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1. BACKGROUND OF THE WORK AND ITS AIMS

1.1.  Geopolitical shocks and their impact on financial markets

Geopolitical shocks, events such as wars, terrorist attacks, or sudden
shifts in international relations have historically disrupted global political,
economic, and financial systems. These shocks generate significant
uncertainty, leading to sharp movements in financial markets (Baker et al.,
2016; Bloom, 2009). Investors, faced with difficulty in valuing assets, often
respond with rapid sell-offs and heightened risk aversion, resulting in
elevated volatility (Fama & MacBeth, 1973). A key distinction exists between
geopolitical risk (potential threats) and geopolitical shocks (realized events),
with the latter triggering immediate market corrections (Caldara & Iacoviello,
2022).

Recent shocks, including the COVID-19 pandemic, Russia’s invasion
of Ukraine, and the Hamas attack on Israel have demonstrated how sudden
disruptions produce global ripple effects across asset classes and economies.
COVID-19 marked an unprecedented global crisis. Beginning in late 2019, it
spread rapidly, prompting the World Health Organization to declare a global
pandemic in March 2020. The virus disrupted supply chains, forced business
closures, and caused mass unemployment (Fernandes, 2020). Stock markets
collapsed, and the VIX, a key volatility index, spiked to 85.11, four times its
average (CBOE, 2024). No previous health crisis caused comparable market
disruption (Baker et al., 2020). Russia’s full-scale invasion of Ukraine on
February 24, 2022, triggered another surge in global financial volatility.
Markets fell sharply, energy prices soared, and the VIX reached 39.00
(FRED, 2024e¢). The war disrupted European markets, raised concerns about
energy security, and sparked sanctions, adding further uncertainty (Izzeldin
et al., 2023). The October 7, 2023, Hamas attack on Israel escalated regional
instability. The attack resulted in over 1,400 deaths and hundreds of hostages.
Israel declared a state of war and began military operations in Gaza (Levy et
al., 2024). Though the VIX rose only moderately, the event raised fears of
broader regional conflict (Ugli, 2024). All three events triggered spikes in



volatility—a key metric in asset pricing and risk management (Black &
Scholes, 1973).

Volatility influences investment decisions, option pricing, and capital
flows. High volatility often leads to reduced foreign investment and portfolio
rebalancing. It also tends to cluster, with turbulent periods followed by more
instability (Mandelbrot, 1963). Asymmetric volatility, where negative news
causes larger spikes, complicates forecasting and underlines the importance
of robust models like GARCH, which accommodate volatility clustering and
leverage effects. Modeling volatility during geopolitical shocks is essential
because such events trigger abrupt and significant changes in market
dynamics, leading to heightened uncertainty and rapid shifts in asset prices.

Accurate volatility forecasts enable investors, policymakers, and risk
managers to better assess and respond to systemic risk, helping to stabilize
markets and prevent overreactions. Moreover, predictive models that capture
volatility clustering and asymmetry offer valuable insights for optimizing
portfolio strategies, setting appropriate risk limits, and enhancing decision-

making during crisis periods.
1.2.  Research scope

In this study, I have taken a detailed analysis of the effect of
geopolitical shocks on market dynamics, as well as the possibilities for
modeling and forecasting volatility in times of geopolitical shocks. To carry
out the most comprehensive analysis possible, I examined many different
aspects.

The first part of my investigation is concerned with identifying
abnormal returns and abnormal volatility in times of geopolitical shocks. I
was conducting a detailed event analysis for the period around the Russian
attack on Ukraine and examined the reaction of the financial market to this
shock in terms of returns and volatility. By analyzing sector-specific
responses rather than aggregated indices, the study captures distinct behaviors
across industries such as technology, healthcare, finance, and energy. Each

sector reacts differently to macroeconomic changes, offering unique risk-



return profiles (Elyasiani et al., 2020). For example, cyclical sectors like
consumer discretionary are more responsive to economic shifts, while
defensive sectors like healthcare remain relatively stable (Long & Plosser,
1987). Understanding these dynamics helps investors optimize returns
through sector rotation and improved risk assessment (He et al., 2020; Sassetti
& Tani, 2006). Sectoral analysis also reveals emerging trends, such as the rise
of renewables or e-commerce impacts, and enhances benchmarking of
individual stocks. The MSCI World Sector Indices, derived from the MSCI
World Index, provide comprehensive coverage of large and mid-cap
companies across 23 developed markets, representing around 85% of free
float-adjusted market capitalization (MSCI, 2024a; 2024b). These indices are
widely used as benchmarks by institutional investors and are transparent,
regularly updated, and globally diversified. However, limitations include a
strong U.S. weighting, underrepresentation of smaller yet influential firms,
and exposure to currency risk.

The core aim was to assess how this major geopolitical shock affected
the world’s largest companies, particularly in terms of volatility—a key
measure of uncertainty and investor disagreement. Volatility spikes often
reflect divergent views on asset valuation, and large price swings indicate
reactions to new information. The study applied the concepts of abnormal
returns (Campbell & Lo, 1996; Fama, 1970) and abnormal volatility (Beaver,
1968; Brown & Warner, 1985) to measure sector-specific responses to the

invasion. My concrete research questions are as follows:

= Research Question 1: Are there significant abnormal returns on the
February 24, 2022 in the sectors of the MSCI World index, respectively?

= Research Question 2: Are there significant cumulative abnormal returns
in the MSCI World index sectors up to 25 days after the February 24,
20227

= Research question 3: Can significant abnormal volatility (-5,+5 days)
around the Russian attack on Ukraine at February 24, 2022 in the MSCI

market sectors be observed?



= Research question 4: Can a persistence in the abnormal volatility after
February 24, 2022 in the MSCI market sectors be observed?
= Research question 5: Are there significant differences of the abnormal

volatility between the MSCI market sectors?

The identification of abnormal returns and volatility is a
fundamentally ex-post analysis and important for a retrospective assessment
of the impact and duration of geopolitical shocks. From a practical point of
view, for example that of an active market participant or a risk manager, the
forward-looking aspect is more relevant, i.e. whether the evolution of market
dynamics can be predicted. So, the second part of my study covers the
modeling and forecasting of financial time series around geopolitical shocks.
Particularly in turbulent times, action is often needed in the form of increasing
hedges or adjusting the portfolios of market participants to adapt to the new
situation and manage the risk of adverse effects. This always involves the best
possible assessment of volatility. With my study, I wanted to provide insights
for research and practice into which forecasting methods are best suited for
modeling volatility on the one hand and out-of-sample forecasting on the
other in phases of geopolitical shocks. I focused on the periods in which I
observed a shock to the financial markets and analyze how different
forecasting methods can predict periods of high volatility.

To do this, I evaluated different approaches for prediction, univariate
and multivariate, as well as parametric and non-parametric approaches. The
core model of my analysis is the state-of-the-art Temporal Fusion
Transformer (TFT) for modeling and predicting time series. For my
univariate parametric approach, and as a benchmark, [ examined the
frequently applied GARCH, EGARCH, and GJR-GARCH models in terms
of their ability to explain and predict volatility for the most important
financial instruments. From a practitioner's point of view, there is always a
trade-off between model complexity and performance. Therefore, I also
provided statistically significant differences in forecasting performance
between model classes in my study.

In this context, I wanted to answer the following research questions:



=  Research Question 6: Which GARCH-type model provides the best in-
sample fit regarding the volatility of the analyzed financial instruments
during the recent geopolitical shocks?

= Research Question 7: Which GARCH-type model provides the best out-
of-sample forecasts regarding the volatility of the analyzed financial
instruments during the recent geopolitical shocks?

=  Research Question 8: Can the Temporal Fusion Transformer achieve
better out-of-sample performance than the best performing GARCH-type
model in times of geopolitical shocks?

= Research Question 9: Can the implementation of a regime-switching
feature in the TFT increase the forecasting performance in times of
geopolitical shocks?

= Research Question 10: Can a significantly better forecasting
performance be achieved by optimizing the hyperparameters of the TFT
than the performance averaged by a hyperparameter grid in times of
geopolitical shocks?

= Research Question 11: Can a multivariate forecasting approach of the
Temporal Fusion Transformer model achieve better results than a

univariate approach of the TFT in times of geopolitical shocks?

To answer these questions, I used various modifications of the
Temporal Fusion Transformer to predict the volatility of some of the most
important financial instruments: the highly traded stock indices S&P 500,
NASDAQ 100, Nikkei 225 and Hang Seng; Gold as the essential instrument
for hedging against inflation and a long-term store of value; Brent Crude Oil
as the most important source of energy; the 10 years Treasury Bond as the
essential reference for fixed income, a benchmark for returns and the price of
time; the exchange rate of Euro vs. US-Dollar as an indicator of the balance
between the two most important currencies; and Bitcoin as an instrument with
increasing market capitalization, high potential of growth and a hedge against
inflation. For selected periods during the geopolitical shocks of COVID-19,
the Russian attack on Ukraine and the Hamas attack on Israel, I examined

how well the different methods could predict these phases of increased market



volatility. Using a rolling window approach, I trained the model with data
from the last 250 trading days and generate direct multi-step ahead forecasts
for the next 10 trading days. Then I moved the window forward by one step.
For the three periods of geopolitical shocks under consideration, I analyze

around 60 steps of the window each.

1.3. Contribution to research and outline

Ensuring the robustness of results is essential in empirical studies. To
achieve this, I analyzed nine financial assets across various markets—
including stocks, commodities, bonds, currencies, and cryptocurrencies. This
broad scope reduces sampling bias and enhances generalizability (Baltagi,
2008; Pesaran, 2015), while also enabling the identification of structural
similarities or differences across markets. Though care must be taken with
inter-variable correlations, this diverse dataset supports more resilient
conclusions (Stock & Watson, 2012). Three major geopolitical shocks were
analyzed: COVID-19, the Russian invasion of Ukraine, and the Hamas attack
on Israel. These events differ in causes and macroeconomic impact, offering
a rich basis for model testing. Evaluating multiple periods improves
robustness by minimizing event-specific distortions and revealing model
limitations or sensitivities (Giacomini & Rossi, 2010). Out-of-sample
forecasts were used to assess predictive performance, helping mitigate
overfitting risks and improve model selection (Welch & Goyal, 2008). I
applied a rolling window method for training and testing forecasting models,
generating multi-step forecasts (1-10 trading days ahead) to evaluate
performance across different horizons. This cross-validation approach
respects the time-series structure and enhances forecast reliability (Hyndman
& Athanasopoulos, 2018). This work contributes to the growing field of
volatility prediction amid increasing geopolitical uncertainty. As the global
order transitions from unipolar to multipolar, the likelihood of disruptive
geopolitical shocks rises, posing risks for portfolio management. Accurate
volatility forecasts are critical for effective hedging, avoiding both over- and
under-hedging. I began with an ex-post analysis of abnormal returns and



volatility using MSCI World Sector Indices to show how sectors responded
differently to the Russian invasion. This revealed not only the intensity of
shocks but also the persistence and sector-specific impacts. Notably, some
sectors benefitted during the turmoil.

To advance volatility prediction, I evaluated the Temporal Fusion
Transformer (TFT), a neural network designed for time series forecasting. |
tested univariate, multivariate, and regime-switching models, comparing their
performance to traditional GARCH models. Given the limited literature on
TFTs in the context of geopolitical shocks, this fills a notable research gap.

The thesis is structured as follows: Section 2 reviews related literature;
Section 2 outlines methods and data; Section 3 covers the results of my
research regarding the abnormal return analysis and the volatility forecasting
by the Temporal Fusion Transformer Deep Learning network. Section 4
draws a conclusion, and sections 5 presents new scientific contributions. In

section 6, I present my related publications.



2. MATERIAL AND METHODS

My research focused on two main areas. First, I analyzed abnormal market
dynamics, specifically abnormal returns and volatility, around geopolitical
shocks using MSCI World sector indices. I applied event study
methodologies (Campbell & Lo, 1996; Fama, 1970) to evaluate stock sector
responses to the Russian invasion of Ukraine. For abnormal volatility, I
followed frameworks by Ahmed et al. (2020) and Beaver (1968). Second, I
assessed the out-of-sample forecasting performance of the Temporal Fusion
Transformer (TFT) during three geopolitical shocks: COVID-19, the Russian
invasion, and the Hamas attack on Israel. Using a rolling window approach, I

trained a
Data Data Data Model Model Forecasting
Selection Preparation Testing Training Forecasting Evaluation
* S&P 500 * Missing values * Summary * 250 Days Rolling Window GARCH-class:
* NASDAQ handling statistics Training Out-of-sample + SMAPE
* Nikkei 225 * Time gap * Test for Window Size Forecasts: 1,...,10 * Directional
* HangSeng handling stationarity Accuracy
* Gold Future * Outlier handling (Augmented ML-Estimation: GARCH-class:
+ Brent Oil Future Dickey-Fuller- * GARCH * GARCH TFT:
* US. 10yr T- test) * EGARCH * EGARCH * SMAPE
Bond * Test for ARCH * GJR-GARCH * GJR-GARCH
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Figure 1: Research procedure for out-of-sample forecasting. Source: Own
illustration using MS PowerPoint (2025).

multivariate TFT to forecast 1-10 day-ahead volatility for nine major
financial instruments, including key stock indices (S&P 500, NASDAQ,
Nikkei 225, Hang Seng), gold, Brent oil, 10-year Treasury bonds, EUR-USD,
and Bitcoin. I incorporated the VIX futures and the Geopolitical Risk Index
(GPR) as explanatory variables. I compared TFT’s performance to GARCH,
EGARCH, and GJR-GARCH models using SMAPE. I also tested univariate
vs. multivariate approaches and evaluated a regime-switching version of TFT.

Forecasts were repeated with varying hyperparameters (attention heads and



hidden sizes) to assess robustness and improve prediction accuracy. The

procedure is illustrated in Figure 1 and Figure 2.

250 business days 10 business days
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Figure 2: Rolling window approach for TFT out-of-sample forecasting.
Source: Own illustration using MS PowerPoint (2025).

2.1. Applied methodology

There are several definitions of volatility: statistical volatility (Hull,
2022), conditional volatility (Bollerslev, 1986; Engle, 1982; Mandelbrot,
1963), which refers to the time-varying variance of returns, conditioned on
past information, implied volatility which is the markets expectation of the
future volatility of an asset, as inferred from the price of options (Black &
Scholes, 1973), realized volatility, which is a non-parametric, ex-post
measure of actual volatility, calculated using high-frequency intraday
returns (Andersen et al., 2003) and historical volatility is the standard
deviation of asset returns over a specified past window, without assuming
time-variation (Poon & Granger, 2003). In our study, we used the statistical
definition of Hull (2022) and the conditional volatility of Engle (1982). The
classical definition assumes that returns r; are random variables, and

volatility captures their dispersion:

o= Var(r) = JE[(r, — p)?]

where r; are log returns of a time series of a financial asset p; and u = E[r¢]

is the expected value of 13, for t € {1, ...,T}.



2.2. Abnormal Returns and Abnormal Volatility

To identify Abnormal Returns and Abnormal Volatility, I used the
event study approach of Campbell & Lo (1996), Fama (1970) and MacKinley
(1997) to analyze global stock market sector’s reaction to the Russian attack.
For the evaluation of abnormal volatility, I use the approach of Ahmed et al.,
(2020), Beaver (1968), Brown & Warner (1985), Landsman & Maydew
(2002) and Prasad et al., (2021). In terms of formal notation, I followed Robus
et al. (2024). The procedure of an event study using Abnormal volatility is
based on estimating the model parameters within the pre-event phase and then
using this model to make predictions for the event and post-event phase.
Bialkowski et al., (2008) gave the notice that a one-step forecast does not
produce an event-independent forecast. This problem can be solved by
making the volatility forecast depends only on the information available

before the event.
2.3. GARCH-Class Models

The Generalized Autoregressive Conditional Heteroscedasticity
GARCH(p,q) process was introduced by Bollerslev (1986) to model the time-
varying behavior of the variance. In addition to the ARCH model developed
by Engle (1982), in which only the squared historical error terms are included
to model the current variance, the GARCH model also consists of the
historical variance. This was due to empirical observations that volatility
shows persistence. The GARCH parameters determine the strength of the
influence of the respective components. The EGARCH process was
introduced by Nelson (1991) to model the leverage effect that occurs in many
financial time series. The GJR-GARCH model of Glosten, Jagannathan, and
Runkle (Glosten et al., 1993), which is also known as the threshold GARCH
(T-GARCH) model, is proposed to capture the asymmetric behavior of
volatility regarding good and bad news, and by allowing the current
conditional variance has a different response to the past positive and negative

returns, captured by the dummy variable D;.



In my research, I used these three GARCH-type models in different
parameter setups (p = 1,...,5 and g = 1, ...,5). Thus, I evaluated the best-
fitting GARCH type model from a set of 75 competing models. To estimate
the GARCH(p,q) parameters, I used the approach of the maximum likelihood,
regarding Bollerslev (1986), Bollerslev & Woodbridge (1992), and Nelson
(1991).

2.4. The Temporal Fusion Transformer for volatility forecasting.

The Temporal Fusion Transformer (TFT) is a state-of-the-art deep
learning architecture specifically developed for forecasting multivariate time
series across multiple prediction horizons. Introduced by Lim et al. (2021),
the TFT integrates key elements from LSTM networks, self-attention
mechanisms, and interpretable model components, enabling it to model
complex temporal dependencies while remaining transparent in its
predictions (Figure 3). One of TFT’s most valuable features is its ability to
produce multi-horizon probabilistic forecasts using quantile regression,
which not only provides point estimates but also generates prediction
intervals, allowing for a more comprehensive representation of uncertainty.
This makes the model particularly suited for applications in finance, energy,
and other risk-sensitive fields. Moreover, the TFT is highly interpretable: its
attention layers and feature importance scores allow users to identify which
variables and time steps contributed most to a given forecast, supporting
informed decision-making and model traceability. The architecture includes
several innovative components. Variable Selection Networks (VSNs),
powered by Gated Residual Networks (GRNs), dynamically assign weights
to input features, filtering out noise and highlighting the most relevant
variables. Static Covariate Encoders embed time-invariant inputs such as
asset class or region, shaping model behavior throughout the network. The
LSTM-based encoder-decoder architecture captures short- and medium-term
dependencies, while known future inputs are integrated through the decoder.
To capture long-range patterns, the multi-head attention mechanism learns to
focus on different temporal segments, improving both accuracy and

interpretability. The Temporal Fusion Decoder then combines outputs from



the LSTM and attention layers, fusing them into a final representation that
balances local and global patterns. Finally, the Quantile Prediction Layer
generates forecasts at multiple quantile levels (e.g., 10%, 50%, 90%), offering

a nuanced view of potential outcomes and supporting robust risk assessment.
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Figure 3: Temporal Fusion architecture. Source: Lim et al. (2021).

Table 1: Applied hyperparameter for Temporal Fusion Transformer training
and forecasting

TFT Parameters Value
Learning Rate 0.001
Dropout Rate 0.01
Minibatch Size 32
Attention Head 1,4,8
Hidden Size 16, 32, 64
Max. Epochs 100

Loss Metrics MAE, MSE

Source: Own collection (2025).

This attribute is particularly relevant in the financial sector, where
model decision traceability is essentially. Its ability to effectively model both



short-term and long-term dependencies makes it a powerful tool for modern
time series analysis tasks. To train the TFT, I used the combination of
hyperparameters as shown in Table 1. In doing so, I based the hyperparameter
selection by publications such as: Frank (2023); Hartanto & Gunawan (2024)
and Lim et al. (2021).

Attributed to its flexibility, the Temporal Fusion Transformer (TFT)
is particularly suited for modeling financial time series, which exhibit
complex, non-linear dynamics such as short-term fluctuations, long-term
dependencies, volatility clustering, regime shifts, and abrupt volatility spikes
(Box etal., 2015; Engle & Bollerslev, 1986; Glosten et al., 1993). Short-term
behaviors, including return autocorrelations, momentum effects, and market
reactions, are captured via Gated Residual Networks (GRNs), LSTM
encoders, and decoder self-attention. GRNs dynamically weight inputs at
each time step, allowing selective focus on informative features as market
conditions evolve (Farooq et al., 2024; Hartanto & Gunawan, 2024; Lim et
al., 2021). For instance, during momentum phases, recent return indicators
gain prominence while lagged inputs are down-weighted. The LSTM encoder
learns temporal dependencies from recent data, detecting patterns such as
price reversals or transient shocks. Decoder self-attention enhances forecast
precision by integrating cross-horizon dependencies (Lim et al., 2021; Zhang
et al., 2025).

Long-term structures, such as macroeconomic cycles or structural
breaks, are addressed through temporal self-attention, static covariate
encoders, and positional embeddings. Temporal attention assigns relevance
to temporally distant events, enabling the model to capture lagged macro-
financial dependencies, such as recurring effects of policy interventions.
Static covariate encoders condition forecasts on fixed attributes (e.g., asset
class, region), while positional embeddings help the model recognize
calendar-based effects (Laborda & Zamanillo, 2023; Lim et al., 2021).

Volatility clustering, persistent variance over time (Engle, 1982), is
effectively modeled through the interaction of LSTM, GRNs, and temporal
attention. The LSTM internal state encodes recent volatility patterns, while

GRNs modulate the importance of inputs such as rolling standard deviations



and implied volatilities. Temporal attention enables recall of similar historical
regimes beyond sequential memory constraints, enhancing the model’s ability
to learn the persistence and evolution of volatility (Bollerslev, 1986; Beck et
al., 2025; Lim et al., 2021). In contrast, volatility spikes often result from
exogenous shocks. TFT handles such discontinuities through its architectural
adaptiveness. GRNs reweight inputs in response to abrupt changes, such as
unanticipated macroeconomic data or sentiment shifts (Shen et al., 2025).
LSTM components preserve short-term precursors to spikes, while temporal
attention recalls historical analogs. Decoder self-attention refines the
prediction trajectory, distinguishing between transient and regime-shifting
events (Yang et al., 2025). Residual connections ensure stable transitions
across market regimes.

Also, the TFT’s quantile forecasting capabilities present significant
advantages across financial applications. By estimating full conditional
distributions, the model captures tail risks and non-linear behaviors central to
financial risk management. In this context, accurate quantile forecasts
enhance the estimation of Value-at-Risk and Expected Shortfall, enabling
dynamic risk exposure adjustments in compliance with regulatory standards
(Merlo et al., 2021; Petnehaz, 2021; Zha et al., 2024). For credit risk, TFT
supports scenario-based estimation of default probabilities and losses. In
portfolio management, TFT enables dynamic hedging and factor timing by
incorporating tail-risk information. Its predictive capacity under stressed
market conditions facilitates adaptive asset allocation and downside
protection (Hartanto & Gunawan, 2024; Yang et al., 2025). Regulatory
supervision also benefits, as TFT-based forecasts improve stress-test design
and macroprudential oversight, aiding institutions and regulators in
quantifying systemic vulnerabilities and determining capital adequacy with
greater accuracy (Merlo et al., 2021; Storti & Wang, 2022; Taylor, 2019).

2.5. Forecasting Evaluation

Volatility forecasting has been addressed through various methods,
including GARCH models, neural networks, and hybrid approaches.



Evaluating forecast performance is as critical as model choice. While
traditional metrics like RMSE and MAE are widely used, Symmetric Mean
Absolute Percentage Error (SMAPE) has gained prominence in financial
econometrics due to its robustness and interpretability. Unlike MAPE, which
becomes unstable near zero actual values, SMAPE normalizes forecast errors
by the average of actual and predicted values, offering a bounded, symmetric
metric (Goodwin & Lawton, 1999; Makridakis, 1993). This makes SMAPE
especially suitable for evaluating volatility forecasts under heteroskedasticity
or scale variation (Taylor, 2004). In my study, I focused on predicting
financial volatility under geopolitical shocks using the Temporal Fusion
Transformer (TFT). To evaluate model performance consistently and avoid
contradictory results, I chose SMAPE as the sole forecast evaluation criterion.
Using multiple FECs can lead to conflicting model rankings and inconsistent
statistical inference (Diebold & Mariano, 1995; Hansen et al., 2011). Since
my goal was to support portfolio adjustments and hedging decisions,
percentage-based error measurement aligned best with practical objectives.
SMAPE’s bounded nature, symmetry, and scale robustness make it an
effective and theoretically coherent choice for this analysis. To assess the
statistical significance of the difference in performance between two
forecasting models, we use the Diebold-Mariano test statistics (Diebold &
Mariano, 1995). The goal hereby is, to assess whether to competing
forecasting models have equal predictive accuracy. To account for possible
heteroskedasticity and autocorrelation effects in the data, we adjust the
Diebold-Mariano test statistics for the variance estimation, proposed by
Newey & West (1987). For small samples, the DM test statistic can be biased,
so, we adjust it by the approach of Harvey et al. (1997). The adjusted DM test

(DM*) test statistics now follows a t-distribution.

2.6.  Applied Datasets

2.6.1. MSCI World Sector Indices for Identification of Abnormal
Returns and Abnormal Volatility



To analyze the market response, I combined the event and post-event phases
(t=5 to t+25) for MSCI World sector indices. As detailed in Robus et al.
(2024), log-return data reveal near-zero average and median returns in the

pre-event phase, sharp declines during the event, and positive returns in the

post-event phase.

Table 2: MSCI World Sector Indices in research scope.

Index ISIN Abbreviation
MSCI World Index MIWOO00000PUS MSCI
MSCI World Consumer MIWOOCDO0OPUS CD
Discretionary Index

MSCI World Consumer Staples MIWOO0CS00PUS CS
Index

MSCI World Energy Index MIWOOENOOPUS EN
MSCI World Financials Index MIWOOFNOOPUS FN
MSCI World Health Care Index MIWOOHCO00PUS HC
MSCI World Industrial Index MIWOOINOOPUS IN
MSCI World Information MIWOOITO0PUS IT
Technology Index

MSCI World Materials Index MIWOOMTOOPUS MT
MSCI World Real Estate Index = MIWOOREOOPUS RE
MSCI World MIWOOTCO0OPUS TC
Telecommunications Index

MSCI World Utilities Index MIWOOTCO0PUS UT

Source: Morgan Stanley Capital International (MSCI, 2024a, 2024b), Robus

et al. (2024).
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Figure 4: Log-returns for MSCI World Sector Indices (07/01/2021 —
06/30/2022). Dashed line marks the day of the Russian attack on Ukraine at

February 24, 2022. Source: Own illustration using Python Matplotlib
(2025).

The Russian invasion triggered immediate sell-offs, followed by
sector-specific recoveries, indicating a reallocation driven by revised
expectations regarding sectoral business models. The largest daily losses
during the event phase were recorded in financials (—3.41%), consumer
staples (—2.82%), materials (—2.64%), telecommunications (—2.63%),
consumer discretionary (—2.51%), utilities (—1.97%), IT (—1.69%), real
estate (—1.68%), industrials (—1.63%), energy (—1.46%), and health care
(—1.25%). These figures highlight the varied impact across sectors and the

dynamic market response to geopolitical uncertainty.

2.6.2. Dataset for Temporal Fusion Transformer Forecasting



This section will present and discuss the dataset, I used to evaluate the
forecasting performance of the Temporal Fusion Transformer and the
different GARCH-type models. I collected daily time series data on closing
prices for selected financial instruments (Table 7). The used dataset contains
9 time series with closing prices from the January 7, 2019, to June 30, 2024
(Figure 4). Overall, T collected 1,388 business days for every financial
instrument from Federal Reserve Bank of St. Louis (FRED): S&P500 (FRED,
2024a), NASDAQ 100 (FRED, 2024b), Nikkei 225 (FRED, 2024c), Gold
(FRED, 2024d), Brent Crude Oil (FRED, 2024¢), EUR-USD exchange rate
(FRED, 2024f), 10-year Treasury Bond rate (FRED, 2024g) and Bitcoin
(FRED, 2024h); and data for the Hang Seng stock index from Reuters
database (Reuters, 2024) for historical data and calculated log-returns for the

analysis.

Table 3. Financial instruments in scope for volatility forecasting analysis.

Financial Instrument ISIN

S&P 500 Index US78378X1072
NASDAQ 100 Index US6311011026
Nikkei 225 Index JP9010C00002
Hang Seng Index HK0000004322
Gold XC0009655157
Brent Crude Oil XC0009677409
EUR/USD EU0009652759
10yr. Treasury-Bond US10YT

Bitcoin CRYPTO0000BTC

Source: FRED (2024a, 2024b, 2024c¢, 2024d, 2024e, 20241, 2024g, 2024h),
Reuters (2024).

I computed summary statistics for daily log-returns of each financial
instrument for the entire dataset and selected periods: COVID-19, the Russian
attack and the Hamas terrorist attack on Israel (Appendix). Furthermore, I
collected historical data for the CBOE Volatility Index (VIX) (FRED, 20241)
and the Geopolitical Risk Index (2024), who was constructed by Caldara &
Iacoviello (2022). Looking over the entire dataset, I found heavy daily losses:
Bitcoin (-46.5%), 10-year Treasury Bond (-32.4%), Brent Crude Oil (-



28.0%), NASDAQ (-13.1%) and S&P 500 (-12.8%). But there were also
profits. The maximum daily gains are led by the 10-year Treasury Bonds
(+36.8%), followed by Brent Crude Oil (+27.4%) and Bitcoin: (+20.3%). |
compared the periods of geopolitical shocks separately and found the
following. The heaviest daily losses occurred during COVID-19 with average
of daily losses across all financial instruments by -16.8%. It was -5.6% for
the period of the Russian attack and -3.3% for the period of the Hamas
terrorist attack on Israel. Bitcoin, Brent Crude Oil and Bonds suffered the
most considerable daily losses in all three periods.

Comparing volatility using the standard deviation of daily returns
between different periods, one can observe the following. The period of
COVID-19 has the highest volatility, with an average standard deviation of
daily returns of 4.6%. This is followed by the period of the Russian attack
with 2.2% and then the period of the Hamas attack with 1.4%. Bitcoin, bonds,
and oil have been found to have the highest volatility in all three periods of
analyzed geopolitical events. Bonds were 11.8% during COVID-19, Brent
Crude oil was 7.7% during the Russian attack, and Bitcoin was 2.8% during
the Hamas attack. In the next step, I checked whether I need to perform further

transformations on the time series before the analysis.



S&P 500 NASDAQ Hikkei 225

Q| e ot oS i meWwww
-0.1

Hang Seng Gold Brent Crude Oil

10yr US Treasury Bond EUR-USD Bitcoin

& " 13 el i Nl " " % B
35 5 3 s 3 o ;5 3 5 v b
© P L o & 0 * + P L »

Figure 5: Daily log-returns for financial instruments in scope (01/07/2019 —
06/29/2024). Dashed lines mark geopolitical events: COVID-19 (03/09/20);
Russian attack (02/24/22) and Hamas attack (10/08/23). Source: Own
illustration using Python Matplotlib (2025).

This may be the case if a time series is not stationary. I tested this with
the Augmented Dickey-Fuller test (Dickey & Fuller, 1979; Said & Dickey,
1984) and found that for all financial instruments, the null hypothesis, that a
time series is not stationary, could rejected. In the last step, I wanted to test
the feasibility of modeling volatility using GARCH models, i.e., whether the
effects of heteroskedasticity can be observed in the time series. I use Engle's
ARCH Lagrange Multiplier test (Engle, 1982). The null hypothesis assumes
that there is no heteroscedasticity, whereby the parameters of an ARCH model
are estimated using the data to be equal to zero. I could observe the following
by applying Engle's ARCH test to the time series. The test could not be
rejected for the EUR-USD exchange rate and Bitcoin but could rejected for
all other financial instruments. This is an important indication that the current
variance of the residuals of daily returns can be explained by the variance of
the residuals of the past and provides the foundation for the further analysis.
Furthermore, heteroscedasticity may also be present if the test is rejected. This
may be because the time series under consideration has a high persistence in
volatility. In this case, a GARCH model should be used for modeling. A



second possibility is the presence of structural breaks that an ARCH model
cannot sufficiently represent. In this case, the GJR-GARCH model shall be
used.



3. RESULTS AND DISCUSSION

3.1. Abnormal Returns for MSCI World Sector Indices

This analysis examines abnormal returns (AR) in MSCI World sector
indices surrounding the Russian invasion of Ukraine on February 24, 2022.
Using an event window from t — 5 to t + 5, statistically significant ARs were
most concentrated on the event day and immediately after. On 24 February, 7
of the 11 sector indices showed significant AR, while 5 remained significant
on t + 1. The effects largely diminished in subsequent days. Notably, the
materials sector exhibited a significant AR even before the invasion. Average
abnormal returns (AARs) show a significant market decline of —0.85% on the
event day (t), followed by a +1.32% rebound on the day after (¢t + 1). This
pattern suggests an initial reaction followed by selective corrective buying.
“The strong U.S. weighting in the MSCI World Index may have also
contributed to post-event recovery, as expectations shifted in favor of U.S.-
based firms (Ali et al.,, 2023). Sector-level analysis reveals divergent
responses. Significant negative ARs on the event day were recorded in
consumer staples (—2.76%), financials (—3.01%), industrials (—0.87%),
materials (—1.66%), and information technology (—2.53%)” (Robus et al.,
2024). Conversely, real estate (+1.66%) and telecommunications (+2.00%)
showed significant positive ARs. Consumer discretionary and energy sectors
showed no significant responses. A cumulative abnormal return (CAR)
analysis through t+25 highlights long-term impacts. Energy (+8.02%) and
utilities (+7.29%) posted the strongest gains, likely due to anticipated supply
disruptions and defensive capital reallocations. Financials suffered continued
losses (CAR —5.50%), while healthcare (+4.12%) and real estate (+4.74%)
saw substantial gains. The consumer discretionary sector underperformed
(—2.94%), reflecting decreased demand for non-essential goods. Information
technology (+2.44%) and materials (+3.02%) rebounded from initial losses,
ending with positive CARs. Telecommunications and utilities also performed
well over the long term, supported by stable cash flows and critical

infrastructure roles. In sum, the Russian invasion triggered clear, sector-



specific market reactions. Results confirm that geopolitical shocks like this
one produce heterogeneous and lasting effects across global equity sectors,
particularly in energy, finance, healthcare, and utilities. This supports the
study’s second research question on the sustained impact of geopolitical crises
on financial markets. Overall, using the event study methodology, I have
demonstrated that the Russian invasion had a clear and differentiated impact
on sector-specific returns within the MSCI World Index. Notably, the energy,
financials, healthcare, and utilities sectors exhibited significant cumulative
abnormal returns by t + 25, suggesting that market participants revised their
expectations for these sectors considering the geopolitical shock. These results
confirm the second research question, indicating that the invasion had a

sustained and heterogeneous influence across global equity markets.

3.2. Identification of Abnormal Volatility

3.2.1. Abnormal Volatility

This section presents findings on abnormal volatility (AVOLA) surrounding
the Russian invasion of Ukraine on February 24, 2022. Using an event window
from t — 5 to t + 5, volatility was measured relative to GARCH(1,1)-based
forecasts. To reduce the influence of outliers, I computed a truncated mean
(TMean), which excludes the minimum and maximum values per time point.
Most AVOLA-TMean values exceeded 1, indicating realized volatility was
generally higher than expected (Robus et al., in press). Notably, values spiked
ont — 2 and t — 1, suggesting heightened anticipation of conflict, particularly
after Russia’s recognition of separatist regions and troop deployment on
February 21, 2022. On the event day, AVOLA-TMean peaked at 8.99, and
remained elevated on t + 1 (8.50), reflecting extreme market turbulence.
Importantly, AVOLA captures volatility magnitude, not direction. While
returns on the event day were largely negative, they reversed in many sectors
by the following day, signaling market reassessment. By t + 2 to t + 5,
AVOLA values normalized, suggesting reduced uncertainty. At the sector
level, 8 out of 11 indices showed AVOLA > 1 on the event day. The highest
values appeared in financials (57.46) and consumer staples (56.46).



Significant volatility was also observed in materials, utilities, telecom, IT,
industrials, and real estate (Robus et al., in press). On t + 1, abnormal
volatility extended to all sectors, with 8 showing statistically significant
results. Interpretations of sector behavior reflect varying investor
expectations. Consumer discretionary stocks declined due to expected cuts in
non-essential spending. Consumer staples faced uncertainty over Russian
market losses. In contrast, energy showed muted volatility, possibly due to
pre-existing adjustments and the sector’s long-term, less speculative nature.
Financials were affected by rising credit risk and reduced investment activity,
while industrials saw spillover effects from lower capital demand. Healthcare
volatility rose amid expectations of increased medical demand during crises.
IT, with high debt and speculative valuations, suffered from investor flight to
safety. Utilities and telecom gained attention due to their essential services and
potential role in energy realignment. In summary, the Russian invasion
triggered widespread abnormal volatility, especially on and after the event
day. Sector responses varied, reflecting structural sensitivities and investor
reallocation strategies, confirming the third research question on volatility

behavior during geopolitical shocks (Robus et al., in press).
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Figure 6: Trimmed mean for abnormal volatility (%) of MSCI
Sector Indices around Russian invasion of Ukraine (02/17/22 —
03/03/22). Source: Robus et al. (in press).



3.2.2. Cumulated Abnormal Volatility

I now want to discuss the second question of this paper and examine
whether the abnormal volatility remains persistent over a longer period after
the event day. I do this by analyzing the cumulated abnormal volatility
(CAVOLA). The idea here is that if the ratio of the sum of actual volatility and
the sum of volatility predicted by GARCH(1,1) increases, abnormal volatility
> 1 has occurred over the period. If this ratio does not change, the actual
volatility corresponds to the forecast volatility. If the ratio is even lower, this
means that the actual volatility over the period under review is lower than the
forecast volatility. I start again with the analysis of the mean value. For reasons
of consistency, | also used the TMean here. The results are illustrated in Figure
7. I have calculated cumulative abnormal volatility for t-1 (sum of AVOLA of
the observations t-5 to t-1) as an initial value. This gives us also a benchmark
for the abnormal volatility before the event day (Robus et al., in press).

I was able to observe the following for the CAVOLA-TMean. Starting
from a value of 2.42 in t-1, it increases to 3.04 up to t+5. This is
understandable, as although there are some sectors with increased abnormal
volatility up to t-1, the majority can be observed in t and t+1, as shown in the
previous analysis. What is surprising now is that the CAVOLA-TMean
increases further to 3.24 by t+10 compared to t+5. This means that further
abnormal volatility occurs in the time periods t+6 to t+10 and that there
continue to be strong price fluctuations even days after the event day. In other
words, the abnormal volatility is 20% higher than that around the event day.
This also implies that there was a longer-term uncertainty regarding further
developments among investors. From t+11 to t+20 one now see a decreasing
values for CAVOLA-TMean (t+15: 3.01 and t+20: t+20). This suggests a
calming of market participants, whose actions on the markets produce less
volatility than the GARCH(1,1) model predicts. In the further observation
period, one see that the CAVOLA-TMean of t+20 roughly corresponds to the
CAVOLA of t+25. This means that the CAVOLA-TMean added from t+21 to
t+25 is approximately one, which is the value where the actual volatility
corresponds to the estimated volatility and has therefore returned to a long-

term level. From a mean value perspective, I was thus able to show that the



abnormal volatility was persistent up to the period t+10 and thus lasted longer
than shortly after the event day. I will now look at the behavior of individual
sectors. I observed the CAVOLA-TMean behavior just described for the
following sectors: consumer staples, energy, health care, industrials, IT,
materials and telecommunications (Robus et al., in press).

However, I also found different behavior in individual sectors. The
persistence was particularly strong in the sectors: IT, telecommunications,
health care, industrials and materials. In Financials, an already high CAVOLA
value was observed at time t-1, followed by a sharp decline up to time t+5,
after which CAVOLA rose again, as in other sectors. The zig-zag movement
here up to t+25, suggests that the uncertainty in this sector will persist for
longer or increase again after a certain time. One can see little persistence of
abnormal volatility due to declining CAVOLA after t+5 at the real estate and
utilities sector (Robus et al., in press). My analysis showed that abnormal
volatility was persistent in many sectors until t+10. With these findings, I can

confirm research question 4.
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Figure 7: Trimmed mean cumulated abnormal volatility (CAVOLA-TMean)

for MSCI Sector Indices around Russian invasion of Ukraine (02/17/22 —
03/31/22). Source: Robus et al. (in press).



3.3. Univariate Volatility Modeling and Forecasting of Financial Time
Series during Geopolitical Shocks

3.3.1. In-Sample Analysis

This study evaluated the performance of various GARCH models in
forecasting financial market volatility during three major geopolitical events:
the COVID-19 pandemic, the Russian invasion of Ukraine, and the Hamas
attack on Israel. Using high-frequency data over three distinct business-day
periods, 75 different GARCH model configurations, 25 each from standard
GARCH, EGARCH, and GJR-GARCH class, were applied to nine financial
instruments. The model performance was assessed using the Akaike
Information Criterion (AIC), and AIC weights were used to determine the
likelihood of each model being the best fit to the volatility data. Across all
instruments and periods, the EGARCH model consistently outperformed both
GARCH and GJR-GARCH models. The Akaike weights indicated that
EGARCH was, in nearly all cases, over 90% likely to be the best-fitting
model. This performance advantage is largely due to EGARCH’s ability to
model the leverage effect, where negative returns cause disproportionately
larger increases in volatility, common during sharp market downturns. The
empirical data confirmed this: sharp daily losses during COVID-19 were
followed by prolonged periods of elevated volatility, especially for the S&P
500, NASDAQ, Brent Crude Oil, and U.S. Treasury bonds. EGARCH models
also tended to perform best when configured with higher-order lags,
suggesting improved modeling of asymmetric responses and volatility
persistence. These findings are supported by prior studies (e.g., Gharaibeh &
Kharabsheh, 2023; Khan et al., 2023; Mitsas et al., 2022; Yildirim & Celik,
2020), which also found EGARCH superior in periods of geopolitical and
structural volatility. Overall, the EGARCH model proves especially well-
suited for capturing complex volatility dynamics during geopolitical crises.
By showing that the EGARCH model achieved the best in-sample fit for the
financial instruments in scope and periods of geopolitical shocks, I was able

to answer my research question (Research Question 6).



3.3.2. Univariate Out-of-Sample Volatility Forecasting

This study evaluated the out-of-sample forecasting performance of
GARCH models—standard GARCH, EGARCH, and GJR-GARCH—under
geopolitical uncertainty across three major events: the COVID-19 pandemic,
Russia’s invasion of Ukraine, and the Hamas attack on Israel. Using a rolling-
window approach based on 250 trading days, I generated 1- to 10-step-ahead
forecasts for nine financial instruments. Forecast accuracy was assessed using
the Symmetric Mean Absolute Percentage Error (SMAPE) and directional
accuracy, with statistical significance tested via the Diebold-Mariano test. The
EGARCH model consistently demonstrated the best point forecast
performance. On average across all events and forecast horizons, EGARCH
produced the lowest SMAPE for 51.85% of instruments. For short-term
forecasts (1-step-ahead), EGARCH outperformed in 44.44% of cases,
increasing to 51.85% at the 10-step horizon. GJR-GARCH followed closely,
particularly excelling in 5-step-ahead forecasts. Simple GARCH models
lagged in performance but occasionally performed best for specific
instruments like Gold or the EUR/USD exchange rate. During the COVID-19
period, EGARCH provided the most accurate forecasts for over half the
instruments, including NASDAQ, Bitcoin, and Brent Crude Oil. GJR-
GARCH excelled with the S&P 500 and 10-year Treasury Bonds. In the
Russian invasion period, EGARCH and GJR-GARCH were equally effective
overall, while simple GARCH showed isolated success. EGARCH dominated
long-horizon forecasts. During the Hamas conflict, EGARCH again delivered
the best forecasts for most assets, particularly Gold, EUR/USD, and Bitcoin.
GJR-GARCH performed well for the Hang Seng and NASDAQ, while simple
GARCH models improved for select instruments.

In sum, EGARCH models consistently outperformed their
counterparts, particularly in periods of heightened volatility and asymmetric
return dynamics, confirming their robustness for forecasting under
geopolitical stress. I also evaluated the directional forecasting accuracy of
GARCH models during the three major geopolitical shocks. During the
COVID-19 pandemic, the GJR-GARCH model achieved the highest



directional accuracy across 66.67% of financial instruments for average 1- to
10-step-ahead forecasts, including indices like the S&P 500, Nikkei 225, and
Hang Seng, as well as Gold, Oil, and EUR/USD. EGARCH performed best
for NASDAQ, the 10-year Treasury Bond, and Bitcoin. For short-term (1-
step-ahead) forecasts, GJR-GARCH again led with 77.78% accuracy, while
EGARCH and the simple GARCH model performed well in select cases,
particularly for Bitcoin and Gold. EGARCH dominated 5-step-ahead
forecasts, leading for 55.56% of instruments. At the 10-step horizon, GJR-
GARCH excelled again with 77.78% accuracy, followed by EGARCH at
55.56%. During the Russian invasion of Ukraine, GJR-GARCH led average
directional accuracy (55.56%), especially for equities and Bitcoin. EGARCH
followed with top results for Oil and the 10-year Treasury Bond. The simple
GARCH model performed well only in isolated cases, such as Gold. For 1-
step-ahead forecasts, simple GARCH surprisingly led in 66.67% of cases. At
5- and 10-step horizons, EGARCH and GJR-GARCH alternated in top
performance, particularly for NASDAQ, EUR/USD, and Bitcoin. In the
Hamas attack period, EGARCH and GJR-GARCH tied for best average
directional accuracy (44.44%). EGARCH excelled at 10-step-ahead forecasts
(66.67%), followed closely by GIR-GARCH (55.56%). Simple GARCH also
showed improvements, especially for the Nikkei 225 and Treasury Bonds.
Across all events, EGARCH and GJR-GARCH consistently offered robust
directional forecasting across forecast horizons. This allowed me to answer

the first part of my research question (Research Question 7).

3.4. Multivariate Volatility Modeling and Forecasting using the
Temporal Fusion Transformer

Time series forecasting involves predicting future values based on past
data and can be approached using either univariate or multivariate models.
While univariate models (e.g., ARIMA) focus solely on the past values of a
single variable, multivariate time series forecasting (MTSF) integrates
multiple variables, capturing their interdependencies and offering improved
predictive accuracy. GARCH models, vector autoregressive models, and

machine learning techniques like the Temporal Fusion Transformer can be



applied in both frameworks, with MTSF particularly beneficial in complex
financial markets. Studies show MTSF enhances risk assessment, forecasting
accuracy, and decision-making by including realized volatility, causal
relationships, and multiple financial indicators. Overall, MTSF provides a
more comprehensive and robust forecasting approach, especially when

modeling the joint behavior of interconnected financial variables.

3.5. Multivariate direct multi-step out-of-sample Volatility
Forecasting using the Temporal Fusion Transformer

This section presents the results of volatility forecasting using the
Temporal Fusion Transformer (TFT) across three geopolitical shock periods:
COVID-19, the Russian invasion of Ukraine, and the Hamas attack on Israel.
I trained three TFT model variants: univariate, multivariate, and multivariate
with regime-switching on nine financial instruments (e.g., S&P 500, Gold,
Bitcoin), using a rolling window approach and 1- to 10-step-ahead direct
forecasting. The models incorporated historical data and mutual spillover
effects, with performance compared to traditional GARCH-type models using
SMAPE and directional accuracy metrics. I also evaluated whether including
a geopolitical shock indicator improved the TFT’s predictive performance.
Finally, I assessed whether specific TFT hyperparameter configurations

outperformed the average, adding robustness to the forecasting results.

3.5.1. Analysis of multi-step out-of-sample forecasting performance

This study evaluates the forecasting accuracy of the Temporal Fusion
Transformer (TFT) relative to GARCH-class models across three major
geopolitical shock periods: the COVID-19 pandemic, the Russian invasion of
Ukraine, and the Hamas attack on Israel. Each period presented unique
volatility patterns, which allowed for a robust comparison across asset classes
and forecast horizons. Using a rolling-window approach, I generated 1-10
day-ahead forecasts for nine financial instruments and evaluated accuracy
using Symmetric Mean Absolute Percentage Error (SMAPE) and adjusted
Diebold-Mariano tests. During the high volatility period of COVID-19 period,
the TFT significantly outperformed GARCH models across nearly all



financial instruments. For instance, in the case of the S&P 500, TFT achieved
a SMAPE of 0.721 vs. 0.924 for EGARCH(3,4), with a statistically significant
DM* value. Similar results were seen for NASDAQ, Nikkei 225, and Hang
Seng, with TFT consistently better, especially for shorter horizons. For the
Gold price, the difference was narrower, while the EUR-USD exchange rate
was the only asset where GARCH outperformed TFT, likely due to its low
volatility. Bitcoin, a highly volatile asset during this period, was forecasted far
more accurately by the TFT. During the Russian invasion period, overall
volatility was lower than during COVID-19 but still substantial. Again, TFT
consistently outperformed GARCH models. For the NASDAQ, the TFT
achieved a SMAPE of 0.449, while the best GARCH model was 0.651. The
TFT showed particular strength in forecasting for equity indices and
commodities like Brent Crude Oil, where it achieved 0.548 SMAPE vs.
EGARCH(3,5) at 0.804. Even in the bond market, such as the 10-year US
Treasury, TFT forecasts were more accurate (0.550) compared to GARCH
(0.811). For FX and Bitcoin, the TFT also outperformed, except for gold,
which remained a close call but still favored TFT. In the Hamas-Israel conflict,
overall market volatility was lower compared to the previous periods,
reflecting more localized geopolitical uncertainty. Nonetheless, the TFT again
outperformed in most cases. For the S&P 500, it achieved a SMAPE of 0.856
vs. 1.736 for EGARCH(1,1). For NASDAQ and Nikkei 225, TFT achieved
better results, though the performance gap narrowed. Interestingly, for gold,
the TFT’s advantage disappeared, SMAPE was 1.332 vs. 1.494 for GARCH,
and the difference was not statistically significant. This may indicate TFT’s
limitations in predicting assets with complex or stable volatility dynamics.
Brent Crude Oil and 10-year US bonds remained strongholds for the TFT,
outperforming in all horizons.

Across all three periods, TFT consistently outperformed GARCH
models for most financial instruments and forecast horizons. The short-
horizon superiority of TFT was clear, particularly for 1-3 day forecasts, while
GARCH models maintained more consistent performance across all horizons.
TFT’s ability to respond to fast market changes makes it particularly effective

in periods of structural breaks or regime-switching volatility. By asset class,



TFT excelled in equities and oil, while results for FX and crypto were more
mixed. GARCH models were more competitive in lower-volatility
environments like the EUR/USD exchange rate during COVID-19. For fixed
income, the TFT performed exceptionally well during periods of high
volatility and reversal, particularly in March 2020. In conclusion, the TFT
offers a statistically and practically significant improvement in forecasting
financial market volatility during geopolitical shocks. Its architecture,
especially its capacity for multivariate input and attention mechanisms
provides it with advantages in identifying and adapting to sudden shifts in
volatility regimes. While GARCH models retain value for stable environments
and longer-term forecasts, the TFT proves superior under most high-stress
market conditions. This allowed me to answer my research question of
whether the TFT can outperform the best GARCH-type model (Research
Question 8).

3.5.2. Regime switching multi-step out-of-sample forecasting
performance

This section analyzes the impact of implementing a regime-switching
feature in the Temporal Fusion Transformer (RS-TFT) to improve volatility
forecasting during geopolitical shocks. Volatility often spikes suddenly during
such events and remains elevated, making forecasting especially challenging.
Previously, the baseline TFT (BL-TFT) had no explicit indication of these
high-volatility regimes, instead learning patterns implicitly. To test whether a
regime indicator improves forecast accuracy, I labeled historical volatility
values above the 75th percentile as “1” (high regime) and others as “0.” This
regime-switching feature was then used as a covariate in the RS-TFT,
indicating whether the latest known volatility observation was part of a high-
volatility regime. This approach mimics regime probability logic in models
such as the Markov-switching framework (Hamilton, 1988). For evaluation,
both RS-TFT and BL-TFT models were trained using a rolling window (250
days) across nine financial instruments and three geopolitical events: COVID-
19, the Russian invasion of Ukraine, and the Hamas attack on Israel.



Forecasting accuracy was assessed using SMAPE and tested using adjusted
Diebold-Mariano statistics.

My results show consistent improvement with the RS-TFT. Across all
assets and events, RS-TFT achieved an average SMAPE improvement of
4.53% over BL-TFT. The null hypothesis of equal predictive accuracy of RS-
TFT and BL-TFT was rejected in 21 of 27 tests. The greatest improvements
occurred during the Hamas attack period, despite its relatively moderate
volatility. This suggests that RS-TFT helps prevent misforecasting elevated
volatility in response to moderate shocks, where the baseline model might
otherwise overreact. Asset-wise, RS-TFT provided the strongest and most
consistent improvements for the S&P 500 (average SMAPE gain: 5.08%) and
NASDAQ (5.91%), followed by Nikkei 225 (4.61%) and Hang Seng (5.00%).
The greatest single gain (22.65%) was for the 9-step-ahead NASDAQ forecast
during the Hamas attack. Gold showed the highest average improvement
(9.04%), entirely driven by the Hamas period (25.85%), while effects were
negligible during COVID-19 and the Russian invasion. Brent Crude Oil
exhibited minimal improvement (1.37%), with the baseline model slightly
outperforming in some cases. For 10-year US Treasuries, RS-TFT delivered
steady improvements (avg. 4.37%) across all periods, with the largest gain
during the Russian invasion. EUR-USD exchange rates saw modest but
consistent gains (3.25%), and Bitcoin yielded mixed results: a decline during
COVID-19 (-1.53%) but improvement during later periods (up to 6.09%).

The regime-switching feature had the greatest effect on medium-to-
long-term horizons (e.g., h = 6-10), where standard autoregressive models
struggle to capture structural changes. This supports the view that exogenous
regime signals are more valuable when the temporal distance from known
events increases. In summary, the RS-TFT enhances forecast performance
during geopolitical shocks, particularly for equity indices and at longer
horizons. Its ability to incorporate external regime signals makes it an
effective tool for modeling volatility under structural market shifts. This
analysis showed that the introduction of an additional explanatory variable

(regime-switching feature) to identify high and low phases of volatility



significantly improves the forecasting performance and thus answers my

research question (Research Question 9).

3.5.3. Influence of hyperparameter optimization on the multi-step out-
of-sample forecasting performance

An important task in adapting a neural network for a task is optimizing
the hyperparameters Optimizing hyperparameters is a critical step in adapting
neural networks like the Temporal Fusion Transformer (TFT) for forecasting
financial time series, especially during volatile periods such as geopolitical
shocks. Hyperparameters such as the number of attention heads and the hidden
size are set before training and significantly affect model performance,
generalization, and convergence. I conducted a grid search across key
architectural hyperparameters (attention heads and hidden size) for three
distinct periods: COVID-19, the Russian invasion of Ukraine, and the Hamas
attack on Israel. Forecast accuracy was assessed using SMAPE, and statistical
significance was tested by the Diebold-Mariano test statistics (Diebold &
Mariano, 1995).

The attention head parameter determines how many parallel attention
mechanisms the model uses. More attention heads allow the model to capture
various dependencies across time, such as short-term movements and long-
term market cycles. This helps in isolating noise, identifying volatility
clusters, and modeling cross-asset correlations. Hidden size refers to the
number of neurons per layer, controlling the model’s representation capacity.
Larger hidden sizes help detect complex patterns like regime shifts or
structural breaks but can lead to overfitting if too large.

My results show a significant improvement by hyperparameter
optimization. The average SMAPE gain across all financial instruments was
3.94% during COVID-19, 6.13% during the Hamas attack, and 2.81% during
the Russian invasion. The best-performing models (BP-TFTs) most frequently
used 8 attention heads (40.74%) and a hidden size of 32 (44.44%), indicating
that a moderate model complexity offered the best trade-off between
performance and generalization. At the asset level, the S&P 500 and EUR-

USD consistently benefited from optimized hyperparameters across all



periods. The NASDAQ, Nikkei 225, and Hang Seng showed significant
improvements in most but not all periods. Brent Crude Oil and US Treasury
bonds also exhibited consistent gains, though the optimal hyperparameter
values varied more, reflecting changing data structure. Bitcoin showed mixed
results, with significant improvement only during COVID-19.

The wvariability in performance across periods emphasizes the
importance of tuning hyperparameters dynamically depending on market
conditions. In conclusion, tuning architectural hyperparameters significantly
enhances TFT performance. More attention heads improve the model’s ability
to extract multi-scale dependencies and filter noise, while a moderate hidden
size enables the model to learn complex patterns without overfitting. These
findings underscore the importance of aligning model architecture with the
volatility structure of financial time series, particularly during regime changes

induced by geopolitical shocks (Research Question 10).

3.5.4. The added value of a multivariate structured volatility
forecasting approach

The Temporal Fusion Transformer (TFT) is well-suited for
multivariate time series forecasting due to its architectural strengths.
However, multivariate forecasting adds complexity, so it is important to assess
whether this complexity results in improved performance over univariate
models. To examine this, I compared a multivariate TFT model (BL-TFT)
with a univariate TFT (UV-TFT) across nine financial assets—S&P 500,
NASDAQ, Nikkei 225, Hang Seng, Gold, Brent Crude Oil, 10-year U.S.
Treasury Bonds, EUR-USD exchange rate, and Bitcoin—during three periods
of geopolitical shocks: the COVID-19 pandemic, the Russian invasion of
Ukraine, and the Hamas attack on Israel. Each model was evaluated using a
rolling-window approach, forecasting 1-10 days ahead. I measured accuracy
using the Symmetric Mean Absolute Percentage Error (SMAPE) and tested
significance using adjusted Diebold-Mariano test statistics. Out of 27 total
evaluations (9 assets x 3 periods), the multivariate model outperformed the
univariate model in 23 cases (82%), and the performance difference was

statistically significant in 20 of those cases (87%). Multivariate models are



particularly advantageous when assets are highly correlated, experience
volatility spillovers, or respond to common exogenous factors, conditions
prevalent during crises. During COVID-19, the multivariate model
outperformed the univariate model for all assets with statistically significant
results. During the Russian invasion, it outperformed in 7 out of 9 cases (6
statistically significant), and during the Hamas attack, in 6 out of 9 cases (5
statistically significant). These patterns correspond with volatility levels:
highest during COVID-19, moderate during the Russian invasion, and lowest
during the Hamas attack. At the asset level, the S&P 500 and NASDAQ were
better forecasted by the multivariate model during COVID-19 and the Russian
invasion but not during the Hamas attack, likely due to lower cross-asset
correlations. For the Nikkei and Hang Seng indices, multivariate forecasts
were superior during COVID-19 and the Hamas attack. For commodities, the
multivariate model significantly outperformed for Gold and Brent Crude Oil
during COVID-19 and the Russian invasion, and for Brent Crude Oil also
during the Hamas attack. These results affirm that multivariate models are
more robust during systemic shocks due to their ability to capture
interdependencies and structural breaks. They also benefit from incorporating
external indicators like the VIX or Geopolitical Risk Index. Univariate
models, by contrast, treat each asset in isolation and miss key inter-market
signals. In conclusion, the multivariate TFT provides more accurate and
adaptive volatility forecasts under elevated geopolitical risk. Overall, the
findings demonstrate that multivariate models offer a more robust and
adaptive framework for volatility forecasting under conditions of elevated

geopolitical risk (Research Question 11).

3.5.5. Model comparison between GARCH and Temporal Fusion
Transformer

Generalized Autoregressive Conditional Generalized Autoregressive
Conditional Heteroskedasticity (GARCH) models have long been the standard
for modeling time-varying volatility in asset returns. These parametric models
capture volatility clustering by modeling conditional variance as a function of

past residuals and variances, typically assuming stationarity and regularly



spaced data. Extensions such as EGARCH and GJR-GARCH address
asymmetries in volatility responses, notably the leverage effect. GARCH
models are efficient, economically interpretable, and widely used for
applications such as Value-at-Risk, option pricing, and financial stress testing.
In contrast, the Temporal Fusion Transformer (TFT) represents a non-
parametric deep learning approach to multi-horizon, multivariate forecasting.
It integrates recurrent neural networks, attention mechanisms, and static
covariate encoders in a sequence-to-sequence framework. Unlike GARCH,
the TFT can model non-stationary, high-dimensional, and incomplete data
without strong distributional assumptions. It distinguishes between observed,
known, and static features, offering rich context-dependent learning.
However, the TFT’s flexibility comes at the cost of interpretability and
computational efficiency. It is data-intensive, requires regularization, and
demands significant computational resources for training.

While GARCH models are tailored specifically for volatility and
deliver interpretable parameters, they struggle with irregular or missing data
and are limited to univariate inputs unless extended. The TFT, meanwhile,
handles multivariate data, volatility spillovers, and structural breaks more
effectively, making it more robust in real-world, high-complexity settings.
Overall, GARCH models are suitable for interpretable, efficient modeling of
clean, stationary time series. The TFT is more appropriate for complex,
nonlinear, multivariate datasets, particularly during systemic events or when
forecasting is enhanced by incorporating exogenous variables. However, the
TFT’s advantages in flexibility and accuracy must be balanced against its

reduced transparency and high computational cost.



4. CONCLUSION AND RECOMMENDATIONS

The world is experiencing repeated shocks that do not remain local in
scope but have a global impact. These geopolitical shocks often arise from
military conflicts, political unrest, or sudden changes in international relations
and affect the most diverse facets of the social life, including economics and
thus financial markets. Furthermore, geopolitical shocks impact the volatility
of all assets, asset classes, sectors, and countries worldwide which in turn leads
to changes in the behavior of international market players. It is obvious that
these phases must be managed very cautiously by market participants and
financial market supervisors to avoid devastating crashes. This dissertation
has presented a comprehensive empirical investigation into the identification
and forecasting of market dynamics under the influence of major geopolitical
shocks. Using the latest geopolitical events: COVID-19 pandemic, Russia’s
invasion of Ukraine, and the Hamas attack on Israel as empirical object of
research, the study evaluates abnormal returns, abnormal volatility, and
forecasting performance using both traditional econometric and modern deep
learning approaches. The empirical analysis spans four interconnected
components. First, an event study on MSCI World Sector Indices reveals that
geopolitical shocks trigger immediate negative abnormal returns in several
sectors (e.g., energy, financials), while some sectors (e.g., healthcare, IT)
show positive cumulative returns afterward. This heterogeneity underscores
how investor sentiment and sector-specific risk assessments evolve during
crises.

Second, volatility dynamics were explored using GARCH-based
benchmarks. The results indicate significant and persistent abnormal volatility
post-event, with spillover effects visible across sectors. This reflects increased
uncertainty and shifting risk perceptions following shocks. Third, the
performance of GARCH-type models (GARCH, EGARCH, GJR-GARCH)
was benchmarked. EGARCH outperformed for point forecasts due to its
asymmetry handling, while GJR-GARCH was superior for directional
forecasting. This emphasizes the importance of aligning model choice with

the use case (e.g., hedging vs. directional bets). Fourth, the study employed



the Temporal Fusion Transformer (TFT) for direct, multi-step, multivariate
forecasting. TFT consistently outperformed GARCH-class models across
most instruments and forecast horizons. Its ability to process multivariate
inputs, adapt to regime shifts, and incorporate exogenous variables led to
substantial forecasting gains—particularly for short-term volatility.
Enhancements such as a regime-switching feature (RS-TFT) and
hyperparameter tuning further improved performance, especially during
periods with subtle or complex volatility changes. Additionally, a comparison
between univariate and multivariate TFT models showed that the multivariate
version outperformed in 82% of cases, highlighting the value of modeling
cross-asset relationships and incorporating variables like the VIX and
Geopolitical Risk Index. The multivariate TFT’s advantage was particularly
pronounced during high-volatility regimes, confirming the importance of
contagion and co-movement effects during systemic events.

From a practical standpoint, the research suggests that financial
institutions should adopt adaptive, high-frequency forecasting tools like TFT
for risk monitoring, capital allocation, and regulatory compliance, particularly
in times of geopolitical unrest. TFT-based models can enhance early-warning
systems, guide dynamic asset allocation, and improve derivatives pricing
accuracy by better estimating short-term implied volatilities. While TFT
models offer superior forecasting capabilities, they also require significant
data, computational resources, and careful tuning. Therefore, the choice
between GARCH and TFT should be context dependent. In highly regulated
or resource-constrained environments, GARCH remains useful due to its
simplicity and interpretability. However, for institutions operating in data-rich
and rapidly evolving markets, incorporating TFT, either as a primary model
or in a hybrid ensemble, offers significant performance advantages. In
conclusion, the Temporal Fusion Transformer emerges as a powerful tool for
forecasting volatility during geopolitical shocks. Its integration of attention
mechanisms, multivariate capabilities, and adaptability to structural breaks
positions it as a leading model for modern financial forecasting under

uncertainty.



A hybrid modeling strategy, wherein TFT outputs serve as
complementary signal generators or are used for benchmarking alongside
conventional econometric models, represents a pragmatic approach to

combining predictive strength with operational feasibility.



5. NEW SCIENTIFIC RESULTS

This dissertation presents several novel scientific contributions at the
intersection of financial econometrics, time series forecasting, and machine
learning by analyzing, modeling, and forecasting market dynamics during
geopolitical shocks.

1. The research provided a volatility modeling and forecasting
framework. Systematic testing of 75 GARCH-type models showed that
EGARCH models consistently provided the best in-sample fit for volatility in
three different periods of geopolitical shocks (Research Question 6). It was
found that EGARCH models outperformed GARCH and GJR-GARCH-type
models in point forecasts, while GJR-GARCH performed better in directional
forecasts (Research Question 7).

2. Key methodological innovation is the application of the Temporal
Fusion Transformer (TFT), a transformer-based deep learning network, for
direct, multi-step, multivariate volatility forecasting. This research found that
the TFT outperformed the best-performing GARCH-type model in almost all
analyzed periods of geopolitical shocks and examined financial assets in the
research scope (Research Question 8).

3. Further, this research could show that hyperparameter optimization of
the Temporal Fusion Transformer significantly enhanced the forecasting
performance, confirming that careful configuration and hybrid econometric
deep learning approaches yield better forecasting outcomes (Research
Question 10)

4. Finally, the improvement of a multivariate TFT setup was compared
with a univariate TFT setup. The multivariate TFT approach provided superior
short-term forecast accuracy, which was crucial during high-volatility
episodes like March 2020 and the Russian invasion in 2022. This makes it
particularly suitable for tactical risk management applications (Research
Question 11).
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