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1. BACKGROUND OF THE WORK AND ITS AIMS 

 

1.1. Geopolitical shocks and their impact on financial markets 

Geopolitical shocks, events such as wars, terrorist attacks, or sudden 

shifts in international relations have historically disrupted global political, 

economic, and financial systems. These shocks generate significant 

uncertainty, leading to sharp movements in financial markets (Baker et al., 

2016; Bloom, 2009). Investors, faced with difficulty in valuing assets, often 

respond with rapid sell-offs and heightened risk aversion, resulting in 

elevated volatility (Fama & MacBeth, 1973). A key distinction exists between 

geopolitical risk (potential threats) and geopolitical shocks (realized events), 

with the latter triggering immediate market corrections (Caldara & Iacoviello, 

2022). 

Recent shocks, including the COVID-19 pandemic, Russia’s invasion 

of Ukraine, and the Hamas attack on Israel have demonstrated how sudden 

disruptions produce global ripple effects across asset classes and economies. 

COVID-19 marked an unprecedented global crisis. Beginning in late 2019, it 

spread rapidly, prompting the World Health Organization to declare a global 

pandemic in March 2020. The virus disrupted supply chains, forced business 

closures, and caused mass unemployment (Fernandes, 2020). Stock markets 

collapsed, and the VIX, a key volatility index, spiked to 85.11, four times its 

average (CBOE, 2024). No previous health crisis caused comparable market 

disruption (Baker et al., 2020). Russia’s full-scale invasion of Ukraine on 

February 24, 2022, triggered another surge in global financial volatility. 

Markets fell sharply, energy prices soared, and the VIX reached 39.00 

(FRED, 2024e). The war disrupted European markets, raised concerns about 

energy security, and sparked sanctions, adding further uncertainty (Izzeldin 

et al., 2023). The October 7, 2023, Hamas attack on Israel escalated regional 

instability. The attack resulted in over 1,400 deaths and hundreds of hostages. 

Israel declared a state of war and began military operations in Gaza (Levy et 

al., 2024). Though the VIX rose only moderately, the event raised fears of 

broader regional conflict (Ugli, 2024). All three events triggered spikes in 



volatility—a key metric in asset pricing and risk management (Black & 

Scholes, 1973). 

Volatility influences investment decisions, option pricing, and capital 

flows. High volatility often leads to reduced foreign investment and portfolio 

rebalancing. It also tends to cluster, with turbulent periods followed by more 

instability (Mandelbrot, 1963). Asymmetric volatility, where negative news 

causes larger spikes, complicates forecasting and underlines the importance 

of robust models like GARCH, which accommodate volatility clustering and 

leverage effects. Modeling volatility during geopolitical shocks is essential 

because such events trigger abrupt and significant changes in market 

dynamics, leading to heightened uncertainty and rapid shifts in asset prices.  

Accurate volatility forecasts enable investors, policymakers, and risk 

managers to better assess and respond to systemic risk, helping to stabilize 

markets and prevent overreactions. Moreover, predictive models that capture 

volatility clustering and asymmetry offer valuable insights for optimizing 

portfolio strategies, setting appropriate risk limits, and enhancing decision-

making during crisis periods. 

1.2. Research scope 

In this study, I have taken a detailed analysis of the effect of 

geopolitical shocks on market dynamics, as well as the possibilities for 

modeling and forecasting volatility in times of geopolitical shocks. To carry 

out the most comprehensive analysis possible, I examined many different 

aspects. 

The first part of my investigation is concerned with identifying 

abnormal returns and abnormal volatility in times of geopolitical shocks. I 

was conducting a detailed event analysis for the period around the Russian 

attack on Ukraine and examined the reaction of the financial market to this 

shock in terms of returns and volatility. By analyzing sector-specific 

responses rather than aggregated indices, the study captures distinct behaviors 

across industries such as technology, healthcare, finance, and energy. Each 

sector reacts differently to macroeconomic changes, offering unique risk-



return profiles (Elyasiani et al., 2020). For example, cyclical sectors like 

consumer discretionary are more responsive to economic shifts, while 

defensive sectors like healthcare remain relatively stable (Long & Plosser, 

1987). Understanding these dynamics helps investors optimize returns 

through sector rotation and improved risk assessment (He et al., 2020; Sassetti 

& Tani, 2006). Sectoral analysis also reveals emerging trends, such as the rise 

of renewables or e-commerce impacts, and enhances benchmarking of 

individual stocks. The MSCI World Sector Indices, derived from the MSCI 

World Index, provide comprehensive coverage of large and mid-cap 

companies across 23 developed markets, representing around 85% of free 

float-adjusted market capitalization (MSCI, 2024a; 2024b). These indices are 

widely used as benchmarks by institutional investors and are transparent, 

regularly updated, and globally diversified. However, limitations include a 

strong U.S. weighting, underrepresentation of smaller yet influential firms, 

and exposure to currency risk. 

The core aim was to assess how this major geopolitical shock affected 

the world’s largest companies, particularly in terms of volatility—a key 

measure of uncertainty and investor disagreement. Volatility spikes often 

reflect divergent views on asset valuation, and large price swings indicate 

reactions to new information. The study applied the concepts of abnormal 

returns (Campbell & Lo, 1996; Fama, 1970) and abnormal volatility (Beaver, 

1968; Brown & Warner, 1985) to measure sector-specific responses to the 

invasion. My concrete research questions are as follows: 

 

▪ Research Question 1: Are there significant abnormal returns on the 

February 24, 2022 in the sectors of the MSCI World index, respectively? 

▪ Research Question 2: Are there significant cumulative abnormal returns 

in the MSCI World index sectors up to 25 days after the February 24, 

2022? 

▪ Research question 3: Can significant abnormal volatility (-5,+5 days) 

around the Russian attack on Ukraine at February 24, 2022 in the MSCI 

market sectors be observed? 



▪ Research question 4: Can a persistence in the abnormal volatility after 

February 24, 2022 in the MSCI market sectors be observed? 

▪ Research question 5: Are there significant differences of the abnormal 

volatility between the MSCI market sectors? 

 

The identification of abnormal returns and volatility is a 

fundamentally ex-post analysis and important for a retrospective assessment 

of the impact and duration of geopolitical shocks. From a practical point of 

view, for example that of an active market participant or a risk manager, the 

forward-looking aspect is more relevant, i.e. whether the evolution of market 

dynamics can be predicted. So, the second part of my study covers the 

modeling and forecasting of financial time series around geopolitical shocks. 

Particularly in turbulent times, action is often needed in the form of increasing 

hedges or adjusting the portfolios of market participants to adapt to the new 

situation and manage the risk of adverse effects. This always involves the best 

possible assessment of volatility. With my study, I wanted to provide insights 

for research and practice into which forecasting methods are best suited for 

modeling volatility on the one hand and out-of-sample forecasting on the 

other in phases of geopolitical shocks. I focused on the periods in which I 

observed a shock to the financial markets and analyze how different 

forecasting methods can predict periods of high volatility. 

To do this, I evaluated different approaches for prediction, univariate 

and multivariate, as well as parametric and non-parametric approaches. The 

core model of my analysis is the state-of-the-art Temporal Fusion 

Transformer (TFT) for modeling and predicting time series. For my 

univariate parametric approach, and as a benchmark, I examined the 

frequently applied GARCH, EGARCH, and GJR-GARCH models in terms 

of their ability to explain and predict volatility for the most important 

financial instruments. From a practitioner's point of view, there is always a 

trade-off between model complexity and performance. Therefore, I also 

provided statistically significant differences in forecasting performance 

between model classes in my study. 

In this context, I wanted to answer the following research questions: 



▪ Research Question 6: Which GARCH-type model provides the best in-

sample fit regarding the volatility of the analyzed financial instruments 

during the recent geopolitical shocks? 

▪ Research Question 7: Which GARCH-type model provides the best out-

of-sample forecasts regarding the volatility of the analyzed financial 

instruments during the recent geopolitical shocks? 

▪ Research Question 8: Can the Temporal Fusion Transformer achieve 

better out-of-sample performance than the best performing GARCH-type 

model in times of geopolitical shocks? 

▪ Research Question 9: Can the implementation of a regime-switching 

feature in the TFT increase the forecasting performance in times of 

geopolitical shocks? 

▪ Research Question 10: Can a significantly better forecasting 

performance be achieved by optimizing the hyperparameters of the TFT 

than the performance averaged by a hyperparameter grid in times of 

geopolitical shocks? 

▪ Research Question 11: Can a multivariate forecasting approach of the 

Temporal Fusion Transformer model achieve better results than a 

univariate approach of the TFT in times of geopolitical shocks? 

 

To answer these questions, I used various modifications of the 

Temporal Fusion Transformer to predict the volatility of some of the most 

important financial instruments: the highly traded stock indices S&P 500, 

NASDAQ 100, Nikkei 225 and Hang Seng; Gold as the essential instrument 

for hedging against inflation and a long-term store of value; Brent Crude Oil 

as the most important source of energy; the 10 years Treasury Bond as the 

essential reference for fixed income, a benchmark for returns and the price of 

time; the exchange rate of Euro vs. US-Dollar as an indicator of the balance 

between the two most important currencies; and Bitcoin as an instrument with 

increasing market capitalization, high potential of growth and a hedge against 

inflation. For selected periods during the geopolitical shocks of COVID-19, 

the Russian attack on Ukraine and the Hamas attack on Israel, I examined 

how well the different methods could predict these phases of increased market 



volatility. Using a rolling window approach, I trained the model with data 

from the last 250 trading days and generate direct multi-step ahead forecasts 

for the next 10 trading days. Then I moved the window forward by one step. 

For the three periods of geopolitical shocks under consideration, I analyze 

around 60 steps of the window each. 

1.3. Contribution to research and outline 

Ensuring the robustness of results is essential in empirical studies. To 

achieve this, I analyzed nine financial assets across various markets—

including stocks, commodities, bonds, currencies, and cryptocurrencies. This 

broad scope reduces sampling bias and enhances generalizability (Baltagi, 

2008; Pesaran, 2015), while also enabling the identification of structural 

similarities or differences across markets. Though care must be taken with 

inter-variable correlations, this diverse dataset supports more resilient 

conclusions (Stock & Watson, 2012). Three major geopolitical shocks were 

analyzed: COVID-19, the Russian invasion of Ukraine, and the Hamas attack 

on Israel. These events differ in causes and macroeconomic impact, offering 

a rich basis for model testing. Evaluating multiple periods improves 

robustness by minimizing event-specific distortions and revealing model 

limitations or sensitivities (Giacomini & Rossi, 2010). Out-of-sample 

forecasts were used to assess predictive performance, helping mitigate 

overfitting risks and improve model selection (Welch & Goyal, 2008). I 

applied a rolling window method for training and testing forecasting models, 

generating multi-step forecasts (1–10 trading days ahead) to evaluate 

performance across different horizons. This cross-validation approach 

respects the time-series structure and enhances forecast reliability (Hyndman 

& Athanasopoulos, 2018). This work contributes to the growing field of 

volatility prediction amid increasing geopolitical uncertainty. As the global 

order transitions from unipolar to multipolar, the likelihood of disruptive 

geopolitical shocks rises, posing risks for portfolio management. Accurate 

volatility forecasts are critical for effective hedging, avoiding both over- and 

under-hedging. I began with an ex-post analysis of abnormal returns and 



volatility using MSCI World Sector Indices to show how sectors responded 

differently to the Russian invasion. This revealed not only the intensity of 

shocks but also the persistence and sector-specific impacts. Notably, some 

sectors benefitted during the turmoil. 

To advance volatility prediction, I evaluated the Temporal Fusion 

Transformer (TFT), a neural network designed for time series forecasting. I 

tested univariate, multivariate, and regime-switching models, comparing their 

performance to traditional GARCH models. Given the limited literature on 

TFTs in the context of geopolitical shocks, this fills a notable research gap.  

The thesis is structured as follows: Section 2 reviews related literature; 

Section 2 outlines methods and data; Section 3 covers the results of my 

research regarding the abnormal return analysis and the volatility forecasting 

by the Temporal Fusion Transformer Deep Learning network. Section 4 

draws a conclusion, and sections 5 presents new scientific contributions. In 

section 6, I present my related publications.  



2. MATERIAL AND METHODS 

My research focused on two main areas. First, I analyzed abnormal market 

dynamics, specifically abnormal returns and volatility, around geopolitical 

shocks using MSCI World sector indices. I applied event study 

methodologies (Campbell & Lo, 1996; Fama, 1970) to evaluate stock sector 

responses to the Russian invasion of Ukraine. For abnormal volatility, I 

followed frameworks by Ahmed et al. (2020) and Beaver (1968). Second, I 

assessed the out-of-sample forecasting performance of the Temporal Fusion 

Transformer (TFT) during three geopolitical shocks: COVID-19, the Russian 

invasion, and the Hamas attack on Israel. Using a rolling window approach, I 

trained a  

 

 

Figure 1: Research procedure for out-of-sample forecasting. Source: Own 

illustration using MS PowerPoint (2025). 

multivariate TFT to forecast 1–10 day-ahead volatility for nine major 

financial instruments, including key stock indices (S&P 500, NASDAQ, 

Nikkei 225, Hang Seng), gold, Brent oil, 10-year Treasury bonds, EUR-USD, 

and Bitcoin. I incorporated the VIX futures and the Geopolitical Risk Index 

(GPR) as explanatory variables. I compared TFT’s performance to GARCH, 

EGARCH, and GJR-GARCH models using SMAPE. I also tested univariate 

vs. multivariate approaches and evaluated a regime-switching version of TFT. 

Forecasts were repeated with varying hyperparameters (attention heads and 



hidden sizes) to assess robustness and improve prediction accuracy. The 

procedure is illustrated in Figure 1 and Figure 2. 

 

Figure 2: Rolling window approach for TFT out-of-sample forecasting. 

Source: Own illustration using MS PowerPoint (2025). 

2.1. Applied methodology 

There are several definitions of volatility: statistical volatility (Hull, 

2022), conditional volatility (Bollerslev, 1986; Engle, 1982; Mandelbrot, 

1963), which refers to the time-varying variance of returns, conditioned on 

past information, implied volatility which is the markets expectation of the 

future volatility of an asset, as inferred from the price of options (Black & 

Scholes, 1973), realized volatility, which is a non-parametric, ex-post 

measure of actual volatility, calculated using high-frequency intraday 

returns (Andersen et al., 2003) and historical volatility is the standard 

deviation of asset returns over a specified past window, without assuming 

time-variation (Poon & Granger, 2003). In our study, we used the statistical 

definition of Hull (2022) and the conditional volatility of Engle (1982). The 

classical definition assumes that returns 𝑟𝑡 are random variables, and 

volatility captures their dispersion: 

𝜎 =  √𝑉𝑎𝑟(𝑟𝑡) =  √𝐸[(𝑟𝑡 − 𝜇)2] 

where 𝑟𝑡 are log returns of a time series of a financial asset 𝑝𝑡 and 𝜇 = 𝐸[𝑟𝑡] 

is the expected value of 𝑟𝑡, for 𝑡 ∈ {1, … , 𝑇}. 



2.2. Abnormal Returns and Abnormal Volatility 

To identify Abnormal Returns and Abnormal Volatility, I used the 

event study approach of Campbell & Lo (1996), Fama (1970) and MacKinley 

(1997) to analyze global stock market sector’s reaction to the Russian attack. 

For the evaluation of abnormal volatility, I use the approach of Ahmed et al., 

(2020), Beaver (1968), Brown & Warner (1985), Landsman & Maydew 

(2002) and Prasad et al., (2021). In terms of formal notation, I followed Robus 

et al. (2024). The procedure of an event study using Abnormal volatility is 

based on estimating the model parameters within the pre-event phase and then 

using this model to make predictions for the event and post-event phase. 

Bialkowski et al., (2008) gave the notice that a one-step forecast does not 

produce an event-independent forecast. This problem can be solved by 

making the volatility forecast depends only on the information available 

before the event. 

2.3. GARCH-Class Models 

The Generalized Autoregressive Conditional Heteroscedasticity 

GARCH(p,q) process was introduced by Bollerslev (1986) to model the time-

varying behavior of the variance. In addition to the ARCH model developed 

by Engle (1982), in which only the squared historical error terms are included 

to model the current variance, the GARCH model also consists of the 

historical variance. This was due to empirical observations that volatility 

shows persistence. The GARCH parameters determine the strength of the 

influence of the respective components. The EGARCH process was 

introduced by Nelson (1991) to model the leverage effect that occurs in many 

financial time series. The GJR-GARCH model of Glosten, Jagannathan, and 

Runkle (Glosten et al., 1993), which is also known as the threshold GARCH 

(T-GARCH) model, is proposed to capture the asymmetric behavior of 

volatility regarding good and bad news, and by allowing the current 

conditional variance has a different response to the past positive and negative 

returns, captured by the dummy variable 𝐷𝑡. 



In my research, I used these three GARCH-type models in different 

parameter setups (𝑝 = 1, … ,5 and 𝑞 = 1, … ,5). Thus, I evaluated the best-

fitting GARCH type model from a set of 75 competing models. To estimate 

the GARCH(p,q) parameters, I used the approach of the maximum likelihood, 

regarding Bollerslev (1986), Bollerslev & Woodbridge (1992), and Nelson 

(1991). 

2.4. The Temporal Fusion Transformer for volatility forecasting. 

The Temporal Fusion Transformer (TFT) is a state-of-the-art deep 

learning architecture specifically developed for forecasting multivariate time 

series across multiple prediction horizons. Introduced by Lim et al. (2021), 

the TFT integrates key elements from LSTM networks, self-attention 

mechanisms, and interpretable model components, enabling it to model 

complex temporal dependencies while remaining transparent in its 

predictions (Figure 3). One of TFT’s most valuable features is its ability to 

produce multi-horizon probabilistic forecasts using quantile regression, 

which not only provides point estimates but also generates prediction 

intervals, allowing for a more comprehensive representation of uncertainty. 

This makes the model particularly suited for applications in finance, energy, 

and other risk-sensitive fields. Moreover, the TFT is highly interpretable: its 

attention layers and feature importance scores allow users to identify which 

variables and time steps contributed most to a given forecast, supporting 

informed decision-making and model traceability. The architecture includes 

several innovative components. Variable Selection Networks (VSNs), 

powered by Gated Residual Networks (GRNs), dynamically assign weights 

to input features, filtering out noise and highlighting the most relevant 

variables. Static Covariate Encoders embed time-invariant inputs such as 

asset class or region, shaping model behavior throughout the network. The 

LSTM-based encoder-decoder architecture captures short- and medium-term 

dependencies, while known future inputs are integrated through the decoder. 

To capture long-range patterns, the multi-head attention mechanism learns to 

focus on different temporal segments, improving both accuracy and 

interpretability. The Temporal Fusion Decoder then combines outputs from 



the LSTM and attention layers, fusing them into a final representation that 

balances local and global patterns. Finally, the Quantile Prediction Layer 

generates forecasts at multiple quantile levels (e.g., 10%, 50%, 90%), offering 

a nuanced view of potential outcomes and supporting robust risk assessment. 

 

 

Figure 3: Temporal Fusion architecture. Source: Lim et al. (2021). 

 

Table 1: Applied hyperparameter for Temporal Fusion Transformer training 

and forecasting 

TFT Parameters Value 

Learning Rate 0.001 

Dropout Rate 0.01 

Minibatch Size 32 

Attention Head 1, 4, 8 

Hidden Size 16, 32, 64 

Max. Epochs 100 

Loss Metrics MAE, MSE 

Source: Own collection (2025). 

This attribute is particularly relevant in the financial sector, where 

model decision traceability is essentially. Its ability to effectively model both 



short-term and long-term dependencies makes it a powerful tool for modern 

time series analysis tasks. To train the TFT, I used the combination of 

hyperparameters as shown in Table 1. In doing so, I based the hyperparameter 

selection by publications such as: Frank (2023); Hartanto & Gunawan (2024) 

and Lim et al. (2021). 

Attributed to its flexibility, the Temporal Fusion Transformer (TFT) 

is particularly suited for modeling financial time series, which exhibit 

complex, non-linear dynamics such as short-term fluctuations, long-term 

dependencies, volatility clustering, regime shifts, and abrupt volatility spikes 

(Box et al., 2015; Engle & Bollerslev, 1986; Glosten et al., 1993). Short-term 

behaviors, including return autocorrelations, momentum effects, and market 

reactions, are captured via Gated Residual Networks (GRNs), LSTM 

encoders, and decoder self-attention. GRNs dynamically weight inputs at 

each time step, allowing selective focus on informative features as market 

conditions evolve (Farooq et al., 2024; Hartanto & Gunawan, 2024; Lim et 

al., 2021). For instance, during momentum phases, recent return indicators 

gain prominence while lagged inputs are down-weighted. The LSTM encoder 

learns temporal dependencies from recent data, detecting patterns such as 

price reversals or transient shocks. Decoder self-attention enhances forecast 

precision by integrating cross-horizon dependencies (Lim et al., 2021; Zhang 

et al., 2025).  

Long-term structures, such as macroeconomic cycles or structural 

breaks, are addressed through temporal self-attention, static covariate 

encoders, and positional embeddings. Temporal attention assigns relevance 

to temporally distant events, enabling the model to capture lagged macro-

financial dependencies, such as recurring effects of policy interventions. 

Static covariate encoders condition forecasts on fixed attributes (e.g., asset 

class, region), while positional embeddings help the model recognize 

calendar-based effects (Laborda & Zamanillo, 2023; Lim et al., 2021). 

Volatility clustering, persistent variance over time (Engle, 1982), is 

effectively modeled through the interaction of LSTM, GRNs, and temporal 

attention. The LSTM internal state encodes recent volatility patterns, while 

GRNs modulate the importance of inputs such as rolling standard deviations 



and implied volatilities. Temporal attention enables recall of similar historical 

regimes beyond sequential memory constraints, enhancing the model’s ability 

to learn the persistence and evolution of volatility (Bollerslev, 1986; Beck et 

al., 2025; Lim et al., 2021). In contrast, volatility spikes often result from 

exogenous shocks. TFT handles such discontinuities through its architectural 

adaptiveness. GRNs reweight inputs in response to abrupt changes, such as 

unanticipated macroeconomic data or sentiment shifts (Shen et al., 2025). 

LSTM components preserve short-term precursors to spikes, while temporal 

attention recalls historical analogs. Decoder self-attention refines the 

prediction trajectory, distinguishing between transient and regime-shifting 

events (Yang et al., 2025). Residual connections ensure stable transitions 

across market regimes. 

Also, the TFT’s quantile forecasting capabilities present significant 

advantages across financial applications. By estimating full conditional 

distributions, the model captures tail risks and non-linear behaviors central to 

financial risk management. In this context, accurate quantile forecasts 

enhance the estimation of Value-at-Risk and Expected Shortfall, enabling 

dynamic risk exposure adjustments in compliance with regulatory standards 

(Merlo et al., 2021; Petneház, 2021; Zha et al., 2024). For credit risk, TFT 

supports scenario-based estimation of default probabilities and losses. In 

portfolio management, TFT enables dynamic hedging and factor timing by 

incorporating tail-risk information. Its predictive capacity under stressed 

market conditions facilitates adaptive asset allocation and downside 

protection (Hartanto & Gunawan, 2024; Yang et al., 2025). Regulatory 

supervision also benefits, as TFT-based forecasts improve stress-test design 

and macroprudential oversight, aiding institutions and regulators in 

quantifying systemic vulnerabilities and determining capital adequacy with 

greater accuracy (Merlo et al., 2021; Storti & Wang, 2022; Taylor, 2019). 

 

2.5. Forecasting Evaluation 

Volatility forecasting has been addressed through various methods, 

including GARCH models, neural networks, and hybrid approaches. 



Evaluating forecast performance is as critical as model choice. While 

traditional metrics like RMSE and MAE are widely used, Symmetric Mean 

Absolute Percentage Error (SMAPE) has gained prominence in financial 

econometrics due to its robustness and interpretability. Unlike MAPE, which 

becomes unstable near zero actual values, SMAPE normalizes forecast errors 

by the average of actual and predicted values, offering a bounded, symmetric 

metric (Goodwin & Lawton, 1999; Makridakis, 1993). This makes SMAPE 

especially suitable for evaluating volatility forecasts under heteroskedasticity 

or scale variation (Taylor, 2004). In my study, I focused on predicting 

financial volatility under geopolitical shocks using the Temporal Fusion 

Transformer (TFT). To evaluate model performance consistently and avoid 

contradictory results, I chose SMAPE as the sole forecast evaluation criterion. 

Using multiple FECs can lead to conflicting model rankings and inconsistent 

statistical inference (Diebold & Mariano, 1995; Hansen et al., 2011). Since 

my goal was to support portfolio adjustments and hedging decisions, 

percentage-based error measurement aligned best with practical objectives. 

SMAPE’s bounded nature, symmetry, and scale robustness make it an 

effective and theoretically coherent choice for this analysis. To assess the 

statistical significance of the difference in performance between two 

forecasting models, we use the Diebold-Mariano test statistics (Diebold & 

Mariano, 1995). The goal hereby is, to assess whether to competing 

forecasting models have equal predictive accuracy. To account for possible 

heteroskedasticity and autocorrelation effects in the data, we adjust the 

Diebold-Mariano test statistics for the variance estimation, proposed by 

Newey & West (1987). For small samples, the DM test statistic can be biased, 

so, we adjust it by the approach of Harvey et al. (1997). The adjusted DM test 

(DM*) test statistics now follows a t-distribution. 

2.6. Applied Datasets 

2.6.1. MSCI World Sector Indices for Identification of Abnormal 

Returns and Abnormal Volatility 



To analyze the market response, I combined the event and post-event phases 

(t−5 to t+25) for MSCI World sector indices. As detailed in Robus et al. 

(2024), log-return data reveal near-zero average and median returns in the 

pre-event phase, sharp declines during the event, and positive returns in the 

post-event phase. 

Table 2: MSCI World Sector Indices in research scope. 

Index ISIN Abbreviation 

MSCI World Index MIWO00000PUS MSCI 

MSCI World Consumer 

Discretionary Index 

MIWO0CD00PUS CD 

MSCI World Consumer Staples 

Index 

MIWO0CS00PUS CS 

MSCI World Energy Index MIWO0EN00PUS EN 

MSCI World Financials Index MIWO0FN00PUS FN 

MSCI World Health Care Index MIWO0HC00PUS HC 

MSCI World Industrial Index MIWO0IN00PUS IN 

MSCI World Information 

Technology Index 

MIWO0IT00PUS IT 

MSCI World Materials Index MIWO0MT00PUS MT 

MSCI World Real Estate Index MIWO0RE00PUS RE 

MSCI World 

Telecommunications Index 

MIWO0TC00PUS TC 

MSCI World Utilities Index MIWO0TC00PUS UT 

Source: Morgan Stanley Capital International (MSCI, 2024a, 2024b), Robus 

et al. (2024). 



 

Figure 4: Log-returns for MSCI World Sector Indices (07/01/2021 – 

06/30/2022). Dashed line marks the day of the Russian attack on Ukraine at 

February 24, 2022. Source: Own illustration using Python Matplotlib 

(2025). 

 

The Russian invasion triggered immediate sell-offs, followed by 

sector-specific recoveries, indicating a reallocation driven by revised 

expectations regarding sectoral business models. The largest daily losses 

during the event phase were recorded in financials (−3.41%), consumer 

staples (−2.82%), materials (−2.64%), telecommunications (−2.63%), 

consumer discretionary (−2.51%), utilities (−1.97%), IT (−1.69%), real 

estate (−1.68%), industrials (−1.63%), energy (−1.46%), and health care 

(−1.25%). These figures highlight the varied impact across sectors and the 

dynamic market response to geopolitical uncertainty. 

2.6.2. Dataset for Temporal Fusion Transformer Forecasting 



This section will present and discuss the dataset, I used to evaluate the 

forecasting performance of the Temporal Fusion Transformer and the 

different GARCH-type models. I collected daily time series data on closing 

prices for selected financial instruments (Table 7). The used dataset contains 

9 time series with closing prices from the January 7, 2019, to June 30, 2024 

(Figure 4). Overall, I collected 1,388 business days for every financial 

instrument from Federal Reserve Bank of St. Louis (FRED): S&P500 (FRED, 

2024a), NASDAQ 100 (FRED, 2024b), Nikkei 225 (FRED, 2024c), Gold 

(FRED, 2024d), Brent Crude Oil (FRED, 2024e), EUR-USD exchange rate 

(FRED, 2024f), 10-year Treasury Bond rate (FRED, 2024g) and Bitcoin 

(FRED, 2024h); and data for the Hang Seng stock index from Reuters 

database (Reuters, 2024) for historical data and calculated log-returns for the 

analysis. 

 

Table 3. Financial instruments in scope for volatility forecasting analysis. 

Financial Instrument ISIN 

S&P 500 Index US78378X1072 

NASDAQ 100 Index US6311011026 

Nikkei 225 Index JP9010C00002 

Hang Seng Index HK0000004322 

Gold XC0009655157 

Brent Crude Oil XC0009677409 

EUR/USD EU0009652759 

10yr. Treasury-Bond US10YT 

Bitcoin CRYPT0000BTC 

Source: FRED (2024a, 2024b, 2024c, 2024d, 2024e, 2024f, 2024g, 2024h), 

Reuters (2024). 

I computed summary statistics for daily log-returns of each financial 

instrument for the entire dataset and selected periods: COVID-19, the Russian 

attack and the Hamas terrorist attack on Israel (Appendix). Furthermore, I 

collected historical data for the CBOE Volatility Index (VIX) (FRED, 2024i) 

and the Geopolitical Risk Index (2024), who was constructed by Caldara & 

Iacoviello (2022). Looking over the entire dataset, I found heavy daily losses: 

Bitcoin (-46.5%), 10-year Treasury Bond (-32.4%), Brent Crude Oil (-



28.0%), NASDAQ (-13.1%) and S&P 500 (-12.8%). But there were also 

profits. The maximum daily gains are led by the 10-year Treasury Bonds 

(+36.8%), followed by Brent Crude Oil (+27.4%) and Bitcoin: (+20.3%). I 

compared the periods of geopolitical shocks separately and found the 

following. The heaviest daily losses occurred during COVID-19 with average 

of daily losses across all financial instruments by -16.8%. It was -5.6% for 

the period of the Russian attack and -3.3% for the period of the Hamas 

terrorist attack on Israel. Bitcoin, Brent Crude Oil and Bonds suffered the 

most considerable daily losses in all three periods.  

Comparing volatility using the standard deviation of daily returns 

between different periods, one can observe the following. The period of 

COVID-19 has the highest volatility, with an average standard deviation of 

daily returns of 4.6%. This is followed by the period of the Russian attack 

with 2.2% and then the period of the Hamas attack with 1.4%. Bitcoin, bonds, 

and oil have been found to have the highest volatility in all three periods of 

analyzed geopolitical events. Bonds were 11.8% during COVID-19, Brent 

Crude oil was 7.7% during the Russian attack, and Bitcoin was 2.8% during 

the Hamas attack. In the next step, I checked whether I need to perform further 

transformations on the time series before the analysis. 

 



 

Figure 5: Daily log-returns for financial instruments in scope (01/07/2019 – 

06/29/2024). Dashed lines mark geopolitical events: COVID-19 (03/09/20); 

Russian attack (02/24/22) and Hamas attack (10/08/23). Source: Own 

illustration using Python Matplotlib (2025). 

This may be the case if a time series is not stationary. I tested this with 

the Augmented Dickey-Fuller test (Dickey & Fuller, 1979; Said & Dickey, 

1984) and found that for all financial instruments, the null hypothesis, that a 

time series is not stationary, could rejected. In the last step, I wanted to test 

the feasibility of modeling volatility using GARCH models, i.e., whether the 

effects of heteroskedasticity can be observed in the time series. I use Engle's 

ARCH Lagrange Multiplier test (Engle, 1982). The null hypothesis assumes 

that there is no heteroscedasticity, whereby the parameters of an ARCH model 

are estimated using the data to be equal to zero. I could observe the following 

by applying Engle's ARCH test to the time series. The test could not be 

rejected for the EUR-USD exchange rate and Bitcoin but could rejected for 

all other financial instruments. This is an important indication that the current 

variance of the residuals of daily returns can be explained by the variance of 

the residuals of the past and provides the foundation for the further analysis. 

Furthermore, heteroscedasticity may also be present if the test is rejected. This 

may be because the time series under consideration has a high persistence in 

volatility. In this case, a GARCH model should be used for modeling. A 



second possibility is the presence of structural breaks that an ARCH model 

cannot sufficiently represent. In this case, the GJR-GARCH model shall be 

used.



3. RESULTS AND DISCUSSION 

3.1. Abnormal Returns for MSCI World Sector Indices 

This analysis examines abnormal returns (AR) in MSCI World sector 

indices surrounding the Russian invasion of Ukraine on February 24, 2022. 

Using an event window from 𝑡 − 5 to 𝑡 + 5, statistically significant ARs were 

most concentrated on the event day and immediately after. On 24 February, 7 

of the 11 sector indices showed significant AR, while 5 remained significant 

on 𝑡 + 1. The effects largely diminished in subsequent days. Notably, the 

materials sector exhibited a significant AR even before the invasion. Average 

abnormal returns (AARs) show a significant market decline of −0.85% on the 

event day (𝑡), followed by a +1.32% rebound on the day after (𝑡 + 1). This 

pattern suggests an initial reaction followed by selective corrective buying. 

“The strong U.S. weighting in the MSCI World Index may have also 

contributed to post-event recovery, as expectations shifted in favor of U.S.-

based firms (Ali et al., 2023). Sector-level analysis reveals divergent 

responses. Significant negative ARs on the event day were recorded in 

consumer staples (−2.76%), financials (−3.01%), industrials (−0.87%), 

materials (−1.66%), and information technology (−2.53%)” (Robus et al., 

2024). Conversely, real estate (+1.66%) and telecommunications (+2.00%) 

showed significant positive ARs. Consumer discretionary and energy sectors 

showed no significant responses. A cumulative abnormal return (CAR) 

analysis through t+25 highlights long-term impacts. Energy (+8.02%) and 

utilities (+7.29%) posted the strongest gains, likely due to anticipated supply 

disruptions and defensive capital reallocations. Financials suffered continued 

losses (CAR −5.50%), while healthcare (+4.12%) and real estate (+4.74%) 

saw substantial gains. The consumer discretionary sector underperformed 

(−2.94%), reflecting decreased demand for non-essential goods. Information 

technology (+2.44%) and materials (+3.02%) rebounded from initial losses, 

ending with positive CARs. Telecommunications and utilities also performed 

well over the long term, supported by stable cash flows and critical 

infrastructure roles. In sum, the Russian invasion triggered clear, sector-



specific market reactions. Results confirm that geopolitical shocks like this 

one produce heterogeneous and lasting effects across global equity sectors, 

particularly in energy, finance, healthcare, and utilities. This supports the 

study’s second research question on the sustained impact of geopolitical crises 

on financial markets. Overall, using the event study methodology, I have 

demonstrated that the Russian invasion had a clear and differentiated impact 

on sector-specific returns within the MSCI World Index. Notably, the energy, 

financials, healthcare, and utilities sectors exhibited significant cumulative 

abnormal returns by 𝑡 + 25, suggesting that market participants revised their 

expectations for these sectors considering the geopolitical shock. These results 

confirm the second research question, indicating that the invasion had a 

sustained and heterogeneous influence across global equity markets.  

3.2. Identification of Abnormal Volatility 

3.2.1. Abnormal Volatility 

This section presents findings on abnormal volatility (AVOLA) surrounding 

the Russian invasion of Ukraine on February 24, 2022. Using an event window 

from 𝑡 − 5 to 𝑡 + 5, volatility was measured relative to GARCH(1,1)-based 

forecasts. To reduce the influence of outliers, I computed a truncated mean 

(TMean), which excludes the minimum and maximum values per time point. 

Most AVOLA-TMean values exceeded 1, indicating realized volatility was 

generally higher than expected (Robus et al., in press). Notably, values spiked 

on 𝑡 − 2 and 𝑡 − 1, suggesting heightened anticipation of conflict, particularly 

after Russia’s recognition of separatist regions and troop deployment on 

February 21, 2022. On the event day, AVOLA-TMean peaked at 8.99, and 

remained elevated on 𝑡 + 1 (8.50), reflecting extreme market turbulence. 

Importantly, AVOLA captures volatility magnitude, not direction. While 

returns on the event day were largely negative, they reversed in many sectors 

by the following day, signaling market reassessment. By 𝑡 + 2 to 𝑡 + 5, 

AVOLA values normalized, suggesting reduced uncertainty. At the sector 

level, 8 out of 11 indices showed AVOLA > 1 on the event day. The highest 

values appeared in financials (57.46) and consumer staples (56.46). 



Significant volatility was also observed in materials, utilities, telecom, IT, 

industrials, and real estate (Robus et al., in press). On 𝑡 + 1, abnormal 

volatility extended to all sectors, with 8 showing statistically significant 

results. Interpretations of sector behavior reflect varying investor 

expectations. Consumer discretionary stocks declined due to expected cuts in 

non-essential spending. Consumer staples faced uncertainty over Russian 

market losses. In contrast, energy showed muted volatility, possibly due to 

pre-existing adjustments and the sector’s long-term, less speculative nature. 

Financials were affected by rising credit risk and reduced investment activity, 

while industrials saw spillover effects from lower capital demand. Healthcare 

volatility rose amid expectations of increased medical demand during crises. 

IT, with high debt and speculative valuations, suffered from investor flight to 

safety. Utilities and telecom gained attention due to their essential services and 

potential role in energy realignment. In summary, the Russian invasion 

triggered widespread abnormal volatility, especially on and after the event 

day. Sector responses varied, reflecting structural sensitivities and investor 

reallocation strategies, confirming the third research question on volatility 

behavior during geopolitical shocks (Robus et al., in press). 

 
Figure 6: Trimmed mean for abnormal volatility (%) of MSCI 

Sector Indices around Russian invasion of Ukraine (02/17/22 – 

03/03/22). Source: Robus et al. (in press). 

 



3.2.2. Cumulated Abnormal Volatility 

I now want to discuss the second question of this paper and examine 

whether the abnormal volatility remains persistent over a longer period after 

the event day. I do this by analyzing the cumulated abnormal volatility 

(CAVOLA). The idea here is that if the ratio of the sum of actual volatility and 

the sum of volatility predicted by GARCH(1,1) increases, abnormal volatility 

> 1 has occurred over the period. If this ratio does not change, the actual 

volatility corresponds to the forecast volatility. If the ratio is even lower, this 

means that the actual volatility over the period under review is lower than the 

forecast volatility. I start again with the analysis of the mean value. For reasons 

of consistency, I also used the TMean here. The results are illustrated in Figure 

7. I have calculated cumulative abnormal volatility for t-1 (sum of AVOLA of 

the observations t-5 to t-1) as an initial value. This gives us also a benchmark 

for the abnormal volatility before the event day (Robus et al., in press). 

I was able to observe the following for the CAVOLA-TMean. Starting 

from a value of 2.42 in t-1, it increases to 3.04 up to t+5. This is 

understandable, as although there are some sectors with increased abnormal 

volatility up to t-1, the majority can be observed in t and t+1, as shown in the 

previous analysis. What is surprising now is that the CAVOLA-TMean 

increases further to 3.24 by t+10 compared to t+5. This means that further 

abnormal volatility occurs in the time periods t+6 to t+10 and that there 

continue to be strong price fluctuations even days after the event day. In other 

words, the abnormal volatility is 20% higher than that around the event day. 

This also implies that there was a longer-term uncertainty regarding further 

developments among investors. From t+11 to t+20 one now see a decreasing 

values for CAVOLA-TMean (t+15: 3.01 and t+20: t+20). This suggests a 

calming of market participants, whose actions on the markets produce less 

volatility than the GARCH(1,1) model predicts. In the further observation 

period, one see that the CAVOLA-TMean of t+20 roughly corresponds to the 

CAVOLA of t+25. This means that the CAVOLA-TMean added from t+21 to 

t+25 is approximately one, which is the value where the actual volatility 

corresponds to the estimated volatility and has therefore returned to a long-

term level. From a mean value perspective, I was thus able to show that the 



abnormal volatility was persistent up to the period t+10 and thus lasted longer 

than shortly after the event day. I will now look at the behavior of individual 

sectors. I observed the CAVOLA-TMean behavior just described for the 

following sectors: consumer staples, energy, health care, industrials, IT, 

materials and telecommunications (Robus et al., in press).  

However, I also found different behavior in individual sectors. The 

persistence was particularly strong in the sectors: IT, telecommunications, 

health care, industrials and materials. In Financials, an already high CAVOLA 

value was observed at time t-1, followed by a sharp decline up to time t+5, 

after which CAVOLA rose again, as in other sectors. The zig-zag movement 

here up to t+25, suggests that the uncertainty in this sector will persist for 

longer or increase again after a certain time. One can see little persistence of 

abnormal volatility due to declining CAVOLA after t+5 at the real estate and 

utilities sector (Robus et al., in press). My analysis showed that abnormal 

volatility was persistent in many sectors until t+10. With these findings, I can 

confirm research question 4. 

 

 
Figure 7: Trimmed mean cumulated abnormal volatility (CAVOLA-TMean) 

for MSCI Sector Indices around Russian invasion of Ukraine (02/17/22 – 

03/31/22). Source: Robus et al. (in press). 



3.3. Univariate Volatility Modeling and Forecasting of Financial Time 

Series during Geopolitical Shocks 

3.3.1. In-Sample Analysis 

This study evaluated the performance of various GARCH models in 

forecasting financial market volatility during three major geopolitical events: 

the COVID-19 pandemic, the Russian invasion of Ukraine, and the Hamas 

attack on Israel. Using high-frequency data over three distinct business-day 

periods, 75 different GARCH model configurations, 25 each from standard 

GARCH, EGARCH, and GJR-GARCH class, were applied to nine financial 

instruments. The model performance was assessed using the Akaike 

Information Criterion (AIC), and AIC weights were used to determine the 

likelihood of each model being the best fit to the volatility data. Across all 

instruments and periods, the EGARCH model consistently outperformed both 

GARCH and GJR-GARCH models. The Akaike weights indicated that 

EGARCH was, in nearly all cases, over 90% likely to be the best-fitting 

model. This performance advantage is largely due to EGARCH’s ability to 

model the leverage effect, where negative returns cause disproportionately 

larger increases in volatility, common during sharp market downturns. The 

empirical data confirmed this: sharp daily losses during COVID-19 were 

followed by prolonged periods of elevated volatility, especially for the S&P 

500, NASDAQ, Brent Crude Oil, and U.S. Treasury bonds. EGARCH models 

also tended to perform best when configured with higher-order lags, 

suggesting improved modeling of asymmetric responses and volatility 

persistence. These findings are supported by prior studies (e.g., Gharaibeh & 

Kharabsheh, 2023; Khan et al., 2023; Mitsas et al., 2022; Yildirim & Celik, 

2020), which also found EGARCH superior in periods of geopolitical and 

structural volatility. Overall, the EGARCH model proves especially well-

suited for capturing complex volatility dynamics during geopolitical crises. 

By showing that the EGARCH model achieved the best in-sample fit for the 

financial instruments in scope and periods of geopolitical shocks, I was able 

to answer my research question (Research Question 6). 



3.3.2. Univariate Out-of-Sample Volatility Forecasting 

This study evaluated the out-of-sample forecasting performance of 

GARCH models—standard GARCH, EGARCH, and GJR-GARCH—under 

geopolitical uncertainty across three major events: the COVID-19 pandemic, 

Russia’s invasion of Ukraine, and the Hamas attack on Israel. Using a rolling-

window approach based on 250 trading days, I generated 1- to 10-step-ahead 

forecasts for nine financial instruments. Forecast accuracy was assessed using 

the Symmetric Mean Absolute Percentage Error (SMAPE) and directional 

accuracy, with statistical significance tested via the Diebold-Mariano test. The 

EGARCH model consistently demonstrated the best point forecast 

performance. On average across all events and forecast horizons, EGARCH 

produced the lowest SMAPE for 51.85% of instruments. For short-term 

forecasts (1-step-ahead), EGARCH outperformed in 44.44% of cases, 

increasing to 51.85% at the 10-step horizon. GJR-GARCH followed closely, 

particularly excelling in 5-step-ahead forecasts. Simple GARCH models 

lagged in performance but occasionally performed best for specific 

instruments like Gold or the EUR/USD exchange rate. During the COVID-19 

period, EGARCH provided the most accurate forecasts for over half the 

instruments, including NASDAQ, Bitcoin, and Brent Crude Oil. GJR-

GARCH excelled with the S&P 500 and 10-year Treasury Bonds. In the 

Russian invasion period, EGARCH and GJR-GARCH were equally effective 

overall, while simple GARCH showed isolated success. EGARCH dominated 

long-horizon forecasts. During the Hamas conflict, EGARCH again delivered 

the best forecasts for most assets, particularly Gold, EUR/USD, and Bitcoin. 

GJR-GARCH performed well for the Hang Seng and NASDAQ, while simple 

GARCH models improved for select instruments. 

In sum, EGARCH models consistently outperformed their 

counterparts, particularly in periods of heightened volatility and asymmetric 

return dynamics, confirming their robustness for forecasting under 

geopolitical stress. I also evaluated the directional forecasting accuracy of 

GARCH models during the three major geopolitical shocks. During the 

COVID-19 pandemic, the GJR-GARCH model achieved the highest 



directional accuracy across 66.67% of financial instruments for average 1- to 

10-step-ahead forecasts, including indices like the S&P 500, Nikkei 225, and 

Hang Seng, as well as Gold, Oil, and EUR/USD. EGARCH performed best 

for NASDAQ, the 10-year Treasury Bond, and Bitcoin. For short-term (1-

step-ahead) forecasts, GJR-GARCH again led with 77.78% accuracy, while 

EGARCH and the simple GARCH model performed well in select cases, 

particularly for Bitcoin and Gold. EGARCH dominated 5-step-ahead 

forecasts, leading for 55.56% of instruments. At the 10-step horizon, GJR-

GARCH excelled again with 77.78% accuracy, followed by EGARCH at 

55.56%. During the Russian invasion of Ukraine, GJR-GARCH led average 

directional accuracy (55.56%), especially for equities and Bitcoin. EGARCH 

followed with top results for Oil and the 10-year Treasury Bond. The simple 

GARCH model performed well only in isolated cases, such as Gold. For 1-

step-ahead forecasts, simple GARCH surprisingly led in 66.67% of cases. At 

5- and 10-step horizons, EGARCH and GJR-GARCH alternated in top 

performance, particularly for NASDAQ, EUR/USD, and Bitcoin. In the 

Hamas attack period, EGARCH and GJR-GARCH tied for best average 

directional accuracy (44.44%). EGARCH excelled at 10-step-ahead forecasts 

(66.67%), followed closely by GJR-GARCH (55.56%). Simple GARCH also 

showed improvements, especially for the Nikkei 225 and Treasury Bonds. 

Across all events, EGARCH and GJR-GARCH consistently offered robust 

directional forecasting across forecast horizons. This allowed me to answer 

the first part of my research question (Research Question 7). 

3.4. Multivariate Volatility Modeling and Forecasting using the 

Temporal Fusion Transformer 

Time series forecasting involves predicting future values based on past 

data and can be approached using either univariate or multivariate models. 

While univariate models (e.g., ARIMA) focus solely on the past values of a 

single variable, multivariate time series forecasting (MTSF) integrates 

multiple variables, capturing their interdependencies and offering improved 

predictive accuracy. GARCH models, vector autoregressive models, and 

machine learning techniques like the Temporal Fusion Transformer can be 



applied in both frameworks, with MTSF particularly beneficial in complex 

financial markets. Studies show MTSF enhances risk assessment, forecasting 

accuracy, and decision-making by including realized volatility, causal 

relationships, and multiple financial indicators. Overall, MTSF provides a 

more comprehensive and robust forecasting approach, especially when 

modeling the joint behavior of interconnected financial variables. 

3.5. Multivariate direct multi-step out-of-sample Volatility 

Forecasting using the Temporal Fusion Transformer 

This section presents the results of volatility forecasting using the 

Temporal Fusion Transformer (TFT) across three geopolitical shock periods: 

COVID-19, the Russian invasion of Ukraine, and the Hamas attack on Israel. 

I trained three TFT model variants: univariate, multivariate, and multivariate 

with regime-switching on nine financial instruments (e.g., S&P 500, Gold, 

Bitcoin), using a rolling window approach and 1- to 10-step-ahead direct 

forecasting. The models incorporated historical data and mutual spillover 

effects, with performance compared to traditional GARCH-type models using 

SMAPE and directional accuracy metrics. I also evaluated whether including 

a geopolitical shock indicator improved the TFT’s predictive performance. 

Finally, I assessed whether specific TFT hyperparameter configurations 

outperformed the average, adding robustness to the forecasting results. 

3.5.1. Analysis of multi-step out-of-sample forecasting performance 

This study evaluates the forecasting accuracy of the Temporal Fusion 

Transformer (TFT) relative to GARCH-class models across three major 

geopolitical shock periods: the COVID-19 pandemic, the Russian invasion of 

Ukraine, and the Hamas attack on Israel. Each period presented unique 

volatility patterns, which allowed for a robust comparison across asset classes 

and forecast horizons. Using a rolling-window approach, I generated 1–10 

day-ahead forecasts for nine financial instruments and evaluated accuracy 

using Symmetric Mean Absolute Percentage Error (SMAPE) and adjusted 

Diebold-Mariano tests. During the high volatility period of COVID-19 period, 

the TFT significantly outperformed GARCH models across nearly all 



financial instruments. For instance, in the case of the S&P 500, TFT achieved 

a SMAPE of 0.721 vs. 0.924 for EGARCH(3,4), with a statistically significant 

DM* value. Similar results were seen for NASDAQ, Nikkei 225, and Hang 

Seng, with TFT consistently better, especially for shorter horizons. For the 

Gold price, the difference was narrower, while the EUR-USD exchange rate 

was the only asset where GARCH outperformed TFT, likely due to its low 

volatility. Bitcoin, a highly volatile asset during this period, was forecasted far 

more accurately by the TFT. During the Russian invasion period, overall 

volatility was lower than during COVID-19 but still substantial. Again, TFT 

consistently outperformed GARCH models. For the NASDAQ, the TFT 

achieved a SMAPE of 0.449, while the best GARCH model was 0.651. The 

TFT showed particular strength in forecasting for equity indices and 

commodities like Brent Crude Oil, where it achieved 0.548 SMAPE vs. 

EGARCH(3,5) at 0.804. Even in the bond market, such as the 10-year US 

Treasury, TFT forecasts were more accurate (0.550) compared to GARCH 

(0.811). For FX and Bitcoin, the TFT also outperformed, except for gold, 

which remained a close call but still favored TFT. In the Hamas-Israel conflict, 

overall market volatility was lower compared to the previous periods, 

reflecting more localized geopolitical uncertainty. Nonetheless, the TFT again 

outperformed in most cases. For the S&P 500, it achieved a SMAPE of 0.856 

vs. 1.736 for EGARCH(1,1). For NASDAQ and Nikkei 225, TFT achieved 

better results, though the performance gap narrowed. Interestingly, for gold, 

the TFT’s advantage disappeared, SMAPE was 1.332 vs. 1.494 for GARCH, 

and the difference was not statistically significant. This may indicate TFT’s 

limitations in predicting assets with complex or stable volatility dynamics. 

Brent Crude Oil and 10-year US bonds remained strongholds for the TFT, 

outperforming in all horizons. 

Across all three periods, TFT consistently outperformed GARCH 

models for most financial instruments and forecast horizons. The short-

horizon superiority of TFT was clear, particularly for 1–3 day forecasts, while 

GARCH models maintained more consistent performance across all horizons. 

TFT’s ability to respond to fast market changes makes it particularly effective 

in periods of structural breaks or regime-switching volatility. By asset class, 



TFT excelled in equities and oil, while results for FX and crypto were more 

mixed. GARCH models were more competitive in lower-volatility 

environments like the EUR/USD exchange rate during COVID-19. For fixed 

income, the TFT performed exceptionally well during periods of high 

volatility and reversal, particularly in March 2020. In conclusion, the TFT 

offers a statistically and practically significant improvement in forecasting 

financial market volatility during geopolitical shocks. Its architecture, 

especially its capacity for multivariate input and attention mechanisms 

provides it with advantages in identifying and adapting to sudden shifts in 

volatility regimes. While GARCH models retain value for stable environments 

and longer-term forecasts, the TFT proves superior under most high-stress 

market conditions. This allowed me to answer my research question of 

whether the TFT can outperform the best GARCH-type model (Research 

Question 8). 

3.5.2. Regime switching multi-step out-of-sample forecasting 

performance 

This section analyzes the impact of implementing a regime-switching 

feature in the Temporal Fusion Transformer (RS-TFT) to improve volatility 

forecasting during geopolitical shocks. Volatility often spikes suddenly during 

such events and remains elevated, making forecasting especially challenging. 

Previously, the baseline TFT (BL-TFT) had no explicit indication of these 

high-volatility regimes, instead learning patterns implicitly. To test whether a 

regime indicator improves forecast accuracy, I labeled historical volatility 

values above the 75th percentile as “1” (high regime) and others as “0.” This 

regime-switching feature was then used as a covariate in the RS-TFT, 

indicating whether the latest known volatility observation was part of a high-

volatility regime. This approach mimics regime probability logic in models 

such as the Markov-switching framework (Hamilton, 1988). For evaluation, 

both RS-TFT and BL-TFT models were trained using a rolling window (250 

days) across nine financial instruments and three geopolitical events: COVID-

19, the Russian invasion of Ukraine, and the Hamas attack on Israel. 



Forecasting accuracy was assessed using SMAPE and tested using adjusted 

Diebold-Mariano statistics. 

My results show consistent improvement with the RS-TFT. Across all 

assets and events, RS-TFT achieved an average SMAPE improvement of 

4.53% over BL-TFT. The null hypothesis of equal predictive accuracy of RS-

TFT and BL-TFT was rejected in 21 of 27 tests. The greatest improvements 

occurred during the Hamas attack period, despite its relatively moderate 

volatility. This suggests that RS-TFT helps prevent misforecasting elevated 

volatility in response to moderate shocks, where the baseline model might 

otherwise overreact. Asset-wise, RS-TFT provided the strongest and most 

consistent improvements for the S&P 500 (average SMAPE gain: 5.08%) and 

NASDAQ (5.91%), followed by Nikkei 225 (4.61%) and Hang Seng (5.00%). 

The greatest single gain (22.65%) was for the 9-step-ahead NASDAQ forecast 

during the Hamas attack. Gold showed the highest average improvement 

(9.04%), entirely driven by the Hamas period (25.85%), while effects were 

negligible during COVID-19 and the Russian invasion. Brent Crude Oil 

exhibited minimal improvement (1.37%), with the baseline model slightly 

outperforming in some cases. For 10-year US Treasuries, RS-TFT delivered 

steady improvements (avg. 4.37%) across all periods, with the largest gain 

during the Russian invasion. EUR-USD exchange rates saw modest but 

consistent gains (3.25%), and Bitcoin yielded mixed results: a decline during 

COVID-19 (-1.53%) but improvement during later periods (up to 6.09%). 

The regime-switching feature had the greatest effect on medium-to-

long-term horizons (e.g., h = 6–10), where standard autoregressive models 

struggle to capture structural changes. This supports the view that exogenous 

regime signals are more valuable when the temporal distance from known 

events increases. In summary, the RS-TFT enhances forecast performance 

during geopolitical shocks, particularly for equity indices and at longer 

horizons. Its ability to incorporate external regime signals makes it an 

effective tool for modeling volatility under structural market shifts. This 

analysis showed that the introduction of an additional explanatory variable 

(regime-switching feature) to identify high and low phases of volatility 



significantly improves the forecasting performance and thus answers my 

research question (Research Question 9). 

3.5.3. Influence of hyperparameter optimization on the multi-step out-

of-sample forecasting performance 

An important task in adapting a neural network for a task is optimizing 

the hyperparameters Optimizing hyperparameters is a critical step in adapting 

neural networks like the Temporal Fusion Transformer (TFT) for forecasting 

financial time series, especially during volatile periods such as geopolitical 

shocks. Hyperparameters such as the number of attention heads and the hidden 

size are set before training and significantly affect model performance, 

generalization, and convergence. I conducted a grid search across key 

architectural hyperparameters (attention heads and hidden size) for three 

distinct periods: COVID-19, the Russian invasion of Ukraine, and the Hamas 

attack on Israel. Forecast accuracy was assessed using SMAPE, and statistical 

significance was tested by the Diebold-Mariano test statistics (Diebold & 

Mariano, 1995). 

The attention head parameter determines how many parallel attention 

mechanisms the model uses. More attention heads allow the model to capture 

various dependencies across time, such as short-term movements and long-

term market cycles. This helps in isolating noise, identifying volatility 

clusters, and modeling cross-asset correlations. Hidden size refers to the 

number of neurons per layer, controlling the model’s representation capacity. 

Larger hidden sizes help detect complex patterns like regime shifts or 

structural breaks but can lead to overfitting if too large. 

My results show a significant improvement by hyperparameter 

optimization. The average SMAPE gain across all financial instruments was 

3.94% during COVID-19, 6.13% during the Hamas attack, and 2.81% during 

the Russian invasion. The best-performing models (BP-TFTs) most frequently 

used 8 attention heads (40.74%) and a hidden size of 32 (44.44%), indicating 

that a moderate model complexity offered the best trade-off between 

performance and generalization. At the asset level, the S&P 500 and EUR-

USD consistently benefited from optimized hyperparameters across all 



periods. The NASDAQ, Nikkei 225, and Hang Seng showed significant 

improvements in most but not all periods. Brent Crude Oil and US Treasury 

bonds also exhibited consistent gains, though the optimal hyperparameter 

values varied more, reflecting changing data structure. Bitcoin showed mixed 

results, with significant improvement only during COVID-19. 

The variability in performance across periods emphasizes the 

importance of tuning hyperparameters dynamically depending on market 

conditions. In conclusion, tuning architectural hyperparameters significantly 

enhances TFT performance. More attention heads improve the model’s ability 

to extract multi-scale dependencies and filter noise, while a moderate hidden 

size enables the model to learn complex patterns without overfitting. These 

findings underscore the importance of aligning model architecture with the 

volatility structure of financial time series, particularly during regime changes 

induced by geopolitical shocks (Research Question 10). 

3.5.4. The added value of a multivariate structured volatility 

forecasting approach 

The Temporal Fusion Transformer (TFT) is well-suited for 

multivariate time series forecasting due to its architectural strengths. 

However, multivariate forecasting adds complexity, so it is important to assess 

whether this complexity results in improved performance over univariate 

models. To examine this, I compared a multivariate TFT model (BL-TFT) 

with a univariate TFT (UV-TFT) across nine financial assets—S&P 500, 

NASDAQ, Nikkei 225, Hang Seng, Gold, Brent Crude Oil, 10-year U.S. 

Treasury Bonds, EUR-USD exchange rate, and Bitcoin—during three periods 

of geopolitical shocks: the COVID-19 pandemic, the Russian invasion of 

Ukraine, and the Hamas attack on Israel. Each model was evaluated using a 

rolling-window approach, forecasting 1–10 days ahead. I measured accuracy 

using the Symmetric Mean Absolute Percentage Error (SMAPE) and tested 

significance using adjusted Diebold-Mariano test statistics. Out of 27 total 

evaluations (9 assets × 3 periods), the multivariate model outperformed the 

univariate model in 23 cases (82%), and the performance difference was 

statistically significant in 20 of those cases (87%). Multivariate models are 



particularly advantageous when assets are highly correlated, experience 

volatility spillovers, or respond to common exogenous factors, conditions 

prevalent during crises. During COVID-19, the multivariate model 

outperformed the univariate model for all assets with statistically significant 

results. During the Russian invasion, it outperformed in 7 out of 9 cases (6 

statistically significant), and during the Hamas attack, in 6 out of 9 cases (5 

statistically significant). These patterns correspond with volatility levels: 

highest during COVID-19, moderate during the Russian invasion, and lowest 

during the Hamas attack. At the asset level, the S&P 500 and NASDAQ were 

better forecasted by the multivariate model during COVID-19 and the Russian 

invasion but not during the Hamas attack, likely due to lower cross-asset 

correlations. For the Nikkei and Hang Seng indices, multivariate forecasts 

were superior during COVID-19 and the Hamas attack. For commodities, the 

multivariate model significantly outperformed for Gold and Brent Crude Oil 

during COVID-19 and the Russian invasion, and for Brent Crude Oil also 

during the Hamas attack. These results affirm that multivariate models are 

more robust during systemic shocks due to their ability to capture 

interdependencies and structural breaks. They also benefit from incorporating 

external indicators like the VIX or Geopolitical Risk Index. Univariate 

models, by contrast, treat each asset in isolation and miss key inter-market 

signals. In conclusion, the multivariate TFT provides more accurate and 

adaptive volatility forecasts under elevated geopolitical risk. Overall, the 

findings demonstrate that multivariate models offer a more robust and 

adaptive framework for volatility forecasting under conditions of elevated 

geopolitical risk (Research Question 11). 

3.5.5. Model comparison between GARCH and Temporal Fusion 

Transformer 

Generalized Autoregressive Conditional Generalized Autoregressive 

Conditional Heteroskedasticity (GARCH) models have long been the standard 

for modeling time-varying volatility in asset returns. These parametric models 

capture volatility clustering by modeling conditional variance as a function of 

past residuals and variances, typically assuming stationarity and regularly 



spaced data. Extensions such as EGARCH and GJR-GARCH address 

asymmetries in volatility responses, notably the leverage effect. GARCH 

models are efficient, economically interpretable, and widely used for 

applications such as Value-at-Risk, option pricing, and financial stress testing. 

In contrast, the Temporal Fusion Transformer (TFT) represents a non-

parametric deep learning approach to multi-horizon, multivariate forecasting. 

It integrates recurrent neural networks, attention mechanisms, and static 

covariate encoders in a sequence-to-sequence framework. Unlike GARCH, 

the TFT can model non-stationary, high-dimensional, and incomplete data 

without strong distributional assumptions. It distinguishes between observed, 

known, and static features, offering rich context-dependent learning. 

However, the TFT’s flexibility comes at the cost of interpretability and 

computational efficiency. It is data-intensive, requires regularization, and 

demands significant computational resources for training. 

While GARCH models are tailored specifically for volatility and 

deliver interpretable parameters, they struggle with irregular or missing data 

and are limited to univariate inputs unless extended. The TFT, meanwhile, 

handles multivariate data, volatility spillovers, and structural breaks more 

effectively, making it more robust in real-world, high-complexity settings. 

Overall, GARCH models are suitable for interpretable, efficient modeling of 

clean, stationary time series. The TFT is more appropriate for complex, 

nonlinear, multivariate datasets, particularly during systemic events or when 

forecasting is enhanced by incorporating exogenous variables. However, the 

TFT’s advantages in flexibility and accuracy must be balanced against its 

reduced transparency and high computational cost.



4. CONCLUSION AND RECOMMENDATIONS 

The world is experiencing repeated shocks that do not remain local in 

scope but have a global impact. These geopolitical shocks often arise from 

military conflicts, political unrest, or sudden changes in international relations 

and affect the most diverse facets of the social life, including economics and 

thus financial markets. Furthermore, geopolitical shocks impact the volatility 

of all assets, asset classes, sectors, and countries worldwide which in turn leads 

to changes in the behavior of international market players. It is obvious that 

these phases must be managed very cautiously by market participants and 

financial market supervisors to avoid devastating crashes. This dissertation 

has presented a comprehensive empirical investigation into the identification 

and forecasting of market dynamics under the influence of major geopolitical 

shocks. Using the latest geopolitical events: COVID-19 pandemic, Russia’s 

invasion of Ukraine, and the Hamas attack on Israel as empirical object of 

research, the study evaluates abnormal returns, abnormal volatility, and 

forecasting performance using both traditional econometric and modern deep 

learning approaches. The empirical analysis spans four interconnected 

components. First, an event study on MSCI World Sector Indices reveals that 

geopolitical shocks trigger immediate negative abnormal returns in several 

sectors (e.g., energy, financials), while some sectors (e.g., healthcare, IT) 

show positive cumulative returns afterward. This heterogeneity underscores 

how investor sentiment and sector-specific risk assessments evolve during 

crises. 

Second, volatility dynamics were explored using GARCH-based 

benchmarks. The results indicate significant and persistent abnormal volatility 

post-event, with spillover effects visible across sectors. This reflects increased 

uncertainty and shifting risk perceptions following shocks. Third, the 

performance of GARCH-type models (GARCH, EGARCH, GJR-GARCH) 

was benchmarked. EGARCH outperformed for point forecasts due to its 

asymmetry handling, while GJR-GARCH was superior for directional 

forecasting. This emphasizes the importance of aligning model choice with 

the use case (e.g., hedging vs. directional bets). Fourth, the study employed 



the Temporal Fusion Transformer (TFT) for direct, multi-step, multivariate 

forecasting. TFT consistently outperformed GARCH-class models across 

most instruments and forecast horizons. Its ability to process multivariate 

inputs, adapt to regime shifts, and incorporate exogenous variables led to 

substantial forecasting gains—particularly for short-term volatility. 

Enhancements such as a regime-switching feature (RS-TFT) and 

hyperparameter tuning further improved performance, especially during 

periods with subtle or complex volatility changes. Additionally, a comparison 

between univariate and multivariate TFT models showed that the multivariate 

version outperformed in 82% of cases, highlighting the value of modeling 

cross-asset relationships and incorporating variables like the VIX and 

Geopolitical Risk Index. The multivariate TFT’s advantage was particularly 

pronounced during high-volatility regimes, confirming the importance of 

contagion and co-movement effects during systemic events. 

From a practical standpoint, the research suggests that financial 

institutions should adopt adaptive, high-frequency forecasting tools like TFT 

for risk monitoring, capital allocation, and regulatory compliance, particularly 

in times of geopolitical unrest. TFT-based models can enhance early-warning 

systems, guide dynamic asset allocation, and improve derivatives pricing 

accuracy by better estimating short-term implied volatilities. While TFT 

models offer superior forecasting capabilities, they also require significant 

data, computational resources, and careful tuning. Therefore, the choice 

between GARCH and TFT should be context dependent. In highly regulated 

or resource-constrained environments, GARCH remains useful due to its 

simplicity and interpretability. However, for institutions operating in data-rich 

and rapidly evolving markets, incorporating TFT, either as a primary model 

or in a hybrid ensemble, offers significant performance advantages. In 

conclusion, the Temporal Fusion Transformer emerges as a powerful tool for 

forecasting volatility during geopolitical shocks. Its integration of attention 

mechanisms, multivariate capabilities, and adaptability to structural breaks 

positions it as a leading model for modern financial forecasting under 

uncertainty. 



A hybrid modeling strategy, wherein TFT outputs serve as 

complementary signal generators or are used for benchmarking alongside 

conventional econometric models, represents a pragmatic approach to 

combining predictive strength with operational feasibility.



5. NEW SCIENTIFIC RESULTS 

This dissertation presents several novel scientific contributions at the 

intersection of financial econometrics, time series forecasting, and machine 

learning by analyzing, modeling, and forecasting market dynamics during 

geopolitical shocks. 

1. The research provided a volatility modeling and forecasting 

framework. Systematic testing of 75 GARCH-type models showed that 

EGARCH models consistently provided the best in-sample fit for volatility in 

three different periods of geopolitical shocks (Research Question 6). It was 

found that EGARCH models outperformed GARCH and GJR-GARCH-type 

models in point forecasts, while GJR-GARCH performed better in directional 

forecasts (Research Question 7). 

2. Key methodological innovation is the application of the Temporal 

Fusion Transformer (TFT), a transformer-based deep learning network, for 

direct, multi-step, multivariate volatility forecasting. This research found that 

the TFT outperformed the best-performing GARCH-type model in almost all 

analyzed periods of geopolitical shocks and examined financial assets in the 

research scope (Research Question 8). 

3. Further, this research could show that hyperparameter optimization of 

the Temporal Fusion Transformer significantly enhanced the forecasting 

performance, confirming that careful configuration and hybrid econometric 

deep learning approaches yield better forecasting outcomes (Research 

Question 10) 

4. Finally, the improvement of a multivariate TFT setup was compared 

with a univariate TFT setup. The multivariate TFT approach provided superior 

short-term forecast accuracy, which was crucial during high-volatility 

episodes like March 2020 and the Russian invasion in 2022. This makes it 

particularly suitable for tactical risk management applications (Research 

Question 11).
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