaks. In 

contrast, the Temporal Fusion Transformer (TFT) exhibits a stronger capacity for short-term 

adaptability, effectively modeling complex interactions across assets, and outperforming 

GARCH-class models in most cases, especially during the COVID-19 pandemic and the Russian 

invasion of Ukraine. The integration of attention mechanisms, multivariate input structures, and 

flexible horizon modeling allows the TFT to internalize temporal dependencies and contextual 

information, which are especially important during systemic events. A particularly important 

methodological contribution of this dissertation is the implementation of a regime-switching 

feature into the TFT architecture. By incorporating an explicit binary indicator of high-volatility 

regimes, the RS-TFT was able to recognize and adjust to shifts in volatility dynamics that occurred 

during geopolitical shocks. 

The empirical results indicated that this feature significantly improves the forecast 

accuracy of the model, particularly in less volatile crisis periods, such as the Hamas-Israel conflict, 

where volatility shifts are more subtle. These findings suggest that even in sophisticated learning 

architectures, the inclusion of domain-informed structural signals can serve as effective 



mechanisms to anchor model behavior, especially for medium- and long-horizon forecasts. This 

supports the hypothesis that volatility forecasting is not merely a statistical challenge but also a 

contextual modeling problem where temporal regimes, policy responses, and investor sentiment 

should be explicitly encoded. The hyperparameter optimization of the TFT also yields relevant 

practical insights. Across all assets and shock periods, models with a higher number of attention 

heads and a moderate hidden layer size consistently outperformed less complex configurations. 

This finding highlights the importance of architectural tuning in machine learning models applied 

to financial time series. Specifically, configurations with eight attention heads and a hidden size 

of 32 offered a good trade-off between model expressiveness and generalization ability, avoiding 

both underfitting and overfitting. This underscores that model complexity must be aligned with 

the underlying data structure and volatility dynamics: overly simplistic models fail to capture key 

interactions, while overly complex models risk overfitting, especially when forecast horizons 

extend into periods of elevated uncertainty. 

Beyond methodological considerations, the findings have several practical implications for 

financial institutions, asset managers, and policymakers. First, risk management systems should 

incorporate adaptive, short-horizon forecasting models such as the TFT to monitor and respond to 

sudden spikes in market volatility. The demonstrated superiority of the TFT in capturing regime 

shifts and short-term volatility dynamics suggests that such models can serve as early warning 

systems during geopolitical shocks. In addition, the integration of geopolitical risk indicators, such 

as the Geopolitical Risk Index (Caldara & Iacoviello, 2022) as exogenous inputs offers a pathway 

for enhancing model responsiveness to real-world events. These indicators can be updated 

dynamically and incorporated into forecasting engines to improve the timeliness and accuracy of 

risk predictions. Second, asset allocation strategies should be guided by volatility diagnostics that 

are sensitive to both, cross-asset correlations and sector-specific reactions. The abnormal return 

and volatility results demonstrated that different sectors and asset classes exhibit varied 

sensitivities to geopolitical events. This suggests that sector-level or asset-specific reallocation 

strategies, particularly those based on short-term indicators of investor uncertainty may 

outperform traditional static allocation models during crisis periods. Practitioners can use volatility 

persistence measures and sectoral heterogeneity insights to calibrate hedge ratios or adjust 

portfolio weights dynamically. In addition, you should also optimize your rolling volatility 

forecasting to be able to make a decision on adjustments that depend on volatility in order to hedge 

the portfolio. Third, model selection should be aligned with the specific decision-making 

objective. For point forecasts of volatility—important in value-at-risk calculations, options 

pricing, and portfolio optimization, the EGARCH and TFT models offered strong performance. 

However, for applications where directional changes in volatility are more critical, such as in 

volatility trading or regime-switching asset strategies, the GJR-GARCH model remains a valuable 

tool. The performance trade-offs between different model classes underscore the importance of 

using a multi-model forecasting framework tailored to the intended application, rather than relying 

on a single model across all use cases. Finally, the consistent outperformance of the multivariate 



TFT over its univariate counterpart during high-volatility periods confirms the importance of 

modeling financial assets as a system of interrelated time series, rather than as isolated processes. 

Geopolitical shocks rarely affect a single market in isolation; instead, they often propagate 

across asset classes through interest rate channels, currency adjustments, commodity prices, and 

global capital flows. Multivariate models that can capture these spillover effects offer superior 

forecasting capabilities, particularly when crisis dynamics are global in nature. This finding aligns 

with theoretical models of contagion and volatility transmission and suggests that forecast engines 

in practice should increasingly adopt multivariate, cross-asset frameworks. Taken together, the 

implications of this research are clear: as the frequency and impact of geopolitical shocks continue 

to rise, financial institutions must equip themselves with models that are both methodologically 

sophisticated and operationally adaptable. The combined use of classical econometric tools, deep 

learning architectures, structural regime indicators, and multivariate modeling constitutes a 

forward-looking strategy for forecasting market dynamics under uncertainty. Future research 

should continue to develop and validate hybrid models that combine interpretability, flexibility, 

and scalability to enhance decision-making in the presence of systemic risk. 

Although, these findings carry substantial implications for several key domains of 

professional financial practice, particularly in light of the growing need for robust, adaptive risk 

modeling under conditions of structural uncertainty and exogenous shocks. In the domain of 

market risk management, accurate short- to medium-term volatility forecasts are critical for the 

calculation of Value-at-Risk (VaR) and Expected Shortfall (ES), both of which are subject to 

regulatory scrutiny under Basel III/IV. The demonstrated outperformance of the TFT in periods of 

elevated geopolitical tension, where traditional GARCH-type models often underreact to rapidly 

evolving risk landscapes, suggests that TFT-based volatility estimates may lead to more responsive 

and accurate VaR models. In practice, this enables risk managers to allocate capital more 

efficiently, avoid excessive procyclicality, and comply with supervisory stress-testing regimes 

more effectively. The superior multi-horizon forecasting accuracy of the TFT directly also benefits 

portfolio managers engaged in dynamic asset allocation strategies, especially under heightened 

geopolitical risk. Because it captures nonlinear dependencies and integrates multivariate 

covariates, including macroeconomic indicators and geopolitical risk indices, the TFT allows for 

more timely and accurate adjustments in portfolio weightings in response to anticipated changes 

in asset-specific risk. This is particularly advantageous for tactical allocation strategies and 

volatility-managed portfolios, which rely on precise forecasts of forward-looking risk to optimize 

performance under regime uncertainty. Options pricing and delta-hedging strategies are also 

highly sensitive to anticipated volatility over short horizons. 

The ability of the TFT to outperform GARCH models across all tested time horizons (1–

10 days) suggests that incorporating TFT-based forecasts into implied volatility surfaces or 

volatility modeling frameworks (e.g., for local volatility or stochastic volatility models) can 

improve pricing accuracy and hedging efficiency, particularly during volatile periods induced by 

geopolitical events. This has direct implications for trading desks managing option books, 

structured products, or volatility arbitrage strategies. Further, supervisory stress tests and internal 



scenario analyses increasingly incorporate non-financial risk drivers, including geopolitical and 

macro-political shocks. The multivariate nature of the TFT, combined with its empirical 

robustness under geopolitical stress, makes it an ideal tool for modeling conditional volatilities 

under adverse scenarios. Unlike GARCH models, which rely heavily on past return dynamics, the 

TFT can integrate forward-looking indicators and generate stress-consistent volatility projections 

across multiple asset classes. This enables institutions to better quantify systemic risk, assess 

liquidity needs, and enhance capital planning. Another field of application are insurance 

companies and pension funds managing long-duration liabilities are increasingly exposed to 

geopolitical tail risks. Given the TFT’s superior performance across longer short-term horizons 

(up to 10 days), integrating its forecasts into ALM frameworks may improve short-term 

rebalancing decisions and hedge effectiveness. In particular, insurers operating under Solvency II 

and similar regulatory regimes can benefit from enhanced short-horizon risk forecasting to 

optimize capital buffers and dynamic hedging strategies for equity-linked liabilities. Finally, for 

central banks and financial stability authorities, understanding volatility dynamics during 

geopolitical crises is essential for assessing systemic vulnerabilities. TFT-based models, with their 

ability to integrate high-dimensional inputs such as geopolitical risk indices, commodity prices, 

and cross-asset volatilities, provide a modern tool for real-time financial surveillance. The 

outperformance of the TFT in all instruments and horizons during geopolitical stress suggests that 

such models could be incorporated into early-warning systems and systemic risk dashboards to 

support policy decision-making. 

Summarizing, the consistent outperformance of the multivariate Temporal Fusion 

Transformer across all tested horizons, instruments, and shock periods establishes it as a robust 

and highly adaptable tool for volatility forecasting in modern finance. Its superior responsiveness 

to geopolitical shocks, ability to process multivariate inputs, and effectiveness across time scales 

make it particularly well-suited for high-stakes applications in risk management, derivatives 

pricing, asset allocation, and regulatory oversight. Practitioners are thus encouraged to integrate 

TFT-based models into existing forecasting pipelines—either as a complement or as a replacement 

for conventional GARCH-type approaches—particularly in environments marked by elevated 

uncertainty and structural change. In light of the documented outperformance of the Temporal 

Fusion Transformer (TFT) in volatility forecasting—particularly within a multivariate setting and 

during periods of geopolitical shocks—a key question for practitioners is how to balance 

forecasting performance against model interpretability and implementation complexity when 

selecting an appropriate modeling framework. While the superior predictive accuracy of the TFT 

across all examined scenarios clearly supports its practical use, especially when additional 

explanatory variables are available and responsiveness to exogenous shocks is critical, other 

dimensions remain highly relevant. Traditional GARCH-type models continue to offer notable 

advantages in terms of interpretability, regulatory acceptance, and ease of implementation within 

established risk infrastructures. 

Practitioners should adopt a use-case-specific decision framework. In highly regulated 

environments where model transparency is prioritized and data availability is limited, the 



continued application of GARCH models remains justified. However, in data-rich and rapidly 

evolving contexts—particularly where geopolitical, macroeconomic, or alternative data sources 

play a central role—the gradual integration of TFT-based forecasting systems is recommended. A 

hybrid modeling strategy, wherein TFT outputs serve as complementary signal generators or are 

used for benchmarking alongside conventional econometric models, represents a pragmatic 

approach to combining predictive strength with operational feasibility.  



6. NEW SCIENTIFIC RESULTS 

This dissertation presents several novel scientific contributions at the intersection of 

financial econometrics, time series forecasting, and machine learning by analyzing, modeling, and 

forecasting market dynamics during geopolitical shocks. 

1. The research provided a volatility modeling and forecasting framework. Systematic testing 

of 75 GARCH-type models showed that EGARCH models consistently provided the best in-

sample fit for volatility in three different periods of geopolitical shocks (Research Question 6). It 

was found that EGARCH models outperformed GARCH and GJR-GARCH-type models in point 

forecasts, while GJR-GARCH performed better in directional forecasts (Research Question 7). 

2. Key methodological innovation is the application of the Temporal Fusion Transformer 

(TFT), a transformer-based deep learning network, for direct, multi-step, multivariate volatility 

forecasting. This research found that the TFT outperformed the best-performing GARCH-type 

model in almost all analyzed periods of geopolitical shocks and examined financial assets in the 

research scope (Research Question 8). 

3. Further, this research could show that hyperparameter optimization of the Temporal Fusion 

Transformer significantly enhanced the forecasting performance, confirming that careful 

configuration and hybrid econometric deep learning approaches yield better forecasting outcomes 

(Research Question 10) 

4. Finally, the improvement of a multivariate TFT setup was compared with a univariate TFT 

setup. The multivariate TFT approach provided superior short-term forecast accuracy, which was 

crucial during high-volatility episodes like March 2020 and the Russian invasion in 2022. This 

makes it particularly suitable for tactical risk management applications (Research Question 11). 

  



7. SUMMARY 

This dissertation addresses a central and increasingly urgent topic in financial 

econometrics: the modeling and forecasting of market dynamics under conditions of geopolitical 

uncertainty. The financial world has seen a notable rise in the frequency and magnitude of 

geopolitical shocks in recent years, from the outbreak of the COVID-19 pandemic in 2020, to the 

Russian Federation’s invasion of Ukraine in 2022, and the Hamas terrorist attacks on Israel in late 

2023. Each of these events triggered abrupt volatility regime shifts in global financial markets, 

leading to elevated uncertainty, structural breaks in return distributions, and large-scale capital 

reallocations. Traditional forecasting methods, including GARCH-type models, have often 

struggled to adapt swiftly and effectively to these regime changes. In response, this dissertation 

develops a comprehensive empirical and methodological framework to better identify, interpret, 

and forecast financial market behavior in the presence of such shocks. The overarching aim of this 

work is twofold. First, it seeks to empirically quantify how financial markets, both in terms of 

returns and volatility, react to geopolitical shocks, with a particular emphasis on heterogeneity 

across sectors and asset classes. Second, it advances the methodological frontier of volatility 

forecasting by incorporating and systematically evaluating deep learning models, with a focus on 

the Temporal Fusion Transformer (TFT), a state-of-the-art deep learning architecture, designed 

for interpretable multivariate time series forecasting. 

The literature on financial market responses to geopolitical shocks is both growing and 

diverse, but several gaps remain. Much of the existing research focuses on narrow market 

segments—such as national stock indices or commodities, and primarily employs traditional 

econometric models (e.g., GARCH, EGARCH, Markov-switching, wavelets). While informative, 

these approaches often assume stationarity or linear volatility dynamics, which may not hold 

during geopolitical crises. Furthermore, previous work has frequently analyzed isolated events, 

limiting comparative assessments across different types of shocks. In contrast, recent 

developments in machine learning offer new avenues for modeling high-dimensional, nonlinear, 

and nonstationary financial time series, yet empirical applications in financial econometrics, 

particularly under extreme uncertainty, remain limited. 

This dissertation seeks to bridge this gap by combining deep learning methods with 

established econometric tools in a unified framework. It extends the literature by providing the 

first global sector-level event study on the Russian invasion of Ukraine, a comparative cross-event 

analysis of market behavior during three distinct geopolitical crises, and a comprehensive 

evaluation of the forecasting performance of advanced multivariate neural models across a broad 

set of financial instruments. 

The dissertation is organized around four empirical pillars. First, the identification of 

abnormal returns. Using an event study methodology, this section analyzes the return behavior of 

eleven MSCI World sector indices in the days surrounding the Russian attack on Ukraine. The 

results show significant negative abnormal returns on the event day across most sectors, with some 

recovery the following day. The cumulative abnormal returns display strong heterogeneity, 

reflecting differences in business model exposure to geopolitical risk. Notably, energy, financials, 



and utilities exhibit sustained negative performance, while sectors such as healthcare and 

information technology show signs of resilience. The second part of this dissertation deals with 

the identification of abnormal volatility, by applying the AVOLA framework in conjunction with 

a GARCH(1,1) model benchmarks. It reveals significant and persistent abnormal volatility in the 

aftermath of the invasion, particularly in financials, consumer staples, and industrials (Research 

Question 3 and Research Question 4). Moreover, statistical tests on volatility convergence across 

sectors suggest an evolving consensus in investor sentiment following the shock (Research 

Question 5). Third, the in terms of point accuracy, especially during the COVID-19 pandemic and 

the Russian GARCH-Class volatility forecasting, systematically evaluates 75 GARCH-type model 

configurations, including GARCH, EGARCH, and GJR-GARCH, for their in-sample fit and out-

of-sample multi-horizon volatility forecasting ability. Applied to nine major financial instruments 

(S&P 500, NASDAQ, Nikkei 225, Hang Seng, Gold Brent Crude Oil, U.S. Treasury Bonds, EUR-

USD exchange rate and Bitcoin), the results show that EGARCH models outperform other 

specifications in terms of in-sample-fit and out-of-sample performance for point forecasts 

evaluated by SMAPE. Conversely, GJR-GARCH models demonstrate stronger directional 

accuracy, particularly for short-term movements. 

The fourth and major section introduces the Temporal Fusion Transformer, which is 

applied in univariate and multivariate settings, with and without a regime-switching component. 

The TFT is trained using a rolling-window, direct multi-step forecasting approach for 1–10 day 

forecast horizons across the same nine financial instruments and three geopolitical crises. The 

results are striking. The TFT consistently outperforms GARCH-class models in terms of both 

accuracy and adaptability, particularly for short-term forecasts (1–3 days), where it is able to learn 

and react quickly to structural breaks. Its performance remains robust for longer horizons, though 

with diminishing relative gains. The regime-switching enhancement, which uses a binary volatility 

indicator based on quantile thresholds, further improves medium- and long-horizon forecast 

precision. 

 

This work offers several original contributions to the literature. The global sector-level 

return and volatility analysis of the Russian invasion, revealing differentiated market reactions 

across the MSCI World Index and providing new insights into sector-specific risk exposures. A 

cross-event comparative framework analyzing COVID-19, the Russian war, and the Hamas attack, 

enabling generalization of model performance and volatility behavior under varying types of 

geopolitical stress. By applying the Temporal Fusion Transformer for a multivariate forecasting 

setup across heterogeneous financial instruments, I demonstrated the benefits of capturing cross-

asset dependencies, volatility spillovers, and systemic dynamics. Thereby, I found evidence of a 

short-horizon superiority of the TFT, which excels at identifying high-frequency volatility clusters 

and structural regime shifts in the immediate aftermath of geopolitical shocks. When introducing 

a regime-switching enhancement to the TFT, it significantly improved forecasting performance in 

contexts with muted but persistent volatility changes, which was particularly evident during the 

Hamas conflict. The systematic hyperparameter optimization of the TFT, showed that 



configurations with 8 attention heads and moderate hidden layer sizes (32 units) deliver the best 

trade-off between expressiveness and generalization across diverse market conditions. Notably, 

the TFT achieved particularly high accuracy for the S&P 500 and NASDAQ during the Russian 

invasion, for U.S. Treasury Bonds and Brent Crude Oil during COVID-19, and for EUR/USD 

during the Hamas conflict. In contrast, traditional GARCH models still proved competitive for 

assets like gold and Bitcoin in periods of moderate volatility, underscoring the importance of asset-

specific modeling strategies. 

The findings of this dissertation carry meaningful implications for both academic 

researchers and financial practitioners. On the theoretical side, the research underscores the need 

to move beyond stationary, linear assumptions in econometric modeling and adopt more flexible, 

high-capacity forecasting architectures, particularly under crisis conditions. Practically, the results 

suggest that risk managers, institutional investors, and policymakers can enhance their volatility 

forecasting accuracy by integrating multivariate deep learning models like the TFT, especially 

when rapid shifts in market regimes are anticipated. Moreover, the ability of the TFT to incorporate 

regime indicators and macro-financial inputs (e.g., the VIX, the Geopolitical Risk Index) offers 

promising avenues for early-warning systems and tactical portfolio adjustments. The model’s 

interpretability, through attention weights and variable selection, also makes it compatible with 

regulatory expectations for model transparency and accountability. 

This dissertation contributes both conceptually and methodologically to the understanding 

of financial market behavior under geopolitical shocks. It demonstrates that while conventional 

econometric models offer useful baselines, deep learning models—particularly the Temporal 

Fusion Transformer—set a new standard for multivariate, multi-horizon volatility forecasting in 

crisis environments. By offering a rigorous comparative framework and an innovative modeling 

approach, this work lays the foundation for more adaptive, accurate, and context-aware forecasting 

in the face of global uncertainty.  
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APPENDIX 2: FURTHER MATERIAL 

  



Financial Instruments DC COVID-19 DC Complete t-statistic p-value 
S&P500 vs NASDAQ 0.9501 0.8673 14.7885 0.0000 

S&P500 vs VIX 0.6563 0.3755 17.7835 0.0000 

NASDAQ vs VIX 0.6159 0.3260 17.7560 0.0000 

S&P500 vs 10yr US T-Bond 0.5476 0.1988 27.0965 0.0000 

10yr US T-Bond vs VIX 0.5460 0.1889 24.3247 0.0000 

Nikkei 225 vs HangSeng 0.5189 0.1834 16.2950 0.0000 

NASDAQ vs 10yr US T-Bond 0.5041 0.1727 23.7250 0.0000 

Nikkei 225 vs VIX 0.3913 0.1779 12.2638 0.0000 

S&P500 vs Nikkei 225 0.3870 0.1087 11.2058 0.0000 

HangSeng vs VIX 0.3709 0.1362 7.0391 0.0000 

NASDAQ vs Nikkei 225 0.3586 0.0816 11.8138 0.0000 

EUR-USD vs VIX 0.3298 0.0612 13.6055 0.0000 

S&P500 vs Gold 0.3295 0.1048 11.2292 0.0000 

NASDAQ vs Brent Crude Oil 0.3260 0.0981 9.8653 0.0000 

Brent Crude Oil vs 10yr US T-Bond 0.3151 0.1266 6.5735 0.0000 

Gold vs VIX 0.2998 0.0733 9.1401 0.0000 

S&P500 vs Brent Crude Oil 0.2941 0.1300 6.8764 0.0000 

HangSeng vs EUR-USD 0.2935 0.1150 6.2421 0.0000 

Brent Crude Oil vs VIX 0.2914 0.1377 6.8291 0.0000 

HangSeng vs Gold 0.2749 0.0470 11.7219 0.0000 

NASDAQ vs Gold 0.2694 0.1034 8.0475 0.0000 

10yr US T-Bond vs EUR-USD 0.2645 0.0913 5.1291 0.0000 

S&P500 vs HangSeng 0.2554 0.0774 5.6310 0.0000 

HangSeng vs Brent Crude Oil 0.2525 0.0748 5.5603 0.0000 

S&P500 vs Bitcoin 0.2397 0.1115 3.6639 0.0005 

Nikkei 225 vs EUR-USD 0.2319 0.1057 4.1009 0.0001 

Gold vs 10yr US T-Bond 0.2247 0.2174 0.3762 0.7079 

NASDAQ vs Bitcoin 0.2212 0.1301 2.1733 0.0334 

NASDAQ vs HangSeng 0.2174 0.0671 5.6433 0.0000 

NASDAQ vs EUR-USD 0.1999 0.0433 9.8891 0.0000 

HangSeng vs Bitcoin 0.1979 0.0060 7.8909 0.0000 

Nikkei 225 vs Bitcoin 0.1841 0.0475 5.0986 0.0000 

S&P500 vs EUR-USD 0.1840 0.0202 10.0960 0.0000 

Gold vs EUR-USD 0.1822 0.1071 2.6731 0.0095 

Bitcoin vs VIX 0.1740 0.0841 3.0135 0.0037 

Gold vs GPR 0.1705 0.0620 5.1867 0.0000 

Gold vs Brent Crude Oil 0.1626 0.1080 1.2964 0.1995 

Nikkei 225 vs 10yr US T-Bond 0.1429 0.0797 1.9786 0.0521 

S&P500 vs HangSeng 0.2554 0.0774 5.6310 0.0000 

HangSeng vs Brent Crude Oil 0.2525 0.0748 5.5603 0.0000 

S&P500 vs Bitcoin 0.2397 0.1115 3.6639 0.0005 

Nikkei 225 vs EUR-USD 0.2319 0.1057 4.1009 0.0001 

Gold vs 10yr US T-Bond 0.2247 0.2174 0.3762 0.7079 

NASDAQ vs Bitcoin 0.2212 0.1301 2.1733 0.0334 

NASDAQ vs HangSeng 0.2174 0.0671 5.6433 0.0000 

NASDAQ vs EUR-USD 0.1999 0.0433 9.8891 0.0000 

HangSeng vs Bitcoin 0.1979 0.0060 7.8909 0.0000 

Nikkei 225 vs Bitcoin 0.1841 0.0475 5.0986 0.0000 

S&P500 vs EUR-USD 0.1840 0.0202 10.0960 0.0000 

Nikkei 225 vs Brent Crude Oil 0.0970 0.0487 1.4003 0.1662 

Brent Crude Oil vs Bitcoin 0.0963 0.0156 2.9217 0.0048 

Gold vs Bitcoin 0.0884 0.0567 1.6385 0.1057 

HangSeng vs GPR 0.0322 0.0283 0.1723 0.8637 

Bitcoin vs GPR 0.0169 -0.0263 3.1626 0.0022 

Nikkei 225 vs GPR 0.0113 0.0061 0.1939 0.8468 

10yr US T-Bond vs Bitcoin -0.0060 0.0661 -2.8983 0.0051 

S&P500 vs GPR -0.0332 0.0261 -3.6359 0.0005 

EUR-USD vs Bitcoin -0.0356 0.0672 -4.7107 0.0000 

NASDAQ vs GPR -0.0420 0.0272 -4.3867 0.0000 

EUR-USD vs GPR -0.1063 -0.0314 -5.1073 0.0000 

10yr US T-Bond vs GPR -0.1354 0.0251 -9.4566 0.0000 

GPR vs VIX -0.1681 0.1002 -20.0258 0.0000 

Brent Crude Oil vs GPR -0.1822 0.0322 -12.4323 0.0000 

Table 49: Dynamic correlation (DC) by exponential Pearson correlation of analyzed financial 

instruments, Geopolitical Risk Index (GPR) and VIX during COVID-19 in 02/03/2020 – 

04/30/2020. Statistically significant differences between period of geopolitical shock and full 

sample (DC Complete) by t-test statistic. Source: Own calculations using Matlab (2025). 



Financial Instruments DC Russian War DC Complete t-statistic p-value 
S&P500 vs NASDAQ 0.8641 0.8673 -0.5821 0.5618 

GPR vs VIX 0.6051 0.1002 22.1412 0.0000 

Nikkei 225 vs EUR-USD 0.4046 0.1057 15.0289 0.0000 

Gold vs VIX 0.3561 0.0733 16.6758 0.0000 

Gold vs GPR 0.3341 0.0620 18.9583 0.0000 

S&P500 vs VIX 0.3191 0.3755 -4.4356 0.0000 

Nikkei 225 vs Gold 0.3041 0.0685 9.9618 0.0000 

NASDAQ vs VIX 0.2690 0.3260 -5.2017 0.0000 

Gold vs Brent Crude Oil 0.2576 0.1080 5.7683 0.0000 

Nikkei 225 vs HangSeng 0.2558 0.1834 3.3898 0.0011 

Brent Crude Oil vs 10yr US T-Bond 0.2553 0.1266 5.8151 0.0000 

Nikkei 225 vs VIX 0.2514 0.1779 5.1405 0.0000 

Brent Crude Oil vs VIX 0.2497 0.1377 7.3302 0.0000 

10yr US T-Bond vs VIX 0.2146 0.1889 1.8770 0.0638 

Brent Crude Oil vs Bitcoin 0.2035 0.0156 11.3906 0.0000 

HangSeng vs VIX 0.1949 0.1362 3.7973 0.0003 

Nikkei 225 vs GPR 0.1889 0.0061 19.0111 0.0000 

NASDAQ vs Bitcoin 0.1865 0.1301 3.2416 0.0017 

S&P500 vs GPR 0.1831 0.0261 9.3331 0.0000 

Brent Crude Oil vs GPR 0.1771 0.0322 10.0209 0.0000 

Bitcoin vs VIX 0.1685 0.0841 5.0529 0.0000 

S&P500 vs Brent Crude Oil 0.1685 0.1300 2.3100 0.0237 

NASDAQ vs HangSeng 0.1671 0.0671 3.7892 0.0003 

10yr US T-Bond vs Bitcoin 0.1630 0.0661 6.7901 0.0000 

Nikkei 225 vs Brent Crude Oil 0.1429 0.0487 4.7224 0.0000 

HangSeng vs GPR 0.1394 0.0283 4.7560 0.0000 

NASDAQ vs Brent Crude Oil 0.1271 0.0981 2.1333 36.0000 

HangSeng vs EUR-USD 0.1239 0.1150 0.4646 0.6436 

HangSeng vs Brent Crude Oil 0.1198 0.0748 2.1825 0.0324 

10yr US T-Bond vs GPR 0.1144 0.0251 3.8911 0.0002 

Gold vs EUR-USD 0.1126 0.1071 0.3261 0.7453 

S&P500 vs Gold 0.1117 0.1048 0.2059 0.8375 

S&P500 vs HangSeng 0.1104 0.0774 1.1791 0.2426 

EUR-USD vs VIX 0.1096 0.0612 2.8703 0.0054 

EUR-USD vs GPR 0.0971 -0.0314 8.9871 0.0000 

S&P500 vs Bitcoin 0.0940 0.1115 -0.8833 0.3800 

NASDAQ vs GPR 0.0866 0.0272 4.1956 0.0001 

EUR-USD vs Bitcoin 0.0650 0.0672 -0.0904 0.9283 

S&P500 vs EUR-USD 0.0574 0.0202 1.5024 0.1377 

Gold vs 10yr US T-Bond 0.0553 0.2174 -10.7424 0.0000 

HangSeng vs Gold 0.0491 0.0470 0.1089 0.9136 

NASDAQ vs EUR-USD 0.0439 0.0433 0.0295 0.9765 

Bitcoin vs GPR 0.0415 -0.0263 4.4784 0.0000 

Brent Crude Oil vs EUR-USD 0.0265 0.0623 -2.2974 0.0244 

NASDAQ vs 10yr US T-Bond 0.0116 0.1727 -8.9536 0.0000 

S&P500 vs 10yr US T-Bond 0.0083 0.1988 -9.8089 0.0000 

S&P500 vs Nikkei 225 -0.0197 0.1087 -8.0181 0.0000 

NASDAQ vs Gold -0.0198 0.1034 -5.4790 0.0000 

Gold vs Bitcoin -0.0425 0.0567 -5.4437 0.0000 

10yr US T-Bond vs EUR-USD -0.0515 0.0913 -8.9726 0.0000 

Nikkei 225 vs Bitcoin -0.0788 0.0475 -11.4608 0.0000 

HangSeng vs Bitcoin -0.0857 0.0060 -6.9121 0.0000 

NASDAQ vs Nikkei 225 -0.1116 0.0816 -12.4151 0.0000 

HangSeng vs 10yr US T-Bond -0.1436 0.0331 -11.0352 0.0000 

Nikkei 225 vs 10yr US T-Bond -0.1738 0.0797 -17.6149 0.0000 

S&P500 vs NASDAQ 0.8641 0.8673 -0.5821 0.5618 

GPR vs VIX 0.6051 0.1002 22.1412 0.0000 

Nikkei 225 vs EUR-USD 0.4046 0.1057 15.0289 0.0000 

Gold vs VIX 0.3561 0.0733 16.6758 0.0000 

Gold vs GPR 0.3341 0.0620 18.9583 0.0000 

S&P500 vs VIX 0.3191 0.3755 -4.4356 0.0000 

Nikkei 225 vs Gold 0.3041 0.0685 9.9618 0.0000 

NASDAQ vs VIX 0.2690 0.3260 -5.2017 0.0000 

Table 50: Dynamic correlation (DC) by exponential Pearson correlation of analyzed financial 

instruments, Geopolitical Risk Index (GPR) and VIX during the Russian invasion in 02/01/2022 

– 04/29/2022. Statistically significant differences between period of geopolitical shock and full 

sample (DC Complete) by t-test statistic. Source: Own calculations using Matlab (2025). 



Financial Instruments DC Hamas Attack DC Complete t-statistic p-value 
S&P500 vs NASDAQ 0.9139 0.8673 11.5801 0.0000 

GPR vs VIX 0.3491 0.1002 7.5812 0.0000 

HangSeng vs EUR-USD 0.2986 0.1150 7.6480 0.0000 

NASDAQ vs VIX 0.2907 0.3260 -2.7212 0.0078 

S&P500 vs VIX 0.2847 0.3755 -6.7881 0.0000 

Gold vs Brent Crude Oil 0.2819 0.1080 9.6443 0.0000 

NASDAQ vs 10yr US T-Bond 0.2816 0.1727 6.7459 0.0000 

S&P500 vs 10yr US T-Bond 0.2654 0.1988 3.9830 0.0001 

Nikkei 225 vs 10yr US T-Bond 0.2420 0.0797 7.6194 0.0000 

S&P500 vs GPR 0.2245 0.0261 14.8214 0.0000 

Nikkei 225 vs EUR-USD 0.2096 0.1057 4.6531 0.0000 

Nikkei 225 vs VIX 0.2029 0.1779 1.7142 0.0904 

EUR-USD vs Bitcoin 0.1914 0.0672 5.5915 0.0000 

NASDAQ vs GPR 0.1833 0.0272 10.6425 0.0000 

10yr US T-Bond vs GPR 0.1608 0.0251 7.0622 0.0000 

Brent Crude Oil vs VIX 0.1472 0.1377 0.6313 0.5297 

Brent Crude Oil vs 10yr US T-Bond 0.1395 0.1266 0.8606 0.3919 

Gold vs 10yr US T-Bond 0.1388 0.2174 -5.5345 0.0000 

Bitcoin vs GPR 0.1318 -0.0263 9.0823 0.0000 

S&P500 vs Nikkei 225 0.1201 0.1087 0.6216 536.0000 

NASDAQ vs Gold 0.1186 0.1034 0.6588 0.5122 

Gold vs GPR 0.1031 0.0620 2.3906 0.0194 

NASDAQ vs Nikkei 225 0.0915 0.0816 0.5803 0.5634 

HangSeng vs Brent Crude Oil 0.0903 0.0748 1.0265 0.3076 

Nikkei 225 vs Brent Crude Oil 0.0890 0.0487 1.9712 0.0526 

10yr US T-Bond vs VIX 0.0884 0.1889 -6.5645 0.0000 

Nikkei 225 vs Bitcoin 0.0874 0.0475 3.2008 0.0019 

10yr US T-Bond vs EUR-USD 0.0760 0.0913 -1.1689 0.2452 

S&P500 vs Gold 0.0718 0.1048 -1.8908 0.0624 

HangSeng vs Gold 0.0707 0.0470 0.9306 0.3553 

Gold vs VIX 0.0496 0.0733 -0.9769 0.3319 

HangSeng vs VIX 0.0304 0.1362 -5.7676 0.0000 

10yr US T-Bond vs Bitcoin 0.0293 0.0661 -4.1213 0.0001 

Gold vs Bitcoin 0.0281 0.0567 -1.1417 0.2575 

HangSeng vs Bitcoin 0.0249 0.0060 1.3270 0.1881 

Nikkei 225 vs GPR 0.0064 0.0061 0.0181 0.9856 

Bitcoin vs VIX 0.0061 0.0841 -4.3821 0.0000 

Brent Crude Oil vs Bitcoin -0.0053 0.0156 -1.1653 0.2477 

NASDAQ vs Brent Crude Oil -0.0068 0.0981 -6.8980 0.0000 

Brent Crude Oil vs EUR-USD -0.0095 0.0623 -2.9235 0.0047 

NASDAQ vs Bitcoin -0.0105 0.1301 -9.3661 0.0000 

S&P500 vs Bitcoin -0.0197 0.1115 -9.4656 0.0000 

Brent Crude Oil vs GPR -0.0374 0.0322 -3.8828 0.0002 

Nikkei 225 vs HangSeng -0.0639 0.1834 -9.4219 0.0000 

Gold vs EUR-USD -0.0894 0.1071 -11.3407 0.0000 

S&P500 vs Brent Crude Oil -0.0968 0.1300 -16.4279 0.0000 

HangSeng vs GPR -0.1077 0.0283 -8.3285 0.0000 

EUR-USD vs VIX -0.1150 0.0612 -18.4708 0.0000 

HangSeng vs 10yr US T-Bond -0.1303 0.0331 -8.8607 0.0000 

EUR-USD vs GPR -0.1440 -0.0314 -7.9347 0.0000 

NASDAQ vs HangSeng -0.1996 0.0671 -16.0907 0.0000 

Nikkei 225 vs Gold -0.2286 0.0685 -20.1083 0.0000 

S&P500 vs HangSeng -0.2542 0.0774 -24.0926 0.0000 

S&P500 vs EUR-USD -0.2544 0.0202 -24.0646 0.0000 

NASDAQ vs EUR-USD -0.2585 0.0433 -29.4377 0.0000 

S&P500 vs NASDAQ 0.9139 0.8673 11.5801 0.0000 

GPR vs VIX 0.3491 0.1002 7.5812 0.0000 

HangSeng vs EUR-USD 0.2986 0.1150 7.6480 0.0000 

NASDAQ vs VIX 0.2907 0.3260 -2.7212 0.0078 

S&P500 vs VIX 0.2847 0.3755 -6.7881 0.0000 

Gold vs Brent Crude Oil 0.2819 0.1080 9.6443 0.0000 

NASDAQ vs 10yr US T-Bond 0.2816 0.1727 6.7459 0.0000 

S&P500 vs 10yr US T-Bond 0.2654 0.1988 3.9830 0.0001 

Table 51: Dynamic correlation (DC) by exponential Pearson correlation of analyzed financial 

instruments, Geopolitical Risk Index (GPR) and VIX during the Hamas attack from 10/01/2023 

– 12/29/2023. Statistically significant differences between period of geopolitical shock and full 

sample (DC Complete) by t-test statistic. Source: Own calculations using Matlab (2025). 



 
Figure 11: Boxplots of MSCI World Sector Index log-returns for 07/01/2021 – 06/30/2022. 

Source: Own illustration using Python Matplotlib (2025). 

 

 
Figure 12: Boxplots of daily log-returns for for financial instrument in 07/01/2019 – 06/29/2024. 

Source: Own illustration using Python Matplotlib (2025). 



 
Figure 13: Boxplots of daily log-returns for selected financial instruments during COVID-19 

period in 02/03/2020 – 04/30/2020. Source: Own illustration using Python Matplotlib (2025). 

 
Figure 14: Boxplots of daily log-returns for selected financial instruments during the Russian 

attack period in 02/01/2022 – 04/29/2022. 

Source: Own illustration using Python Matplotlib (2025). 

 

 



 
Figure 15: Boxplots of daily log-returns for selected financial instruments during the Hamas 

attack period in 10/02/2023 – 12/29/2023. 

Source: Own illustration using Python Matplotlib (2025). 

 

 
Figure 16: Weighting by market capitalization of U.S. companies in MSCI World sector indices 

as at 02/2022 (%). Source: Own edition using MS Excel (2024). 

  



 
Figure 17: Abnormal and cumulative abnormal returns around event day for 

MSCI World Consumer Discretionary Index (%). 

Source: Robus et al. (2024). 

 

 
Figure 18: Abnormal and cumulative abnormal returns around event day for 

MSCI World Consumer Staples Index (%). Source: Robus et al. (2024).  



 

Figure 19: Abnormal and cumulative abnormal returns around event day for 

MSCI World Energy Index (%). Source: Robus et al. (2024). 

 

 
Figure 20: Abnormal and cumulative abnormal returns around event day for 

MSCI World Financials Index (%). Source: Robus et al. (2024). 

  



 

Figure 21: Abnormal and cumulative abnormal returns around event day for 

MSCI World Health Care Index (%). Source: Robus et al. (2024). 

 

 
Figure 22: Abnormal and cumulative abnormal returns around event day for 

MSCI World Industrials Index (%). Source: Robus et al. (2024). 

  



 
Figure 23: Abnormal and cumulative abnormal returns around event day for 

MSCI World Materials Index (%). Source: Robus et al. (2024). 

 

 
Figure 24: Abnormal and cumulative abnormal returns around event day for 

MSCI World Real Estate Index (%). Source: Robus et al. (2024). 

  



 
Figure 25: Abnormal and cumulative abnormal returns around event day for 

MSCI World Telecommunications Index (%). Source: Robus et al. (2024). 

 

 
Figure 26: Abnormal and cumulative abnormal returns around event day for 

MSCI World Utilities Index (%). Source: Robus et al. (2024). 

  



 
Figure 27: Cumulative abnormal returns around event day for all MSCI World 

Sector Indices (%). Source: Robus et al. (2024). 

 

 
Figure 28: Abnormal Volatility (%) of Consumer Discretionary Sector Index 

(02/17/22 – 03/03/22). Source: Robus et al. (in press). 

  



 

Figure 29: Abnormal Volatility (%) of Consumer Staples Sector Index 

(02/17/22 – 03/03/22). Source: Robus et al. (in press). 

 

 
Figure 30: Abnormal Volatility (%) of Energy Sector Index 

(02/17/22 – 03/03/22). Source: Robus et al. (in press). 

  



 

Figure 31: Abnormal Volatility (%) of Financials Sector Index 

(02/17/22 – 03/03/22). Source: Robus et al. (press). 

 

 

Figure 32: Abnormal Volatility (%) of Health Care Sector Index 

(02/17/22 – 03/03/22). Source: Robus et al. (in press). 

  



 

Figure 33: Abnormal Volatility (%) of Industrials Sector Index 

(02/17/22 – 03/03/22). Source: Robus et al. (in press). 

 

 

Figure 34: Abnormal Volatility (%) of IT Sector Index 

(02/17/22 – 03/03/22). Source: Robus et al. (in press). 

  



 

Figure 35: Abnormal Volatility (%) of Materials Sector Index 

(02/17/22 – 03/03/22). Source: Robus et al. (in press). 

 

 

Figure 36: Abnormal Volatility (%) of Real Estate Sector Index 

(02/17/22 – 03/03/22). Source: Robus et al. (in press). 

  



 

Figure 37: Abnormal Volatility (%) of Telecommunications Sector Index 

(02/17/22 – 03/03/22). Source: Robus et al. (in press). 

 

 

Figure 38: Abnormal Volatility (%) of Utilities Sector Index 

(02/17/22 – 03/03/22). Source: Robus et al. (in press). 
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