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LIST OF ABBREVIATIONS

Abbreviation

Meaning

1% der first derivative spectral pre-treatment
2" der second derivative spectral pre-treatment
ANNS artificial neural networks
BB “Bigarreau Burlat” sweet cherry variety
CBE cranberry extract
con index of fruits prepared without conidium suspension (control samples)
Cv cross-validation
deTr detrending spectral pre-treatment
DMC dry matter content
EL “Elena” plum variety
EMA economically motivated adulteration
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IFST Institute of Food Science and Technology (MATE)
inf index of fruits infected with conidial suspension (infected samples)
IPP Institute of Plant Protection (MATE)
KJ “Kéantorjanosi” sour cherry variety
k-NN k-nearest neighbours
LD linear discriminant variable
LDA linear discriminant analysis
LOSO leave one sample out
MATE Hungarian University of Agriculture and Life Sciences
ME Codex Alimentarius Hungaricus, Magyar Elelmiszerkonyv
MI maturation index
msc multiplicative scatter correction spectral pre-treatment
NIRS near infrared spectroscopy
Nr number of spectra used in modelling
NrLV number of latent variables used in regression modelling
NrPC number of principal components used in LDA modelling
PCA principal component analysis
PCA-LDA PCA-based LDA
PGE pomegranate extract
PLS-DA partial least squares discriminant analysis
PLSR partial least squares regression

r

index of statistical(s) model based on spectra recorded on the mature
side of fruit




RAE

retinol activity equivalents

Rc? coefficient of determination of calibration
Rev? coefficient of determination of validation
RMSEc root mean square error of calibration
RMSEcv root mean square error of validation
ROI region of interest
sgol Savitzky-Golay smoothing spectral pre-treatment
SIMCA soft independent modelling of class analogies
SSC soluble solid content
ST “Stanley” plum variety
SVM support vector machine
TSS total soluble solid content
TA total acidity
TAC total anthocyanin content
TD “Topend” plum variety
TP “Topend plus” plum variety
UF “Ujfehértoi” sour cherry variety
VvC “Valery Chkalov” sweet cherry variety
VOCs volatile organic compounds
LIST OF UNITS

Unit Meaning
% m/m mass percent (dry matter content)
% VIV volume percent
% brix soluble solid concentration
con. / uL conidium concentration in suspension
g/ 100 mL extract concentration in fruit juices
mg/ g malic acid content in fruit puree

mg/ L

anthocyanin content in fruit juice




1. INTRODUCTION

Food consumption trends have evolved significantly over the recent years, particularly in the
context of health consciousness, environmental awareness, and the impacts of the COVID-19
pandemic. These trends can be particularly tracked in the consumption of fruits and fruit products,
which have seen fluctuations in demand influenced by various socio-economic influences,
consumer preferences and public health messages.

One of the most notable trends in food consumption is the increasing demand for healthy and
organic food options that is driven by a growing consumer consciousness regarding the perceived
benefits. Research indicates that consumers are increasingly prioritizing organic fruits and
vegetables, which are often associated with higher nutritional value and lower pesticide residues
(Wang, Pham, and Dang 2020). This trend also appears in developing regions, where consumers
are becoming more discerning about the quality of food, they consume. The COVID-19 pandemic
has further accelerated this trend, as individuals have become more focused on maintaining their
health through dietary choices (Boca 2021; Guiné et al. 2022; Smiglak-Krajewska and
Wojciechowska-Solis 2021).

The impact of marketing on consumer behaviour is significant. The promotion of health benefits
associated with fruit consumption has been a key strategy. Public health campaigns emphasize the
importance of fruits in a balanced diet, which has contributed to increased awareness and demand
(Gorynska-Goldmann 2019). Additionally, the rise of social media and digital marketing has
allowed for targeted advertising, further shaping consumer preferences towards healthier food
options, including fruits (Whitham et al. 2021). In terms of fruit products, there has been a notable
increase in the consumption of processed fruit products, such as juices and dried fruits. These
products are often marketed as convenient, appealing and healthy options. It is essential to consider
the nutritional quality of these products, as some may contain added sweeteners, preservatives that
can detract from their health benefits (Laguna et al. 2020; S. Li et al. 2021). As a result, consumers
are becoming more vigilant about reading labels and understanding the ingredients in processed
products, reflecting a broader trend towards informed consumption (Gopal 2023).

The production and consumption of fruits, which are subject to various consumer trends, are
influenced by numerous factors. Ensuring the quality expected by buyers and consumers poses a
significant challenge. In discussing this, even without striving for exhaustive detail, we cannot
ignore the social, health-related, and environmental crises affecting our world. These include, but
are not limited to, the impacts of war, pandemics, and extreme climatic conditions. For fruits to
reach store shelves in the form, degree of processing, and quality we seek, they have to go through
a very complex journey, through the food chain as we know it. The first challenges arise right in
the orchards, consider the mild winters, frosty springs, drought-stricken summers, and the
multitude of pests. Then comes the critical question of when to begin harvesting. How long, where,
and under what conditions should fruits be ripened and/or stored, so that the industry can process
them in so many of ways. Here, do not forget to mention the transparent processing and distribution
processes.



In fruit production and quality control practice, the commonly applied assessments are often based
on empirical, and often destructive methods. By empirical, we refer to when producers determine
the start of harvest based on traits such as how easily the fruit detaches from the stalk, how easily
the fruit flesh cracks, or how sweet is the fruit after degustation (Kallay et al. 2007), which are
inherently subjective. A more objective approach involves the instrumental measurement of fruit
weight, colour, firmness, and sugar content. These are destructive techniques, each designed to
assess a single characteristic at a time. However, on their own, they are insufficient for capturing
the full spectrum of quality differences or alterations. Ensuring the authenticity and traceability of
food products is almost unimaginable without the use of digital solutions throughout the
production and logistic processes. Today, innovative rapid methods allow us to conduct non-
destructive and even contactless analyses directly on-site. During such analyses, hundreds or even
thousands of data at a time can be collected, forming the “fingerprint” of a given sample. Based
on these fingerprints, paired with reference characteristics and chemometric modelling, the non-
destructive qualification of previously unknown samples become possible.

We increasingly rely on tuneable digital solutions that can be trained to address a wide range of
questions, that is fundamentally driven by chemometric modelling, often translated into different
digital agricultural strategies, like Digital Agricultural Strategy (DAS) and Digital Food Strategy
(DES). In line with this trend, the objectives of this doctoral research were realised in cooperation
with Agricolae Ltd., a company based in the Szatmar region (Hungary), renowned for its fruit
production. The focus of the thesis is on the widespread application of spectroscopy-based
techniques in fruit production and quality assessment (Cattaneo and Stellari 2019), specifically at
certain critical points within the fruit supply chain. Within the framework of the collaboration,
fruit species and varieties have been included that hold significant economic importance both
within and beyond national borders. Additionally, determining their physiological state (e.g.,
ripeness, microbiological contamination) or detecting specific manipulations of products made
from them that poses particular challenges.

Near infrared (NIR) spectroscopy is one of the advanced correlative analytical methods that are
widely used in routine laboratory or industrial monitoring systems, utilising the wavelength range
of 780 to 2500 nm (Manley 2014). The proliferation of miniaturisation techniques and their
application in image processing technologies, like hyperspectral imaging, has made it possible to
study complex biological systems in an intact way. During our investigations, we addressed the
question of the efficiency of NIR spectroscopy and hyperspectral imaging coupled with
chemometric modelling for the determination of fruit ripeness and thus the determination of
harvest time, the efficiency of detecting inadequate fruit storage and brown rot as well as food
fortification of whole stone fruits or fruit juices.



2. OBJECTIVES

The aim of the thesis was the application and development of state-of-the-art correlative analytical
methods for non-destructive characterization of fruits and fruit products (namely fruit juices). In
this doctoral research three main objectives were established, which, with the corresponding tasks,
are as follows.

l. Determining the applicability of NIR spectroscopy to determine the ripeness of various
stone fruits. Achieving this aim was supported by the following tasks:

Spectral tracing of maturation and ripening processes with hand-held spectrometer,
Model development for the classification of fruits according to their ripeness levels,

Model development for the prediction of certain quality traits of fruits.

Il.  Determining the applicability of NIR spectroscopy and hyperspectral image processing
for the detection of brown rot caused by Monilinia on different stone fruits. Achieving
this aim was supported by the following tasks:

Monitoring changes during refrigerated or room temperature storage of intact and
damaged fruits contaminated with different concentrations of Monilinia conidium
suspension,

Conducting investigations with hand-held NIR spectrometer and hyperspectral
imaging,

Model development for pinpointing the effect of different storage conditions,

Model development for the detection of fruits contaminated with Monilinia in various
ways and to various degrees,

Development of sorting models for the early detection of fruits suspected for brown
rot.

I1l.  Determining the applicability of NIR spectroscopy for the detection of
enrichment/manipulation of fruit juices with plant extracts. Achieving this aim was
supported by the following tasks:

Spectral analyses of fruit juices enriched with plant extracts in various combination
and concentration using hand-held and benchtop NIR spectrometers,

Model development for the classification according to the type of extract, and dosed
concentration,

Model development for the prediction of added extract content.



3. LITERATURE OVERVIEW

In this section, we have summarised the available literature on the topics under investigation, in
alignment with the objectives of the thesis.

3.1. The importance of stone fruit consumption from different perspectives
3.1.1. Fruit production statistics in Hungary and in the world

The Hungarian fruit production plays a significant role in the country’s agricultural landscape, that
is characterised by wide range of fruit varieties. Comparing the production of major fruit species
in Hungary, pomme fruits (i.e., apple, pear, quince, etc.) and stone fruits (i.e., apricot, peach, plum,
cherries, etc.) are of utmost importance, with apple production being particularly noteworthy (KSH
2017, 2024). In Hungary, there is a strong tradition of breeding and preserving the authenticity of
the mentioned fruit species. Fruit cultivation trends can be observed not only by region but even
by county, the outstanding significance of the Szatmar region, located in the easternmost part of
Hungary, is particularly striking (Figure 1).

® Apple

@ Pear
Peach
Apricot

.o" @® Sour cherry
@ Sweet cherry

® Plum

Figure 1. Distribution of economically important fruit production in Hungary by counties in 2016 (KSH
2017, 2024).

Szatmar region is recognized as a favourable area for fruit production due to a combination of its
geographical, climatic, and soil. This region, benefits from a temperate continental climate, which
is conducive to the growth of a variety of fruit species in the region (Kondész 2005; Papp, Nyéki,
and Soltész 2004). The climate features, warm summers and cold winters, provide a distinct
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seasonal variation that is essential for the proper development of many fruit crops, including
apples, cherries, and plums. Besides the production of this region, it is also famous for its special
quality and Hungarikum products (Lovas Kiss 2014).

After apple, sour cherry and plum are considered the most important fruits in Hungary. As in the
doctoral research, various cherry and plum varieties were primarily involved, the focus will be
more on these varieties in the following sections. The quantity of these fruits harvested each year
fluctuates, averaging around 70 176 and 40 656 tonnes, respectively over the last 10 years.
Comparing the average production of sour cherries and plums, the demand for sour cherries is
nearly double that of plums (Figure 2).
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Figure 2. Harvested quantities of economically important fruits in Hungary between 2014 and 2023 (KSH
2024).

Interestingly, on a global scale, production indicators show a different trend. According to annual
reports published by FAO, considering the period from 2014 to 2022, worldwide sweet cherry
production has shown a slow but steady increase, with annual production exceeding
2 million tonnes. Sour cherry production has grown from 1.3 to nearly 1.6 million tonnes, while
the annual production for plums and sloes has consistently exceeded 12 million tonnes since 2018
(FAO 2023a). Figure 3 illustrates the key production regions for sweet cherries, sour cherries and
plums worldwide, based on data recorded and averaged between 2014 and 2022. In 2022, Turkey,
Chile, Uzbekistan, and the United States were listed among the largest sweet cherry-producing
countries. For sour cherries, the main producers included Russia, Poland, Ukraine, Turkey and
Serbia. For plums and sloes, China's annual production was more than ten times that of Romania
and Serbia, respectively (FAO 2023Db).
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Figure 3. Average production quantities of sweet cherries (a), sour cherries (b), plums and sloes (c) by
country between 2014 and 2022 (FAO 2023b).

3.1.2. The origin and improvement of stone fruits

The genus Prunus includes a lot of economically important members such as peach, apricot,
cherry, plum and almond (Das, Ahmed, and Singh 2011). The origins and genetic improvement of
sweet and sour cherries, specifically Prunus avium (sweet cherry) and Prunus cerasus (sour
cherry), are rooted in a complex interplay of evolutionary biology, hybridization, and agricultural
practices.

Sweet cherries have their origins primarily traced back to wild Prunus avium, which is native to
regions between the Black and Caspian Seas (Sharpe et al. 2022a, 2022b). The domestication
process of sweet cherries has involved selective breeding practices aimed at enhancing desirable
traits. Genetic studies have shown that wild populations of P. avium serve as a significant genetic
reservoir for breeding programs, providing traits that can be introduced into cultivated varieties
(Guarino et al. 2009; Panda et al. 2003).

The cultivated sour cherry is believed to have arisen from hybridization involving sweet cherries
and ground cherries, specifically Prunus fruticosa (Brettin et al. 2000; Hauck et al. 2006). This
hybridization has led to a rich genetic diversity within the sour cherry population, which is
essential for its adaptation and cultivation across various climates. The origin mapping of sour
cherries reveals that multiple wild Prunus species may have contributed to the genetic makeup of
cultivated sour cherries. For instance, studies indicate that the maternal parent of sour cherries
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could involve different populations of P. fruticosa or other Prunus species, suggesting a complex
ancestry that merits further investigation (Bird et al. 2022).

The origin and genetic improvement of plums, particularly focusing on Prunus domestica
(European plum) and Prunus salicina (Japanese plum), reflect a rich history of domestication,
hybridization, and modern breeding practices. The domestication of plums is believed to have
occurred independently in several regions, including Southern Europe, Asia Minor and China,
where distinct species such as P. domestica and P. salicina emerged as important fruit crops
(Callahan 2008; Hussain et al. 2021). Studies have proven that plums are among the most
polymorphic species within the Prunus genus that can be largely attributed to recurrent
hybridization history. This explicitly characterises reflected in Japanese plums, which are
interspecific hybrids involving P. salicina, P. simonii (apricot plum) and P. cerasifera (cherry
plum) (Huang et al. 2021; Sottile et al. 2022).

In recent years, advancements in genomic technologies have significantly enhanced the
understanding of genetics. Whole-genome resequencing has provided insights into the genetic
diversity of the studied fruit species, revealing numerous alleles associated with important
agronomic and quality traits (Xiao et al. 2021). Mapping of the genetic diversity present in wild
populations is crucial for ongoing breeding programs, particularly in the face of climate change,
emerging pests and diseases. In addition to these, it also enables the identification of specific genes
linked to desirable fruit characteristics, such as fruit size and flavour (\Valderrama-Soto et al. 2021).

The conservation of genetic resources is a critical aspect of cherry and plum improvement. Many
traditional and local cultivars are being preserved in germplasm and in breeding collections.
According to some sources, 135 sweet and 74 sour cherry cultivars have been reported since the
mid-1990s. Europe's role in the cherry breeding programmes is outstanding, Germany, Czechia,
Russia, Hungary, Estonia, France, Romania and Italy being among the most important countries
(Kappel et al. 2012). In case of plums, the estimated number of cultivars are over 6 000 belonging
to 19-40 species, depending on the taxonomist (Butac 2020; Topp et al. 2012).

3.1.3. The composition of stone fruits

Sweet cherries, sour cherries and plums are stone fruits in which the flesh is the most important
part that surrounds a single shell (stone) of endocarp with the kernel inside. These fruits are
characterized with rich nutritional composition and delightsome flavour. All these stone fruits
offer a variety of macronutrients, micronutrients, and phytochemicals that contribute to their health
benefits as well. Understanding the nutritional profile of these fruits is essential for appreciating
their role in a balanced diet and their potential health-promoting properties.

Table 1 shows a comparative summary about the composition of the fruits in focus according to
various sources. These fruits are characterised by a relatively low-calorie content, that being the
lowest for plums. A common characteristic is that water, exceeding 80%, is the major constituent
of the fruits. Sweet cherries are primarily composed of carbohydrates, which constitute
approximately 13-16% of their total weight, predominantly in the form of natural sugars such as
fructose and glucose. Sour cherries contain slightly lower carbohydrate levels, typically around
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10-14% (Kelley, Adkins, and Laugero 2018). Plums have a carbohydrate content that ranges from
11-15%, with a similar sugar profile to cherries, including fructose and sorbitol, which contributes
to their sweetness. Starch is present in very low amounts in the fruits, since its concentration
decreases during maturation (Sinha 2012).

All three fruits are low in protein, with sweet cherries containing about 0.6-1%, sour cherries
slightly less, and plums around 0.5-1% (Igwe and Charlton 2016; Kole and Abbott 2012).
However, the protein present includes essential amino acids, which are vital for various bodily
functions (Kelley et al. 2018). The fat content in these fruits is negligible, generally less than 0.5%,
making them suitable for low-fat diets.

Table 1 also summarises the micronutrients present in cherries and plums. The main minerals of
these fruits include potassium, magnesium, calcium and phosphorus, with potassium being
particularly abundant, contributing to cardiovascular health by helping to regulate blood pressure
(Khan et al. 2022). Additionally, minerals like iron, manganese, copper, zinc and selenium are also
present in trace amounts (Serradilla et al. 2016). These fruits contain almost no sodium, which
supports current dietary recommendations related to salt intake.

These fruits are rich in vitamins as well, particularly in vitamin C, which is crucial for immune
function and skin health. Sweet cherries typically contain about 7-10 mg of vitamin C per
100 grams, while sour cherries can have slightly higher concentrations, ranging from 10-15 mg
(Kelley et al. 2018). This vitamin plays a significant role in collagen synthesis and enhances the
absorption of iron from plant-based foods. In addition to vitamin C, these stone fruits contain a
variety of B vitamins, including B1 (thiamine), B2 (riboflavin), B3 (niacin), B5 (pantothenic acid),
and B6 (pyridoxine) (Serradilla et al. 2016), which are essential for energy metabolism, and the
proper functioning of the nervous system. These fruits, in general, contain little or no amount of
vitamin E and D which can be related to low fat content.

While discussing the composition of cherries and plums, one cannot neglect to mention their
valuable antioxidant properties, as these fruits are highly regarded for their abundance of phenolic
compounds and polyphenols. These secondary metabolites, produced in plant tissues through
photosynthesis, play a crucial role in determining the quality of plant-derived foods. They
significantly affect the fruits' colour, taste and flavour, also offering notable health benefits.
Published literature suggested that sour cherries have higher concentrations of total phenolic
compounds, while the sweet cherries contained more anthocyanins (Habib et al. 2017). Among the
major phenolic compounds, these fruits contain anthocyanins (cyanidin-3-rutinoside, cyanidin-3-
O-glucoside, peonidin-3-O-rutinoside), hydroxycinnamates (3-caffeoylquinic acid, 3-p-
coumaroylquinic acid), flavanols (catechin, epicatechin) and flavonols (quercetin 3-O-glucoside,
quercetin-3-O-rutinoside) (Lara et al. 2020; Neveu et al. 2010; Serradilla et al. 2016).
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Table 1. Comparison of the approximate nutritional composition of raw sweet cherry, sour cherry and plum
according to different nutritional databases.

Sweet cherry Sour cherry Plum
Component Unit USDA  Frida Food ?‘irn"dﬁzf USDA Ern"d"rl]gf USDA  Frida Food ]ilirnodﬁlgf
(2019b) Data (20242) "(jgqn’ (20192) jgqr (2019¢) Data (2024h) "jgors
Energy keal 63 61 63 50 52 46 46 507
Energy kJ 263 258 265 209 218 192 195 250
Water g 82.2 838 836 861 859 87.2 871 847
Protein g 11 1.0 0.8 1.0 0.8 0.7 0.3 0.7
Total lipid (fat) g 0.2 0.0 0.0 0.3 0.0 0.3 0.0 0.0
Carbohydrate, 16.0 148 140 122 110 114 123 131
by difference
Dietary fibre g 2.10 1.20 1.60 1.40 2.00
Sucrose g 0.15 0.00 0.80 1.57 1.05
Glucose g 6.59 6.17 4.18 5.07 3.65
Fructose g 5.37 5.35 351 3.07 3.11
Maltose g 0.12 0.00 0.00 0.08 0.00
Minerals USDA FridaFood EFSA USDA EFSA USDA FridaFood EFSA
(2019b) Data (2024a) (2021) (2019a) (2021) (2019c) Data (2024b) (2021)
Sodium mg 0 0 3 0 0.125
Potassium mg  222.00 200.00 21229 173.00 17383 157.00 17300 198.43
Calcium mg  13.00 878 1814 1600 1251  6.00 745 1171
Magnesium mg  11.00 8.12 997 900 800  7.00 708 867
Iron mg  0.360 0200 0360 0320 0410  0.170 0111  0.290
Copper mg  0.060 0072 0070 0104 0080  0.057 0.051  0.070
Zinc mg  0.070 0055 0080 0100 0100  0.100 0.100  0.090
Manganese mg 0.070 0.062 0.112 0.052 0.058
Selenium ng 0 0333  0.240 0 0550 0 0175  0.100
Phosphorus mg  21.00 2030 2097 1500 1823  16.00 1440 1871
Vitamins USDA  FridaFood EFSA USDA EFSA USDA FridaFood EFSA
(2019b) Data (2024a) (2021) (2019a) (2021) (2019c) Data (2024b) (2021)
Vimamin A RAE 3.00 4.28 64.00 17.00 29.50
Retinol ug 0 0 0 0 0
Beta-carotene ng 38.0 25.7 770 190 177
Vitamin D ng 0 0
Egt;".ré‘f)‘ E mg  0.070 0152 0150 0070 0120  0.260 0392  0.770
I\?llgmlnn gy M 0027 0016 0040 0030 0030  0.028 0  0.050
Ei'/?t‘;ﬂﬁ‘r’]'%z) mg  0.033 0021 0040 0040 0040  0.026 0015  0.060
('\{}?g;in By MI 0154 0.025 0580** 0400 0.460** 0417 0.168 0.730**

Pantothenic acid

Viamings) M9 0199 0.123 0.143 0.135 0.168
?\)//ir'::r?:i(:]n;@ mg  0.049 0037 0050 0044 0050  0.029 0.029  0.050
(F\‘;:gﬁm Be) e 4.00 6.48 8.00 5.00 0
(A\f,ctc;:::ﬁ ‘éc)'d mg 7.00 6.72 10.00 9.50 3.06
Choline, total mg 6.10 6.10 6.10 1.90 1.90

* alpha-tocopherol equivalent
** niacin equivalent
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3.1.4. The health benefits of stone fruit consumption

Both cherries and plums are low in calories and high in essential nutrients. They are rich in
carbohydrates, primarily in the form of natural sugars, and provide dietary fibre that have a
regulatory function by selecting the microflora present in the intestines (Cui et al. 2019). Sweet
cherries typically contain about 13-16% carbohydrates, while sour cherries and plums have similar
carbohydrate content, with plums also being a good source of sorbitol, a sugar alcohol that can aid
in digestion (Alsolmei et al. 2019). The fibre content in these fruits contributes to satiety, helping
to control appetite and manage weight (Stacewicz-Sapuntzakis 2013).

The beneficial effects of stone fruit consumption can be enhanced by consuming it in dried form,
this is of particular interest for plums, also known as prunes (Stacewicz-Sapuntzakis 2013). These
fruits are known for their moderate laxative effects, which can help alleviate constipation and
promote bowel movements, and support a healthy microbiome (Shamloufard, Kern, and
Hooshmand 2017). Earlier studies attributed these effects of prunes on the digestion to the presence
of phenolics (chlorogenic acid) and sorbitol, together with its high fibre content (Igwe and
Charlton 2016; Stacewicz-Sapuntzakis 2013). The role of fibre in human health is mainly
protective against disease, for example, of the gastrointestinal tract, circulation-related, and
metabolic diseases (Padayachee et al. 2017).

Stone fruits are an important source of an array of secondary metabolites that may reduce the risk
of various diseases. Numerous epidemiological studies support the concept that regular
consumption of foods and beverages rich in antioxidant flavonoids is associated with a decreased
health risk. Such components have been shown to combat oxidative stress and reduce
inflammation (Bakuradze et al. 2019; Fotiri¢ AkSi¢ et al. 2023). The antioxidant capacity of these
fruits is linked to a lower risk of chronic diseases such as cardiovascular disease, diabetes, and
certain cancers (El-Beltagi et al. 2019; Igwe and Charlton 2016). The anthocyanins in cherries
have been associated with improved endothelial function and reduced blood pressure (Igwe et al.
2017). Studies indicate that the regular consumption of cherries and plums can lead to significant
improvements in lipid profiles, particularly in individuals with hypercholesterolemia (Walkowiak-
Tomczak, Regula, and Smidowicz 2018).

Plums, particularly prunes, have been linked to improved cholesterol levels and reduced
inflammation, contributing to overall heart health (Hong et al. 2021). The combination of fibre,
antioxidants, and other phytochemicals in these fruits plays a crucial role in maintaining
cardiovascular functions (Blando and Oomah 2019; Faienza et al. 2020; Kelley et al. 2018). Prunes
also garnered attention for their bone health benefits. Researches have demonstrated that prune
consumption can prevent and even reverse bone loss in postmenopausal women, who are
particularly at risk for osteoporosis (Arjmandi et al. 2017). The polyphenolic compounds in prunes
enhance bone formation and mineralization while inhibiting bone resorption (Graef et al. 2018).
This dual action makes dried plums a valuable addition to the diet for maintaining bone density
and overall skeletal health.
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3.2.  Processes during the development of stone fruits

The maturation and ripening processes of sweet cherries, sour cherries and plums are complex
physiological phenomena that involve a series of biochemical changes leading to the development
of fruit quality attributes such as colour, flavour, texture and nutritional value. Each species
exhibits unique characteristics during these stages, influenced by varietal, environmental, and
physiological factors (Serradilla et al. 2016, 2017). This summary explores the main maturation
and ripening processes, enzymatic and postharvest changes in the named fruits. Understanding and
tracking these processes are crucial for optimising harvesting and postharvest practices, as well as
for enhancing fruit quality, shelf life and support possible further processing.

3.2.1. Stone fruit maturation

Maturation refers to the developmental phase of cherries and plums when the fruit transitions from
a hard, immature state to a soft, ripe condition (Li 2012). This phase is characterized by significant
physiological changes, a biphasic growth pattern including rapid cell division, followed by a
slower phase of cell expansion (Prinsi et al. 2016), which contribute to the overall size and shape
of the fruit. The maturation of these stone fruits involves the accumulation of soluble solids,
primarily sugars, organic acids, and phenolic compounds is a critical aspect of maturation,
influencing the flavour profile and overall quality of the fruit. The latter is a key indicator of
maturation, with the fruit becoming sweeter as it ripens (Mahmood et al. 2012; Serradilla et al.
2010).

The maturation of sweet cherries is marked by a rapid increase in fruit size and the accumulation
of sugars, primarily glucose and fructose, which contribute to the fruit's sweetness. During this
phase, the total soluble solids (TSS) content rises, while titratable acidity (TA) remains relatively
stable (Di Matteo et al. 2017; Mulabagal et al. 2009). The maturation process typically spans
approximately 50 days from pollination to full ripening (Li et al. 2015), with the fruit transitioning
from a hard, green state to a softer, more palatable form (Serradilla et al. 2010). Another salient
feature of cherry fruit maturation is the transition from an initial green colour to shades of red,
violet or black, driven by the formation of anthocyanins and the breakdown of chlorophyl (Habib
et al. 2017). The accumulation of anthocyanins, particularly cyanidin-3-O-rutinoside, imparts the
characteristic red colour to ripe cherries (Mulabagal et al. 2009).

Sour cherries undergo a similar maturation process, but the timing and specific biochemical
pathways may differ due to the distinct characteristics of the fruit. Sour cherries are characterized
by a higher acidity level and organic acid content, primarily malic acid, which provide their tart
flavour (Serrano et al. 2005). The balance between sugars and acids is crucial for determining the
overall taste profile of sour cherries, and this maturation index (Ml) is often used to assess fruit
quality (Wojdyto et al. 2014). The maturation period for sour cherries is generally shorter than that
of sweet cherries, making them more sensitive to harvest timing.

The maturation of plums is similar to cherries, demonstrate an increase in TSS and a decrease in
acidity during maturation. The maturation process is influenced by environmental factors such as
temperature and sunlight, which can affect the rate of growth and the accumulation of sugars and
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acids (Kodagoda et al. 2021; Kuhn et al. 2020). The maturation of plums is also marked by changes
in colour, with the fruit transitioning from green to yellow, red or purple, depending on the cultivar
(Fazzari et al. 2008).

3.2.2. Stone fruit ripening

Ripening is the subsequent phase that follows maturation and is characterized by a series of
biochemical, physiological and sensorial changes that enhance the fruit's palatability and
nutritional value (Li 2012; Serradilla et al. 2017). During the ripening process, sweet cherries, sour
cherries and plums exhibit a significant increase in pigment production, mainly anthocyanin,
which is responsible for their characteristic colour. The biosynthesis of anthocyanins is regulated
by various transcription factors, and their accumulation is closely linked to the ripening stage
(Wang et al. 2023; Wei et al. 2015).

Sweet cherries are classified as non-climacteric fruits, meaning their ripening is not driven by
ethylene production (Chen et al. 2022; Tijero et al. 2016). Instead, ripening is primarily regulated
by abscisic acid (ABA), which promotes softening and colour development (Kuhn et al. 2020).
During ripening, the fruit undergoes significant softening due to the breakdown of cell wall
components, primarily pectin, mediated by enzymes such as polygalacturonase. The accumulation
of anthocyanins continues during ripening, enhancing the fruit's colour and antioxidant properties
(Serrano et al. 2009).

Sour cherries also exhibit a non-climacteric ripening process, with ethylene playing a minimal
role. The ripening of sour cherries is characterized by a decrease in acidity and an increase in sugar
content, leading to a more balanced flavour profile (Wojdyto et al. 2014). The accumulation of
anthocyanins during ripening is crucial for developing the characteristic red colour of ripe sour
cherries, and the flavour is influenced by the balance of sugars and organic acids (Viljevac et al.
2012). The softening of the fruit is facilitated by enzymatic activity, similar to that observed in
sweet cherries.

Plums are classified as climacteric fruits, meaning their ripening is associated with a peak in
ethylene production (Fang et al. 2016). Ethylene regulates various physiological processes during
ripening (Maria-Jesus Rodrigo et al. 2012), including softening, colour change, and the production
of volatile compounds that contribute to aroma and flavour (Alvarez-Herrera, Deaquiz, and Rozo-
Romero 2021; Li et al. 2019). The softening of plums is mediated by enzymes such as pectinase
and cellulase, which break down cell wall components. The accumulation of anthocyanins during
ripening contributes to the fruit's colour, and the production of esters and alcohols enhances the
aroma. The ripening process in plums is also influenced by environmental factors, with
temperature and humidity playing critical roles in determining fruit quality (Vargas et al. 2017).

3.2.3. Enzymatic changes in stone fruits

Enzymatic activity is a key element of the maturation and ripening processes in all three fruit
species. Enzymatic reactions are influenced by genetic factors and environmental conditions,
emphasizing the importance of cultivar selection and growing practices in determining fruit
quality.
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In sweet cherries, the softening process during ripening is associated with increased activity of
enzymes such as polygalacturonase, -galactosidase, and pectin methylesterase, that break down
cell wall components and lead to fruit softening (Mahfoudhi and Hamdi 2015). These enzymatic
changes are essential for achieving the desired texture and mouthfeel of ripe cherries. The activity
of enzymes involved in cell wall degradation increases during ripening, leading to softening and
changes in fruit texture.

In sour cherries, similar enzymatic changes occur, with the breakdown of pectins and other cell
wall components facilitating softening (Viljevac et al. 2012). The production of volatile organic
compounds (VOCs) contributing to the characteristic aroma of ripe cherries, is also regulated by
enzymatic reactions (Serradilla et al. 2010). The production of esters, alcohols, and aldehydes
increases during ripening, enhancing the sensory attributes of the fruit (Serradilla et al. 2016;
Villavicencio et al. 2021).

In plums, the enzymatic activity associated with ripening is more pronounced due to their
climacteric nature. Ethylene production triggers the expression of genes encoding enzymes
involved in softening and flavour development (Fang et al. 2016). The activity of antioxidant
enzymes in plums, including superoxide dismutase, catalase, and ascorbate peroxidase, play an
important role in protecting the fruit from oxidative stress during ripening (Martinez-Espla et al.
2017). The activity of these enzymes can be influenced by preharvest treatments, like salicylates
or melatonin, which have been shown to enhance the antioxidant capacity and storability of plums
(Cortés-Montaiia et al. 2023).

3.2.4. Postharvest changes in stone fruits

Postharvest handling of sweet cherries, sour cherries, and plums is critical for maintaining fruit
quality and extending shelf life. In the days following harvest, fruits continue to ripen, although at
a slower rate compared to on-tree ripening (Serrano et al. 2009), and phenolic content tends to
increase and generally remains stable throughout the storage (Habib et al. 2017). Factors such as
storage temperature, humidity and ethylene exposure significantly impact the postharvest ripening
dynamics (Serradilla et al. 2017). For instance, treatments with plant hormones like salicylic acid
can delay ripening and preserve fruit quality during storage (Mahfoudhi and Hamdi 2015; Valero
etal. 2011).

Sour cherries are primarily processed into juices, jams, and other products, and their postharvest
handling focuses on preserving quality during processing (Horvath-Kerkai and Stéger-Maté 2012).
The high respiration rate of sour cherries necessitates careful management of storage conditions
to prevent spoilage (Mili¢ et al. 2021). Researches have shown that the ripening processes can be
influenced by preharvest treatments. The application of gibberellins or melatonin can enhance fruit
quality attributes and antioxidant systems. These treatments can lead to improved colour
development, increased sugar content, and enhanced flavour profiles, ultimately benefiting
consumers (Carrién-Antoli et al. 2022; Michailidis et al. 2021).

Plums stored at higher temperatures may experience accelerated ripening and increased
susceptibility to spoilage (Wu et al. 2011). For this species, it has been proven that the use of
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preharvest treatments, such as gibberellins and abscisic acid, also enhance fruit quality attributes
and extend shelf life (Time et al. 2021).

As a fruit moves beyond peak of ripeness, it undergoes a process of degradation and decay. This
stage, known as senescence, is not merely a simple breakdown but represents the final phase of
the fruit's life cycle. During senescence, a series of typically irreversible physiological and
biochemical processes take place, leading to the deterioration of cells and ultimately the death of
the fruit (Li 2012).

3.3.  Decay during pre- and postharvest of stone fruits

The preharvest and postharvest decay processes in sweet cherries, sour cherries and plums are
critical factors influencing the quality and marketability of these fruits. Understanding decay
processes is essential for applying effective intervention, management practices to reduce losses
and maintain fruit quality throughout the supply chain. Cherries and plums are highly perishable
that ripen quickly after harvest, thus resulting in short postharvest life that is determined by fruit
ripeness at harvest, and handling during transport and storage (Habib et al. 2017).

There are differences among varieties but in general, non-climacteric cherries have a shelf life of
7-14 days in cold storage, and plums have a shelf life of around 2-6 weeks, even when stored at
0 °C (Miranda-Castro 2016). Therefore, efforts must be undertaken to minimize the losses in the
postharvest stage and maximize the storage life of the fruit. An essential demand of the consumers
is for products that are safe, meaning free of pathogens and chemical residues.

The losses caused by postharvest diseases in fruits are inevitable as they can cause production loss
of even up to 50% (Elik et al. 2019). Several pathogens such as fungi and bacteria attack orchards
before and after harvest. These are mostly weak air-borne pathogens in the sense that they can only
invade damaged individuals, and are typical for harvested and stored fruits. Environmental stress
such as low temperature, heat, and oxygen shortage can cause physiological damage of the tissues
that increases the sensitivity of stored fruit by forming locations vulnerable to the invasion of
pathogens (Barkai-Golan 2001). Nowadays, brown rot caused by various Monilinia spp. is a major
problem threatening the production of stone fruit crops such as cherries and plums worldwide
(Aiello et al. 2019; Singh and Sharma 2018).

3.3.1. Description of brown rot

Brown rot, primarily caused by the fungal pathogens Monilinia fructicola, Monilinia laxa, and
Monilinia fructigena, is a significant disease affecting sweet cherries, sour cherries and plums.
This disease poses a major threat to fruit production, leading to substantial economic losses during
both preharvest and postharvest stages and can result in losses of up to 80% under favorable
environmental conditions for the fungus.

Latent infection can occur when Monilinia spp. causes the infection of young fruit in the orchard,

but develop symptoms only after fruit ripening (Barkai-Golan 2001). Even when the fungal spores

reach the specific host, they are capable to cause the disease only under appropriate conditions for

germination. The disease cycle begins with the germination of conidia, which can penetrate fruit
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through natural openings or wounds. Once established, the fungus produces abundant spores,
facilitating further spread (Garcia-Benitez et al. 2016). Figure 4. illustrates the schematic life cycle
of brown rot caused by Monilinia spp. using peaches as an example (Oliveira Lino et al. 2016).

The pathogen can infect blossoms, fruit, and twigs, with significant damage occurring during
storage and transport (Aiello et al. 2019). The optimum temperature for growth of most fungi
attacking fruits in storage is about 20-25 °C, though some species prefer lower or, more often
higher temperatures. The effect of temperature is interrelated with that of the relative humidity
(Yahaya and Mardiyya 2019). High relative humidity needed for the protection of fruits from
dehydration and weight loss may promote the growth of pathogens during fruit storage (Barkai-
Golan 2001).
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Figure 4. Life cycle of Monilinia spp. (source: Plant Pathology. Copyright 2005. Elsevier Ltd.) (Oliveira
Lino et al. 2016).

Spermatia

Discarded rotten fruit

Monilinia species are notorious for causing brown rot, which manifests as soft, brown lesions on
fruit, leading to decay both pre- and post-harvest (Astacio et al. 2023; Oliveira Lino et al. 2016).
The infection contributes to the penetration and development of other pathogens till the fruit is
completely consumed. However, these processes can be delayed and inhibited by the phenolic
compound of the fruits (Oliveira Lino et al. 2016).
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To minimize postharvest losses, it is crucial to sort any suspected or infected fruits from the batch
to preserve the product quality expected by consumers. This approach helps prevent further fungal
contamination and limits the processing of spoiled produce, ultimately contributing to increased
agricultural profits. In connection with this, Petroczy (2009) has extensively studied the latest and
environmentally friendly possibilities for the control of various Monilinia species.

3.3.2. Monilinia species that pose the greatest threat to stone fruits

Monilinia fructigena

M. fructigena is a major concern for pomme fruit, particularly apple and pear production, but also
affect stone fruits (Gell et al. 2008). It was already widespread in Europe in the 1800s, and its
morphology and biology were known in details. It has also been reported in other regions,
including parts of Asia and North America (Hrusti¢, Mihajlovi¢, and Tanovi¢ 2020). It is a
quarantine pathogen in Canada, United States, Australia and New Zealand (De Miccolis Angelini
et al. 2022). This pathogen can also infect blossoms and twigs, leading to blossom blight and twig
cankers, which can significantly impact overall fruit yield (Van Leeuwen, Holb, and Jeger 2002).
M. fructigena is unable to secrete cell wall degrading enzymes, thus can spread through contact
after contamination via mechanical injury.

Monilinia laxa

M. laxa is one of the most dangerous fruit tree pathogens. It primarily damages flowers and shoots,
causing wilting and drying, while also inducing cankers on woody parts as a result of the infection.
It also causes substantial damage to stone fruits through fruit rot (Batra 1991). The pathogen is
found throughout Europe, with the exception of the northernmost regions. M. laxa is known to be
able to secrete cell wall-degrading enzymes to infect primarily stone fruits. The fungus causes
significant crop loss, and the infected fruit can pose a serious threat as it may serve as a source of
further contamination. Research shows that M. laxa can germinate at temperatures up to 30°C,
with optimal growth occurring between 20-25°C (Bernat et al. 2017).

Monilinia fructicola

M. fructicola is the most prevalent species associated with brown rot in stone fruits, including
sweet cherries, sour cherries and plums. It can infect fruit at any developmental stage, but
susceptibility increases dramatically as the fruit matures (Martinez-Garcia et al. 2023; Villarino et
al. 2012). M. fructicola is primarily found in North America, South America, New Zealand and
Australia, with its presence increasingly noted in Europe due to the importation of infected fruits
(Fan et al. 2010; Ivi¢ et al. 2014; Pereira et al. 2019). The pathogen has been identified in various
countries. For Hungary, the pathogen was introduced through infected Italian and Spanish peaches
and was later identified in domestic plantations in 2006 (Petroczy and Palkovics 2005, 2006).
Research indicates that this pathogen can germinate at temperatures up to 35 °C, making it resilient
to various climatic conditions (Bernat et al. 2017). Additionally, it demonstrates varying sensitivity
to extreme growth conditions, with some isolates exhibiting greater resistance compared to others
(Hrustic¢ et al. 2020).
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3.4. Challenges in the production of fruit-based products

Stone fruits, like cherries and plums, are seasonal fruits. To preserve their valuable nutritional
value over the long term, preservation methods are essential. Due to the highly diverse techno-
functional properties of stone fruits, a wide variety of products can be made, including pulps,
juices, concentrates, canned goods, sauces, dried, or even frozen fruits (Stéger-Maté 2012). The
following section details the technological process of juice production, quality standards and their
possible manipulation particularly relevant to this research work.

3.4.1. Production of fruit beverages

The primary raw materials for fruit beverages in international trade include citruses, pomme fruits,
stone fruits, grapes, various berries, etc. As fruit juice consumption increases, the production of
raw materials and the actual consumption of juice have become increasingly separated, both
geographically and temporally. This has led to a shift toward using fruit pulps and concentrates,
which are easier to store and transport (Horvath-Kerkai and Stéger-Maté 2012).

Fruits intended for industrial processing must meet several requirements, such as being resistant
to fruit diseases and mechanical harvesting, ripen uniformly to produce large yields. From a
technological point of view, traits like soluble solid content (SSC), acidity, and pigment
concentration are crucial. After harvesting, the fruits delivered to the plant undergo quantitative
receipt, visual inspection, and objective quality assessment. These results provide essential
information for planning the processing steps (e.g., the intensity of preparatory operations and the
level of concentration required). The production of filtered juices and other fruit beverages, which
is the focus of this research is summarised in Figure 5.

Preparatory operations

The fruits arriving at the processing facility are tipped into a flotation flume, from where they are
transported to the initial stages of the preparation process. Washing, as the primary cleaning
operation, aims to improve the physical, chemical, and microbiological cleanliness of the raw
material. With proper efficiency, it can reduce the microbial count by 3-5 orders of magnitude
(Barta and Kormendy 2008). Meanwhile, the cleaned raw material undergoes sorting, during
which foreign plant materials, non-plant parts, and fruits with quality defects (i.e., inappropriate
colour, damage, infection) are removed. Optical sorters (colour graders) are the most commonly
used for this step. Certain fruits, such as sweet cherries, sour cherries and berries, arrive with stems
for processing, and the chlorophyll content of the stem necessitates the de-stemming step
particularly important for preserving the colour and flavour of the product (Barta and Kérmendy
2007).

Juice extraction

There are several preparatory operations before the actual juice extraction. Cracking, crushing and
smashing fruits are generally applied operations to increase the surface area and initiate the release
of cell fluids. The intensity of this process depends on the specific juice extraction method used
afterward. This step can potentially damage valuable compounds or trigger enzymatic reactions
that result in the formation of undesirable substances.
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To mitigate the lysing effects, the crushed fruits are immediately subjected to further treatments
such as heat, enzymatic processes, freezing, vibration, or ultrasound electroplasmolytic and ionic
irradiation. The aim of the mentioned treatment is to increase juice yield, reduce undesirable
physical, biochemical changes, and also to enhance the formation of better colour, aroma, flavour
properties.

In the further processing of cracked fruits, heat treatment, enzymatic treatment or a combination
of these are perhaps the most commonly used preparatory operations. Enzymatic treatment is used
to break down the components that give the fruit its structure, in particular its pectins and cellulose.
The pectin-degrading enzymes (e.g., pectin esterase, pectin lyase, polygalacturonase) rapidly
reduces the viscosity of the fruit mash; however, the fruit raw materials contain varying types and
amounts of pectins depending on the species and variety. It essential to select enzyme preparations
with these in mind, as the depolymerization allows for more efficient extraction of juice from the
fruit pulp.
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Figure 5. Flow chart of fruit beverages production (adapted from Barta and Kérmendy (2007, 2008);
Horvath-Kerkai and Stéger-Maté (2012)).

After the mash treatment, juice extraction typically follows, usually carried out by pressing. The
objective of this process is to separate the solid parts (i.e., fruit tissues) from the liquid to obtain
the juice. The most important parameter during pressing is the liquid yield, which refers to the
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percentage of juice extracted compared to the initial raw material. Juice yield largely depends on
the type of pressing equipment used, as well as the quality and preparation of the raw material.
The leftover by-product at the end of the process is known as pomace or marc.

Juice clarification

Extracted fruit juice typically appear cloudy due to the presence of insoluble plant particles like
fibres, cellulose, hemicellulose, protopectin, starch and lipids, as well as colloidal macromolecules
such as pectins, soluble starch fractions, proteins, certain polyphenols, and their oxidized or
condensed forms. Depending on the desired final product, these components need to be partially
or fully removed to prevent turbidity and sedimentation, thereby enhancing the juice's sensory
qualities. Juice clarification can be achieved using physicochemical, mechanical techniques, or a
combination of both approaches.

The first step in juice clarification involves eliminating protective colloids, as they can obstruct
sedimentation and impact concentration stability, potentially leading to turbidity during storage.
Enzymatic treatment is also vital for degrading pectin, ensuring the production of high-quality
concentrates. For optimal results, it is crucial to completely break down pectin, as well as starch,
hemicellulose and araban. The development of multifunctional enzymatic agents customized to
suit specific fruit species, varieties and ripening stages, enhancing the overall quality of the juice

products is of manufacturers’ interest.

Physicochemical clarification is used after the decomposition of colloidal components and are
essential for removing turbidity-causing substances from fruit juices. This method entails adding
clarification agents that promote the precipitation of insoluble particles and macromolecules,
which can then be separated using mechanical processes. This usually involves the addition of
substances with charge and/or surface activity to the juice to be further clarified, in varying
concentrations. Such substances include bentonite, silica sol, activated carbon or even gelatine.

Physicochemical clarification is typically followed by mechanical purification to eliminate
suspended fibres and precipitation, usually performed in centrifuges or filters. The filtration
process can be carried out by conventional filtration methods or by membrane filtration (e.g.,
ultrafiltration). Ultrafiltration offers the significant benefit of using membranes with carefully
selected pore sizes that can selectively retain larger molecules (proteins, starch, pectin fragments),
whilst smaller molecules, including dissolved sugars, acids and aromatic compounds, are allowed
to pass through along with the solvent. This selective process enhances the quality and
concentration of fruit juice by effectively separating undesirable components while preserving
essential flavours and nutrients.

Further processing of the juice

Clarified, filtered or cloudy juices are now ready for preservation for later use. If the processing
of the raw fruit does not immediately lead to beverage production, the juices are concentrated into
semi-finished products. These products are later completed, sometimes at different production
plants. The objective of juice concentration is to enhance the dry matter content while reducing
water content, which helps to prolong shelf life and improves transportation and storage efficiency.
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This process should be carried out with minimal loss of nutritionally important components and
minimal impact on sensory attributes. Common methods for concentrating juice include
evaporation, freeze concentration and membrane procedures like reverse osmosis. The extent of
concentration is described by the ratio of the outlet concentration to the inlet concentration, known
as the concentration ratio.

From all those mentioned above, we would underline evaporation as it is perhaps the most widely
used concentration method. Due to the heat sensitivity of valuable juice components, it is important
to utilize short-duration, low-temperature condensation techniques. To achieve a lower boiling
point, this process is conducted under vacuum conditions with multiple effect evaporator systems,
The process itself significantly impacts the product's compositional, thermal and rheological
properties. Typically, evaporator systems are integrated with aroma recovery units, that are
connected to the initial stages of evaporation to condense the most volatile aroma compounds. The
condensed aromas are often reintroduced into the concentrate to enhance its aroma and flavour.

The resultant concentrates, with a soluble solid content of around 62-65%, are semi-finished
product, normally stored in bag-in-drum or bag-in-box packaging until further use (Horvath-
Kerkai and Stéger-Maté 2012; Patkai 2012). The fruit concentrates can be used to make various
fruit drinks such as juices, nectars and syrups. They are also highly sought-after ingredients in the
bakery, confectionery and dairy industries, serving as natural sources of colour and sweetness
(Patkai 2012). The production of fruit juices relevant to the present research starts with the dilution
of concentrate to normal juice concentration (10-20% brix) whilst heating the juice. In aseptic
technology, this is followed by flavour correction and homogenisation. The process is completed
by heat treatment, followed by filling and sealing.

3.4.2. Regulations and directives on fruit juices and similar products

Regulations of the European Community

In order to protect consumer interests, various regulations establish criteria related to the handling,
processing and distribution of fruits and fruit products. As a member of the European Economic
Community, Hungary is obliged to obliged to adapt its provisions. Regulation (EC) No 178/2002
of the European Parliament and of the Council describes the concept and principles of food law,
risk analysis, and food safety requirements. According to the regulation, “the traceability of food,
and any other substance intended to be, or expected to be, incorporated into a food or feed shall be
established at all stages of production, processing, and distribution” (EC 2002). Commission
Implementing Regulation (EU) No 543/2011 summarises the detailed rules applicable to the fruit
and processed fruit sectors (EU 2011a).

The European Commission's Directive 2001/112/EC provides guidance on fruit juices and certain
similar products intended for human consumption. The directive aims to specify requirements
regarding the composition, reserved names, manufacturing characteristics, and labelling of fruit
juices. It applies to fruit juice, fruit juice made from concentrate, concentrated fruit juice,
dehydrated fruit juice powder and fruit nectar products (EC 2001). If the product is made from a
single type of fruit, the name of that fruit must be used in place of the word “fruit”. For products
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made from two or more types of fruit, except for the specific exception mentioned, the product
name should be supplemented with a list of the fruits used, in descending order of the amount of
fruit juice or puree used. However, for products made from three or more types of fruit, the names
of the fruits can be replaced by the term “several fruits” or a similar expression, or by indicating
the number of fruits used (EU 2015).

The directive specifies that in terms of permitted ingredients, fruit juice products must have the
aroma, pulp, and cells reintroduced if they were removed during processing. In the case of fruit
juice made from concentrate, materials extracted from the same type of fruit or even from other
fruits of the same type may be reintroduced. The enzymes, flavourings and additives that can be
used in the production of the product, as well as their concentration, are defined in regulations No
1332/2008 (EC 2008a), No 1334/2008 (EC 2008c), and N01333/2008 (EC 2008b) of the European
Parliament and Council, respectively. According to the tables of permitted additives by food
category in Commission Regulation (EU) No 1129/2011, the presence of food colour is not
permitted in fresh and processed fruit products by virtue of the carry over principle (EU 2011b).
The use of so-called “novel foods” in various food products is regulated by Regulation (EU) No
2015/2283 of the European Parliament and of the Council (FAO and WHO n.d.), and their
specifications are provided in Commission Implementing Regulation (EU) No 2018/1023 (EU
2018).

Strict regulations regarding labelling are found in the directive, which are complemented by
Regulation (EU) No 1169/2011 of the European Parliament and of the Council. The regulation
details provisions on labelling, particularly concerning the accurate display of ingredients and the
indication of allergens (EU 2011c).

Codex Alimentarius

The Codex Alimentarius Commission was established in 1963 as part of the food standardization
program initiated by two United Nations specialized agencies: the Food and Agriculture
Organization (FAO) and the World Health Organization (WHQ). The purpose of the work carried
out by the Codex Alimentarius organization is to develop internationally adopted food standards,
guidelines and related documents (FAO and WHO n.d.).

According to Codex Alimentarius standard 247-2005, fruit juice is defined as a non-fermented,
but fermentable liquid obtained from the edible part of healthy, properly ripened, and fresh fruit.
The juice can also be extracted from fruit that has been kept in a healthy condition using
appropriate post-harvest treatments, in line with the relevant regulations of the Codex Alimentarius
Commission. The juice may appear cloudy or clear and can include recovered aromas and volatile
flavour components extracted through appropriate physical methods, and these must come from
the same type of fruit (FAO and WHO 2005).

The standard allows the addition of fruit pulp and cells obtained by suitable physical methods from
the same fruit. The characteristic colour, aroma and taste of the juice or nectar must resemble that
of the fruit from which it is made, and any residual water from processing must be minimal. Juice
can only be obtained from a single fruit type, while mixed fruit juice is created by blending juices
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or juices with purees from different fruit types. The standard distinguishes two methods of juice
extraction, direct mechanical extraction, and reconstitution from concentrate using potable water.
Technological aids such as clarifying agents, filtration aids, flocculating agents and enzyme
preparations may be used, provided they stay within specified maximum limits. Fruit juices and
nectars may undergo testing for authenticity, composition, and quality (FAO and WHO 2005).

The requirements specifically applicable in Hungary are defined by the Committee of Codex
Alimentarius Hungaricus (ME) in alignment with above mentioned EU regulations. Specific
provisions on fruit juices and certain similar products (i.e., fruit purées and nectars) intended for
human consumption are laid down in Commission Regulation No 1-3-2001/112 (Magyar
Elelmiszerkényv Bizottsag 2009). The ME directive No 2-601 provides guidance on the
production of fruit products preserved by heat-treated, such as syrups, jams and fruit preserves,
along with specific quality criteria. The latter refers to the fruit content, soluble solids (% brix),
acidity (% m/m), and in certain cases, sand content (% m/m) (Magyar Elelmiszerkonyv Bizottsag
2013). The guidelines regarding certain processed fruit products marked with distinctive quality
label is specified in ME directive No 2-101. The directive establishes minimum requirements for
fruit content, allowable sweeteners and additives for special quality jams and fruit syrups. It
outlines specific standards that must be met to ensure the product's quality and authenticity
(Magyar Elelmiszerkonyv Bizottsag 2010).

3.4.3. The phenomena of food fraud

For fruits to reach our tables in the desired processed form and quality, they must undergo a
complex journey. The well-known interlaced food supply chain is burdened with numerous hardly
predictable problems and risks. This path includes stages such as harvesting, transportation,
processing, packaging and distribution, each of which may introduce challenges that can impact
the quality and safety of the final product. Nothing demonstrates the vulnerability of the food
supply chain more clearly than its response to societal crises that test the resilience of the food
chain, revealing the limitations in logistics, production, and distribution networks.

The issues or challenges that may occur in the food chain are well illustrated by the protection risk
matrix. As highlighted in Table 2, a distinction can be made between intentional and unintentional
acts, and according to whether the motive is economic gain or even environmental threat (Spink
2014; Spink and Moyer 2011). In the previous sub-chapters, certain aspects of food quality and
safety, in particular of fruit, have been discussed in detail. Unfortunately, however, with the
introduction of fruits into the food chain, the potential for food fraud should be also discussed.

Food fraud is a deliberate act with the almost sole purpose of economic gain that also includes
economically motivated adulteration (EMA). As defined by the US Food and Drug Administration
(FDA) EMA is the “fraudulent, intentional substitution or addition of a substance in a product for
the purpose of increasing the apparent value of the product or reducing the cost of its production”
(FDA 2009). As colourful as the food chain is, the quality and extent of fraud can vary. At any
stage in the chain, there are many opportunities for fraud, including deception, substitution and
counterfeiting (BRC, FDF, and SSA 2016).
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Table 2. The food protection risk matrix (Spink and Moyer 2011).

Food quality Food fraud * Motlvgtlon_
Economic gain
Harm
Food safety Food defense Public health, economic, or terror
Unintentional Intentional
Action

* Includes the subcategory of economically motivated adulteration and food counterfeiting

Ever since mankind started producing food, food fraud has gone together with the production.
Food adulteration hazards can be riskier than “traditional” food safety hazards because the
contaminants are unknown and unconventional. Counterfeiters are not interested and/or do not
have sufficient knowledge, expertise or resources to determine the extent to which product
manipulation poses to consumers. Accordingly, a difference can be made between direct risk (e.g.,
toxic or allergenic contaminants), indirect risk in the case of long-term exposure (e.g., chronic
diseases) and technical risk due to for example misleading product documentation. in addition, the
concentration of beneficial compounds in food also reduces.

Spink and colleagues have carried out several investigations relating to scientific and media reports
on food adulteration cases. Their observations show that the most frequent incidents since 1980
have been reported for olive oil, milk, honey, saffron, fruit juice (e.g., orange, apple) and coffee in
the scholarly records; fish and seafood, honey, olive oil, spices (including chilli, black pepper,
paprika, saffron, turmeric, etc.), milk, etc., in other records (Everstine, Spink, and Kennedy 2013;
Moore, Spink, and Lipp 2012). In general, the following intentional fraudulent activities may occur
in food production (Csap6, Albert, and Csaponé Kiss 2016):

- repackaging,

- misleading use of a protected designation of origin (PDO), protected geographical indication
(PGI) or the adulteration of such product,

- traditionally produced “organic” product,

- selling imported products as domestic or local,

- incorrect and/or misleading indication of origin,

- use of unauthorised ingredients and/or manufacturing practices,

- use of raw materials of apparently poor quality or deteriorating quality,

- reuse of expired products in the manufacturing,

- marketing of product not meeting legal quality standards.

In addition to those mentioned above, specifically in relation to fresh fruits, there may be
accelerated ripening (e.g., with Ca-carbide, oxytocin), pesticide (e.g., Cu-sulphate, chlorpyrifos,
etc.) and metal contamination (e.g., Pb-arsenate). In the case of fruit products, dilution with water,
pulp wash, or the addition of lower quality juices may occur. Besides, flavour enhancement (e.g.,
with sweeteners, acidity regulators), consistency improvement (e.g., with starch hydrolysates) and
colour correction with natural or artificial colourants may be used to produce products with more
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saleable organoleptic properties for consumers (Csap6 et al. 2016; Dasenaki and Thomaidis 2019;
Johnson 2014).

There are many reports in the literature of studies that aimed to determine and present the actual
composition of foods as accurately as possible. This is particularly interesting in the quality
assurance of products whose producer declares the presence of specific component(s) with
beneficial effects at a certain concentration. There are several reasons why an ingredient containing
beneficial compounds may be administered. Fruit processing, especially heat treatment, has a
detectable effect on sensory and internal quality attributes (Toydemir et al. 2013). To compensate
for this, manufacturers have the possibility to “feed back” the lost components, which are typically
vitamins and flavourings (FAO and WHO 2005).

In addition to this, we would like to highlight another direction, fortification, when a product poor
in certain components is supplemented and/or enriched with ingredients that are rich in the lacking
component. The quality and quantity of such materials that can be admitted are normally defined
in legislations. The natural fortification of fruit juices relevant for the present research can be
achieved by the addition e.g., probiotic bacterial cultures (Naseem et al. 2023), super fruit juices,
concentrates (Hasan et al. 2014), or even plant extracts (Furulyas et al. 2024; IvaniSova et al. 2015).
The quantity of these must be indicated on the product packaging (EU 2011c).

3.5.  Techniques used in the qualification of fresh fruits and their products

There are many different approaches in determining the quality of fruit for fresh consumption and
processing, because of their compositional and structural diversity. In addition, the analytical
methods can be quite specific to the fruit as well. In fruit production, processing, and product
quality assessment, one can encounter empirical, targeted and non-targeted controlling methods.

3.5.1. Generally used indicators in fruit quality assurance

Classically, especially in orchards, the time of harvesting is typically determined and planned
following empirical investigation. This may be done, for example, by comparing ripening fruit to
different colour scales or by the force required to remove fruit from the stalk (Chelpinski,
Ochmian, and Forczmanski 2019; Kallay et al. 2007). Empirical methods can compromise the
reproducibility of studies, leading to subjective decision-making. This may be mitigated by the use
of small or large laboratory-based approaches and assays. For both fresh and processed fruit
products, sweetness (SSC), acidity (TA, pH), colour and texture are among the most important
measures of value (Li 2012). If these properties are mapped for fruit products not only in general
terms, but also using compound-specific profiling, a much more accurate analytical image of the
condition of the subject can be obtained.

The characteristic sugar, acid and polyphenol profiles of the fruit can be used to infer the progress

of ripeness. This is also true of certain amino acids and esters (e.g., ethyl butanol, B, y-butylene

glycol), increased amounts of which indicate over-ripening and the initiation of spoilage processes.

The amino acid and volatile profiles are an excellent way to detect dilution of fruit products, either

with water, protein hydrolysates or by mixing in other fruit. Fruit products can be characterised

not only by their characteristic components but also by their specific proportions. Thus, differences
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in, for example, the ratio of L- and D-organic acids, total nitrogen-amino-nitrogen, free, L- and D-
amino acids or isotopes can be revealing (Csap6 et al. 2016; Johnson 2014).

The most commonly used methods allow targeted determination and quantification due to their
reliability and sensitivity. Various DNA-based techniques, such as polymerase chain reaction
(PCR), real-time PCR, etc., have proved to be effective for varietal and origin identification,
similarly, stable isotope analysis with isotope ratio mass spectrometry (IRMS) or site-specific
natural isotope fractionation-nuclear magnetic resonance (SNIF-NMR), and elemental analysis
with inductively coupled plasma-mass spectrometry (ICP-MS). Separation techniques such as
capillary electrophoresis, gas or liquid chromatography combined with MS can be applied to
determine with high accuracy the organic acid, sugar, amino acid, and anthocyanin profiles along
with their concentrations in the fruit products (Dasenaki and Thomaidis 2019; Kamiloglu 2019).

These analyses are characterised by the fact that they typically require sample preparation
involving the destruction of the sample, that be time and financially expensive to obtain the also
finite number of analytical results. In addition, the application of these analytical methods requires
almost complete knowledge of the component(s) to be determined in the test samples. For this
reason, unexpected quality differences may not be detected. The introduction and use of non-
destructive, non-targeted correlative approaches as opposed to targeted determination is justified.

3.5.2.Recent trends in fruit quality assessment

Presentation of non-targeted NIR spectroscopy and hyperspectral imaging

The development of methods determining the conformity of foodstuffs, i.e., their quality and
safety, is a key task for the scientific community, quality assurance and industry. Over the last 10-
15 years or so, the development of non-targeted, also called “fingerprinting”” methodologies based
on the evaluation of broad analytical profiles, in place of the targeted ones, has become very much
in the focus (Creydt and Fischer 2020). Analyses based on data captured using such approach
allow patterns in the data to be rapidly mapped, supporting effective decision-making and
intervention where needed in the food chain (Walsh, McGlone, and Han 2020). A very wide range
of methods can be classified as non-targeted, the most important of which include various “-omics”
disciplines (e.g., genomics, metabolomics, proteomics-based, etc.), chromatographic,
spectrometric, spectroscopic and multisensorial techniques techniques (Aouadi et al. 2020;
Esslinger, Riedl, and Fauhl-Hassek 2014). Together, results from targeted and non-targeted
analyses can contribute to the formation of huge databases, whose multivariate statistical analysis
provides the basis for trainable artificial intelligent solutions. Numerous scholarly articles and
reviews available regarding how the mentioned analytical techniques performed in the quality
assessment of fruit products, therefore, in the following, the methods that form an inseparable part
of the doctoral research work presented are detailed.

Near infrared (NIR) spectroscopy belongs to vibrational spectroscopic techniques, and associated
with Frederick William Herschel, who discovered the invisible absorption spectrum in the 1800s
(Manley, Downey, and Baeten 2008). The agricultural implementation of the NIR technique was
initiated in the 1950s by Karl Norris, an American engineer and researcher, through the
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determination of grain moisture and protein content (Norris 1964, 1992; Williams and Norris
1987). The first promoter of the methodology in Hungary and its world-renowned pioneer was
Professor Karoly Kaffka (Salgd 2014). Besides agriculture, many other industries have discovered
the benefits of its application, like the pharmaceutical, petrol, textile, and cosmetic industry
(Manley 2014).

NIR spectroscopy fundamentally relies on illuminating the sample under study with light of
wavelengths ranging from 780 to 2500 nm, which produces a response signal, alias spectrum,
dependent on the material quality of the sample. When a sample, especially food, is illuminated
with NIR light, the inter-atomic bonds of the molecular functional groups containing carbon,
nitrogen, oxygen, and hydrogen are excited to such an extent that they result in broad and
overlapping absorbance bands in the spectrum (Qu et al. 2015). By measuring absorbance, one can
infer the approximate composition of the sample in the determined wavelength range without
knowing the specific components. NIR instruments exist in various constructions, measurement
arrangements, sizes. Some features of the commercially available NIR spectroscopic instruments
are summarised in Table 3 (Manley et al. 2008):

Table 3. Features of commercially available NIR spectrometers

Instrument size:  Illumination: Sample presentation: Type of detector:
- benchtop, - discrete, - diffuse reflectance, - single channel,
- portable, - full spectrum. - transmittance, - multichannel.
diffuse transmittance,
- hand-held. - transflectance,
- interactance.

The advantage of the NIR technique is that one can obtain comprehensive information about the
examined sample in an intact manner without causing any damage. As a result of the extensive
miniaturization of NIR instruments, investigations that had not been heard or thought before are
now possible. Let's consider here online integrable devices or field studies even under extreme
conditions (Be¢, Grabska, and Huck 2022). The disadvantage of this approach is that it can only
obtain mean spectral information from a relatively small investigated area at a time. However,
combined with the vision system, not only non-destructive but also contactless measurements can
be achieved. For the presented research, one of the important representatives is hyperspectral
image processing.

According to Park and Lu (2015), the fundamental techniques for hyperspectral image processing
are rooted in the optics, the digital signal processing dealing with one-dimensional time- and
frequency-domain signals and the digital image processing dealing with multidimensional space-
and space-time-domain signals such as images and videos. Hyperspectral imaging (HSI) is more
than “conventional” spectroscopy in the sense that images contain spectral data by pixel, allowing
for the simultaneous acquisition of localizable spatial and spectral information in a contactless
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way. A HSI system typically records several hundreds of discrete wavelength data points at each
image pixel.

The generated data is three-dimensional and combines information from x-y spatial and A spectral
coordinates (Manley 2014). Fundamentally, there are four approaches to recording the so-called
hypercubes, and Figure 6 summarises how the different scanning systems build them up. Spectral
scanning (also known as “staring” HSI) captures the data in a single wavelength at a time. The two
primary spatial scanning methods are whiskbroom and pushbroom scanning. In the former case,
system records the spectrum at a single point, while the latter records the spectral information in a
complete line. Perhaps one of the most compact solution for hyperspectral imaging is snapshot (or
single shot) HSI, that records spatial and spectral features in a single exposure (Wu and Sun 2013).

—

X X

Spectral scanning Point scanning Line scanning Snapshot scanning

¥

Figure 6. Schematic diagrams of hyperspectral data cube acquisition: Spectral scanning (a); Point scanning
or wiskbroom imaging (b); Line scanning or pushbroom imaging (c); Snapshot imaging (d). Adapted from:
(Wu et al. 2022).

Due to the recording specificities of the mentioned scanning approaches, each method presents
different challenges. In case of spectral, point and line scanning, the records have to be combined
afterwards. These methods are generally time-consuming and sensitive to positioning; therefore,
their stable installation is essential. Nevertheless, the continuous scanning in one direction during
line scanning, makes it particularly suitable in conveyor belt systems commonly used in the food
industry. In terms of time efficiency, the performance of snapshot imaging is outstanding, making
it an attractive choice for field studies when the hypercube needs to captured real-time, even at
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video frame rates, crucial for fast decision making (Jung et al. 2019; Jung, Michels, and Rainer
2018). However, the technology is new enough that it presents limited spectral and spectral
resolution (Femenias et al. 2022; Wu and Sun 2013).

Similar to those listed for NIR spectrometers, HSI systems are also available in different
measurement designs. According to the position of the detector, the three main measurement
arrangements are as reflectance, transmittance and interactance (Table 3). One of the beginning
steps in hyperspectral image processing is to delimitate spatial locations to be analysed. This
process typically starts with image segmentation with a thresholding operation on a spectral image
band. The accurate determination of regions of interest (ROIs) in HSI is similar to correct sampling
(Park and Lu 2015). Subsequently, HSI enables the visualisation of NIR light absorbing
component distribution in heterogenous samples.

The spectra obtained through spectroscopy and hyperspectral imaging must first be subjected to
various pre-processing steps in order to eliminate unwanted effects. Based on the preliminary
inspection of the data, outliers can be removed, and the applicable spectrum pre-treatment methods
can be defined. As extensively summarised and reviewed by (Geladi, Grahn, and Manley 2010;
Zaukuu et al. 2022), supervised and unsupervised quality-based classifications and quantitative
predictions can take place subsequently. Examples of the most commonly used spectral pre-
processing and chemometric tools are listed in the following.

Pre-processing of the spectral data:
- smoothing,
- multiplicative scatter correction (msc),
- extended multiplicative scatter correction (emsc),
- normalisation,
- detrending (deTr),
- standard normal variate (snv),
- derivatives.

Qualitative analysis of the spectral data:
- principal component analysis (PCA),
- hierarchical cluster analysis (HCA),
- discriminant analysis (linear, quadratic, factorial),
- partial least squares discriminant analysis (PLS-DA),
- soft independent modelling of class analogies (SIMCA),
- support vector machine (SVM),
- artificial neural networks (ANNS),
- k-nearest neighbours (k-NN).

Quantitative analysis of the spectral data:
- multiple linear regression (MLR),
- principal component regression,
- partial least squares regression (PLSR).
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Recent application of NIR spectroscopy and hyperspectral imaging in fruit quality
assessment

NIR spectrum-based chemometric modelling is widely used in fruit quality assessment for various
purposes (Cattaneo and Stellari 2019; Shah et al. 2020). Relating to stone fruits in focused of the
present work, Li et al. (2018) examined the relationship between ripeness, SSC, and pH based on
HSI images of 550 cherries in the 874-1734 nm region. The authors could classify the fruits
according to ripeness with over 96% accuracy and estimated the two quality traits with coefficients
of determination (R?) above 0.8 using genetic algorithm-combined MLR. Escribano et al. (2017)
associated DMC and SSC with the NIR spectra of cherries. The R? ranged between 0.67 to 0.73
for DMC, and 0.73 to 0.89 for SSC, respectively by variety. When evaluating fruit firmness beside
SSC with HSI, Pullanagari and Li (2021) could predict the former attribute with an R? of 0.60 and
RMSE of 0.38 N. Fodor et al. (2023) also conducted studies on the ripeness of plums and the
predictability of certain internal characteristics. The classification models distinguished between
mature and immature fruits with 100% accuracy in all cases. The DMC, SSC and TA regression
models predicted with an RMSE of less than 0.7% m/m. In a series of experiments conducted on
marian plums, Posom et al. (2020) concluded that the used wavelength range has a significant
impact on the accuracy of the SSC, pH and TA models compared to the integration time.

When it comes to fruits intended for fresh consumption, it is important that their storage ensures
the preservation of their quality. In fruits, qualitative changes can also be well monitored using
NIR spectral patterns. Szabo et al. (2023) investigated the applicability of NIR spectroscopy to
detect the effect of various storage conditions (packed as control or modified atmosphere; stored
at 3 or 5°C) on sour cherries of different varieties and perceived ripeness. SIMCA modelling
discriminated samples with apparent error rates between 0 and 0.5 during prediction regardless of
fruit maturity. Li etal. (2017) applied the NIR technique to predict firmness, flesh colour properties
(L*, a*, b*), SSC, TA and pH in “Friar” plums. Based on their results, the flesh colour proved to
be an important feature in post-ripening during low-temperature storage. Guo et al. (2022)
employed various classification models (e.g., LDA, SVM, PLS, general LM) to determine storage
time also for plums stored in cold environment.

In case of stored fruits, unfortunately, unwanted decay processes due to damage or microbial
contamination must be taken into account in many cases. Screening out crops that are going bad
is also important for food safety. NIR spectroscopy and hyperspectral image processing have been
shown to be suitable for the detection of unwanted processes and components, the scheme of which
is illustrated in Figure 7 using kernels as an example. Shao et al. (2019) combined Vis-NIR
reflection spectroscopy and least square-support vector machine (LS-SVM) to sort intact, slightly,
and severely damaged cherries with 93% classification accuracy. Zhao et al. (2016) could
distinguish plums with browning flesh with 100% accuracy when combined NIR spectroscopy
with back propagation-ANN. Castillo-Girones et al. (2024) evaluated the feasibility of spectral
imaging and convolutional neural network for subsurface bruise detection in plums and achnieved
almost 100% accuracy when classifying the bruised fruits with the highest impact energy of 0.50 J.
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Using modelling based on hyperspectral data, Li et al. (2021) could classify bruising peaches with
up to 100% accuracy at 12, 24, 36 and 48 hours after mechanical impact.

There is relatively limited source material available on the control of fungal infection in stone fruit.
Therefore, Sun, Xiao, et al. (2018) developed a 360° rotating hyperspectral imaging system to
detect Rhizopus stolonifera infection of different degrees on peaches. The detection accuracies of
sound, slight-decayed, moderate-decayed and severe-decayed samples were 95, 66.29, 100 and
100%, respectively, when three single-band images were evaluated (709, 807, 874 nm). Sun, Wei,
et al. (2018) also conducted experiments on peaches infected with Botrytis cinerea, R. stolonifera
and Colletotrichum acutatum. The authors reported 82.5, 92.5 and 100% classification accuracies
for slightly-decayed, moderately-decayed and severely-decayed samples, respectively, when
combined hyperspectral image processing and deep belief network (DBN). NIR spectral detection
of brown rot was first addressed by Liu et al. (2020), also for peaches. With HSI and PCA, the
authors could completely distinguish samples according to the degree of infection (acceptable,
moldy, highly moldy), and achieved R? of 0.84 and RMSE of 0.78 when predicting fungal colony
counts. Vitalis et al. (2021a, 2021b) examined the effects of ambient and refrigerated storage on
NIR spectral properties of plums infected with M. fructigena mycelium in different ways. Based
on their results, the authors could indisputably detect samples that did not yet show visible signs
of infection.

3.) Hyperspectral data processing
and detection of fungal/mycotoxin
contaminated kernels

1.) Cereal reception

® &\

4.) Grain blower machine to
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2.) Single-kernel hyperspectral image acquisition NN
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Figure 7. Hyperspectral imaging for the classification of individual cereal kernels according to fungal and
mycotoxins contamination (graphical abstract by Femenias et al. (2022)).

For fruit products, NIR spectroscopy has a very important role in determining and controlling
authenticity and quality, which also has a large literature. Relating to fresh fruit product control,
Siedliska et al. (2017) applied various HSI-based algorithms to detect sour cherry pits and/or
fragments in transmittance measurement arrangement.
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The majority of frauds affecting fruit juices can be associated with apple, orange, and pomegranate
juices, the latter being considered superfood due to its very valuable nutritional composition.
Aykas and Rodriguez-Saona (2024) assessed fruit juices purchased from US stores in their
research. The authors involved 28 single and 40 blended juices in their study, and simultaneously
estimated their SSC, sucrose, glucose, fructose, total sugars, TA, citric and ascorbic acid content
with high correlation (Re? > 0.93). Aykac, Cavdaroglu, and Ozen (2023) have conducted research
regarding the dilution of pomegranate juices when binary and ternary blends were prepared with
5-10% doses of sour cherry and black carrot juices. After pre-processing the spectra, PLS-DA and
OPLS-DA always resulted in 100% calibration and 97% validation accuracies. Cassani et al.
(2018) developed Fourier transform (FT) mid infrared-based PLS models for the simultaneous
prediction of simple sugars and exogenously added fructooligosaccharides in strawberry juices
preserved with non-thermal treatment (geraniol or vanillin+ultrasound) up to 14 days. The authors
obtained predictive models with R? higher than 0.97. Vitalis et al. (2023) have preliminary results
regarding the probiotic enrichment of fruit juice blends, demonstrating that the simple and mixed
bacterial cultures could be well distinguished, as well as the fermentation time and acidity could
be predicted with high accuracy.

The literature reviewed on changes during cherry and plum ripening, storage, and on the
qualification of processed fruit products reports a wide range of analytical approaches that can be
applied to determine the physiological state (e.g., ripeness, decay), quality (e.g., physical,
chemical, biological traits) and authenticity of fruits and fruit products. Chemometric modelling
results based on NIR- and hyperspectral analyses, which are the focus of this thesis, report a
particularly high accuracy in predicting fruit ripeness through their certain physical and chemical
quality characteristics (e.g., firmness, SSC, TA, etc.). Similarly, studies on storage monitoring and
juice composition in general. Nevertheless, it was found that there is little literature discussing the
impact of maturity stage and the location of spectrum acquisition on the accuracy of the modelling.
There is almost no available literature on the spectral monitoring of sour cherry and plum
postharvest worsen by Monilinia contamination. There are also relatively few literature sources
available regarding the control of fruit juice enrichment with plant derivatives. Overall, these
substantiated the formulated research objectives.
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4. MATERIALS AND METHODS

This chapter details the materials and methods employed throughout the series of experiments
involved in the thesis.

4.1. Materials
4.1.1. Fruit samples analysed during the ripeness assessment studies

The non-destructive determination of ripeness, and thus the optimal harvest time of various stone
fruits was carried out by analysing fruit samples from Szabolcs-Szatmar-Bereg county. During the
summer months of 2021, seasonal sweet cherries, sour cherries and plums were examined.
According to the ripening period of the fruits, the harvesting took place in June, July and August.
Harvesting was done in two distinct phases, one week apart per fruit species. After each harvest,
the fruits were promptly transported to the to the Institute of Food Science and Technology (IFST),
Hungarian University of Agriculture and Life Sciences (MATE).

The incoming batches exhibited significant variability; their ripeness ranged from unsuitable for
consumption to fully ripe. After sample arrival, the stem removal and sorting of the fruit was
started as soon as possible to avoid any undesirable perishing processes. The preliminary
classification of the fruits according to their presumed ripeness was based on the overall visible
colour shade differences, varying from the very green to deep red or purple. The sample sets into
which a relatively large number of fruits were initially sorted were further divided into subsets.

Table 4 summarises the total number of pre-classified sample sets per fruit variety obtained with
the assistance of the experts of the Department of Food Chemistry and Analysis (Institute of Food
Science and Technology, MATE). To facilitate the interpretation of research outcomes, the pre-
classified sample sets were then grouped into larger ripeness clusters. This was necessary
subsequently, because there were pre-classified sample groups with overlapping ripeness levels
but harvested at different dates. The possible uses of the defined ripeness levels based on experts’
opinion are shown Table 5.

Table 4. The quantity of fruits pre-classified prior ripeness assessment by variety.

Fruit Variety Abbreviation  Pre-classified groups Sample size of NIRS
Sweet cherries  Bigarreau Burlat BB 26 130
Valery Chkalov VC 21 105
Sour cherries  Kantorjanosi KJ 20 100
Ujfehértéi UF 21 105
Plums Elena EL 20 100
Stanley ST 20 100

Table 19 summarises how many actual pre-classified sample sets cover the ripeness levels

established between the L1 (immature) and L6 (very ripe) categories. When determining the

boundaries between the maturity levels, the experts aimed for an equal distribution.for each fruit

specie. The shading used in the table shows the colour by which clusters were marked during the
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data analysis. From the pre-selected sample sets, 5 fruits were started to be analysed using non-
destructive analytical methods (see Table 4), and the rest were analysed using destructive
analytical methods.

Table 5. The ripeness levels and usability of the fruits analysed.

Ripeness level Ripeness stage Utilisation
L1 fully unripe no use
L2 slight colouration no use
L3 intensive maturation  production of preserves
L4 ripe production pf fresh/ frozen/ juice/ concentrate/ jam
L5 fully ripe production pf fresh/ frozen/ juice/ concentrate/ jam
L6 very ripe/ overripe variable use

4.1.2. Fruit samples analysed during the Monilinia detection studies

Fruit sampling

For the non-destructive study of the processes involved in brown rot of stone fruits, different sour
cherry and plum varieties were included in the research. The harvest and examination of the fruit
varieties were conducted at different times. The experiments on “Erdi bétermé” (EB) and
“Ujfehértoi” (UF) sour cherries, as well as “Topend” (TD) plums, were conducted in 2021. The
experiments on “Topend plus” (TP) plums were carried out in 2022. The pre-selected experimental
fruits were uniform in ripeness, colour, and free from any visible damage for each variety.

Process of Monilinia isolation

Isolation of Monilinia species causing brown rot was performed from the surface of various fruits
(e.g., sour cherry, plum). After several attempts, it was possible to successfully isolate and
propagate M. fructigena on culture media. The fruits intended for conidium production were
disinfected with ethanol solution (70% V/V), wounded using a sterile lancet needle, and agar discs
overgrown with mycelium from a pure pathogen culture were placed into the wounds. To produce
conidia, sour cherries were inoculated for the sour cherry experiment in 2021, plums for the plum
experiment in 2021, and apples for the plum experiment in 2022. This step was necessary because
Monilinia species do not produce conidia on culture media. The inoculated fruits were stored in a
Fitotron growth chamber on 21°C with a 12-hour light cycle. After approximately seven days,
conidia formed on the surface of the inoculated fruits were collected using sterile wooden sticks
moistened with sterile water, then transferred into 2 mL Eppendorf tubes containing sterile water
(Figure 8).

The conidial suspensions were adjusted to a concentration of approximately 10° conidium/ mL
using a Biirker counting chamber. This was followed by tenfold, hundredfold, and thousandfold
serial dilutions with sterile water. These suspensions were subsequently used to inoculate the sour
cherry and plum samples involved in the latter studies. The approximate concentrations of the
conidial suspensions used in each experiment are shown in (Table 7). The isolation of the fungi
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and the preparation of conidial suspensions were conducted under the supervision of experts from
the Institute of Plant Protection (MATE), in accordance with Horvathné Petroczy (2009).

Figure 8. Preparation steps for M. fructigena conidial suspension: propagation of fungal isolates (a);
conidium formation on the surface of fruits (b); collection of fungal conidia (c).

Infection of the fruit samples

Before starting the sample actual preparation, the stems of the sour cherries and plums were
removed and their surface was gently cleaned with precision wipes soaked in ethanol solution
(70% V/IV). This step was necessary because in these series of experiments, we focused solely on
the detectability of Monilinia and aimed to minimize any potential spoilage processes caused by
unwanted other microbes.

After cleaning, a 5 mm incision was made with the tip of a disinfected knife on the surface of a
portion of the fruits into which 20 uL of undiluted (~10? conidium/ uL) or diluted M. fructigena
conidial suspension was pipetted (Table 7). These fruits constituted the “Injuryinf” samples. For
another portion of the fruits, 20 puL of the suspensions was applied without making any incisions,
constituting the “Intactinf” samples. The remaining fruits were not inoculated, serving as the
“Intactcon” and “Injurycon” Samples, the latter was prepared only for Topend plus plums.

The prepared fruits were subjected to seven days of refrigerated (around 5 °C) or room temperature
(above 20 °C) storage under controlled conditions. In the case of room temperature storage, the
storage environment was adjusted to the room temperature typical at the time of fruit preparation.
The average temperature and relative humidity values recorded during storage are included in
Table 6.

Table 6. Temperature and relative humidity recorded during the storage of stone fruits (average + 2 o).

Fruit variety Refrigerated storage Room temperature storage
Temperature Humidity Temperature Humidity
Sour cherries  Erdi botermé  4.34£1.99°C  62.64+12.94% 25.94+1.66°C  81.04 = 10.09%
Ujfehértéi 564+1.89°C 59.32+9.33%  25.83+£0.15°C  84.85+4.64%
Plums Topend 597+2.89°C 52.36+2243% 22.26+0.86°C  75.92 + 16.58%
Topend plus  541+154°C 73.46+18.46% 22.64+1.01°C 83.87+13.38%
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The decaying processes were investigated using two distinct non-destructive analytical techniques,
NIR spectroscopy and hyperspectral imaging, for which two identically prepared sample sets were
established. For each sample group, five replicates were prepared, resulting in the following
sample sizes:

e Sour cherry varieties:
Erdi b6termd (EB)
((Intactcon + 4 Injuryins + 4 Intacting) x 2 storage conditions) x 5 replicates =
90 sour cherry samples
Ujfehértoi (UF)
((Intacteon + 4 Injuryins + 4 Intactinf) x 2 storage conditions) x 5 replicates =
90 sour cherry samples
e Plum varieties:
Topend (TD)
((Intactcon + 3 Injuryins + 3 Intacting) x 2 storage conditions) x 5 replicates =
70 plum samples
Topend plus (TP)
((Intactcon + Injurycon + 3 Injuryins + 3 Intacting) x 2 storage conditions) x 5 replicates =

80 plum samples

Table 7. Sample groups for investigating the detectability of M. fructigena on stone fruits

Fruit Variety Suspension concentration Injured Intact

(conidium/ uL) ~5°C ~20°C ~5°C ~20°C

Sour 0 — — 5 5

cherry Erdi ~0,15 5 5 5 5

botermo ~15 5 5 5 5

EB ~15 5 5 5 5

~ 150 5 5 5 5

0 — — 5 5

Ujfehértsi ~0.17 > > > >

UF ~17 5 5 5 5

~ 17 5 5 5 5

~ 170 5 5 5 5

Plum 0 — — 5 5

Topend ~1,05 5 5 5 5

D ~10,5 5 5 5 5

~ 105 5 5 5 5

0 5 5 5 5

Topend =231 5 5 5 5

plus =231 5 5 5 5

TP !
~231 5 5 5 5

— — no sample preparation
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4.1.3. Samples analysed during the fruit juice enrichment studies

Preparation of fruit juice mixtures

For these experiments, juices prepared from sour cherry and plum concentrates were analysed to
minimise the risk of unwanted and unknown product manipulation in our samples. Based on the
initial concentration of fruit juice concentrates (approx. 65% brix), pure stock juices were prepared
of about 20% brix in SSC by dilution with distilled water. Cranberry (CBE), grape seed (GSE) or
pomegranate extracts (PGE) were added to the juices at six concentration levels so that their total
concentration ranged between 0.5 and 2.5 g/100 mL. These formed the simple blends, which were
then mixed in equal proportions by concentration level to produce binary and ternary juice blends.
In these cases, the aim was also to ensure that the total extract content of the resulting juice blends
remained between 0.5 and 2.5 g/100 mL (Table 20). For easier understanding, the blending
procedure has been partly illustrated in Figure 9.

During the preparation of the fruit juice blends, three parallel juice samples were prepared per
sample group. For the pure sour cherry and plum juices five replicate samples were prepared.
These samples represented the 0 g/100 mL concentration level. The sample sizes for each fruit
juice were as follows (Eqg. 1, 2):

(5 pure juices) + (3 extracts x 6 conc. level x 3 replicates) + (3 binary mixtures x 6 conc. level x 3
replicates) + (1 tertiary mixtures x 6 conc. level x 3 replicates) = 131 blends of sour cherry juice

1)

(5 pure juices) + (3 extracts x 6 conc. level x 3 replicates) + (3 binary mixtures X 6 conc. level x 3 @)
replicates) + (1 tertiary mixtures x 6 conc. level x 3 replicates) = 131 blends of plum juice
Heat treatment of the fruit juice blends

The prepared fruit juice samples were pipetted into 15 mL autoclavable centrifuge tubes, closed
and subjected to heat treatment. For this, a drying chamber was preheated to 85 °C (MMM
Medcenter Einrichtungen GmbH, Planegg, Germany). A “blank” 15 mL centrifuge tube,
containing stock juice equilibrated to the same temperature as the experimental samples (e.g., room
temperature), was prepared; this liquid was not used in subsequent analyses. A hole was drilled in
the centre of a centrifuge tube cap, large enough to accommodate a Pt100 thermometer (Fluke
Corporation, Everett, Washington, USA). The cap was then attached to the thermometer, ensuring
that the tip of the thermometer was centred within the tube. The sample tubes, along with the blank
sample tube, were placed into a holder and positioned within the drying chamber, with the
thermometer display remaining outside for temperature monitoring. Once the thermometer
indicated 85 °C - reflecting the temperature at the cold point of the blank tube - the samples were
held for 60 seconds at constant temperature. Subsequently, the samples were removed from the
chamber, allowed to cool to room temperature, and were refrigerated until non-destructive
analytical methods.

38



Pure juice

~630 mL
concentrate

15 mL

Simple blends I

05gor07garldgor
ldgorl9gor2sg

| 0.5 g CBE |

m 0.5gor07gorloe
£l orldporl9ger2sg

| 0.5 g GSE I

- 05gor07gorlog
£ orldgorl9gordig

| 0.5 g PGE |

12mL —

[
i

CE:

/

—
&

Filling up with Filling up with Filling up with

stock juice 12 mL stock juice 12mL stock juice 12mL

7

Binary blends I - 125 mL

12.5mL

8 ml

Ternary blends I

8 mL 8 mL

Figure 9. Excerpt from the blending scheme of fruit juices containing different concentrations of various
plant extracts.

4.2.  Applied methods

This subsection summarises the reference methods used in the ripeness assessment studies as well
as the non-destructive correlative analytical methods and chemometric modelling used in the
determination of fruit ripeness, detection of Monilinia and fruit juice enrichment.

4.2.1. Reference methods applied in the fruit ripeness assessment studies

The reference methods used in the examination of stone fruit of different ripeness were performed
separately for each pre-classified sample sets (see Table 19). An example of a selected sample set
is shown in Figure 10 to illustrate how the measuring processes followed each other, and the
sample amounts required. The colour measurement was done by fruit, analytical measurement was
done by pre-classified sample group at the Department of Food Chemistry and Analysis (MATE
IFST).
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Determination of colour characteristics of stone fruits

The colour characteristics of stone fruits of varying ripeness were determined using a ColorL.ite
sph850 spectrophotometer (ColorLite GmbH, Germany). Following calibration, the instrument was
used to measure the colour attributes, such as lightness (L*), green-red (a*), and blue-yellow (b*),
on both the immature and mature sides of the fruits. All five parallel samples of the pre-classified
sample groups were measured respectively in a randomised measurement order. Three consecutive
measurements were taken for each colour attribute. The averages of these measurements were used
in the subsequent data analysis.

Sweet cherry Sour cherry Plum
L O o L N N
EEEEEN [ 1 1] | EEEEEEEEENn
- / e - N >
HEER EEEEN AEEEEEEEEEN
/ N\
IIIIIIIIIII\
«
EEEEEEEEEN
remaining fruits of a selected sample group 5 fruits of a selected sample group
Reference measurements Non-destructive measurements
‘ Fruit chopping ‘ | NIR spectroscopy |
10 g of chopped fruit |
Dry matter content | Fruit blending l | Colour measurement |
determination 10 g of fruit puree |
Total acidity ‘ Centrifuge ‘
determination ~ 2 mL of juice | 50 mL of juice
Soluble solids content Anthocyanin content
determination determination

Figure 10. Destructive and non-destructive analytical analyses performed separately for pre-classified
sample groups per fruit variety, presented on a case example.

Determination of dry matter content of stone fruits

To determine the dry matter content (DMC) of stone fruits of varying ripeness, the flesh of the
fruits was chopped by pre-classified sample sets. Approximately 10 g of chopped fruits were
measured in and gently dried at 70 °C in an air-conditioned airing cupboard (Memmert,
Schwabach, Germany) to constant weight. Due to the high sugar content of the samples, gentle
drying was necessary to avoid damaging them. The dry matter content was calculated as the ratio
of the dry weight to the initial weight (Schuck, Dolivet, and Jeantet 2012). Three measurements
were conducted for each sample group, respectively, and the averages of these were used for
subsequent data analysis.

Determination of total acidity of stone fruits
To determine the total acidity (TA) of stone fruits of varying ripeness, the previously chopped
fruits were pureed with a kitchen stick blender (Philips, Amsterdam, Netherlands). Approximately
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10 g of fruit puree was measured in and the acid concent was determined by potentiometric
titration with 0.1 mol/ dm? sodium hydroxide solution (pH 8.2) in the presence of phenolphthalein
indicator. During the measurement, a Hanna HI2209 benchtop pH meter was utilised (Hanna
Instruments, Smithfield, USA). The total acidity was calculated and expressed as mg/ g (fresh
weight) malic acid (Tyl and Sadler 2017). Three measurements were conducted for each pre-
classified sample group, respectively, and the averages of these were used in the subsequent data
analysis.

Determination of total soluble solid content of stone fruits

To determine the total soluble solid content (SSC) of stone fruits of varying ripeness, the
previously blended fruits were measured in a tube of 50 mL, centrifuged at 6000 rpm for 20 min
(Micro 22R Hettich, Germany), and a few drops of the supernatant juice were measured with a
digital refractometer (Pocket PAL-1, ATAGO, Tokyo, Japan). Following calibration with distilled
water, the device provided results of fruit juice soluble solid content expressed in % brix
(Chockchaisawasdee et al. 2016). Three measurements were conducted for each pre-classified
sample group, respectively, and the averages of these was used in the subsequent data analysis.

Determination total anthocyanin content of stone fruits

To determine total anthocyanin content (TAC) of stone fruits of different ripeness, the previously
prepared supernatant juice was measured in and analysed using the pH differential method (Lao
and Giusti 2016; Lee et al. 2005, 2016), as described in the studies by Fodor et al. (2022, 2023).
These measurements required the use of a pH meter (Hanna Instruments, Smithfield, USA) and
UV-Vis spectrophotometer (Thermo Electronic UV-Vis 2.02, Thermo Fisher Scientific, Waltham,
MA, USA). The results were expressed in cyanidin-3-glucoside equivalent in mg/ L. Three
measurements were performed for each pre-classified sample group, and the averages of these
measurements was used in the subsequent data analysis.

4.2.2. Near infrared spectroscopy for the fruit quality assessment studies

Application of hand-held NIR spectrometer for the determination of stone fruit ripeness

To non-destructively model the harvest maturity of various stone fruits, near-infrared (NIR)
spectroscopy was applied. The investigations were conducted with a hand-held reflection-based
NIR spectrometer (NIR-S-G1, InnoSpectra Co., Hsinchu, Taiwan). The device enables contact
measurement with internal illumination in a total of 256 spectral bands in the 900-1700 nm
wavelength range using the Hadamard method. For the fruits, spectra were recorded on both the
immature and mature sides of the five parallel samples of the pre-classified sample sets. At each
measurement position, three consecutive spectrum recording was performed. The fruits were
scanned in a randomised measurement order.

In the presentation of the results obtained from the chemometric modelling, the sun-yellow (-)
colour indicates the models that were based on the whole dataset for each variety, respectively. In
green (-) and index “g” is used after the abbreviation of the variety to indicate the model results
based on the spectra recorded on the immature side of the fruit. Modelling results based on spectra
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recorded on the mature side of the fruit are indicated in burgundy (=) in the case of cherries or in
navy blue (=) in the case of plums, and index “r” is used after the abbreviation of the variety.

Application of hand-held NIR spectrometer for the detection of Monilinia on stone fruits
The hand-held NIR instrument and setup used for the non-destructive analysis of sour cherries and
plums infected with M. fructigena and stored under different conditions were consistent with the
configuration described above. On sour cherries, spectra were recorded along the horizontal axis
of the fruits; on plums, they were captured along the vertical axis, with three measurement points
per fruit, as indicated in Figure 11a. The second measurement point was always the point of
inoculation on the fruit. At each measurement position, three consecutive spectrum recording was
performed. After each measurement position, the contact surface of the device was disinfected
with alcohol-soaked precision wipes to prevent cross-contamination. Spectral data collection was
performed daily throughout the seven-day long storage. The fruits were scanned in a randomised
measurement order.

/‘“

a) b)

Figure 11. Spectral measurement locations for detecting M. fructigena on stone fruits: measurement points
for hand-held NIR spectrometer (a); spectral acquisition points during hyperspectral image processing (b).

Application of hand-held NIR spectrometer for the control of enriched fruit juices

For the examination of plant extract-enriched fruit juice blends, a hand-held MicroNIR
spectrometer (Viavi, Scottsdale, USA) was employed in transflectance measurement arrangement.
The device enables contact measurement with internal illumination in a total of 125 spectral bands
in the 900-1700 nm wavelength range. The spectra of the juices were recorded in a cylindrical
glass cuvette with a reflective surface that provided a layer thickness of 0.5 mm. To compensate
the initially large number of fruit juice blends, the pure fruit juices were scanned multiple times.
Specifically, the five replicate samples of sour cherry and plum juice were each scanned three
times in total. Three consecutive spectra were recorded during each sample loading. Between each
sample measurement, the cuvette was thoroughly cleaned with distilled water and ethanol
(70% V/V), then dried and rinsed with the upcoming juice sample to prevent cross-contamination.
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The juices were scanned in a randomized measurement order. These measurements were
conducted at the Institute of Analytical Chemistry and Radiochemistry (University of Innsbruck,
Austria).

Application of benchtop NIR spectrometer for the control of enriched fruit juices

The spectral properties of the fruit juices were also examined in a transmission measurement
arrangement. A modular Fourier transform spectrometer was utilized for this purpose (NIRFlex
N-500, Biichi Labortechnik AG, Flawil, Switzerland), acquiring data in a total of 1178 spectral
bands within the wavelength range of 1000-1890 nm. Similarly, as detailed above, the samples
were analysed in a randomized order with three consecutive scanning using a glass cuvette with a
path length of 1 mm. The cuvette was cleaned as described above with additional drying with
compressed purified air to remove as much of the excess cleaning moisture from the cuvette as
possible. The cuvette was also rinsed with the upcoming juice sample. These measurements were
conducted at the Institute of Analytical Chemistry and Radiochemistry (University of Innsbruck,
Austria).

4.2.3. Hyperspectral imaging for the detection of Monilinia contamination on stone fruits

For the non-destructive and contactless analysis of sour cherries and plums infected with M.
fructigena and stored under various conditions, a desktop Headwall Photonics XEVA-1648
XC134 hyperspectral imaging (HSI) system was utilised (Specim spectrograph, Xenics InGaAs
14-bit sensor, 256 x 320 px spectral and spatial resolution). This system allowed the NIR spectral
and spatial characterization of fruits at the same time. The instrument operated in a push-broom
configuration, capturing a total of 155 spectral bands in the 900-1700 nm wavelength range, with
a spectral resolution of 5 nm and a spatial resolution of 0.475 mm per pixel. The measuring system
was operated using the department-developed Argus software (Firtha 2011). Randomised HSI was
performed daily on the plum samples and on six days in total for the sour cherry samples during
their seven-day long storage.

To compensate spectral inconsistencies, on every measurement day, the system's spectral and
spatial calibration preceded the measurements. Under full illumination of lamps (~79 mm linear
tungsten halogen bulbs, 150 W) positioned on two sides in 45° angle with the moving platform, a
white teflon (PTFE) standard (NCS 0300) was used for the light reference scanning. The
measurement of the dark surface was done by scanning after completely covering optics
preventing any external light from entering the system. The data matrix measured at this time was
considered homogeneous and stable over time based on previous experiences. After correctly
setting the measurement arrangement, illumination, optical aperture, and AD parameters, saving
dark and light reference images could eliminate inhomogeneity and increase the signal level
(Firtha, 2008), also enabling the calculation of relative reflectance from the raw data.

The segmentation of fruit-related pixels from the data recorded in a hypercube with the HSI system
was performed using a department-developed HyperGrab hyperspectral image processing
software (GillaySoft, Budapest, Hungary). The software allowed to extract the average absorbance
values from nine surface areas per measurement at a time as illustrated in Figure 11b. Examples
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of the defined region of interests (ROI) during the segmentation are provided in Figure 60 and Figure
61.

4.3. Evaluation of the research results

The organization, evaluation, and illustration of the data were performed using Miscrosoft Excel
365 (Microsoft Corporation, Redmond, Washington, USA), Origin Pro 2018 (OriginLab Corp.
Northampton, MA, USA), R-project (version 3.6.3) and the “aquap2” package (Pollner and
Kovacs 2016). This section summarises the methods used to evaluate the study results.

4.3.1. Evaluation of results obtained with reference measurements

Reference measurements are only available on the samples analysed during the ripeness
determination studies. The colour (L*, a*, b*) and compositional characteristics (i.e., DMC, SSC,
TA, TAC) obtained from the pre-classified sample sets were averaged according to ripeness
clusters shown in Table 5 and Table 19. These average values are discussed in chapter RESULTS
AND DISCUSSION.

4.3.2. Evaluation of results obtained using correlative analytical methods

Pre-processing of the spectral data

The spectra obtained through NIR spectroscopy and hyperspectral image processing were first
truncated to the wavelength ranges intended for evaluation, followed by the removal of outliers
and subsequent multivariate statistical analyses. In experiments where the efficiency of different
instruments was compared (e.g., benchtop and hand-held NIR devices), the evaluations were
performed within the same wavelength ranges. The number of spectra used as a basis for
chemometric modelling in the three different studies and the considered wavelength ranges are
summarised in Table 8. In neither case were the spectra averaged.

Table 8. Spectrum counts and wavelength ranges used during chemometric modelling.

Study Variety Hand-held device(s) Benchtop device(s) * Wavelength range

Ripeness assessment

Sweet cherries BB 780 spectra - 950 — 1650 nm
VC 627 spectra - 950 — 1650 nm

Sour cherries KJ 597 spectra - 950 — 1650 nm
UF 621 spectra - 950 — 1650 nm

Plums EL 600 spectra - 950 — 1650 nm
ST 597 spectra - 950 — 1650 nm

Monilinia detecion

Sour cherries EB 4421 spectra 3579 spectra 1000 — 1650 nm
UF 5022 spectra 3224 spectra 1000 — 1650 nm

Plums TD 3872 spectra 3084 spectra 1000 — 1650 nm
TP 4294 spectra 3462 spectra 1000 — 1650 nm

Fruit juice control

Sour cherry juices — 423 spectra 421 spectra 1000 — 1650 nm

Plum juices — 423 spectra 422 spectra 1000 — 1650 nm

* By benchtop device is meant here the hyperspectral imaging system in Monilinia detection studies or the FT-

NIR spectrometer in fruit juice analysis.
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For noise reduction in the spectra, Savitzky-Golay smoothing (second-order polynomial) was
applied (Savitzky and Golay 1951), along with other spectral pre-processing methods (e.g., scatter
correction, detrending, derivatives) to optimise statistical modelling. The combinations of spectral
pre-processing methods and their application purposes are summarised in Table 21 and Table 22.
Table 9. summarises all the variables according to which it was possible to filter the data or build
classification models.

Principal component analysis of the spectral data

Principal component analysis (PCA) was applied to compress the highly correlated NIR spectral
data into variables (principal components, PCs) that no longer correlate with each other.
Additionally, this method allowed for the identification of outliers by detecting data points that
fell outside the 95% confidence interval. This function of the PCA was only used for the evaluation
of experimental results aimed at monitoring storage and detectability of Monilinia-caused decay
on stone fruits.

PCA modelling was also used as a preliminary pattern exploration on smoothed (Savitzky-Golay
smoothing with 2" order polynomial, 21 data points; “sgol-2-21-0”) and multiplicative scatter-
corrected (msc) data. Furthermore, the results revealed how individual wavelengths correlate with
the PCs, which were illustrated on loading plots. PCA models were built on the whole dataset by
fruit variety, respectively, to recognise patterns in fruit ripeness, in Monilinia-infected fruit
handling and storage, or in total added extract content in enriched fruit juices.

Soft independent modelling of class analogies

Soft independent modelling of class analogies (SIMCA) was only used to evaluate the
experimental results of Monilinia detection studies. The method was applied alongside the PCA
results, except that modelling was performed on data recorded at the beginning (day 1), middle
(day 4) and end of storage (day 7), also after smoothing and msc pre-treatments. This supervised
classification method helped to better understand the similarities and differences between the
sample groups which for these evaluations were the different treatments (mode of inoculation and
storage condition together).

SIMCA models the multivariate space formed by a given sample group and calculates whether a
given observation belongs to a specific group based on the interclass distances and the importance
of variables (i.e., wavelengths). This approach also gives the discriminating power of the variables,
significantly contributing to group differentiation and thereby facilitating the identification of
absorbance bands associated with spectral differences (Wold and Sjostrom 1977).

Linear discriminant analysis of the spectral data

Linear discriminant analysis (LDA) was performed as a supervised classification method to
discriminate and classify samples according to various classification variables (see Table 9). In
our specific application, principal component scores served as the input values for the LDA
models. The optimal number of principal components (NrPCs) used in the modelling process was
determined by an R-based algorithm that collected and compared the LDA model calibration and
validation accuracies up to a predefined 20 NrPCs, using three-fold cross-validation. The NrPCs
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that yielded the smallest difference between model calibration and validation accuracy, as well as
the highest validation accuracy, was selected for the actual modelling. The PCA-LDA models were
built on data filtered to certain data sets, pre-processed then further optimised for NrPCs. The
models were tested using leave-one-sample replicate-out (LOSO) validation.

The classification results (%) obtained during the construction and testing of the models are
summarised in so-called confusion tables. The optimal spectral pre-treatment(s) and NrPCs for the
PCA-LDA modelling of a given dataset are displayed at the bottom of the summary tables,
specifically following * symbols. In addition, this method also assisted in identifying absorbance
bands which contributed greatly to the differentiation between sample groups.

In the ripeness studies, models classifying by ripeness levels were first built by fruit variety, and
then separately on the data obtained on the more mature and immature sides of the fruits. This was
performed to explore the influence of the location of spectrum acquisition on classification
accuracy. Model construction was done by omitting data of one parallel sample from the five
available per pre-classified sample sets at a time. During testing, the data of the previously omitted
samples were projected into the constructed PCA-LDA model. Model building and testing were
completed cyclically until all data for each sample were included at least once in the modelling.

Table 9. Summary of variables used to filter or model the data

Levels of classification
BB -VC; KJ-UF; EL-ST

Classification variables
Fruit variety:

Study
Ripeness assessment:

Ripeness level:
Measurement side:

L1~ L6
immature — mature

Monilinia detection:

Fruit variety:
Suspension concentration:
Storage condition:

Mode of conidial
inoculation:

Treatment groups:

Appearance time of visible
infection signs

EB-UF; TD-TP

~0.1, 1, 10, 100 conidia/ uL

5°C; 24 °C

Intactcon — INacting — INjurycon — INjUryine

5 °C Intacteon; 5 °C Intacting; 5 °C Injurycon;
5°C Injuryinf;

~ 20 °C Intactcon; ~ 20 °C Intactins; ~

20 °C Injurycon; ~ 20 °C Injuryint

- 6 days > + 6 days

Fruit juice control:

Fruit juice:

Type of extract:

Type of juice blend:

sour cherry; plum

Juice;

Juice + CBE; Juice + GSE; Juice + PGE;
Juice + CBE + GSE; Juice + GSE + PGE;
Juice + PGE + CBE;

Juice + CBE + GSE + PGE

pure juice; simple; binary; ternary

Added extract concentration: 0.0, 0.5,0.7,1.0,1.4, 1.9, 2.5 g/ 100 mL

In the experiments related to Monilinia detectability, classification models were built by treatment

group based on spectral pre-processing- and NrPC-optimised data recorded the day after sample
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inoculation to determine the detectability of the initial conidial contamination on the fruit surface.
For this modelling, the classification was done for conidium contamination levels of about 0.1, 1,
10, 100 conidia/ uL. In addition, the spectral trend of samples that were found to undergo
Monilinia-induced spoilage during storage was also modelled. This only concerned fruits that were
infected through injury and stored at room temperature (“~ 20 °C Injuryinf”’). After specifically
determining on which storage day the fruits exhibited visible signs of Monilinia infection (marked
as “0 day”), data covering + 2-day interval relative to data for “day 0” were included in this
modelling. In both modelling cases, the model building was done by omitting data of one sample
from the five parallelly prepared per sample group at a time. During testing, the data of the
previously omitted samples were projected into the constructed PCA-LDA model. Model building
and testing were completed cyclically until all data for each sample were included at least once in
the modelling.

PCA-LDA was also applied for the qualitative classification of fruit juice blends enriched with
plant extracts in various concentration. Models were built to detect the type of extracts
administered in simple, binary, or ternary combinations, as well as to group them based on the
total added extract concentration. In these cases, the model building and testing involved the cyclic
omission of one of the three samples prepared in parallel and their projection into the constructed
model.

Partial least squares regression on the spectral data

Partial least squares regression (PLSR) was applied to predict quantitative compositional attributes
based on the spectral data. PLSR models were developed individually for each fruit variety using
filtered, spectral pre-processing- and latent variable- (NrLV) optimised data. Model validation was
conducted through leave-one-sample replicate-out (LOSO) validation, ensuring robust assessment
of predictive performance. The accuracy and reliability of the models were quantified by the
coefficient of determination (R?) and the root mean square error (RMSE). The model fitting
accuracies obtained during the model building (C) and testing (CV) by predicted attribute are
arranged in summarising tables. The optimal spectral pre-treatment(s) and NrLVs for the PLSR
modelling of a given dataset are included in the corresponding columns of the summary tables. In
addition, the regression vectors were also obtained as partial results, which provide information
on the degree to which each variable is correlated with the actually predicted parameter.

In the ripeness studies, PLSR models were employed to non-destructively predict certain quality
traits (colour, DMC, SSC, TA, TAC) of fruits of different ripeness. The models were first built by
fruit variety, and then on the data obtained on the more mature and immature sides of the fruits,
respectively, to explore its influence on the prediction accuracy. Model construction was done by
omitting data of one parallel sample from the five available per pre-classified sample sets at a time.
During testing, the data of the previously omitted samples was projected into the constructed PLSR
model. Model training and testing were completed cyclically until all data for each sample were
included at least once in the modelling.
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PLSR modelling was also applied to predict the added extract concentration in fruit juices enriched
to varying degrees. The models were first built using juice samples by fruit species, and then
filtered according to simple, binary, and ternary blends when estimating CBE, GSE, PGE, and
total extract content. As described in detail above, model building and testing involved the cyclic
omission of data corresponding one of the three samples prepared in parallel and their projection
into the constructed model.

Identification of frequently occurring absorption bands in chemometric modelling

For each of the different chemometric modelling approaches, the extent to which each wavelength
supports the performance of the current modelling approach was determined. The wavelengths
relevant to each modelling approach were identified based on the peaks in the PCA loadings,
SIMCA and LDA discriminating powers and PLSR regression vectors. By fruit species and
analytical method, the frequency with which each variable (i.e., wavelength) occurs in the
modelling was summarised together, using spectral windows of approximately 10 nm. The
resulting absorbance bands with their corresponding incidence values were plotted on line
diagrams.
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S. RESULTS AND DISCUSSION

This chapter summarises the main results and findings obtained during the assessment of stone
fruit ripeness, detectability of Monilinia contamination, and prediction of fruit juice enrichment
with plant extracts. The summary presents the best classification and prediction results.

5.1. Determination of the stone fruit ripeness with NIR spectroscopy

This subsection presents a summary for each fruit type regarding the effectiveness of a hand-held
NIR spectrometer in predicting the ripeness and certain quality attributes of stone fruits.

5.1.1. Determination of sweet cherry ripeness

For the sweet cherries harvested at various stages of ripeness, a total of 26 and 21 pre-classified
sample sets were analysed, respectively. The colours of the sweet cherries ranged from a
completely immature green to close to overripe deep red. The pre-classified fruit samples were
graded into six ripeness clusters. Table 10 presents the averages of the measured physical and
compositional properties for each ripeness level across the pre-classified samples.

Table 10. Quality characteristics of sweet cherry varieties of different ripeness (average values).

L* a* b* Dry matter  Total acidity Soluble solids Anthocyanin
content
% m/m mg/ g % brix mg/ L
BB L1 4872 9.71 16.83 17.19 6.41 9.20 0.00
BB L2 37.13 2430 12.99 16.26 5.73 9.91 0.00
BB L3 2898 24.62 10.73 19.77 5.81 11.26 0.61
BB L4 2476 2222 10.09 22.62 5.53 12.18 2.31
BB L5 1826 1322 4098 26.84 7.44 16.09 45.38
BB L6 1606 6.92 2.85 32.45 7.41 17.49 79.31
VC L1 51.60 843 13.70 18.67 7.74 9.23 0.00
VC L2 4428 19.70 11.61 18.93 7.34 10.49 2.15
VC L3 31.61 27.65 11.88 19.43 6,56 11.73 2.47
VC L4 2557 2439 10.12 20.62 6.27 12.98 8.19
VC LS 1850 11.07 4.67 28.58 6.95 15.43 72.45
VC L6 16.13 6.40 2.70 27.05 7.79 18.64 131.01

As Table 10 shows, the L* values indicating fruit lightness, tended to decrease as ripening
progressed, signifying a darkening of the fruits’ skin colour. Similarly, the a* values representing
the green-red hue, also showed a decreasing trend across most ripeness levels. The relatively low
a* values observed for the two varieties at lower ripeness levels (L1, L2) are due to that the colour
coordinates included in the table represent the average of the values recorded on the immature and
mature sides of the fruits. At these ripeness levels, solar radiation on skin colour development
resulted in more pronounced differences on the immature and more mature measurement sides of
the fruits. The b* values indicating the blue-yellow hue, decreased with advancing ripeness as
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well. Trends in colour coordinate values have been reported in other researches as well. Chelpinski,
Ochmian and Forczmanski (2019) found that “Burlat” cherries achieve their optimum harvesting
ripeness when L* is within 30.0 to 20.0, a* is within 30.0 to 0.0, and b* is within 10.0 to 0.0.

Among the compositional traits, the dry matter, soluble solids, and total anthocyanin content
consistently increased as ripening progressed. In the case of the VC cherries, the anthocyanin
content was nearly double compared to the BB variety. As for the acidity, a decline was observed
from the L1 to L3 or L4 ripeness stages, followed by an increase at higher ripeness levels. The
DMC of the ripe fruits was slightly higher than usually reported in the literature, while the SSC
and TA were almost the same (Serradilla et al. 2016). According to some sources, the TAC may
vary between 2 and 300 mg/ 100 g depending on variety and season, overlapping with our results
(\Valero and Serrano 2010).

Figure 62 presents the raw spectra recorded on the mature and immature sides of the sweet cherries.
Due to the inhomogeneity of the samples and spectral scatter, clear separation based on ripeness
levels is not immediately apparent. However, following the application of smoothing (sgol-2-21-
0) and the 2" derivative (sgol-2-17-2) pre-processing, the significance of the wavelength range
around 1100, 1300 and 1400 nm becomes evident, indicating its importance for distinguishing
between ripeness levels.

After smoothing and msc correction on the spectra recorded on both the mature and immature
sides of the sweet cherries, PCA was performed (Figure 12). This analysis aimed to assess the
reliability of the ripeness levels we identified, using an unsupervised method to determine how
well these levels corresponded to the actual variations in the dataset. For the BB and VVC cherries,
the first four principal components (PCs) explained about 99% of the variance in the data.

Based on the PCA score plots (Figure 12a), for the BB variety, the greatest separation of ripeness
levels is observed along the second and third PCs. In contrast, for the VC variety, the separation
appears most clearly in the combination of the first and third PCs. In the PCA modelling based on
ripeness, specific wavelengths (i.e., loadings) that contributed the most were identified for each
principal component. Based on the two PCA loadings highlighted per variety, the relevant
wavelengths that best describe separation according to ripeness are the following:

e Bigarreau Burlat (BB) sweet cherries
PC 1 loading: 1062.9, 1173.5, 1356.3, 1435.8, 1545.1 nm;
PC 3 loading: 1078.9, 1265.2, 1393.0, 1454.2, 1530.6 nm;

e Valery Chkalov (VC) sweet cherries
PC 2 loading: 1072.8, 1212.7, 1363.0, 1442.3 nm;
PC 3 loading: 1265.2, 1393.0, 1454.2, 1535.8 nm.
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Figure 12. Preliminary PCA on the NIR spectra of sweet cherries when colouring was based on fruit
ripeness (sgol-2-21-0; msc): PCA score plots of sweet cherries of different ripeness (a); PCA loading plot
of BB cherries (b); PCA loading plot of VC cherries (c).

For sweet cherries harvested at different ripeness levels, classification models by variety were
developed based on whole dataset collected on both mature and immature, as well as on the data
respectively by measuring sides. This approach aimed to enable a more accurate classification.
The results obtained after the optimised spectral pre-processing are illustrated in Figure 13. In both
sweet cherry varieties, the different ripeness levels were distinctly separated along a semi-circular
path. For the VC variety, the data points representing green ripe fruits clustered more sharply. The
first two discriminant variables (LD) depicted in the figures accounted for 85.68% of the variance
in the BB variety and 93.61% in the VVC variety, respectively.
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Figure 13. PCA-LDA on NIR spectra of sweet cherries when classification was based on fruit ripeness:
PCA-LDA score plot on BBr (a); LDA discriminating power plot on BBr (b); PCA-LDA score plot on VCr
(c); LDA discriminating power plot on VVCr cherries (d).

The classification results of the PCA-LDA models by variety are summarised in Table 23 and
Table 24, detailing the model building and validation accuracies. When comparing the
classification results of sweet cherries, models based on data from the more mature side generally
performed better. The average correct classification rates during model validation were between
42.5 - 55.5% for the BB variety, and between 48.8 - 78.0% for the VVC variety. Misclassification
typically occurred at adjacent ripeness levels. In addition to this, wavelengths that played a
significant role in discrimination among ripeness levels were identified based on their
discriminating power. These modelling results based on the spectra recorded from the mature side
of the sweet cherries are presented in Figure 13b and Figure 13d, and the corresponding
wavelengths are the following:

e BBr: 1062.9,1133.8, 1183.0, 1249.0, 1335.0, 1365.3, 1396.3, 1432.5, 1477.8, 1527 .4,
1576.1, 1615.6 nm;

e VCr: 1139.9,1312.3, 1356.3, 1387.5, 1415.0, 1486.3, 1545.1 nm.
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Similar to our series of experiments, Fodor (2022) investigated the grading of sweet and sour
cherries together by maturity. Using the maturity index (MI) of the fruits, calculated as the ratio
of SSC and TA values, QDA discriminated cherries with 98.4% accuracy.

The PLSR models for predicting various quality characteristics of sweet cherries were constructed
separately based on spectra collected from both mature and immature, as well as from both sides
of the cherries, respectively. This was done following optimised spectral pre-processing. The
accuracies obtained during model calibration and validation are summarised in Table 25 and Table
26. The accuracy of predicting various physical and compositional characteristics was highly
dependent on the cherry variety and the location of the spectral measurements. For sweet cherries,
the best predictions were achieved for those characteristics that either increased or decreased
monotonically as ripening progressed. For both sweet cherry varieties, the most accurate models
were obtained during the prediction of average L*, dry matter, soluble solid, and anthocyanin
content.

Figure 14 shows the best model fits found for the BB variety. The DMC prediction accuracy was
with a maximal R? of 0.88 - 0.83 and RMSE of 2.07 - 2.50% m/m. The prediction of SSC was
achieved with an R? of 0.89 - 0.86 and RMSE of 1.09 - 1.23% brix. The prediction of TAC was
achieved with an R? of 0.86 - 0.83 and RMSE of 12.14 - 13.51 mg/ L during calibration and
validation, respectively. The regression vectors showcasing the wavelengths that played a crucial
role in the fittings of the selected models are the following:

e DMC (BBg): 985.3,1028.1,1107.1, 1147.1, 1177.1, 1193.7, 1236.1, 1274.5, 1312.3, 1344.0,
1365.3, 1396.3, 1415.0, 1432.5, 1454.2, 1519.1, 1535.8, 1564.8, 1585.3, 1601.5,
1626.7 nm;

e SSC (BBr): 1003.0,1116.9, 1166.3, 1236.1, 1274.5, 1322.5, 1353.0, 1387.5, 1420.5, 1459.5,
1489.5, 1530.6, 1582.2, 1590.4, 1598.5 nm;

e TAC (BBr): 1010.5,1062.9, 1076.5, 1126.6, 1173.5, 1225.6, 1274.5, 1331.6, 1365.3, 1393.0,
1408.5, 1430.3, 1466.0, 1489.5, 1519.1, 1548.3, 1593.4, 1621.7 nm.

Figure 15 shows the best model fits found for the VC variety. The SSC prediction accuracy was a
maximal R? of 0.95 - 0.93 and RMSE of 0.69 - 0.79% brix. The prediction of TAC was achieved
with an R? of 0.91 - 0.87 and RMSE of 16.20 - 19.86 mg/ L. The prediction of average L* was
achieved with an R? of 0.83 - 0.78 and RMSE of 4.76 - 5.44 during calibration and validation,
respectively. The regression vectors showcasing the wavelengths that played a crucial role in the
fittings of the selected models are the following:

o SSC (VCg): 982.8,10455, 11035, 1150.7, 1212.7, 1267.5, 1337.2, 1372.0, 1405.2, 1442.3,
1477.8, 1548.3, 1612.6 nm;
e TAC (VCg): 1016.8,1062.9,1116.9, 1169.9, 1229.1, 1281.4, 1331.6, 1368.6, 1393.0, 1427.1,
1450.9, 1486.3, 1519.1, 1559.6, 1587.3 nm:
e L*average. 1020.6 1147.1 1193.7,1236.1, 1271.0, 1347.4, 1399.7, 1430.3, 1457.4, 1504.3,
(VCr): 1519.1, 1574.0, 1618.7, 1626.7, 1635.7 nm
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Figure 14. PLSR prediction results of certain quality traits of BB sweet cherries of different ripeness: Y-
fit of DMC prediction on BBg(a); regression vectors of DMC prediction on BBg (b); Y-fit of SSC prediction
on BBr (c); regression vectors of SSC prediction on BBr (d); Y-fit of average TAC prediction on BBr (e);
regression vectors of average TAC prediction on BBr (f).
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Prominent wavelengths obtained as a result of the PCA, PCA-LDA and PLSR models built on
NIR spectral data of sweet cherries of different ripeness were summarised. Taking into account
the most contributing wavelengths of the two studied varieties together, Figure 16 presents the
absorption bands of successful chemometric modelling with their approximate frequency values.

10

Indidence

950 1050 1150 1250 1350 1450 1550 1650

Wavelength (nm)

Figure 16. Absorbance bands frequently observed in chemometric modelling results of sweet cherry
ripening with hand-held NIR spectrometer.

The ripening of cherries and the non-destructive determination of certain physical and organoleptic
properties of cherries have been the subject of a number of studies reported in the literature.
Escribano et al. (2017) combined the NIR spectral data (729-975 nm) with DMC and SSC of
“Chelan” and “Bing” cherries. The authors reported prediction of DMC with R? between 0.67 -
0.73 and SSC between 0.73 - 0.89, respectively by variety. Toivonen, Batista, and Lannard (2017)
developed DMC predicting models based on the spectral data of “Lapins” cherries obtained in the
858-1008 nm wavelength range with a portable Vis/NIR spectrometer. The predictive efficiency
of the developed model was validated on three other cherry cultivars (Staccato, Sentennial,
Sovereign) when Rp? were 0.96, 0.94, and 0.99, and RMSEp values were 0.51, 0.74, and 0.56%
m/m, respectively. Li et al. (2018) used the hyperspectral data (874-1734 nm) of 550 “Hongdeng”
cherries to determine the relationship between ripeness, SSC and pH. The authors could classify
the fruits according to ripeness with over 96% accuracy with LDA and estimated SSC and pH with
R? above 0.82 and RMSEp of 1.21% brix and 0.06, respectively, when genetic algorithm (GA)
variable selection method was applied prior MLR. Wang et al. (2018) developed a cloud-based
qualification system called “SeeFruits” that also involves a hand-held NIR spectrometer (DLP
NIRscan Nano) to predict fruit cherry ripeness and SSC. The authors compared the performance
of the developed system with hyperspectral imaging and found satisfying results during support
vector classification (0.89) and PLSR prediction (Rp? = 0.83; RMSEP = 1.52% brix).
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5.1.2. Determination of sour cherry ripeness

For the sour cherries harvested at various stages of ripeness, a total of 20 and 21 pre-classified
sample sets were analysed, respectively. The colours of the cherries ranged from a light pink to a
ripe deep red. The pre-classified fruit samples were graded into four ripeness clusters. Table 11
presents the averages of the measured physical and compositional properties for each ripeness
level across the pre-classified samples.

Table 11. Quality characteristics of sour cherry varieties of different ripeness (average values).

L* a* b* Dry matter  Total acidity  Soluble solids Anthocyanin
content
% m/m mg/ g % brix mg/ L
KJ L2 3258 21.55 15.04 23.36 27.81 13.47 24.34
KJ L3 2380 21.34 10.26 24.59 22.98 12.82 57.24
KJ 14 20.19 1349 5.78 25.71 22.64 14.93 118.52
KJ LS 1832 573 3.00 29.69 21.40 16.40 141.05
UF L2 3362 21.01 1649 25.34 22.02 10.98 12.28
UF_L3 2267 2039 9.26 22.89 24.07 12.78 67.75
UF L4 19.60 12.64 5.59 23.21 23.31 14.92 140.79
UF_L5 19.01 642 2.66 24.59 22.97 16.59 149.55

As Table 11 shows, the L* values indicating lightness tended to decrease as ripening progressed,
signifying a darkening of the fruits skin colour. Similarly, a* (green-red hue) and b* (blue-yellow
hue) values also decreased with advancing ripeness. Among the compositional traits, the soluble
solids and anthocyanin content consistently increased as ripening progressed. In the various
ripening stages, the KJ variety exhibited a consistent trend of increasing dry matter and decreasing
acidity, whereas the UF variety showed ambiguity at the L2 ripeness stage. These trends are very
similar to those detailed for sweet cherries, with the difference that for sour cherries, acidity
decreases overall as ripening progresses. When investigating Hungarian sour cherry cultivars,
Desiderio et al. (2023) found consistent tendencies, especially regarding fruit skin colouration.

Figure 17 presents the raw spectra recorded on the mature and immature sides of sour cherries.
Despite spectral scatter, clear separation based on ripeness levels is visible. It can be seen that the
absorption of the fruit increases as the ripening progresses. With the application of smoothing and
the 2" derivative pre-processing, the significance of the wavelength range around 1100, 1300 and
1400 nm is also observable, indicating its importance for distinguishing between ripeness levels.

After smoothing and msc treatments on the spectra recorded from both the mature and immature
sides of the sour cherries, PCA was performed (Figure 63). This analysis aimed to assess the
reliability of the ripeness levels defined, using an unsupervised method to determine how well
these levels corresponded to the actual variations in the dataset. In both varieties, it was
characteristic that the different ripening stages became distinguishable along the first three
principal components. For the two varieties, the first five principal components (PCs) explained
about 99% of the variance in the data.
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Based on the PCA score plots (Figure 63a), for the KJ variety, the greatest separation of ripeness
levels is observed along the first and third PCs. In contrast, for the UF variety, the separation
appears most clearly in the combination of the first and second PCs. In the PCA modelling based
on ripeness, specific wavelengths that contributed the most were identified for each principal
component. Based on the two PCA loadings highlighted per variety, the relevant wavelengths that
best describe separation according to ripeness are the following:

e Kantorjanosi (KJ) sour cherries
PC 1 loading: 1065.4, 1210.3, 1347.4, 1435.8 nm;
PC 3 loading: 1028.1, 1163.9, 1265.2, 1387.5, 1466.0 nm;

o Ujfehértéi (UF) sour cherries
PC 1 loading: 1062.9, 1203.2, 1359.7, 1442.3 nm;
PC 2 loading: 1055.5, 1199.7, 1319.1, 1439.0, 1561.7 nm.
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Figure 17. NIR spectra of sour cherries of different ripeness: raw spectra of KJ cherries (a); raw spectra of
UF cherries (b); 2" derivative spectra of KJ cherries (c); 2" derivative spectra of UF cherries (d).

For sour cherries harvested at different ripeness levels, classification models were also developed

separately based on spectra collected from both mature and immature, as well as from both sides

of the cherries, respectively. The results obtained after the optimised spectral pre-processing are

illustrated in Figure 18. In both sour cherry varieties, the different ripeness levels were very well

separated along LD 1. Interestingly, for both varieties, a slight separation along LD2 was observed
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for the L4 ripeness level. The first two LDs depicted in the figures accounted for the 97.13 and
90.13% of the variance in the KJ and UF variety, respectively.

® Calibration 35
. OWValidation = 30 KJ
. z
o e R, =]
oty S & 25
s T o
-] Tig @ * -
W o513 .:.';_.-_’_ = 20
Lo I e ;{k =
[ <32 Toeb Velme s 215
& ERLIRAR, E
o 354 40w
S Lo S 2 10
- KI-L2 g o oF =
&
KI-13 . < 5
.| ®KJ-L4 5
® KJ-L5 0
. 950 1050 1150 1250 1350 1450 1550 1650
-10 -5 0 5
LD 1-9538% Wavelength (nm)
a) b)
UF —L2 35
UF-L3 g 30 Ute
® UF 14 . s
® UF -L5 /s \5 a 25
roe Yo |
3 A |
= . L - *5 20
~ > * " =
[ ol el E 15
(o} - | _‘-_\1 =
a SRR g 10
— ~ ;" :0.. e, .'._,: %‘
. <4 s
® Calibration . 5
-1 OValidation 0
T T T 950 1050 1150 1250 1350 1450 1550 1650
LD 1-86.77% Wavelength (nm)
c) d)

Figure 18. PCA-LDA on NIR spectra of sour cherries when classification was based on fruit ripeness:
PCA-LDA score plot on KJ (a); LDA discriminating power plot on KJ (b); PCA-LDA score plot on UFg
(c); LDA discriminating power plot on UFg (d).

The classification results of the PCA-LDA models by variety are summarised in Table 27 and
Table 28, detailing the model calibration and validation accuracies. The classification accuracies
for sour cherries varied according to measurement location by variety. The average correct
classifications during model validation were between 76.8 - 82.4% for the KJ variety, and between
78.30 - 80.9% for the UF variety. Misclassification typically occurred at adjacent ripeness levels.
In addition to this, wavelengths that played a significant role in discrimination among sample
groups were identified based on their discriminating power. These modelling results based on the
data of KJ and UFg are presented in Figure 18b and Figure 18d, and the corresponding wavelengths
are the following:

o KJ: 982.8,1024.3, 1086.3, 1126.6, 1169.9, 1223.2, 1265.2, 1331.6, 1372.0, 1403.0,
1432.5, 1462.8, 1498.0, 1535.8, 1582.2, 1598.5 nm;
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e UFg: 985.3,1016.8, 1078.9, 1126.6, 1169.9, 1249.0, 1315.7, 1359.7, 1387.5, 1418.3,
1447.7,1484.2, 1524.3, 1561.7, 1593.4, 1621.7 nm.

The PLSR models for predicting various quality characteristics of sour cherries were also
constructed separately based on spectra collected from both mature and immature, as well as from
both sides of the cherries, respectively. The accuracies obtained during model calibration and
validation are summarised in Table 29 and Table 30. The accuracy of predicting various physical
and compositional characteristics was dependent on the sour cherry variety and the location of the
spectral measurements. For sour cherries, the best predictions were found for characteristics that
either clearly increased or decreased with ripening. For both sour cherry varieties, the most
accurate models were obtained for predicting average L*, b*, dry matter or soluble solid, and
anthocyanin content.

Figure 19 shows the best model fits found for the KJ variety. The DMC prediction accuracy was
amaximal R2 0f 0.79 - 0.72 and RMSE of 1.47 - 1.67% m/m. The prediction of TAC was achieved
with an R? of 0.91 - 0.87 and RMSE of 15.14 - 18.03 mg/ L. The prediction of average b* was
achieved with an R? of 0.93 - 0.91 and RMSE of 1.26 - 1.51 during calibration and validation,
respectively. The regression vectors showcasing the wavelengths that played a crucial role in the
fittings of the selected models are the following:

e DMC (KJr): 1006.8, 1020.6, 1041.8, 1139.9, 1210.3, 1308.9, 1353.0, 1384.2, 1430.3, 1498.0,
1564.8 nm;

e TAC (KJg): 1016.8,1069.1, 1139.9, 1177.1, 1249.0, 1296.3, 1353.0, 1393.0, 1420.5, 1454.2,
1481.0, 1495.8, 1542.0, 1593.4 nm;

e b*average 985.3,1014.3, 1072.8, 1139.9, 1190.2, 1281.4, 1347.4, 1384.2, 1418.3, 1454.2,
(KJg): 1495.8, 1535.8, 1585.3 nm.

Figure 20 shows the best model fits found for the UF variety. The prediction of SSC was achieved
with a maximal R? of 0.87 - 0.83 and RMSE of 0.98 - 1.10% brix. The prediction of TAC was
achieved with an R? of 0.89 - 0.87 and RMSE of 18.67 - 20.98 mg/ L. The prediction of average
b* was achieved with an R? of 0.91 - 0.89 and RMSE of 1.54 - 1.78 during calibration and
validation. The regression vectors showcasing the wavelengths that played a crucial role in the
fittings of the selected models are the following:

¢ SSC (UFr): 982.8,1031.8,1082.6, 1130.2, 1169.9, 1210.3, 1308.9, 1331.6, 1353.0, 1380.9,
1408.5, 1432.5, 1486.3, 1519.1, 1559.6, 1582.2, 1607.6 nm;
o TAC (UFg): 985.3,1076.5,1139.9, 1199.7, 1287.1, 1347.4, 1408.5, 1439.0, 1450.9, 1498.0,
1582.2, 1635.7 nm;
o b*average 1014.3,1069.1,1130.2, 1196.1, 1274.5, 1340.6, 1380.9, 1418.3, 1459.5, 1489.5,
(UFg): 1533.7, 1607.6, 1615.6 nm.
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Prominent wavelengths obtained as a result of the PCA, PCA-LDA and PLSR models built on
NIR spectral data of sour cherries of different ripeness were summarised. Taking into account the
most contributing wavelengths of the two studied varieties together, Figure 21 presents the
absorption bands of successful chemometric modelling with their approximate frequency values.
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Figure 21. Absorbance bands frequently observed in chemometric modelling results of sour cherry ripening
with hand-held NIR spectrometer.

In contrast to cherries, there is a relatively limited literature available on non-destructive NIR
spectroscopic assessment of intact sour cherries. Analysing sweet cherries (“Bigarreau Burlat”,
“Valery Chkalov”) and sour cherries (“Kantorjanosi”, “Ujfehértoi”) together, Fodor (2022) could
predict DMC with Rev? of 0.95 and RMSEcv of 1.25% m/m, SSC with Rcv? of 0.91 and RMSEcv
of 0.97% brix, TA with Rcv? of 0.97 and RMSEcv of 0.14% m/m, and TAC with Rcv? of 0.89 and
RMSEcv of 17.5 mg/ 100 g during seven-fold cross-validation.
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5.1.3. Determination of plum ripeness

For the plums harvested at different stages of ripeness, a total of 20 and 20 pre-classified sample
sets were analysed. The colour of the plums ranged from unripe green to a dark purple. The pre-
classified fruit samples were put into five and four ripeness clusters, respectively by variety. The
sample populations were characterized by a significant presence of unripe fruits and displayed
considerable heterogeneity. Table 12 presents the averages of the measured physical and
compositional properties for each ripeness level across the pre-classified samples.

Table 12. Quality characteristics of plum varieties of different ripeness (average values).

L* a* b* Dry matter  Total acidity  Soluble solids Anthocyanin
content
% m/m mg/ g % brix mg/ L
EL_ L1 4047 -6.82 22.25 18.70 16.66 9.19 0.00
EL L2 3827 -149 1696 21.44 15.72 9.43 0.00
EL L3 2794 292 10.50 20.31 10.56 12.35 0.61
EL 14 2321 6.15 6.62 19.09 9.65 12.73 0.95
EL L5 1943 442 2.12 20.16 8.39 13.39 4.23
ST L1 3894 -3.16 19.15 16.95 14.36 8.19 0.00
ST L2 3649 0.07 1540 18.87 13.89 8.43 0.00
ST L3 2501 6.09 5.59 18.37 10.14 11.47 0.00
ST L4 2428 592 4.77 18.64 10.11 11.03 3.94

Table 12 shows that the L* values tended to decrease as ripening progressed, signifying a
darkening of the fruits’ skin colour. Similarly, the b* values (blue-yellow hue), decreased with
advancing ripeness as well, while the a* generally exhibited higher values in the more mature
sample groups. The combination of these two coordinates suggests the accumulation of purplish
components in the fruit skin. Among the compositional traits, the soluble solids, anthocyanin, and
acidity of the plums developed as expected, with the latter decreasing as ripening progressed.
However, no clear trend could be established based on the data of dry matter content, and this
variability can be attributed to the inhomogeneity of the samples. The relatively low TAC values
may be due to the fact that at the time of plum harvesting, the skin of the fruit contained higher
concentrations of anthocyanins and the flesh of the fruit less, and therefore the anthocyanin
concentration of the supernatant juice obtained from blending and centrifuging these samples may
have been negligible. Usenik et al. (2008, 2009) reported similar findings for L* and b* values, as
well as for SSC, malic acid and TAC of plums of different cultivars and ripeness.

Figure 64 presents the raw spectra recorded on the mature and immature sides of plums. Despite
spectral scatter, separation based on ripeness levels is visible. It can be seen that the absorption of
the fruits increases as the ripening process progresses. With smoothing and 2"¢ derivative pre-
treatment, the significance of the wavelengths around 1100, 1300 and 1400 nm is also evident in
these samples.
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After smoothing and msc treatments on the spectra recorded from both the mature and immature
sides of the plums, PCA was performed (Figure 22). This analysis aimed to assess the reliability
of the ripeness levels we identified, using an unsupervised method. In both varieties, it was
characteristic that the different ripening stages were distinguishable along the first three principal
components. For the EL plums, the first five, for the ST plums, the first seven PCs accounted about
for the 99% of the variance in the data.

e Ll
':‘;,’ :'s ST-L1
PC 1 ’. , L @ ST-L2
- r. ®ST-L3
' ®@ST-14

02 010 0 0%
P
.
¥
L4 .
-
-
e
(1]
44 b
N <

EL-L1
®EL-12
®EL-13 .
O@FL 14 §Lt+

S ) 1 a7
[ ] —L5 . h L ¥ 7%
EL-L5 [, ‘;‘%& ' ,;%.'
W R/
EY) . & ‘

T T T
-005 000 005

004 000 004 008
0
5 |
DR A
v 0
-
WO
..
o, .
.~
N
g A
| s . -
.

A, :
a)
0.25 0.25
——PC1 ——PC2 ===PC3 eeeees PC 4 ——PC1 ——PC2 ===PC3 eeeeer PC4
02 02
0.15 0.15
0.1 — 0.1 2N
0.05 00s 7/ \

PR
PG

PCA loading
PCA loading
(=}

0 T \; s LN N N
S . M Ak oo . <
-0.059% 7 X050 1150 , 1650 _0'0595'11 Z. 5 12;0\\1350 i{ 556 % 1650
o, o K e - \ et .
0.1 ,/" ,' . 0.1 7 \\\\_ )
-0.15 - -0.15 v
‘o B Vi
0.2 V) 0.2 v
-0.25 -0.25
Wavelength (nm) Wavelength (nm)
b) ¢)

Figure 22. Preliminary PCA on the NIR spectra of plums when colouring was based on fruit ripeness (sgol-
2-21-0, msc): PCA score plots of plums of different ripeness (a); PCA loading plot of EL plums (b); PCA
loading plot of ST plums (c).

Based on the PCA score plots (Figure 22a), for the EL variety, the greatest separation of ripeness
levels is observed along the first and third PCs. For the UF variety, the separation appears most
clearly in the combination of the first and second PCs. In the PCA modelling based on ripeness,
specific wavelengths that contributed the most were identified. The highlighted two PCA loadings
per variety, the relevant wavelengths that best describe separation according to ripeness are the
following:
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e Elena (EL) plums
PC 1 loading: 1055.5, 1229.1, 1359.7, 1439.0 nm;
PC 3 loading: 1076.5, 1160.3, 1271.0, 1390.8, 1459.5, 1548.3 nm;

e Stanely (ST) plums
PC 1 loading: 1034.3, 1113.2, 1363.0, 1439.0 nm;
PC 2 loading: 1062.9, 1177.1, 1384.2, 1501.1 nm.

For plums harvested at different ripeness levels, classification models were also developed
separately based on spectra collected from both mature and immature, as well as from both sides
of the plums, respectively. The results obtained after the optimised spectral pre-processing are
illustrated in Figure 23. For both varieties, the very unripe fruits and those showing slight
coloration distinctly separated along LD 1, while within these clusters, the points representing
riper fruits grouped along LD 2. The first two LDs shown in the figures accounted for the 92.34
and 99.38% of the variance in the EL and ST variety, respectively.
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Figure 23. PCA-LDA on NIR spectra of plums when classification was based on fruit ripeness: PCA-LDA
score plot on ELg (a); LDA discriminating power plot on ELg (b); PCA-LDA score plot on STr (c); LDA
discriminating power plot on STr (d).
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The classification results of the PCA-LDA models by plum variety are summarised in Table 31
and Table 32, detailing the model calibration and validation accuracies. The classification
accuracies for plums varied as well according to measurement location and variety. The average
correct classifications during model validation were between 60.1 - 70.7% for the EL variety, and
between 58.7 - 68.0% for the ST variety. Misclassification typically occurred at adjacent ripeness
levels. There was no misclassification between the two previously observed large ripeness clusters.
In addition to this, wavelengths that played a significant role in discrimination among sample
groups were identified based on their discriminating power. These modelling results based on the
data of ELg and STr are presented in Figure 23b and Figure 23d, and the corresponding
wavelengths are the following:

e ELg: 1107.1, 1150.7, 1396.3, 1430.3, 1486.3, 1507.5, 1567.9 nm;

e STr: 1000.5,1076.5, 1120.5, 1163.9, 1210.3, 1254.8, 1306.6, 1403.0, 1430.3, 1457 .4,
1486.3, 1522.2, 1607.6 nm.

Similarly, to our studies, Fodor et al. (2023) also investigated the applicability of the NIR
technique for EL and ST plums to classify fruits classified as immature and ripe based on their
SSC, TA and maturity index. The classification models they used (e.g., LDA, MDA, QDA)
distinguished between the two sample groups with an accuracy of 100% in all cases. A sharp
separation of plums by ripeness was also observed in our results, even though we applied a
different approach for the preliminary assessment of fruit ripeness.

The PLSR models for predicting various quality characteristics of plums were also constructed
separately based on spectra collected from both mature and immature, as well as from both sides
of the cherries, respectively. The accuracies obtained during model calibration and validation is
summarised in Table 33 and Table 34. The accuracy of predicting various physical and
compositional characteristics was dependent on the plum variety and the location of the spectral
measurements. For plums as well, the best predictions were found for characteristics that either
clearly increased or decreased with ripening. For both plum varieties, the most accurate models
were obtained for predicting colour properties, soluble solids an acidity.

Figure 24 shows the best model fits found for the EL variety. The prediction of SSC was achieved
with a maximal R? of 0.97 - 0.95 and RMSE of 0.32 - 0.41% brix The prediction of TA was
achieved with an R? of 0.97 - 0.95 and RMSE of 0.58 - 0.74 mg/ g. The prediction of average b*
was achieved with an R? of 0.92 - 0.88 and RMSE of 2.40 - 2.84 during calibration and validation,
respectively. The regression vectors showcasing the wavelengths that played a crucial role in the
fittings of the selected models are the following:
e SSC (ELg): 1006.8, 1020.6, 1041.8, 1139.9, 1210.3, 1308.9, 1353.0, 1384.2, 1430.3, 1498.0,
1564.8 nm;

e TA (ELg): 1016.8,1069.1,1139.9, 1177.1, 1249.0, 1296.3, 1353.0, 1393.0, 1420.5, 1454.2,
1481.0, 1495.8, 1542.0, 1593.4 nm;
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e b*average 985.3,1014.3,1072.8,1139.9, 1190.2, 1281.4, 1347.4, 1384.2, 1418.3, 1454.2,
(ELI): 1495.8, 1535.8, 1585.3 nm.

Figure 25 shows the best model fits found for the ST variety. The prediction of SSC was achieved
with a maximal R? of 0.93 - 0.86 and RMSE of 0.40 - 0.55% brix The prediction of TA was
achieved with an R? of 0.94 - 0.90 and RMSE of 0.52 - 0.66 mg/ g. The prediction of average L*
was achieved with an R? of 0.86 - 0.82 and RMSE of 2.75 - 3.12 during calibration and validation,
respectively. The regression vectors showcasing the wavelengths that played a crucial role in the
fittings of the selected models are the following:

¢ SSC (STg): 982.8, 10318, 1082.6, 1130.2, 1169.9, 1210.3, 1308.9, 1331.6, 1353.0, 1380.9,
1408.5, 1432.5, 1486.3, 1519.1, 1559.6, 1582.2, 1607.6 nm:;
o TA(STr): 985.3,1076.5,1139.9, 1199.7, 1287.1, 1347.4, 1408.5, 1439.0, 1450.9, 1498.0,
1582.2, 1635.7 nm;
e L*average 1014.3,1069.1, 1130.2, 1196.1, 1274.5, 1340.6, 1380.9, 1418.3, 1459.5, 1489.5,
(ST): 1533.7, 1607.6, 1615.6 nm.

Fodor et al. (2023) have also determined the accuracy with which DMC, SSC and TA could be
predicted in “Elena” and “Stanley” plums after applying different combined spectral pre-
treatments. The authors could predict DMC with an Rcv? of 0.86 and RMSEcv of 0.66% m/m,
SSC with an Rev? of 0.95 and RMSEcv of 0.72% brix, and TA with an Rev? of 0.95 and RMSEcv
of 0.07 mg/g. Louw and Theron (2010) also used an FT-NIR reflectance spectroscopy (800-
2700 nm) to assess the predictability of weight, firmness, SSC, TA and Ml in “Pioneer”, “Laetitia”,
“Angeleno” and multi-cultivar plums harvested throughout 7 weeks of ripening period over two
seasons (2007, 2008). Regarding the intrinsic quality traits, the authors reported varying validation
accuracies for SSC (R?=0.82-0.96; RMSEp = 0.45-0.61% brix), TA (R?> = 0.61 - 0.83;
RMSEp = 0.11 - 0.19% m/m), and MI (R?=0.72 - 0.89; RMSEp = 0.61 - 1.59). It was also found
that despite the multi-cultivar models outperformed the single-cultivar models on R? values, they
had higher prediction errors. The models are nevertheless robust in terms of seasonality and sample
collection period. Costa and de Lima (2013) investigated the effectiveness of the NIR spectroscopy
when predicting SSC and pH in European and Japanese plums. After combined spectral pre-
treatments, including smoothing and msc as well as various variable selection methods, the authors
found the best model fit for SSC when variable selection was not used (Rp?=0.95;
RMSEp = 0.45% brix), while for pH when GA was applied prior PLSR (Rp?=0.90;
RMSEp = 0.07).
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Prominent wavelengths obtained as a result of the PCA, PCA-LDA and PLSR models built on
NIR spectral data of plums of different ripeness were summarised. Taking into account the most
contributing wavelengths of the two studied varieties together, Figure 26 presents the absorption
bands of successful chemometric modelling with their approximate frequency values.
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Figure 26. Absorbance bands frequently observed in chemometric modelling results of plum ripening with
hand-held NIR spectrometer.
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5.2.  Detection of Monilinia contamination on stone fruits based on spectral characteristics

This subsection summarises the effectiveness of using a hand-held NIR device and hyperspectral
image processing to distinguish between differently infected and stored sour cherries and plums.
The findings also demonstrated the potential for early detection of spoilage caused by Monilinia.
The results in this topic are discussed in two separate chapters because, although the fruit samples
were prepared in the same way for both instruments, the analyses were conducted on different sets
of samples.

5.2.1. Detection results with a hand-held NIR spectrometer

Investigation results on sour cherries

Figure 65 illustrates the spectra obtained with a hand-held NIR spectrometer for cherries that were
prepared and stored under different conditions. For the EB variety, the spectra showed significant
overlap, indicating minimal differentiation based on storage conditions. In contrast, for the UF
variety, a trend was observed: the higher the storage temperature and the more injured the sample,
the lower the absorbances as storage progressed.

The smoothing and msc correction performed on the NIR spectral data, followed by PCA analysis,
confirmed the significant impact of storage conditions on the light absorption properties of the
samples (Figure 27). For the two varieties, the first six components explained the 99% of the total
variance in the data. Based on the PCA score plots (Figure 27a), for the EB variety, the greatest
separation of treatment groups is observed along the first and third PCs. For the UF variety, the
separation appears most clearly in the combination of the second and third PCs. The PCA loadings
for the highlighted two PCs per variety (Figure 27b, c), the relevant wavelengths that best describe
separation according to fruit handling are the following:

e Erdé bétermé (EB) sour cherries
PC 1 loading: 1069.1, 1190.2, 1372.0, 1450.9 nm;
PC 3 loading: 1062.9, 1245.5, 1393.0, 1466.0, 1548.3 nm;

o Ujfehértéi (UF) sour cherries
PC 2 loading: 1065.4, 1163.9, 1390.8 nm;
PC 3 loading: 1051.7, 1238.5, 1290.6, 1396.3, 1459.5 nm.

The data, which had already been pre-processed with smoothing and msc correction for PCA, was
subjected to SIMCA to determine the statistical significance of differences between infection
methods and storage conditions for the two cherry varieties. Models were created for data filtered
to the initial, middle, and final days of storage to analyse changes over time. Figure 28 and Figure
66 illustrate the distances between sample groups at specific storage days, showing the evolution
of separations across time. For the EB variety, SIMCA models generally indicated increasing
differences between groups as storage progressed (Figure 28a, c, e). Interestingly, the opposite
trend was observed for the UF variety, where distinctions between sample groups tended to
diminish over time (Figure 663, c, ). On the one hand, this could imply that the storage conditions
may have a different impact on the spectral characteristics of each variety, potentially due to
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differences in their response to the infection methods or their inherent fruit properties. On the other
hand, it is also possible that, over time, spectral data of a certain variety may be so scattered that
they result in relatively large overlaps of calculated data points in multidimensional space.
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Figure 27. Preliminary PCA on the NIR spectra of sour cherries when colouring was based on fruit
treatment (sgol-2-21-0, msc): PCA score plots of cherries treated in different ways (a); PCA loading plot
of EB cherries (b); PCA loading plot of UF cherries (c).

The impact of storage temperature is evident, whereas the method of sample preparation is less so.
Overall, no significant interclass distances were observed for any of the sample sets. This indicates
that while storage temperature plays a crucial role in the storage of the cherries, the mode of
preparation methods employed did not lead to detectable differences in the data analysed. During
the SIMCA, prominent wavelengths contributing to the discriminations were also identified based
on the discriminating power plots and are the following, by variety (Figure 28b, d, f, and Figure
66b, d, ):
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e EB sour cherries:
Day 1:1082.6, 1147.1, 1238.5, 1340.6, 1380.9, 1427.1, 1474.6, 1548.3, 1635.7 nm;
Day 4:1090.0, 1156.7, 1258.3, 1294.0, 1390.8, 1420.5, 1477.8, 1579.1, 1587.3,

1637.7 nm;

Day 7:1034.3, 1139.9, 1232.6, 1423.8, 1486.3, 1559.6, 1632.7 nm;

e UF sour cherries:
Day 1:1078.9, 1143.5, 1249.0, 1340.6, 1423.8, 1469.2, 1538.9, 1626.7 nm;
Day 4:1045.5, 1143.5, 1252.5, 1378.6, 1420.5, 1471.3, 1559.6, 1629.7 nm;
Day 7:1034.3, 1103.5, 1236.1, 1303.2, 1384.2, 1427.1, 1459.5, 1522.2, 1590.4.
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Figure 28. SIMCA on NIR spectra of EB cherries when discrimination was based on fruit treatment on
certain storage days (sgol-2-21-0, msc): SIMCA interclass distances on the 1 day of storage (a); SIMCA
discrimination power plot on the 1%t day of storage (b); SIMCA interclass distances on the 4" day of storage
(c); SIMCA discrimination power plot on the 4" day of storage (d); SIMCA interclass distances on the 7"
day of storage (e); SIMCA discrimination power plot on the 7" day of storage (f).
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As a supervised classification, spectral pre-treatment and NrPC-optimised LDA modelling was
used to determine the accuracy with which the initial Monilinia conidium concentration can be
determined based on the NIR spectra of sour cherries. For this classification, spectra recorded the
day after inoculation were utilized. These spectra were further filtered based on sample preparation
and storage conditions. This step was necessary because storage of the fruit under controlled
environmental conditions started immediately after inoculation and we endeavoured to reduce the
impact of environmental factors during the modelling.

In the case of sour cherries, the classification was for a total of four different levels of conidial
contamination. Table 35 and Table 36 summarise the classification performance regarding the
initial conidial contamination of EB and UF cherries, respectively, and show quite a large
variability in the classification accuracies. For the samples stored under refrigerated conditions,
the average correct classification rates were between 63.1 - 85.1% during calibration and between
30.5 - 42.0% during validation. For the samples stored at room temperature, the average correct
classification rates during calibration were between 58.2 - 75.4%, while during validation, they
ranged from 23.5 to 31.5%. Overall, the classification of samples stored in the refrigerator was
slightly more accurate. The classification results are supported by the PCA-LDA score plots shown
in Figure 29, Figure 30 and Figure 67. In the form of LDA discriminanting power plots, the
wavelengths that contributed in some way to the classification were also obtained.
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Figure 29. PCA-LDA on NIR spectra of UF cherries when classification was based on initial conidial
contamination: PCA-LDA score plot of “5 °C Injury” samples (a); LDA discriminating power plot of
“5 °C Injury” samples (b); PCA-LDA score plot of “5 °C Intact” samples (c); LDA discriminating power
plot of “5 °C Intact” samples (d).
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Figure 30. PCA-LDA on NIR spectra of UF cherries when classification was based on initial conidial
contamination: PCA-LDA score plot of “25 °C Injury” samples (€); LDA discriminating power plot of
“25 °C Injury” samples (f); PCA-LDA score plot of “25 °C Intact” samples (g); LDA discriminating power
plot of “25 °C Intact” samples (h).

Due to the reproductive characteristics of the M. fructigena species involved in the experiments,
only the samples infected through injury and stored at room temperature exhibited fungal activity.
Table 13 shows, the specific fruits (i.e., parallelly prepared samples) that demonstrated the signs
of Monilinia-caused decaying by sample group. This variation may be attributed to the structural
and compositional inhomogeneity of the cherries. It was observed for each variety, that a higher
initial concentration of conidia in the samples resulted in a greater likelihood and earlier
manifestation of brown rot.

Table 13. Date of appearance of visible signs of infection in sour cherries analysed by the hand-held NIR
device, inoculated with conidial suspension in various concentrations through injury and stored at 25 °C.

Initial conidium

Variety concentration Samplel Sample2 Sample3  Sample4  Sample 5
EB ~0.15 con./ uL — — — — —
~ 1.5 con./ pL day 7 — — — —
~ 15 con./ uL day 4 day 6 — day 6 —
~ 150 con./ pL day 4 day 4 — day 4 day 4
UF ~0.17 con./ pL — — — — —
~ 1.7 con./ pLL — — — — day 3
~ 17 con./ uL day 3 day 2 day 4 day 2 day 2
~ 170 con./ uL. day 2 day 3 day 3 day 3 day 2

- There were no clear signs of Monilinia activity in these samples
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It was considered important to examine the spectral trend of samples showing signs of brown rot
on different days of storage. For this, optimised PCA-LDA modelling was employed using only
the spectra of those samples that exhibited signs of decay during the 7-day long storage. Prior
modelling, we sample specifically filtered the data corresponding to the day of appearance of the
rot (marked as “day 0”) + 2-day interval and used this information to develop the classification
models. A day-wise separation is illustrated in Figure 31 showing a semi-circular separation trend
for the EB variety. Figure 31b and Figure 31d illustrate the discriminating power, the wavelengths
that significantly contributed to highlight the mentioned trend.

e EB sour cherries
1048.0, 1130.2, 1229.1, 1290.6, 1322.5, 1359.7, 1390.8, 1415.0, 1466.0, 1498.0,
1553.4, 1590.4, 1618.7 nm;

e UF sour cherries
1072.8,1147.1, 1199.7, 1258.3, 1350.7, 1384.2, 1418.3, 1450.9, 1495.8, 1556.5,

1601.5 nm.
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Figure 31. PCA-LDA on NIR spectra of sour cherries showing monilial activity when classification was
based on the day of appearance of visible infection signs = 2 days: PCA-LDA score plot of EB cherries (a);
LDA discriminating power plot of EB cherries (b); PCA-LDA score plot of UF cherries (c); LDA
discriminating power plot of UF cherries (d).
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Table 37 summarises the average correct classification rates during model building and validation
for the EB variety (77.2, 48.2%), and the UF variety (49.1, 31.7%), respectively. The results
indicate that more accurate outcomes were characteristic of the EB variety. A higher degree of
misclassification predominantly occurred between the data of adjacent days.

Prominent wavelengths obtained as a result of the PCA, SIMCA and PCA-LDA models built on
the NIR spectral data of sour cherries infected with Monilinia conidia and stored under various
conditions were summarised. Taking into account the most contributing wavelengths of the two
studied varieties together, Figure 32 presents the absorption bands of successful chemometric
modelling with their approximate frequency values.

14
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Wavelength (nm)

Figure 32. Absorbance bands frequently observed in chemometric modelling results of Monilinia detection
on sour cherries with a hand-held NIR spectrometer.

Research on the inappropriate management of cherries was conducted by Shao et al. (2019) who
combined Vis-NIR reflection spectroscopy and least square-support vector machine (LS-SVM).
The authors reported classification accuracy of 93% when discriminating intact, slightly, and
severely damaged cherries. Szabo et al. (2023) investigated the applicability of NIR spectroscopy
to detect the effect of various storage conditions (packed as control or modified atmosphere; stored
at 3 or 5 °C) on sour cherries. With SIMCA, the authors distinguised samples with apparent error
rates between 0 and 0.5 during prediction regardless of fruit maturity.
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Investigation results on plums

Figure 68 illustrates the spectra obtained with a hand-held NIR spectrometer for plums that were
prepared and stored under different conditions. The spectra of TD and TP plums demonstrated
significant overlap and scatter, indicating minimal differentiation based on storage conditions. The
smoothing and msc correction performed on the NIR spectral data, followed by PCA analysis,
confirmed the impact of storage conditions on the absorption properties of the samples (Figure
33). For the TD variety, the first five components, for the TP variety, the first four components
explained the 99% of the total variance in the data.
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Figure 33. Preliminary PCA on the NIR spectra of plums when colouring was based on fruit treatment
(sgol-2-21-0, msc): PCA score plots of plums treated in different ways (a); PCA loading plot of TD plums
(b); PCA loading plot of TP plums (c).

In the case of the TD variety, the PCA score plots indicate quite sparse results. In contrast, a more
pronounced trend emerges for the TP variety, particularly along the third PC. This difference
suggests that the TP variety exhibits more distinct patterns in the obtained spectral data, potentially
making it easier to classify based on its spectral characteristics (Figure 33a). The PCA loadings
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for the highlighted two PCs per variety (Figure 33D, c), the relevant wavelengths that best describe
separation according to fruit handling are the following:

e Topend (TD) plums
PC 1 loading: 1055.5, 1363.0, 1447.7 nm;
PC 3 loading: 1130.2, 1274.5, 1393.0, 1454.2, 1535.8 nm;

e Topoend plus (TP) plums
PC 2 loading: 1052.9, 1221.1, 1301.1, 1424.9 nm;
PC 3 loading: 1125.4, 1275.8, 1395.3, 1470.2 nm.

The data, which had been pre-processed with smoothing and msc correction for PCA, was
subjected to SIMCA to determine the statistical significance of differences between infection
methods and storage conditions for the two plum varieties. Models were created for data filtered
to the initial, middle, and final days of storage to analyse changes over time. Figure 34 and Figure
69 illustrate the distances between sample groups at specific storage days, showing the evolution
of separations across time.

For the TD variety, SIMCA models based on recorded NIR spectra showed slight increasing
differences between groups from day 1 to day 4, then moderation by day 7. (Figure 69a, c, e).
Interestingly, in the case of the TP variety, the highest interclass distances were observed on the
day 1. These interclass distances markedly decreased by the day 4, followed by a slight increase
on day 7 (Figure 343, c, €). These patterns suggest an initial clear separation in characteristics,
which then diminished, possibly due to similar progression in the fruit's condition over time. The
slight resurgence on day 7 might indicate changes in spoilage factors that led to renewed
differentiation among the groups. The reduction in the distances between sample groups can mean
that the spectra were significantly dispersed, meaning that the calculated data points overlap and
thus less distant from each other in multidimensional space.

Unlike the spectra recorded for the sour cherries infected in different ways, the different storage
conditions had a less pronounced effect on the plum sample set. This suggests that the plums
physical characteristics were not as sensitive to temperature variation during storage. Overall, no
significant interclass distances were observed for any of the evaluated datasets. During the SIMCA
modelling, prominent wavelengths were also identified. These plots highlight the specific
wavelengths contributing to the discrimination were also identified based on the discriminating
power plots. The absorption bands showing the peaks are nearly coincident (Figure 34b, d, f, and
Figure 69D, d, f):

e TD plums
Day 1:1062.9, 1173.5, 1274.5, 1384.2, 1427.1, 1481.0, 1535.8, 1635.7 nm;
Day 4:1045.5, 1126.6, 1212.7, 1277.9, 1368.6, 1405.2, 1469.2, 1585.3 nm;
Day 7:1045.5, 1122.9, 1166.3, 1238.5, 1277.9, 1363.0, 1405.2, 1447.7, 1474.6, 1522.2,
1610.6 nm
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e TP plums

Day 1:1049.2, 1144.8, 1234.0, 1270.0, 1327.2, 1379.8, 1452.0, 1514.6, 1585.8, 1631.0 nm
Day 4:1021.7, 1108.4, 1125.4, 1250.3, 1388.7, 1473.4, 1496.8, 1511.5, 1585.8,

1596.9 nm;

Day 7:1021.7,1042.9, 1074.0, 1121.8, 1288.5, 1395.3, 1461.6, 1488.3, 1566.4, 1577.7,

1600.0, 1628.0 nm
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Figure 34. SIMCA on NIR spectra of TP plums when discrimination was based on fruit treatment on certain
storage days (sgol-2-21-0, msc): SIMCA interclass distances on the 1% day of storage (a); SIMCA
discrimination power plot on the 1%t day of storage (b); SIMCA interclass distances on the 4" day of storage
(c); SIMCA discrimination power plot on the 4™ day of storage (d); SIMCA interclass distances on the 71"
day of storage (€); SIMCA discrimination power plot on the 7" day of storage (f).

As a supervised classification, optimised PCA-LDA modelling was used to determine the accuracy
with which the initial Monilinia conidium concentration could be determined from the NIR spectra
of plums. For this purpose, spectra recorded the day after inoculation were utilized. These spectra
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were further filtered according to sample preparation and storage conditions to reduce the impact
of environmental factors during the modelling process as the fruit under controlled environmental
conditions started immediately after inoculation.

In the case of plums, the classification was for a total of three different levels of conidial
contamination. Table 38 and Table 39 summarise the classification performance regarding the
initial conidial contamination of TD and TP plums, respectively. For the samples stored under
refrigerated conditions, the average correct classification rates were between 74.2 - 92.9% during
calibration and between 34.0 - 50.4% during validation. For the samples stored at room
temperature, the average correct classification rates during calibration were between 77.8 - 89.4%,
while during validation, they ranged from 39.2 to 51.6%. Overall, the classification of samples
stored at room temperature was slightly more accurate.

The classification results are supported by the PCA-LDA score plots shown in Figure 35, Figure
36 and Figure 70. In the form of LDA discriminating power plots, the wavelengths that contributed
in some way to the classification were also obtained and included in the figures.
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Figure 35. PCA-LDA on NIR spectra of TP plums when classification was based on initial conidial
contamination: PCA-LDA score plot of “5 °C Injury” samples (a); LDA discriminating power plot of
“5 °C Injury” samples (b); PCA-LDA score plot of “5 °C Intact” samples (c); LDA discriminating power
plot of “5 °C Intact” samples (d).
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Figure 36. PCA-LDA on NIR spectra of TP plums when classification was based on initial conidial
contamination: PCA-LDA score plot of “22 °C Injury” samples (e); LDA discriminating power plot of
€22 °C Injury” samples (f); PCA-LDA score plot of “22 °C Intact” samples (g); LDA discriminating power
plot of “22 °C Intact” samples (h).

It was also observed for plums that Monilinia activity was visible in samples that were inoculated
via injury and stored at room temperature. The fungal proliferation was inhomogeneous, even in
samples that were prepared the same way. This variability is fruit specifically summarised in Table
14. This variation can also be attributed to the structural and compositional inhomogeneity of the
plums. Unlike the sour cherries, several plum samples showed signs of rotting even with relatively
low initial conidium contamination. This difference can be partly attributed to the lower acidity of
plums compared to sour cherries, and thus have more favourable conditions for fungal growth.
The acidity in fruits often acts as a natural inhibitor to fungal proliferation.

Table 14. Date of appearance of visible signs of infection in plums analysed by a hand-held NIR device,
inoculated with conidial suspension in different concentrations through injury and stored at 22 °C.

Initial conidium

Variety concentration Samplel Sample2 Sample3  Sample4  Sample5
TD ~1.05 con./ uL — day 5 day 3 day 5 day 5
~10.5 con./ uL — day 3 day 4 day 3 day 7
~ 105 con./ pL day 3 day 3 — day 4 day 3
TP ~2.31 con./ pL day 7 — — day 5
~23.1 con./ uL day 4 day 3 day 6 day 4 day 7
~231 con./ uL - day 3 day 3 day 6 day 3

- There were no clear signs of Monilinia activity in these samples
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For plums, we also considered it important to examine the spectral trend of samples showing signs
of brown rot on different days of storage. For this, optimised PCA-LDA modelling was employed
using only the spectra of those samples that exhibited signs of decay during the 7-day long storage.
Prior modelling, we sample specifically filtered the data corresponding to the day of appearance
of the rot (marked as “day 0”) +2-day interval and used this information to develop the
classification models. The day-wise separation is illustrated in Figure 37 revealing a semi-circular
separation trend for the TD variety. Figure 37b and Figure 37d show the discriminating power, the
wavelengths that significantly contributed to classify the mentioned trend.

e TD plums
1072.8,1107.1, 1133.8, 1160.3, 1242.0, 1312.3, 1353.0, 1399.7, 1423.8, 1469.2, 1492.7,
1515.9, 1545.1, 1576.1, 1604.6, 1629.7 nm;

e TP plums
1066.5, 1114.5, 1155.6, 1250.3, 1279.3, 1311.3, 1371.0, 1392.0, 1424.9, 1458.4, 1545.9,
1600.0, 1635.9 nm.
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Figure 37. PCA-LDA on NIR spectra of plums showing monilial activity when classification was based
on the day of appearance of visible infection signs + 2 days: PCA-LDA plot of TD plums (a); LDA
discriminating power plot of TD plums (b); PCA-LDA plot of TP plums (c); LDA discriminating power
plot of TP plums (d).
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Table 40 summarises the average correct classification rates during model building and validation
for the TD (61.0, 49.6%) and TP variety (38.9, 25.3%), respectively. The overlap of the calculated
data points, especially for the TP variety, is also reflected in the classification results. A high
degree of misclassification mostly occurred between adjacent days for the TD variety.

Prominent wavelengths obtained as a result of the PCA, SIMCA and PCA-LDA models built on
the NIR spectral data of plums infected with Monilinia conidia and stored under various
environmental conditions were summarised. Taking into account the most contributing
wavelengths of the two studied varieties together, Figure 38 presents the absorption bands of
successful chemometric modelling with their approximate frequency values.
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Figure 38. Absorbance bands frequently observed in chemometric modelling results of Monilinia detection
on plums with hand-held NIR spectrometer.

Li et al. (2017) conducted research specifically related to the storage of plums with NIR technique
to predict certain quality traits (e.g., firmness, flesh colour, SSC, TA, pH) in “Friar” plums. Their
results showed that the flesh colour is be an important feature in post-ripening during low-
temperature storage. Guo et al. (2022) employed various classification models (e.g., LDA, SVM,
PLS, general LM) to determine storage time also for plums stored in cold environment, and
achieved accuracy above 0.9 with LDA. Zhao et al. (2016) combined NIR spectroscopy with back
propagation-ANN and could discriminate plums with browning flesh with 100% accuracy. Vitalis
etal. (2021a, 2021Db) also examined the effects of ambient and refrigerated storage on NIR spectral
properties of plums infected with M. fructigena mycelium in different ways. The authors could
indisputably detect samples that did not yet show visible signs of infection with PCA-LDA.
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5.2.2. Detection results with a hyperspectral imaging

Investigation results on sour cherries

Figure 71 illustrates the spectra acquired with a benchtop hyperspectral imaging system from sour
cherries prepared and stored under different conditions. In both varieties, overlapping, at the same
time consistent trend emerges in the average spectra obtained on specific surfaces of the fruits.
The raw and second derivative spectra potently demonstrate how deviations from optimal storage
conditions manifest in the spectral properties.

The smoothing and msc correction performed on the HSI spectral data, followed by PCA analysis,
confirmed the significant impact of storage conditions on the absorption properties of the samples
(Figure 39). For the EB variety, the first three, for the UF variety, the first four PCs explained the
99% of the total variance in the data.
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Figure 39. Preliminary PCA on the HSI spectra of sour cherries when colouring was based on fruit
treatment (sgol-2-21-0, msc): PCA score plots of cherries treated in different ways (a); PCA loading plot
of EB cherries (b); PCA loading plot of UF cherries (c).
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Based on the PCA score plots (Figure 39a), for the EB variety, the greatest separation of treatment
groups is observed along the first and third PCs, while for the UF variety, it was more evident
along the second and third PCs. The PCA loadings for the highlighted two PCs per variety (Figure
39b, c), the relevant wavelengths that best describe separation according to fruit handling are the
following:

e Erdé bétermé (EB) sour cherries
PC 1 loading: 1069.8, 1180.9, 1345.0, 1446.4 nm;
PC 3 loading: 1137.4, 1229.2, 1383.7 nm;

e Ujfehértéi (UF) sour cherries
PC 2 loading: 1065.0, 1156.7, 1287.1, 1369.2, 1446.4 nm;
PC 3 loading: 1142.3, 1248.5, 1383.7, 1465.7 nm.

The data pre-treated for PCA was also subjected to SIMCA to determine the statistical significance
of differences between infection methods and storage conditions for the two cherry varieties.
Models were created for data filtered to the initial, intermediate, and final days of storage to
analyse changes over time. Figure 40 and Figure 72 illustrate how the interclass distances evolved
on specific storage days.

The SIMCA models based on HSI spectra of the EB variety showed nearly uniform differences
around the middle of storage, however, the impact of the different storage conditions became more
pronounced close to the end of storage (Figure 403, c, e). The UF variety exhibited the same trend,
though the interclass distances were smaller, indicating less pronounced differences between the
groups (Figure 723, c, e).

These results support those obtained during PCA, and that the samples analysed with HSI showed
similar trends during controlled storage, however, no significant interclass distances were
observed for any of the sample sets. It was confirmed that storage temperature plays a crucial role
in the storage of the cherries, the mode of preparation methods employed did not lead to detectable
differences During the SIMCA modelling, prominent wavelengths were also identified. These
plots highlight the specific wavelengths that significantly contribute to the discrimination of the
sample groups. The SIMCA discriminanting power plots illustrate this in Figure 40D, d, f for the
EB variety, and Figure 72b, d, f for the UF variety, respectively.

e EB sour cherries
Day 1:1040.9, 1132.6, 1243.6, 1369.2, 1403.0, 1456.1, 1543.0, 1610.6 nm;
Day 4: 1050.5, 1094.0, 1161.6, 1248.5, 1330.6, 1393.3, 1441.6, 1557.5, 1615.4 nm;
Day 7:1031.2,1094.0, 1147.1, 1238.8, 1369.2, 1441.6, 1586.4 nm;

e UF sour cherries
Day 1:1045.7, 1132.6, 1238.8, 1253.3, 1354.7, 1388.5, 1446.4, 1523.7, 1615.4 nm;
Day 3:1036.0, 1132.6, 1224.3, 1238.8, 1330.6, 1378.8, 1431.9, 1465.7, 1586.4, 1620.2 nm:;
Day 7:1031.2, 1127.8, 1234.0, 1374.0, 1446.4, 1518.8, 1591.3 nm.
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Figure 40. SIMCA on the HSI spectra of EB cherries when discrimination was based on fruit treatment on
certain storage days (sgol-2-21-0, msc): SIMCA interclass distances on the 1 day of storage (a); SIMCA
discrimination power plot on the 1% day of storage (b); SIMCA interclass distances on the 4" day of storage
(c); SIMCA discrimination power plot on the 4" day of storage (d); SIMCA interclass distances on the 7"
day of storage (€); SIMCA discrimination power plot on the 7" day of storage (f).

Optimised PCA-LDA modelling was used as supervised classification to determine the accuracy
with which the initial Monilinia conidium concentration can be determined from the HSI spectra
of sour cherries. For this classification, spectra recorded the day after inoculation were utilized.
The spectra were further filtered according to mode of infection and storage conditions to reduce
the impact of environmental factors during the modelling.

In the case of sour cherries, the classification was for a total of four different levels of conidial
contamination. Table 41 and Table 42 summarise the classification performance regarding the
initial conidial contamination of EB and UF cherries, respectively. For the samples stored under
refrigerated conditions, the average correct classification rates were between 85.5 - 98.0% during
calibration and between 33.1 - 53.3% during validation. For the samples stored at room
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temperature, the average correct classification rates during calibration were between 61.6 - 89.1%,
during validation, they ranged from 32.5 - 46.3%. The classification accuracy of the HSI was better
than that of the data recorded with the hand-held NIR instrument.

The classification results are supported by the PCA-LDA score plots shown in Figure 41, Figure
42 and Figure 73. In the discriminant space bounded by LD 1 and LD 2, the data points (i.e.,
scores) representing the concentration levels of each suspension were less overlapped in contrast
to the data recorded with the hand-held NIR device. In the form of LDA discriminanting power
plots, the wavelengths that contributed in some way to the classification were also obtained.
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Figure 41. PCA-LDA on the HSI spectra of UF cherries when classification was based on initial conidial
contamination: PCA-LDA score plot of “5 °C Injury” samples (a); LDA discriminating power plot of
“5 °C Injury” samples (b); PCA-LDA score plot of “5 °C Intact” samples (c); LDA discriminating power
plot of “5 °C Intact” samples (d).

In case of sour cherries analysed with HSI, it was also typical that Monilinia activity was visible
in the samples that were inoculated via injury and stored at room temperature. It was also true for
the cherry samples prepared for HSI measurements that fungal proliferation was also
inhomogeneous, even for samples prepared in the same way, as shown in Table 15. Similar to the
sour cherries examined with the hand-held NIR spectrometer, the EB samples exhibited more
moderated Monilinia activity even for relatively high initial conidium concentration. This could
be attributed to the less favourable physicochemical properties of this variety, which may not have
supported the spread of the fungus. Such properties may include a more bounded tissue structure,
higher acidity, or the presence of compounds with antioxidant properties in the fruits.
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Figure 42. PCA-LDA on the HSI spectra of UF cherries when classification was based on initial conidial
contamination: PCA-LDA score plot of “25 °C Injury” samples (€); LDA discriminating power plot of
“25 °C Injury” samples (f); PCA-LDA score plot of “25 °C Intact” samples (g); LDA discriminating power

plot of “25 °C Intact” samples (h).

It was considered essential to investigate the effectiveness of HSI in tracking the spectral variation
of fruits in decay, quasi-independently of the day of storage when visible signs of infection
appeared on the fruits. Optimised PCA-LDA was employed on specific data corresponding to
samples that exhibited signs of decay during the 7-day long storage and the day of appearance of
the rot (marked as “day 0) + 2-day interval.

Table 15. Date of appearance of visible signs of Monilinia infection in sour cherries analysed by HSI,
inoculated with conidial suspension of different concentrations through injury and stored at 25 °C.

Initial conidium

Variety concentration Samplel Sample2 Sample3  Sample4  Sample 5

EB ~0.15 con./ pL — — — — —

~ 1.5 con./ pLL — — — - -

~ 15 con./ uL day 4 — day 4 — —

~ 150 con./ pL day 2 day 4 day 3 day 3 day 6
UF ~0.17 con./ pL — — — — -

~ 1.7 con./ pLL — — - - -

~ 17 con./ uL day 5 day 5 day 5 day 5 day 5

~ 170 con./ pL day 5 day 2 day 2 day 3 day 5

There were no clear signs of Monilinia activity in these samples
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Table 43 summarises the classification accuracies during model building and validation for the EB
variety (72.6, 25.9%) and for the UF variety (86.5, 57.4%), respectively. More accurate outcomes
were characteristic of the UF variety, while there was significant misclassification to adjacent days
for the EB samples. In the PCA-LDA score plots shown in Figure 43, a reversed V-shaped
separation trend appears across the different days. The “0 day” data points, representing the
samples that began showing signs of decay, are prominently noticeable in this separation. The
dominant wavelengths of these specific analyses are shown in Figure 43b and Figure 43d, and
listed below:
e EB sour cherries
1065.0, 1108.5, 1147.1, 1166.4, 1267.8, 1301.6, 1349.9, 1374.0, 1412.6, 1441.6, 1470.6,
1543.0 1576.8 nm;

e UF sour cherries
1060.2, 1113.3, 1132.6, 1147.1, 1166.4, 1263.0, 1296.8, 1330.6, 1359.5, 1378.8, 1407.8,
1431.9, 1480.2, 1538.2, 1596.1nm.
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Figure 43. PCA-LDA on the HSI spectra of sour cherries showing monilial activity when classification
was based on the day of appearance of visible infection signs + 2 days: PCA-LDA score plot of EB cherries
(a); LDA discriminating power plot of EB cherries (b); PCA-LDA score plot of UF cherries (c); LDA
discriminating power plot of UF cherries (d).

91



Prominent wavelengths obtained as a result of the PCA, SIMCA and PCA-LDA models built on
the hyperspectral data of sour cherries infected with Monilinia conidia and stored under various
environmental conditions were summarised. Taking into account the most contributing
wavelengths of the two studied varieties together, Figure 44 presents the absorption bands of
successful chemometric modelling with their approximate frequency values.
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Figure 44. Absorbance bands frequently observed in chemometric modelling results of Monilinia detection
on sour cherries with hyperspectral imaging.

There are relatively few examples in the literature of hyperspectral analysis of deterioration of
intact cherries, however, also stone fruit peach is significant. Sun, Wei, et al. (2018) conducted
experiments on peaches infected with Botrytis cinerea, R. stolonifera and Colletotrichum
acutatum. The authors reported 82.5, 92.5 and 100% classification accuracies for slightly-decayed,
moderately-decayed and severely-decayed samples, respectively, when combined hyperspectral
image processing and deep belief network (DBN). To our knowledge, the first spectral Monilinia
detection was performed by Liu et al. (2020), who could completely distinguish peaches with HIS-
based PCA according to the degree of infection (acceptable, moldy, highly moldy), and achieved
R? of 0.84 and RMSE of 0.78 when predicting fungal colony counts.
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Investigation results on plums

Figure 45 illustrates the spectra acquired with a benchtop hyperspectral imaging system from
plums prepared and stored under different conditions. In both varieties, overlapping, at the same
time consistent trend emerges in the average spectra obtained on specific spatial areas of the fruits.
The raw and second derivative spectra demonstrate indubitably how deviations from optimal
storage conditions manifest in the spectral properties.
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Figure 45. HSI spectra of plums treated in different ways: raw spectra of TD plums (a); raw spectra of TP
plums (b); 2" derivative spectra of TD plums (c); 2" derivative spectra of TP plums (d).

Smoothing and msc correction performed on the HSI spectral data of plums, followed by PCA
confirmed the impact of storage conditions on the absorption characteristics of the samples. For
the two plum varieties, the first three PCs explained the 99% of the total variance in the data. Based
on the PCA score plots (Figure 74a), it can be observed how sharply the spectral differences along
the third PC are outlined, especially for the TP variety. Respectively for the TD and TP variety,
the main PCA loadings that best describe separation according to fruit handling are the following
(Figure 74b, c):

e Topend (TD) plums
PC 2 loading: 1069.8, 1151.9, 1263.0, 1364.3, 1446.4 nm;
PC 3 loading: 1122.9, 1238.8, 1374.0, 1465.7 nm;
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e Topend plus (TP) plums
PC 2 loading: 1079.5, 1142.3, 1267.8, 1369.2, 1456.1 nm;
PC 3 loading: 1132.6, 1243.6, 1383.7 nm.

The pre-treated data for PCA was subjected to SIMCA to determine the statistical significance of
differences between infection methods and storage conditions for the two plum varieties. Models
were created for data filtered to the initial, intermediate, and final days of storage to evaluate
changes over time. Figure 46 and Figure 75 illustrate how the interclass distances evolved on
specific storage days.
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Figure 46. SIMCA on the HSI spectra of TD plums when discrimination was based on fruit treatment on
certain storage days (sgol-2-21-0, msc): SIMCA interclass distances on the 1% day of storage (a); SIMCA
discrimination power plot on the 1%t day of storage (b); SIMCA interclass distances on the 4" day of storage
(c); SIMCA discrimination power plot on the 4™ day of storage (d); SIMCA interclass distances on the 71"
day of storage (e); SIMCA discrimination power plot on the 7" day of storage (f).
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According to the SIMCA based on HSI spectra of the TD variety, bigger interclass distances were
characteristic on the first day of storage, which almost levelled out by the middle of the storage
period, and then showed overall smaller, but staggered distances by the end of storage (Figure 46a,
c, e). In case of the TP variety, the different storage conditions were more evident in the interclass
distances. By the middle of the storage period, the distances demonstrated salient differences
(Figure 75a, c, €). Samples of the TD variety appeared to be less affected by storage under different
conditions compared to TP samples, and this also supports the findings of PCA.

Overall, no significant interclass distances were observed for any of the sample sets indicating that
while storage temperature can play a crucial role in the storage of the plums, the mode of
preparation did not lead to significant differences During the SIMCA modelling, prominent
wavelengths were also identified. The SIMCA discriminating power plots highlight the specific
wavelengths that significantly contribute to the discrimination of the sample groups, respectively
(Figure 46b, d, f and Figure 75b, d, f):

e TD plums
Day 1:1040.9, 1103.6, 1176.1, 1267.8, 1330.6, 1378.8, 1441.6, 1572.0, 1629.9 nm;
Day 4:1045.7, 1151.9, 1229.2, 1349.9, 1412.6, 1480.2, 1523.7, 1620.2 nm;
Day 7:1026.4, 1094.0, 1166.4, 1243.6, 1291.9, 1364.3, 1398.1, 1465.7, 1533.3, 1591.3 nm:;

e TP plums
Day 2:1050.5, 1084.3, 1166.4, 1214.7, 1253.3, 1417.5, 1494.7, 1576.8, 1639.6 nm;
Day 4:1026.4, 1089.1, 1166.4, 1214.7, 1253.3, 1316.1, 1340.2, 1427.1, 1489.9, 1562.3 nm;
Day 7:1036.0, 1103.6, 1151.9, 1229.2, 1374.0, 1412.6, 1480.2, 1586.4 nm.

Optimised PCA-LDA modelling was used to determine the accuracy with which the initial
Monilinia conidium concentration can be determined from the HSI spectra of plums. For this
classification, spectra recorded the day after inoculation were utilized. The spectra were further
filtered according to mode of infection and storage conditions to reduce the impact of
environmental factors during the modelling.

In the case of plums, the classification was for a total of three different levels of conidial
contamination. Table 44 and Table 45 summarise the classification performance regarding the
initial conidial contamination of TD and TP plums, respectively. For the samples stored under
refrigerated conditions, the average correct classification rates were between 83.8 - 96.9% during
calibration and between 50.0 - 69.5% during validation. For the samples stored at room
temperature, the average correct classification rates during calibration were between 81.6 - 100%,
while during validation, they ranged from 42.8 to 75.2%. It was also true for plums that the
classification accuracy of the HSI was better than that of the data recorded with the hand-held NIR
instrument. These results are supported by the PCA-LDA score plots presented in Figure 47 and
Figure 76. In the discriminant space bounded by LD 1 and LD 2, the data points (i.e., scores)
representing the concentration levels of each suspension separated well, in some cases almost
completely. In the form of LDA discriminating power plots, the most contributing wavelengths

were also determined.
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Figure 47. PCA-LDA on the HSI spectra of TD plums when classification was based on initial conidial
contamination: PCA-LDA score plot of “5 °C Injury” samples (a); LDA discriminating power plot of
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In case of plums analysed with HSI, it was also typical that Monilinia activity was visible in the
samples that were inoculated via injury and stored at room temperature. It was also true for the
plum samples prepared for HSI measurements that fungal proliferation was inhomogeneous, even
for samples prepared in the same way, as shown in Table 16. Similar to the samples analysed with
the hand-held instrument, plum samples showed signs of the infection even at relatively low initial
conidium concentrations. This is due to the more favourable characteristics for Monilinia
reproduction in the fruits.

Table 16. Date of appearance of visible signs of Monilinia infection in plums analysed by HSI, inoculated
with conidial suspensions of different concentrations through injury and stored at 22 °C.

Initial conidium

Variety concentration Samplel Sample2 Sample3  Sample4  Sample5
TD ~1.05 con./ puL - day 4 day 3 day 5 day 5
~10.5 con./ pL day 5 day 3 day 3 day 3 -
~ 105 con./ uL - day 4 day 5 day 2 -
TP ~2.31 con./ puL day 4 - day 5 day 6 day 7
~23.1 con./ puL day 4 day 4 day 6 day 3 day 3
~231 con./ uL day 4 day 4 day 2 day 3 day 4

- There were no clear signs of Monilinia activity in these samples

It was considered essential to investigate the effectiveness of HSI in tracking the spectral variation
of plums in decay, quasi-independently of the day of storage when visible signs of infection
appeared on the fruits. Optimised PCA-LDA was employed on specific data corresponding to
samples that exhibited signs of decay during the 7-day long storage and the day of appearance of
the rot (marked as “day 0”) + 2-day interval. Table 46 summarises the classification accuracies
during model building and validation for the TD (65.3, 46.5%) and TP variety (57.3, 33.5%),
respectively. The results indicate more accurate outcomes for the TD variety, while for the TP,
there was significant misclassification not only to adjacent days. In the PCA-LDA score plots of
the two varieties (Figure 48a, c), almost identical V-shaped separation trend appears in the
discriminant space displayed. The dominant wavelengths for this specific modelling are the
following (Figure 48b, d):
e TD plums
1060.2, 1113.3, 1132.6, 1147.1, 1171.2, 1234.0, 1296.8, 1320.9, 1349.9, 1383.7, 1403.0,
1431.9, 1470.6, 1494.7, 1523.7, 1557.5, 1596.1 nm;

e TP plums
1065.0, 1113.3, 1147.1, 1267.8, 1282.3, 1316.1, 1378.8, 1417.5, 1436.8, 1475.4, 1514.0,
1547.8, 1586.4 nm.

Prominent wavelengths obtained as a result of the PCA, SIMCA and PCA-LDA models built on
the hyperspectral data of plums infected with Monilinia and stored under various environmental
conditions were summarised. Taking into account the most contributing wavelengths of the two
studied varieties, Figure 50 presents the absorption bands of successful chemometric modelling

with their approximate frequency values.
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Figure 48. PCA-LDA on the HSI spectra of plums showing monilial activity when classification was based
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power plot of TP plums (d).

14
12

10

Incidence

0
1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500 1550 1600 1650

Wavelength (nm)

Figure 49. Absorbance bands frequently observed in chemometric modelling results of Monilinia detection
on plums with hyperspectral imaging.
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5.3.  Determination of fruit juice enrichment with NIR spectroscopy

This subsection summarises the accuracy achieved in detecting and predicting plant extracts added
to fruit juices in various combinations and concentrations using hand-held and benchtop NIR
spectroscopic devices. The modelling results based on spectra recorded with the different
instruments are presented in comparison, as the same samples were analysed with both devices.

5.3.1. Detection results on sour cherry juices

Figure 77 presents the raw spectra obtained using the two instruments after the enrichment of sour
cherry juices with various concentrations of plant extracts. The two instruments operate based on
fundamentally different measurement setups. The hand-held device captures transflectance, while
the benchtop instrument records transmission spectra. The spectra obtained with the benchtop
instrument exhibited higher variability in the data. Besides, when applying second derivative pre-
treatment, two peaks emerge between 1400-1500 nm, unlike the data recorded with the hand-held
device (Figure 77c, d). PCA performed after smoothing and msc correction also confirms the
differences between the instruments, and thus in the spectral data (Figure 50).
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Figure 50. PCA on the NIR spectra of sour cherry juices when colouring was based on total extract content:
PCA score plots on the data recorded with the hand-held NIR device (sgol-2-21-0, msc) (a); PCA score
plots on the data recorded with the benchtop NIR device (sgol-2-43-0, msc) (b); PCA loading plot on the
data recorded with the hand-held NIR device (c); PCA loading plot on the data recorded with the benchtop
NIR device (d).

99



Based on the PCA score plots, separation trend according to the total extract content was more
apparent along different PCs for the two instruments, respectively. For the hand-held device, this
was observed mainly along the second and third PCs. In contrast, with the benchtop instrument,
the separation based on extract content was already evident along the first and second PCs (Figure
50a, b). These are supported by that for the hand-held device, the first three, whereas for the
benchtop device data, the first two PCs explained the 99% of the total variance in the data. Based
on the two PCA loadings highlighted by NIR instrument, the relevant wavelengths that best
describe separation according to total extract concentration are the following (Figure 50c, d):

e Hand-held NIR instrument
PC 2 loading: 1155.9, 1409.8, 1515.1 nm;
PC 3 loading: 1292.2, 1403.6, 1471.8, 1570.9 nm;

e Benchtop NIR instrument
PC 1 loading: 1368.4, 1445.9 nm;
PC 2 loading: 1155.3, 1414.8, 1490.8 nm.

Optimised PCA-LDA modelling was employed as a supervised classification method to determine
the effectiveness of distinguishing between sour cherry juice samples containing simple, binary,
or ternary combinations of plant extracts. The modelling involved all extract concertation levels;
and the results obtained after the optimised spectral pre-processing are illustrated in Figure 51.

The PCA-LDA score plots displayed reveal a logical overlap among the juice blends. Particularly
in the modelling based on data of the benchtop NIR instrument, it is evident that as the complexity
of the blends increases, the data points representing these samples show a greater degree of
superimposition of points corresponding to samples of partially similar compositions. In this
highlighted example, the simple blends are arranged in a triangular shape within the space defined
by LD 1 and LD 2. The vertices of the triangle represent the individual simple blends, while the
binary blends are positioned between these vertices. At the centre, the ternary blends are located,
potently illustrating how the complexity of the mixtures affects their positioning in the
discriminant space (Figure 51c).

Table 17 summarises the classification results regarding sour cherry juices and their blends. The
classification accuracies for the hand-held device data were 66.65 and 42.45%, while for the
benchtop spectrometer data 71.67 and 56.33% during model building and validation, respectively.
It was observed for the calibration sample sets that misclassification occurred primarily with
samples containing extracts in binary or ternary blends. In addition, wavelengths that played a
significant role in discrimination among juice blends were also identified based on their
discriminating power plots (Figure 51b, d):

e Hand-held NIR device: 1106.3, 1131.1, 1279.8, 1329.3, 1354.1, 1385.1, 1409.8, 1434.6,
1453.2, 1478.0, 1509.0v1533.7, 1558.5, 1583.3 nm;

e Benchtop NIR device: 1257.5,1352.1, 1382.0, 1405.3, 1427.8, 1447.6, 1471.5, 1497.9,
1542.3 nm.
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Figure 51. PCA-LDA on the NIR spectra of sour cherry juices when classification was based on the type
of dosed plant extract: PCA-LDA score plot on the data recorded with the hand-held NIR device (a); LDA
discriminating power plot on the data recorded with the hand-held NIR device (b); PCA-LDA score plot
on the data recorded with the benchtop NIR device (c); LDA discriminating power plot on the data recorded
with the benchtop NIR device (d).

It was considered important to investigate the accuracy with which the extract content of all the
added extracts could be distinguished in sour cherry juices, quasi independently regardless of the
composition of blends involved. For this purpose, optimised PCA-LDA modelling was also
applied.

Table 47 summarises the classification results regarding sour cherry juices and their blends. The
classification accuracies for the hand-held device data were 71.73 and 49.62%, while for the
benchtop spectrometer data 76.02 and 58.29% during model building and validation, respectively.
Misclassification was typically to adjacent lower or higher concentration levels.
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Table 17. PCA-LDA on the spectra of sour cherry juices recorded different NIR instruments when classification was based on the type of plant extract added.

Juice blends Juice + CBE + GSE +PGE +(CBE+GSE) +(GSE+PGE) +(PGE+CBE) +(CBE+GSE+PGE) Classification accuracy

MicroNIR Calibration  Juice 93.89 5.56 0.93 6.02 5.56 1.39 7.41 0.93 66.65%
hand-held Juice+CBE 2.78 79.63 1.39 0.00 3.70 0.00 2.78 12.96
device Juice+GSE 0.00 0.00 58.33 0.00 13.43 6.02 0.93 3.70
* Juice+PGE 0.00 0.00 2.78 69.91 0.00 4.63 16.67 1.39
Juice+(CBE+GSE) 0.00 0.00 13.43 0.00 62.04 6.48 0.00 6.94
Juice+(GSE+PGE) 0.00 0.00 5.09 1.39 5.56 62.50 6.48 8.80
Juice+(PGE+CBE) 3.33 9.72 16.20 22.69 0.93 5.09 52.31 10.65
Juice+(CBE+GSE+PGE) 0.00 5.09 1.85 0.00 8.80 13.89 13.43 54.63

Validation  Juice 71.11 11.11 3.70 16.67 11.11 5.56 18.52 0.00 42.45%
Juice+CBE 11.11 55.56 5.56 0.00 7.41 1.85 12.96 24.07
Juice+GSE 0.00 1.85 42.59 0.00 20.37 16.67 0.00 5.56
Juice+PGE 0.00 0.00 1111 62.96 0.00 7.41 27.78 5.56
Juice+(CBE+GSE) 0.00 7.41 14.81 0.00 31.48 9.26 0.00 7.41
Juice+(GSE+PGE) 0.00 5.56 7.41 5.56 12.96 27.78 11.11 14.81
Juice+(PGE+CBE) 11.11 9.26 5.56 11.11 0.00 14.81 18.52 12.96
Juice+(CBE+GSE+PGE) 6.67 9.26 9.26 3.70 16.67 16.67 11.11 29.63

NIRflex Calibration  Juice 96.11 17.13 3.30 1.39 4.63 3.24 11.79 4.63 71.67%
benchtop Juice+CBE 0.00 75.46 0.00 0.00 0.00 0.00 0.47 1.85
device Juice+GSE 0.00 0.00 60.85 0.00 12.50 0.00 0.00 0.00
*x Juice+PGE 0.00 0.00 1.89 70.37 0.00 5.09 11.79 0.00
Juice+(CBE+GSE) 0.00 0.00 16.51 0.00 72.22 0.93 0.00 9.72
Juice+(GSE+PGE) 0.00 0.00 0.94 4.63 0.00 78.24 3.30 18.06
Juice+(PGE+CBE) 3.89 1.85 12.74 22.69 0.46 231 60.85 6.48
Juice+(CBE+GSE+PGE) 0.00 5.56 3.77 0.93 10.19 10.19 11.79 59.26

Validation  Juice 93.33 24.07 9.43 7.41 11.11 5.56 24.53 14.81 56.33%
Juice+CBE 2.22 66.67 0.00 0.00 3.70 0.00 5.66 9.26
Juice+GSE 0.00 0.00 62.26 0.00 12.96 0.00 0.00 1.85
Juice+PGE 0.00 0.00 3.77 66.67 0.00 12.96 9.43 0.00
Juice+(CBE+GSE) 0.00 0.00 7.55 0.00 50.00 0.00 0.00 11.11
Juice+(GSE+PGE) 0.00 0.00 3.77 11.11 14.81 57.41 18.87 24.07
Juice+(PGE+CBE) 4.44 5.56 3.77 14.81 0.00 9.26 32.08 16.67
Juice+(CBE+GSE+PGE) 0.00 3.70 9.43 0.00 7.41 14.81 9.43 22.22

**

sgol-2-17-0, sgol-2-17-1; Nr = 423; NrPCs = 17
sgol-2-27-0, sgol-2-43-1; Nr = 421; NrPCs = 10
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The findings are supported by the PCA-LDA score plots shown in Figure 78. In the illustrated
discriminant space, increasing levels of extract concentration exhibited distinct clustering trends
along LD 1. This indicates a clear separation based on extract concentration, suggesting that the
model effectively captures variations in the spectral data associated with different concentrations.
In addition, wavelengths that played a significant role in discrimination among juice blends were
also identified based on their discriminating power plots (Figure 78b, d):

e Hand-held NIR device: 1323.1, 1347.9, 1378.9, 1409.8, 1440.8, 1471.8, 1502.8, 1533.7,
1558.5, 1589.5 nm;

e Benchtop NIR device: 1134.8,1153.7,1317.2,1347.0, 1372.1, 1388.1, 1406.1, 1422.1,
1447.6, 1462.8, 1477.5, 1491.6, 1508.8, 1529.1, 1549.9 nm.

PLSR modelling was conducted to predict the concentrations of various extracts added to sour
cherry juices. The models were developed using the whole dataset by instrument, then filtered for
simple, binary, and ternary blends. In each instance, the models were optimised to suit the specific
dataset. The prediction accuracies obtained during model calibration and validation of the different
sample sets are summarised in Table 48 and Table 49. The best modelling results by each extract
were achieved when constructing models for specific sample groups.

In the case of the hand-held NIR device, the prediction of CBE was made with Rcv? between 0.46
— 0.93; RMSEcv between 0.07 — 0.42 g/ 100 mL. The prediction of GSE was made with Rcv?
between 0.65 — 0.93; RMSEcv between 0.07 —0.34 g/ 100 g/mL. The prediction of PGE was made
with Rev? between 0.66 — 0.93; RMSEcv between 0.07 — 0.31 g/ 100 mL. The prediction of total
extract content was made with Rcv? between 0.66 — 0.93; RMSEcv between 0.22 —0.49 g/ 100 mL.
Figure 52 illustrates the regression vectors obtained for simple fruit juice blends, respectively by
extract, with the most prominent wavelengths listed below:

e CBE: 1063.0,1100.1, 1149.7, 1193.0, 1248.8, 1329.3, 1354.1, 1391.3, 1422.2, 1453.2,
1490.4, 1515.1, 1570.9 nm;

e GSE: 1149.7,1360.3, 1428.4, 1484.2, 1552.3 nm;

e PGE: 11125, 1137.3, 1347.9, 1422.2, 1471.8, 1546.1 nm.

In the case of the benchtop NIR instrument, the prediction of CBE was made with Rcv? between
0.86 —0.98; RMSEcv between 0.04 —0.21 g/ 100 mL. The prediction of GSE was made with Rcv?
between 0.90 — 0.98; RMSEcv between 0.04 —0.23 g/ 100 g/mL. The prediction of PGE was made
with Rev? between 0.86 — 0.98; RMSEcv between 0.04 — 0.16 g/ 100 mL. The prediction of total
extract content was made with Rcv? between 0.86 — 0.98; RMSEcv between 0.12 —0.32 g/ 100 mL.
Figure 53 illustrates the regression vectors obtained for simple fruit juice blends, respectively by
extract, with the most prominent wavelengths listed below:

e CBE: 1374.4,1460.3 nm;

e GSE: 1123.1,1129.2, 1340.5, 1362.4, 1398.2, 1431.8, 1495.2, 1570.4 nm;

e PGE: 1086.5,1128.2, 1276.2, 1341.2, 1362.4, 1397.4, 1422.9, 1451.8, 1474.9, 1501.5,
1540.4, 1600.5 nm.
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Figure 52. PLSR prediction of plant extract content of simple sour cherry juice blends scanned with the
hand-held NIR instrument: Y-fit of CBE prediction (a); regression vectors of CBE prediction (b); Y-fit of
GSE prediction (c); regression vectors of GSE prediction (d); Y-fit of PGE prediction (e); regression vectors
of PGE prediction (f).
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Figure 53. PLSR prediction of plant extract content of simple sour cherry juice blends scanned with the
benchtop NIR instrument: Y-fit of CBE prediction (a); regression vectors of CBE prediction (b); Y-fit of
GSE prediction (c); regression vectors of GSE prediction (d); Y-fit of PGE prediction (e); regression vectors
of PGE prediction (f).
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Based on the relevant wavelengths determined as partial results of the PCA, PCA-LDA and PLSR
models, the absorption bands for sour cherry juice blends that contribute most to successful
chemometric modelling were summarised. The obtained wavelength-frequency results are
presented as absorption bands in Figure 54. The plots by instrument provide evidence of coincident
absorption bands.
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Figure 54. Absorbance bands frequently observed in chemometric modelling results of sour cherry juice
enrichment with plant extracts: findings on the hand-held NIR spectrometer data (a); findings on the
benchtop NIR spectrometer data (b)
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5.3.2. Detection results on plum juices

Figure 79 presents the raw spectra obtained using the two instruments after the enrichment of plum
juices with various concentrations of plant extracts. The spectra showed similar behaviour to what
was observed for the sour cherry juices: as the concentration of the extracts increased, the
absorbance of the blends also increased. The spectra obtained with the benchtop instrument
exhibited higher variability. The application of second derivative pre-treatment also resulted in the
occurrence of two negative peaks in the 1400-1500 nm wavelength range (Figure 79c, d).

PCA performed on the smoothed and msc-treated data also revealed differences inherent in the
spectra, consistent with the findings for the sour cherry juice samples. The PCA score plots show
that in the case of hand-held device data, a separation based on concentration is observed along
the first and third PCs, while for the benchtop device data, this is more pronounced along the first
and second PCs (Figure 55a, b). These are supported by that for the hand-held device, the first
three, whereas for the benchtop device data, the first two PCs explained the 99% of the total
variance in the data.

PC1 0.0 g/ 100 mL PC 1 0.0 g/ 100 mL
0.5 g/ 100 mL _ 0.5 g/ 100 mL
g R 0.7 g/ 100 mL i" 3 0.7 g/ 100 mL
s] '3 PC2 ®1.0¢ 100 mL = -.'_‘ PC2 ® 1.0 ¢/ 100 mL
gl °° ® 14 ¢/ 100 mL 3 ':-I-" ® 14 ¢/ 100 mL
' — — ®19¢g/ 100 mL — - — ® 19 ¢/ 100 mL
g | gl 2,50 ©25¢/ 100 mL g | -'i"",% 1 ©25¢/ 100 mL
s &3P pc3 S |7 TR pC3
: ‘ gl
4 7 T T | o eyl . AW &
ol S IR | I ~ “ -y | A
1 i || o [ | PC4 3] TR EEY || W PC4
g8 4 % Sy |
Rl S . 2% VY 2] - b AT o4 Lot %
EXS “ 3 t - ", - . 45 €a
ol IR0 RS ) ) 5;‘ ) . X‘“ ~"i§' i ‘?
o ‘%’- g Y *:y 1| §& | PCS “‘aﬁ e AR R PCS
X s LIRS SR [N SN S,
PCA scores PCA scores
a) b)
0.35 0.15
—PC1 — —PC2 = = =PC3  cesees PC4 —PC1 — —PC2 ===PC3 ececes PC4
0.25
\
\ .
%0 0.15 \\\ 3 .'. %O
= ’ N o B 7"5
S 005 n N>~ o g
< : ) K \I <
@) . I\ % K @)
& -0.051000 ; 1500\ 1400. ~
eaee [y

M A

\ , . ;._'/ \
0.15 S Y \ -0.1
N_
0.25 0.15
Wavelength (nm) Wavelength (nm)
c) d)

Figure 55. PCA on the NIR spectra of plum juices when colouring was based on total extract content: PCA
score plots on the data recorded with a hand-held device (sgol-2-21-0, msc) (a); PCA score plots on the
data recorded with a benchtop device (sgol-2-43-0, msc) (b); PCA loading plot on the data recorded with a
hand-held device (c); PCA loading plot on the data recorded with a benchtop device (d).
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Based on the two PCA loadings highlighted by NIR instrument, the relevant wavelengths that best
describe separation according to total extract concentration are the following (Figure 55c, d):

e Hand-held NIR instrument
PC 1 loading: 1149.7 1409.8 1521.3 nm;
PC 3 loading: 1162.1 1304.5 1416.0 1484.2 1583.3 nm;

e Benchtop NIR instrument
PC 1 loading: 1367.6 1444.3 nm;
PC 2 loading: 1155.8 1413.2 1489.9 nm.

Optimised PCA-LDA modelling was employed as a supervised classification method to determine
the effectiveness of distinguishing between plum juice samples containing simple, binary, or
ternary combinations of plant extracts. The modelling involved all extract concertation levels; and
the results obtained after the optimised spectral pre-processing are illustrated in Figure 80.

The PCA-LDA score plots display less logical overlap among the juice blends in comparison to
sour cherry juices. In the modelling based on data of the benchtop NIR instrument, it is more
pronounced that as the complexity of the blends increases, the data points representing these
samples show a greater degree of superimposition of points corresponding to samples of partially
similar compositions. It was also true for the plum juices that the simple blends arranged in a
triangular shape within the space defined by LD 1 and LD 2. The vertices of the triangle represent
the individual simple blends, while the binary and ternary blends positioned overlapping between
these vertices. According to the PCA-score plots (Figure 80a, c), the pure plum juices were clearly
distinguishable from the juice blends suggesting that the spectral characteristics are significantly
different from those of the juices enriched with extracts.

Table 50 summarise the classification results regarding plum juices and their blends. The
classification accuracies for the hand-held device data were 53.11 and 27.04%, while for the
benchtop spectrometer data 55.08 and 34.04% during model building and validation, respectively.
For the plum juice sample set, there was a higher degree of misclassification concerning sample
groups that did not necessarily overlap in terms of added extracts. In addition, wavelengths that
played a significant role in discrimination among juice blends were also identified based on their
discriminating power plots (Figure 80b, d):

e Hand-held NIR device: 1075.3, 1093.9, 1217.8, 1329.3, 1409.8, 1440.8, 1471.8, 1490.4,
1509.0, 1539.9, 1570.9, 1595.7 nm;

e Benchtop NIR device: 1243.2,1271.6,1329.1, 1371.4, 1391.2, 1406.1, 1423.7, 1438.4,
1451.0, 1464.6, 1479.3, 1500.6, 1540.4, 1569.4, 1616.0 nm.

It was considered important to investigate the accuracy with which the extract content of all the
added extracts could be distinguished in plum juices, quasi independently regardless of the
composition of blends involved. For this purpose, optimised PCA-LDA modelling was also
applied.
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Table 18 summarises the classification results regarding plum juices and their blends. The
classification accuracies for the hand-held device data were 58.07 and 41.45%, while for the
benchtop spectrometer data 66.96 and 46.29% during model building and validation, respectively.
Misclassification was typically to adjacent lower or higher concentration levels. Misclassification
was more pronounced to adjacent lower or higher concentration levels.

The results are supported by the PCA-LDA score plots shown in Figure 56. It was also observed
in these analyses that the data points representing pure fruit juice samples were distinctly separated
from the blended samples. In both instruments, the individual extract concentration levels showed
a clear clustering trend along LD 2 (Figure 56a, ¢). The most contributing wavelengths were
determined based on the LDA discriminating power plots (Figure 56b, d) and listed below:

Hand-held NIR device: 1131.1, 1205.4, 1286.0, 1385.1, 1465.6, 1539.9, 1583.3 nm;

Benchtop NIR device: 1042.1,1122.1, 1148.9, 1157.9, 1203.1, 1248.1, 1292.7, 1341.2,
1360.9, 1384.3, 1391.2, 1411.6, 1427.8, 1443.4, 1458.6, 1475.8,
1493.4, 1527.2, 1556.7 nm.
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Figure 56. PCA-LDA on the NIR spectra of plum juices when classification was based on the dosed plant
extract content: PCA-LDA score plot on the data recorded with a hand-held device (a); LDA discriminating
power plot on the data recorded with a hand-held device (b); PCA-LDA score plot on the data recorded
with a benchtop device (c); LDA discriminating power plot on the data recorded with a benchtop device
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Table 18. PCA-LDA on the spectra of plum juices recorded different NIR instruments when classification was based on total extract content.

Total extract content 0.0 g/100mL 0.5¢/100 mL 0.7 g/100mL 1.0g/100 mL 1.4 g/100 mL 1.9 g/100 mL 2.5g/100 mL Classification accuracy

MicroNIR Calibration 0.0 g/2100 mL 78.33 0.00 0.00 0.00 0.00 1.19 1.59 58.07%
hand-held 0.5 g/100 mL 17.78 65.87 30.16 13.49 10.71 2.78 3.17
device 0.7 g/100 mL 3.89 12.70 37.30 18.25 13.10 4.37 1.98
* 1.0 g/100 mL 0.00 15.87 14.68 52.38 11.51 10.71 7.54
1.4 g/100 mL 0.00 4.37 12.30 10.32 46.03 8.33 4,76
1.9 g/100 mL 0.00 1.19 1.98 5.56 8.33 58.73 13.10
2.59/100 mL 0.00 0.00 3.57 0.00 10.32 13.89 67.86
Validation 0.0 /100 mL 60.00 0.00 0.00 0.00 0.00 0.00 1.59 41.45%
0.5 g/100 mL 37.78 52.38 28.57 33.33 14.29 6.35 6.35
0.7 g/100 mL 2.22 19.05 34.92 14.29 19.05 12.70 0.00
1.0 g/100 mL 0.00 20.63 9.52 28.57 11.11 4,76 7.94
1.4 g/100 mL 0.00 3.17 14.29 9.52 31.75 14.29 12.70
1.9 g/100 mL 0.00 0.00 1.59 7.94 19.05 36.51 25.40
2.5 9/100 mL 0.00 4,76 11.11 6.35 4,76 25.40 46.03
NIRflex Calibration 0.0 /100 mL 74.44 0.83 0.00 0.00 1.19 0.00 0.76 66.96%
benctop 0.5 g/100 mL 18.33 62.08 28.57 10.32 1.59 0.40 0.38
device 0.7 g/100 mL 7.22 22.92 52.38 13.49 0.79 0.00 6.82
wx 1.0 g/100 mL 0.00 12.50 19.05 56.75 10.71 2.82 2.65
1.4 g/100 mL 0.00 1.25 0.00 15.87 74.21 8.87 1.52
1.9 g/100 mL 0.00 0.00 0.00 3.17 9.52 74.60 13.64
2.59/100 mL 0.00 0.42 0.00 0.40 1.98 13.31 74.24
Validation 0.0 g/100 mL 71.11 1.67 0.00 0.00 1.59 0.00 4.55 46.29%
0.5 g/100 mL 22.22 60.00 57.14 26.98 4,76 4.84 7.58
0.7 g/100 mL 6.67 28.33 28.57 25.40 4,76 0.00 0.00
1.0 g/100 mL 0.00 8.33 12.70 22.22 14.29 0.00 1.52
1.4 g/100 mL 0.00 0.00 1.59 23.81 60.32 8.06 4,55
1.9 g/100 mL 0.00 1.67 0.00 1.59 11.11 50.00 50.00
2.5 9/100 mL 0.00 0.00 0.00 0.00 3.17 37.10 31.82
* sgol-2-17-0, sgol-2-13-1; Nr = 423; NrPCs = 12
*x sgol-2-43-0; Nr = 422; NrPCs = 20
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PLSR modelling was conducted to predict the concentrations of various extracts added to plum
juices. The models were developed using the whole dataset by instrument, then filtered for simple,
binary, and ternary blends. In each instance, the models were optimised to suit the specific dataset.
The prediction accuracies obtained during model calibration and validation of the different sample
sets are summarised in Table 51 and Table 52. Comparing the prediction results of the two
instruments, the indicators describing the accuracy of the model fits varied considerably.

In the case of the hand-held NIR device, the prediction of CBE was made with Rcv? between 0.53
— 0.84; RMSEcv between 0.13 — 0.59 g/ 100 mL. The prediction of GSE was made with Rcv?
between 0.42 — 0.93; RMSEcv between 0.12 —0.43 g/ 100 g/mL. The prediction of PGE was made
with Rev? between 0.47 — 0.93; RMSEcv between 0.12 — 0.62 g/ 100 mL. The prediction of total
extract content was made with Rcv? between 0.77 —0.93; RMSEcv between 0.23 —0.40 g/ 100 mL.
Figure 57 illustrates the regression vectors obtained for simple fruit juice blends, respectively by
extract, with the most prominent wavelengths listed below:

e CBE: 1100.1, 1131.1, 1168.3, 1199.2, 1236.4, 1366.5, 1484.2, 1558.5 nm;
e GSE: 1131.1,1199.2,1286.0, 1378.9, 1478.0, 1533.7 nm;
e PGE: 1075.3,1155.9, 1211.6, 1292.2, 1391.3, 1484.2, 1552.3 nm.

In the case of the benchtop NIR instrument, the prediction of CBE was made with Rcv? between
0.61—0.98; RMSEcv between 0.04 —0.54 g/ 100 mL. The prediction of GSE was made with Rcv?
between 0.59 — 0.98; RMSEcv between 0.04 —0.37 g/ 100 g/mL. The prediction of PGE was made
with Rev? between 0.71 — 0.98; RMSEcv between 0.04 — 0.32 g/ 100 mL. The prediction of total
extract content was made with Rcv? between 0.87 — 0.98; RMSEcv between 0.13 —0.28 g/ 100 mL.
Figure 58 illustrates the regression vectors obtained for simple fruit juice blends, respectively by
extract, with the most prominent wavelengths listed below:

e CBE: 1136.4,1167.7,1188.2, 1315.1, 1362.4, 1399.8, 1426.1, 1450.1, 1481.9, 1563.5 nm;

e GSE: 1128.7,1218.3, 1310.3, 1392.0, 1419.6, 1448.4, 1474.1, 1502.4, 1570.4 nm;

e PGE: 1115.6,1132.2, 1150.0, 1292.0, 1314.4, 1381.2, 1401.3, 1418.8, 1435.1, 1468.0,
1486.3, 1509.7, 1564.5 nm.

Based on the relevant wavelengths determined as partial results of the PCA, PCA-LDA and PLSR
models, the absorption bands for plum juice blends that contribute most to successful chemometric
modelling were summarised. The obtained wavelength-frequency results are presented as
absorption bands in Figure 59. The plots by instrument provide evidence of coincident absorption
bands.

111



“1 4k Calibration .
: ® Validation :
g
=)
S
-
~
=)
S’
=
]
@)
=
74
R
2
=
&
A s
JU J5 |h I; 2; ;5
Actual CBE (g/ 100 mL)
a)
o 4k Calibration
® Validation
=
=
=
=)
— ]
- ®
=@
=
wn 2
Q
=
23
2
=
g =
[=#

T T T T T T
00 05 10 15 20 25

Actual GSE (g/ 100 mL)

¢)

# Calibration
® Validation

Predicted PGE (g/ 100 mL)

Actual PGE (g/ 100 mL)
e)

PLS regression vector PLS regression vector

PLS regression vector

120 CBE

70

20

1000

30 1100

1200 1300 1400 1500 1600

-80

-130
Wavelength (nm)

b)
25000
20000
15000
10000
5000
0

-5 0001000
-10 000
-15 000
-20 000
-25 000

GSE

1100 /1200 1300 1400 1500 1600

Wavelength (nm)

d)
1500
PGE

1 000

500

1000 \ 1100 1200 1300 / 1400 1500 1600

Wavelength (nm)

f)

Figure 57. PLSR prediction of plant extract content of simple plum juice blends scanned with the hand-
held NIR instrument: Y-fit of CBE prediction (a); regression vectors of CBE prediction (b); Y-fit of GSE
prediction (c); regression vectors of GSE prediction (d); Y-fit of PGE prediction (e); regression vectors of

PGE prediction (f).
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Figure 59. Absorbance bands frequently observed in chemometric modelling results of plum juice
enrichment with plant extracts: findings on the hand-held NIR spectrometer data (a); findings on the
benchtop NIR spectrometer data (b).

There is relatively little available literature on the detectability of value enhancement and
fortification of fruit juices. With the general profiling of fruit juices, more and more researchers
are using NIR spectroscopy because of the advantages it offers. Aykac, Cavdaroglu, and Ozen
(2023) worked on detecting the manipulation of pomegranate juice, a superfood. The authors
reported 100% calibration and 97% validation accuracies for PLS-DA and OPLS-DA,
respectively, when detecting 5-10% dilution in binary and ternary blends of sour cherry and black
carrot juices. Vitalis et al. (2023) reported classification and prediction results on the probiotic
enrichment of apple-sour cherry-plum fruit juice blend, demonstrating that simple and mixed
bacterial cultures could be well differentiated, moreover fermentation time and acidity could be

predicted accurately.
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6. CONCLUSIONS AND RECOMMENDATIONS

As part of the doctoral research, multivariate statistical modelling was conducted based on NIR
spectroscopy and hyperspectral imaging with the aim of mapping the key to effective application
of the technique in the case of stone fruits and their products.

Sweet cherries, sour cherries and plums intended for the non-destructive assessment of fruits’
physiological ripeness were harvested in a very inhomogeneous state according to ripeness. This
allowed a wide spectrum of maturation to be studied, but also resulted in high variability in the
outcomes. The former statement was mainly true for cherries. Sorting fruit by visually perceived
ripeness (pre-classified samples) was often a challenge during the preparation of the
measurements, as the available fruit stock did not have an equal quantitative distribution of fruit
at different ripeness levels, therefore the number of fruits tested was also unequal in the larger
ripeness clusters. To record the spectral characteristics of the fruits, a hand-held NIR device was
employed, which is an easy-to-use tool for field studies in fruit production practice. The spectra
were recorded on the more mature and immature sides of the fruits to test the effect of scanning
location on the accuracy of prediction models.

For qualitative modelling, i.e., classification according to ripeness, spectral pre-treatment and
NrPC-optimised LDA was used. To predict some of the fruits’ value-measuring properties,
spectral pre-treatment and NrLV-optimised PLS regression was employed. The results show that
the accuracy of the prediction models was influenced by whether they are based on complete or
partial datasets. However, for the latter case, if they were built on the data of more mature or the
immature side can be dependent or sensitive to the variety of fruit and component under estimation.

Different varieties of sour cherries and plums were included in the experiments to detect Monilinia
causing brown rot on fruits’ surface. The spectra were obtained at three measurement points with
the hand-held NIR device, and from nine surface areas with hyperspectral image processing. The
latter's line scanning (push-broom) operation allowed fruit to be inspected without contact, as if
they were moving on a conveyor belt. Separate sample sets were prepared for the two different
instrumental analyses because the illuminating light of the HSI system used was very intense. Of
the fruit infected with M. fructigena conidia in different ways and to different extents, only wound-
infected samples stored above 20 °C showed signs of rotting and conidia formation. Within these
sample sets, contrary to expectations, the “response” to infection of fruit that had been similarly
inoculated and stored was different. Some fruits showed “meaningful” signs earlier, others later,
if at all. In the recorded spectra, the increased amount of conidia on the surface of the fruit and the
“dripping” of the wounds was disturbing. To reduce the effect of noise, various spectral pre-
treatment techniques have been employed prior to qualitative modelling, otherwise the
differentiation would have been based on light scattering only.

In general, there was a considerable, but not significant, divergence in the SIMCA models when
the different modes of inoculation and storage were evaluated together on certain days of storage.
The PCA-LDA models for classification according to initial conidia concentration based on
spectra recorded on the first day of storage, showed varying classification accuracy, but it was
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generally true that HSI gave more accurate models. Interestingly, for samples of EB, UF and TP
varieties, the classification of the same sample sets by instrument was the most accurate. The
highest average correct classification according to the appearance time of visible signs of
Monilinia infection was based on hand-held NIR spectra for EB and TD samples, and HSI spectra
for UF and TP samples.

The examination of fruit juices enriched with various extracts was conducted in transflexion and
transmission arrangements using a hand-held NIR and a benchtop FT NIR spectrometer. The same
samples were examined with both instruments. The characteristic of the prepared fruit juices was
that the dosed extract did not always completely dissolve and the powdery particles tended to settle
in the sample containers. After homogenization, when loading the sample solutions, we aimed to
analyse a solution free of interfering components. During the qualitative and quantitative analysis
of spectral data, spectral pre-processing, NrPC- or NrLV-optimised PCA-LDA and PLSR
modelling were applied, respectively. Overall, it was found that chemometric modelling based on
data recorded by the benchtop instrument resulted in more accurate classification and extract
concentration prediction. This can be attributed, on the one hand, to the instrument's resolution,
and on the other hand, to the measurement setup, highlighting that the transmission measurement
approach is better suited for measuring transparent liquids like the juices we had. Comparing the
modelling results of the examined fruit juices, it was found that sour cherry juices exhibited better
model fitting. This is suspected to be due to some unidentified sample preparation anomaly in the
case of plum juice samples.

Chemometric modelling results based on spectra recorded with HSI and NIR instruments show
relatively high variability, especially during classifications. The primary reason for this is the
naturally high variability of the fruits, despite the sample replicates. Our research, based partly on
the development of measurement techniques and partly on statistical methods, is of great
importance as it is based on the investigation of economically important fruits, for which there is
very limited source material available, both in literature and in practice, for the non-destructive
examination. Small-scale handheld NIR instruments can be used for on-site inspections, while line
scan recording of HSI can support continuous production processes. In addition, prominent
absorption bands obtained from chemometric modelling can contribute to the development of
target instruments.

Based on the above summary, we have the following suggestions for the extension of studies:
- Preparation of fruit studies for larger sample sets,
- Involvement of untested factors in the modelling (e.g., different origin, season, etc.),
- Pre-sorting of fruits not only on the basis of their visual characteristics,
- Very precise setting of fruit storage and measurement conditions,
- Implementation of variable wavelength selection methods prior chemometrics,
- Involvement of other chemometric methods in data analysis (e.g., PLS-DA, SVM, k-NN),
- Calibration transfer between precision benchtop and hand-held instruments,
- Model testing with completely independent sample sets.
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7. NEW SCIENTIFIC FINDINGS

In the new scientific results, the handheld near infrared (NIR) spectrometer used in fruit ripeness
studies refers to NIR-S-G1 (InnoSpectra Co., Hsinchu, Taiwan). In the Monilinia detection studies, the
hand-held NIR instrument refers to NIR-S-G1 (InnoSpectra Co., Hsinchu, Taiwan, and the
hyperspectral imaging system refers to Headwall XEVA-1648 XC134. In the fruit juice studies, hand-
held NIR device refers to MicroNIR (Viavi, Scottsdale, USA), and benchtop spectrometer refers to
NIRFlex N-500 (Biichi Labortechnik AG, Flawil, Switzerland). Classification modelling refers to
principal component analysis-based linear discriminant analysis (PCA-LDA), and predictive
modelling refers to partial least squares regression (PLSR).

New scientific findings on the determination of stone fruit ripeness with hand-held NIR
spectrometer (950-1650 nm)

1. The efficiency with which a hand-held NIR spectrometer could classify stone fruits according to

ripeness has been determined.

- For sweet cherries, the classification models performed with up to 91.7 and 78.0% accuracy
during model building and validation, respectively.

- For sour cherries, the classification models performed with up to 87.8 and 82.4% accuracy during
model building and validation, respectively,

- For plums, the classification models performed with up to 82.1 and 70.7% accuracy during
model building and validation, respectively.

2. The efficiency with which a hand-held NIR spectrometer could predict dry matter content of stone

fruits of different ripeness has been determined.

- For sweet cherries, the modelling and validation was performed with a maximal Rc? of 0.88 and
RMSEc of 2.07% m/m, Rcv? of 0.83 and RMSEcv of 2.50% m/m, respectively.

- For sour cherries, the modelling and validation was performed with a maximal Rc? of 0.79 and
RMSEc of 1.47% m/m, Rev? of 0.72 and RMSEcv of 1.67% m/m, respectively.

- For plums, the modelling and validation was performed with a maximal Rc? of 0.45 and RMSEc
of 1.02% m/m, Rcv? of 0.35 and RMSEcv of 1.11% m/m, respectively.

3. The efficiency with which a hand-held NIR spectrometer could predict soluble solid content of

stone fruits of different ripeness has been determined.

- For sweet cherries, modelling and validation was performed with a maximal Rc? of 0.95 and
RMSEc of 0.69% brix, Rcv? of 0.93 and RMSEcv of 0.79% brix, respectively.

- For sour cherries, modelling and validation was performed with a maximal Rc? of 0.87 and
RMSEc of 0.98% brix, Rcv? of 0.83 and RMSEcv of 1.10% brix, respectively.

- For plums, modelling and validation was performed with a maximal Rc? of 0.97 and RMSEc of
0.32% brix, Rev? of 0.95 and RMSEcv of 0.41% brix, respectively.

New scientific finding on the spectral detectability of Monilinia contamination in stone fruits
with a hand-held NIR spectrometer or hyperspectral imaging (1000-1650 nm)

4. For the first time in the scientific literature, the performance of a hand-held NIR spectrometer for
the detection of Monilinia fructigena on the surface stone fruits (with or without injury, stored at
refrigerated or room temperature) has been determined based on spectral data recorded on the first
day of storage after inoculation. Classification models were developed separately by storage
condition to discriminate:
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sour cherries of four conidial contamination levels (in tenfold dilutions: ~ 100-10-1-
0.1 conidium/pL), when classification accuracies for “Erdi bdtermé” sour cherries were
between 63.1-77.6% and 23.5-34.1%, for “Ujfehértoi” cherries were between 58.2-85.1% and
24.6-42.0% during model building and validation, respectively.

plums of three conidial contamination levels (in tenfold dilutions: ~ 100-10-1 conidium/uL),
when classification accuracies for “Topend” plums were between 74.2-84.2% and 34.0-50.4%,
for “Topend plus” plums were between 78.9-92.9% and 35.1-51.6% during model building and
validation, respectively.

5. For the first time in the scientific literature, the performance of a hyperspectral imaging for the
detection of Monilinia fructigena on the surface stone fruits (with or without injury, stored at
refrigerated or room temperature) has been determined based on spectral data recorded on the first
day of storage after inoculation. Classification models were developed separately by storage
condition to discriminate:

sour cherries of four conidial contamination levels (in tenfold dilutions: ~ 100-10-1-
0.1 conidium/pL), when classification accuracies for “Erdi bdtermé” sour cherries were
between 61.6-85.6% and 33.1-45.0%, for “Ujfehértoi” cherries were between 83.4-98.0% and
32.5-53.3% during model building and validation, respectively.

plums of three conidial contamination levels (in tenfold dilutions: ~ 100-10-1 conidium/uL),
when classification accuracies for “Topend” plums were between 81.6-97.1% and 42.8-75.2%,
for “Topend plus” plums were between 78.9-87.1-100% and 50.0-79.3% during model building
and validation, respectively.

New scientific findings on the predictability of fruit juice enrichment with NIR spectroscopy
(1000-1650 nm)

6. The performance of a hand-held NIR spectrometer for the prediction of fruit juice enrichment with
plant extracts has been determined.

In simple sour cherry juice blends, cranberry extract was predicted with an Rcv? of 0.92 and
RMSEcv of 0.25 g/100 mL, grape seed extract content with an Rcv? of 0.90 and RMSEcv of
0.27 g/100 mL, and pomegranate extract with an Rcv? of 0.87 and RMSEcv of 0.31 g/100 mL.
In simple plum juice blends, cranberry extract was predicted with an Rcv? of 0.53 and RMSEcv
of 0.59 g/100 mL, grape seed extract content with an Rcv? of 0.76 and RMSEcv of 0.42 g/100
mL, and pomegranate extract with an Rcv? of 0.47 and RMSEcv of 0.62 g/100 mL.

7. The performance of a benchtop NIR spectrometer for the prediction of fruit juice enrichment with
plant extracts has been determined.

In simple sour cherry juice blends, cranberry extract was predicted with an Rcv? of 0.97 and
RMSEcv of 0.13 g/100 mL, grape seed extract content with an Rcv? of 0.92 and RMSEcv of
0.23 g/100 mL, and pomegranate extract with an Rcv? of 0.97 and RMSEcv of 0.15 g/100 mL.
In simple plum juice blends, cranberry extract was predicted with an Rcv? of 0.61 and RMSEcv
of 0.549/100 mL, grape seed extract content with an Rcv? of 0.90 and RMSEcv of 0.27 g/100
mL, and pomegranate extract with an Rcv? of 0.98 and RMSEcv of 0.18 g/100 mL.
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8. SUMMARY

Fruits, especially those species with highly valuable nutritional composition, have a major role to
play in reforming human diets and shaping dietary trends. The very valuable nutritional properties
of the sweet cherry, sour cherry and plum varieties involved in the present research justify the
preservation of quality out of season, but this requires them to undergo very complex agricultural
and food industrial processes. During fruit ripening, postharvest monitoring as well as in food
processing and control, there is a trend towards the use of non-targeted analytical methods to obtain
a comprehensive analytical image of the subject, preferably in a non-destructive and even non-
contact manner. In collaboration with Agricolae Ltd., our research objectives included the novel
application of digital fingerprinting approaches to assess their applicability for the prediction of
certain qualitative and quantitative indicators of ripening fruit, monitoring of fruit decay during
storage, and authentication of fruit juices enriched with various fruit-derived extracts.

To meet these objectives, we examined the near infrared light absorption patterns of our samples.
The knowledge and application of spectral methods are well-known, but despite their successful
application in e.g., cereal qualitative reception, it has been less widespread in fruit production and
classification practice. When exploring the related literature, it was found that a significant portion
of the published studies report very accurate classification and prediction modelling results in
certain cases, but there is less discussion of the impact of, for example, spectral acquisition on
modelling results. Interestingly, limited literature is available on the spectral detectability of
Monilinia contamination and resulting decay, a major threat to sour cherry and plum production.
The same is true for authenticity assessment of enriched of fruit juices.

During the fruit ripeness examinations, the non-destructive analyses of pre-classified stone fruits
was conducted using a hand-held NIR device. The advantage of such instruments is that spectra
can be recorded in a controlled manner due to internal illumination and contact measurement.
Qualitative and quantitative chemometric modelling revealed that it varied by fruit variety,
whether the models based on the more mature, immature, or the entire dataset performed better.
To clearly determine the positive or negative impact of the location of spectrum scanning, it is
necessary to extend the studies.

During the determination of Monilinia detectability on stone fruits, hand-held NIR and benchtop
hyperspectral instruments were employed. Based on the results, the differences in storage
conditions had a significant impact on the samples, while the mode of sample inoculation (with or
without injury) had a less pronounced effect. The PCA-LDA results according to initial conidial
contamination showed highly variable classification accuracies, but it was generally established
that higher average correct classification was achieved using HSI. Based on the classification
according to the appearance time of visible infection signs, this could not be stated so clearly.
Interestingly, despite the fact that the available HSI system recorded the data in a reflectance
measurement setup with external illumination, it allowed a more accurate classification of the
samples tested. This verified for us that with average spectra obtained from several surface areas,
a more complete analytical image of the samples emerges despite measurements more exposed to
environmental influences (e.g., temperature, dust, etc.). To reduce the high variability observed
during measurements and data evaluations, a larger initial sample size and instrumental sorting of
the fruits would be necessary prior sample preparation.
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Fruit juices enriched with different combinations and degrees of plant extracts were examined
using two instruments with different measurement setups, a transflectance hand-held and a
transmittance benchtop NIR device. The classification and predictition models reflect that the
latter instrument, due to its high resolution and measurement arrangement, is more effectively
applicable for analysing liquid samples similar to fruit juices. During the examination of fruit juice
blends, a slight sedimentation of powder-like extract particles was observed. To mitigate this
potential negative effect, it may be justified to remove the undissolved particles, for example,
through filtration. To gain a deeper understanding of the impact of different instrument
constructions (i.e., transmittance, transflectance) on prediction accuracy, it would be worthwhile
to extend the investigations by comparing results obtained from identical measurement setups. In
addition to these, it would be beneficial to implement a calibration transfer from precision
instrumented data to hand-held data.

The method development presented in the dissertation is based partly on methodological and partly
on statistical evaluation, demonstrates the easy applicability of the NIR technique for conducting
laboratory and even on-site examinations. The applied chemometric approaches can be multi-used,
as they can be relatively easily and quickly adapted for the analysis of new similar datasets or for
refining existing models. Our long-term ambition is to create and continuously develop databases
along with chemometric models that allow quantitative and qualitative mapping not “only” a
portion of harvested fruits, but also orchards or even regions. In our opinion, this doctoral research
will provide a good basis for determining the optimal harvest time of fruit, for effective
intervention in case of emerging fruit diseases, for optimising processing procedures, and
monitoring the composition of fruit products.
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10.2. Supplementary materials

10.2.1. Annexes for the materials and methods used
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Table 19. Pre-classified stone fruit varieties, their presumed ripeness clusters and the indicating colours.

Sweet cherry varieties
Bigarreau Burlat

123|456 |7 |89 ]10]11|12]13[14]15]16[17] 18|19 [20[21]22]23]24]25]26
L4

Valerij Cskalov

Sour cherry varieties

Kdntorjanosi
123|456 7]8|9]w|11]12]13|14]15]16]17]18]19]20
L2
Ujfehértéi
123456 |7[8]9f1w0o]1|12]13[14]15]16]17]18]19][20]21
L2
Plum varieties
Elena
123456789101 ]12]13]14]15]16[17]18]19]20
L1
Stanley
1234567891011 ]12[13]14]15]16/[217]18] 1920
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Table 20. Plant extracts and their concentrations added to fruit juices in varying concentration.

CBE concentration GSE concentration PGE concentration Total extract concentration

(9/ 100 mL) (9/ 100 mL) (9/ 100 mL) (g/ 100 mL)

Pure juices 0.00 0.00 0.00 0.00
Simple blends 0.50 0.00 0.00 0.50
0.70 0.00 0.00 0.70
1.00 0.00 0.00 1.00
1.40 0.00 0.00 1.40
1.90 0.00 0.00 1.90
2.50 0.00 0.00 2.50
0.00 0.50 0.00 0.50
0.00 0.70 0.00 0.70
0.00 1.00 0.00 1.00
0.00 1.40 0.00 1.40
0.00 1.90 0.00 1.90
0.00 2.50 0.00 2.50
0.00 0.00 0.50 0.50
0.00 0.00 0.70 0.70
0.00 0.00 1.00 1.00
0.00 0.00 1.40 1.40
0.00 0.00 1.90 1.90
0.00 0.00 2.50 2.50
Binary blends 0.25 0.25 0.00 0.50
0.35 0.35 0.00 0.70
0.50 0.50 0.00 1.00
0.70 0.70 0.00 1.40
0.95 0.95 0.00 1.90
1.25 1.25 0.00 2.50
0.00 0.25 0.25 0.50
0.00 0.35 0.35 0.70
0.00 0.50 0.50 1.00
0.00 0.70 0.70 1.40
0.00 0.95 0.95 1.90
0.00 1.25 1.25 2.50
0.25 0.00 0.25 0.50
0.35 0.00 0.35 0.70
0.50 0.00 0.50 1.00
0.70 0.00 0.70 1.40
0.95 0.00 0.95 1.90
1.25 0.00 1.25 2.50
Ternary blends 0.17 0.17 0.17 0.50
0.23 0.23 0.23 0.70
0.33 0.33 0.33 1.00
0.47 0.47 0.47 1.40
0.63 0.63 0.63 1.90
0.83 0.83 0.83 2.50
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Table 21. Applied spectral pre-treatments during the evaluation of data obtained with hyperspectral imaging, hand-held and benchtop spectrometers (1).

Use Pre-treatment Polynomial Dataframe  Derivation  Abbreviation Basic purposes of application
v' 1 Savitzky-Golay smoothing 2" order 13 points - sgol-2-13-0  Reduction of spectral noise
Savitzky-Golay smoothing 2" order 17 points - sgol-2-17-0  Reduction of spectral noise
Savitzky-Golay smoothing 2" order 21 points * - sgol-2-21-0  Reduction of spectral noise
detrending 2" order - - deTr Elimination of polynomial trends
multiplicative scatter correction 2" order - - msc Reduction of baseline shift
derivatives 2" order 13 points * 1t der sgol-2-13-1  Elimination of constant offset
derivatives 2" order 17 points * 1%t der sgol-2-17-1  Elimination of constant offset
derivatives 2" order 21 points * 1t der sgol-2-21-1  Elimination of constant offset
derivatives 2" order 13 points * 2" der sgol-2-13-2  Elimination of constant and linear offsets
derivatives 2" order 17 points * 2" der sgol-2-17-2  Elimination of constant and linear offsets
derivatives 2" order 21 points * 2" der sgol-2-21-2  Elimination of constant and linear offsets
% . . nd . : sgol-2-21-0,  Reduction of spectral noise;
2 smoothing and detrending 2" order 21 points deTr Elimination of polynomial trends
smoothing and . sgol-2-21-0,  Reduction of spectral noise;
v nd -
3 multiplicative scatter correction 21 order 21 points msc Reduction of baseline shift
. - 13 points; sgol-2-13-0,  Reduction of spectral noise;
v nd st
4 smoothing and derivation 21 order 13 points 1 der sgol-2-13-1  Elimination of constant offset
. _— 17 points; sgol-2-17-0,  Reduction of spectral noise;
v nd st
5 smoothing and derivation 21 order 13 points 1 der sgol-2-13-1  Elimination of constant offset
. _— 21 points; sgol-2-21-0,  Reduction of spectral noise;
v nd st
6 smoothing and derivation 21 order 13 points 1 der sgol-2-13-1  Elimination of constant offset
. - 13 points; sgol-2-13-0,  Reduction of spectral noise;
v nd nd
7 smoothing and derivation 21 order 13 points 21 der sgol-2-13-2  Elimination of constant and linear offset
. A 17 points; sgol-2-17-0,  Reduction of spectral noise;
v nd nd
8 smoothing and derivation 2 order 13 points 21 der sgol-2-13-2  Elimination of constant and linear offset
. A 21 points; sgol-2-21-0,  Reduction of spectral noise;
v nd nd
9 smoothing and derivation 2 order 13 points 21 der sgol-2-13-2  Elimination of constant and linear offset
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Table 22. Applied spectral pre-treatments during the evaluation of data obtained with hyperspectral imaging, hand-held and benchtop spectrometers (I1).

Use Pre-treatment Polynomial  Dataframe  Derivation  Abbreviation Basic purposes of application
. I 13 points; sgol-2-13-0,  Reduction of spectral noise;
nd st
10 smoothing and derivation 21 order 17 points 1 der sgol-2-17-1  Elimination of constant offset
. _— 17 points; sgol-2-17-0,  Reduction of spectral noise;
nd st
11 smoothing and derivation 21 order 17 points 1 der sgol-2-17-1  Elimination of constant offset
. _— 21 points; sgol-2-21-0,  Reduction of spectral noise;
nd st
12 smoothing and derivation 21 order 17 points 1 der sgol-2-17-1  Elimination of constant offset
. _— 13 points; sgol-2-13-0,  Reduction of spectral noise;
nd nd
13 smoothing and derivation 21 order 17 points 21 der sgol-2-17-2  Elimination of constant and linear offset
. _— 17 points; sgol-2-17-0,  Reduction of spectral noise;
nd nd
14 smoothing and derivation 21 order 17 points 21 der sgol-2-17-2  Elimination of constant and linear offset
. _— 21 points; sgol-2-21-0,  Reduction of spectral noise;
nd nd
15 smoothing and derivation 21 order 17 points 21 der sgol-2-17-2  Elimination of constant and linear offset
. _— 13 points; sgol-2-13-0,  Reduction of spectral noise;
nd st
16 smoothing and derivation 21 order 21 points 1 der sgol-2-21-1  Elimination of constant offset
. _— 17 points; sgol-2-17-0,  Reduction of spectral noise;
nd st
17" smoothing and derivation 21 order 21 points 1" der sgol-2-21-1  Elimination of constant offset
. _— 21 points; sgol-2-21-0,  Reduction of spectral noise;
nd st
18 smoothing and derivation 21 order 21 points 1 der sgol-2-21-1  Elimination of constant offset
. _— 13 points; sgol-2-13-0,  Reduction of spectral noise;
nd nd
19 smoothing and derivation 21 order 21 points 21 der sgol-2-21-2  Elimination of constant and linear offset
. _— 17 points; sgol-2-17-0,  Reduction of spectral noise;
nd nd
20 smoothing and derivation 21 order 21 points 21 der sgol-2-21-2  Elimination of constant and linear offset
. _— 21 points; sgol-2-21-0,  Reduction of spectral noise;
nd nd
21 smoothing and derivation 21 order 21 points 21 der sgol-2-21-2  Elimination of constant and linear offset
A data frame for the smoothing of spectra recorded with the benchtop NIR spectrometer: 43 points
+  data frame for the 1% or 2" derivation of spectra recorded with the benchtop NIR spectrometer: 27 points
X data frame for the 1% or 2" derivation of spectra recorded with the benchtop NIR spectrometer: 35 points
% data frame for the 1 or 2" derivation of spectra recorded with the benchtop NIR spectrometer: 43 points
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10.2.2. Annexes to the fruit ripeness assessment results
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Figure 62. NIR spectra of sweet cherries of different ripeness: raw spectra of BB cherries (a); raw spectra of VC
cherries (b); 2" derivative spectra of BB cherries (c); 2™ derivative spectra of VC cherries (d).
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Figure 63. Preliminary PCA on the NIR spectra of sour cherries when colouring was based on fruit ripeness (sgol-2-
21-0, msc): PCA score plots of cherries of different ripeness (a); PCA loading plot of KJ cherries (b); PCA loading

plot of UF cherries (c).
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Figure 64. NIR spectra of plums of different ripeness: raw spectra of EL plums (a); raw spectra of ST plums (b); 2"
derivative spectra of EL plums (c); 2" derivative spectra of ST plums (d).
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Table 23. PCA-LDA classification accuracies on the NIR spectra of BB cherries when classification was
based on fruit ripeness.

Classification

BB BB L1 BB L2 BB L3 BB L4 BB L5 BBL6
accuracy
Both  Calibration BB_L1  62.8 20.6 4.0 2.5 0.0 0.0 66.6%
sides BB L2 272 64.4 9.4 5.0 0.3 0.0
* BB L3 9.2 12.8 715 294 2.0 0.0
BB L4 0.0 0.8 12.1 50.6 7.1 2.9
BB L5 0.8 1.4 31 8.6 81.9 28.8
BB_L6 0.0 0.0 0.0 3.9 8.6 68.3
Validation BB L1 444 25.6 5.0 3.3 0.0 0.0 55.5%
BB L2 433 52.2 11.7 3.3 0.4 0.0
BB L3 122 20.0 59.2 36.7 3.0 0.0
BB_L4 0.0 0.0 19.2 422 7.8 2.5
BB_L5 0.0 2.2 5.0 14.4 78.2 40.8
BB L6 0.0 0.0 0.0 0.0 10.7 56.7
Green Calibration BB_L1 91.1 0.0 0.0 0.0 0.0 0.0 94.1%
side BB L2 6.7 91.1 3.3 2.2 0.0 0.0
fala BB L3 2.2 8.9 93.3 4.4 15 0.0
BB L4 0.0 0.0 3.3 93.3 0.7 0.0
BB _L5 0.0 0.0 0.0 0.0 95.6 0.0
BB L6 0.0 0.0 0.0 0.0 2.2 100.0
Validation BB L1  32.2 14.4 10.4 8.9 0.6 1.7 42.5%
BB L2  46.7 47.2 37.1 18.9 5.6 1.7
BB L3 167 30.0 31.3 40.0 4.8 2.9
BB L4 4.4 2.8 13.8 22.2 6.1 5.0
BB L5 0.0 3.9 6.3 7.2 68.5 35.0
BB_L6 0.0 1.7 13 2.8 14.4 53.8
Ripe Calibration BB_L1 73.9 9.4 6.3 0.0 0.0 0.0 74.3%
side BB L2 144 77.8 5.4 2.2 2.4 0.0
falaied BB L3 111 8.3 78.3 27.2 2.8 0.0
BB_L4 0.0 3.3 5.4 58.3 6.9 0.0
BB L5 0.6 1.1 4.6 12.2 80.0 225
BB L6 0.0 0.0 0.0 0.0 8.0 77.5
Validation BB L1  57.8 20.0 10.0 2.2 0.0 0.0 54.4%
BB _L2 24.4 57.8 15.0 6.7 4.4 0.0
BB L3 133 13.3 50.0 48.9 3.0 1.7
BB L4 4.4 6.7 20.0 24.4 104 0.0
BB L5 0.0 2.2 5.0 17.8 71.1 33.3
BB L6 0.0 0.0 0.0 0.0 11.1 65.0
* sgol-2-21-0; Nr = 780; NrPC = 16
** sgol-2-17-0, sgol-2-13-1; Nr =390, NrPC = 16
Fkx sgol-2-21-0; Nr = 390; NrPC = 17
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Table 24. PCA-LDA classification accuracies on the NIR spectra of VC sweet cherries when classification
was based on fruit ripeness.

Classification

VC VC L1 VvC L2 VCL3 VC L4 VC L5 VC.L6
accuracy
Both  Calibration VC_L1 933 1.1 0.0 0.0 0.0 0.0 83.3%
sides VC_L2 6.7 81.4 6.0 0.0 0.0 0.0
* VC_L3 0.0 16.7 88.3 34.6 15 0.0
VC_L4 0.0 0.6 5.6 60.0 3.2 0.0
VC_L5 0.0 0.3 0.0 5.4 90.8 14.0
VC_L6 0.0 0.0 0.0 0.0 4.4 86.1
Validation VC L1  90.0 2.2 0.0 0.0 0.0 0.0 74.5%
VC_ L2 100 74.4 7.5 0.0 0.0 0.0
VC_L3 0.0 21.1 82.5 50.0 1.7 0.0
VC_L4 0.0 1.1 10.0 36.7 6.1 0.0
VC_L5 0.0 1.1 0.0 13.3 81.1 17.7
VC_L6 0.0 0.0 0.0 0.0 11.1 82.3
Green Calibration VC L1 100.0 0.0 0.0 0.0 0.0 0.0 98.3%
side VC_L2 0.0 100.0 3.3 0.0 0.0 0.0
fala VC_L3 0.0 0.0 96.7 6.7 0.0 0.0
VC_L4 0.0 0.0 0.0 93.3 0.0 0.0
VC_L5 0.0 0.0 0.0 0.0 100.0 0.0
VC_L6 0.0 0.0 0.0 0.0 0.0 100.0
Validation VC_L1 633 9.4 1.3 0.8 0.0 1.0 48.8%
VC L2 350 51.1 23.8 9.2 0.6 0.0
VC L3 1.7 27.8 46.3 51.7 9.2 3.8
VC L4 0.0 11.7 16.3 16.7 10.3 11.8
VC_L5 0.0 0.0 12.1 20.8 64.2 32.3
VC_L6 0.0 0.0 0.4 0.8 15.8 51.0
Ripe Calibration VC_L1 100.0 0.0 0.0 0.0 0.0 0.0 91.7%
side VC_L2 0.0 87.2 2.1 0.0 0.0 0.0
kel VC_L3 0.0 12.8 97.9 14.2 1.1 0.0
VC_L4 0.0 0.0 0.0 83.3 0.8 0.0
VC_L5 0.0 0.0 0.0 2.5 93.3 11.3
VC_L6 0.0 0.0 0.0 0.0 4.7 88.7
Validation VC_L1 100.0 0.0 0.0 0.0 0.0 0.0 78.0%
VC L2 0.0 73.3 5.0 0.0 0.0 0.0
VC_L3 0.0 26.7 90.0 43.3 4.4 0.0
VC_L4 0.0 0.0 5.0 53.3 2.2 0.0
VC_L5 0.0 0.0 0.0 3.3 76.7 25.3
VC_L6 0.0 0.0 0.0 0.0 16.7 74.7

**

*k*%

sgol-2-21-0, sgol-2-17-2; Nr = 312; NrPC = 16
sgol-2-21-0, sgol-2-21-1; Nr = 315; NrPC = 19
sgol-2-21-0; Nr =621; NrPC =19
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Table 25. PLSR prediction results of certain quality traits of BB sweet cherries of different ripeness.

BB Quality trait Pre-treatment Nr NrLV Rc? RMSEc Rcv? RMSEcy
Both L* sgol-2-21-0 537 15 0.76 5.42 0.72 5.87
sides a* sgol-2-21-0; msc 538 5 0.23 8.74 0.16 9.15

b* sgol-2-21-0 552 12 0.69 2.90 0.64 3.12
sgol-2-13-0;
0,
DMC (% m/m) sgol-2-17-1 650 19 0.85 2.35 0.82 2.55
. sgol-2-13-0;
0,
SSC (% brix) sgol-2-21-1 647 12 0.86 1.20 0.84 1.31
TA (mg/ g) sgol-2-21-0 651 20 0.72 0.48 0.65 0.54
sgol-2-21-0;
TAC (mg/ L) sgol-2-17-1 651 6 0.79 14.81 0.78 15.28
average L* sgol-2-21-0 712 15 0.75 5.41 0.71 5.83
. sgol-2-21-0;
average a sgol-2-21-1 673 29 0.44 6.29 0.22 7.47
* sgol-2-13-0;
average b sgol-2-13-1 713 10 0.72 2.52 0.68 2.71
* sgol-2-17-0;
Green L sgol-2-17-1 260 26 0.84 4.80 0.73 6.23
. sgol-2-21-0;
side @ sgol-2-13-1 264 25 0.49 5.54 0.21 6.92
b* sgol-2-21-0 268 12 0.69 2.98 0.57 351
sgol-2-13-0;
0,
DMC (% m/m) sgol-2-17-1 319 18 0.88 2.07 0.83 2.50
. sgol-2-13-0;
0,
SSC (% brix) sgol-2-21-1 336 13 0.88 1.13 0.83 1.31
sgol-2-13-0;
TA (mg/ g) sgol-2-13-1 307 20 0.76 0.44 0.65 0.53
sgol-2-21-0;
TAC (mg/ L) sgol-2-21-1 323 5 0.75 16.10 0.73 16.81
* sgol-2-13-0;
average L sgol-2-17-1 260 30 0.85 4.23 0.71 5.79
. sgol-2-21-0;
average a sgol-2-13-1 260 25 0.54 5.65 0.21 7.39
. sgol-2-21-0;
average b sgol-2-13-2 266 7 0.76 2.33 0.70 2.60
Ripe L* sgol-2-21-0 266 12 0.75 5.00 0.69 5.60
side a* sgol-2-21-0 266 10 0.34 9.62 0.19 10.60
b* sgol-2-21-0 270 15 074 2.38 0.64 2.80
sgol-2-13-0;
0,
DMC (% m/m) sgol-2-17-1 303 7 0.83 2.55 0.80 2.74
SSC (% brix) sgol-2-21-0; msc 316 10 0.89 1.09 0.86 1.23
TA (mg/ g) sgol-2-21-0 322 10 0.68 0.50 0.62 0.54
TAC (mg/ L) sgol-2-21-0; msc 306 12 0.86 12.14 0.83 1351
average L* sgol-2-21-0 262 14 0.79 491 0.71 5.78
. sgol-2-17-0;
average a sgol-2-17-1 260 15 0.46 6.11 0.27 7.13
. sgol-2-13-0;
average b sgol-2-13-1 267 9 0.74 242 0.67 2.75
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Table 26. PLSR prediction results of certain quality traits of VVC sweet cherries of different ripeness.

VvC Quality trait Pre-treatment Nr NrLV Rc2 RMSEc Rcv? RMSEcy
Both L* sg0l-2-210, 455 30 086 450 079 541
sgol-2-21-1
sides  a* sgol-2-130, 48 22 060 605 050  6.80
sgol-2-21-1
b* sgol-2-21-0 442 14 0.73 2.39 0.68 2.59
0 sgol-2-13-0,
DMC (% m/m) sgol-2-13-1 527 18 0.72 2.63 0.63 2.99
SSC (% brix) sgol-2-21-0 497 21 0.95 0.70 0.92 0.82
sgol-2-13-0,
TA (mg/ g) sgol-2-13-1 486 18 0.47 0.67 0.37 0.72
TAC (mg/ L) sgol-2-21-0, msc 507 14 0.85 20.93 0.83 22.64
* sgol-2-21-0,
average L sgol-2-21-1 552 30 0.86 4.32 0.81 5.09
- sgol-2-17-0,
average a sgol-2-13-1 548 30 0.70 4.81 0.61 5.45
average b* sgol-2-21-0 563 15 0.84 1.72 0.80 1.90
Green L* sgol-2-17-0, h08 94 089 427 083 532
sgol-2-17-2
side a* sgol-2-21-0 210 13 0.58 5.65 0.45 6.50
- sgol-2-21-0,
b sgol-2-21-2 216 5 0.76 2.21 0.73 2.37
0 sgol-2-13-0,
DMC (% m/m) sgol-2-13-2 244 5 0.68 2.71 0.60 3.05
o b sgol-2-21-0,
SSC (% brix) sgol-2-17-1 239 10 0.95 0.69 0.93 0.79
TA (mg/ g) sgol-2-21-0 252 11 0.42 0.65 0.12 0.80
TAC (mg/ L) sgol-2-21-0 253 15 0.91 16.20 0.87 19.86
- sgol-2-13-0,
average L 5g0l-2-17-2 211 17 0.89 3.79 0.83 4.77
average a* sgol-2-21-0 208 13 0.69 4.83 0.58 5.61
- sgol-2-13-0,
average b sgol-2-13-1 214 9 0.85 1.69 0.79 1.98
. * sgol-2-21-0,
Ripe L sgol-2-13-2 210 10 0.83 4.40 0.74 5.36
side  a* sgol-2-21-0, 515 51 079 472 068 580
sgol-2-21-1
- sgol-2-13-0,
b sgol-2-17-1 217 10 0.69 2.55 0.59 2.95
0 sgol-2-21-0,
DMC (% m/m) sgol-2-21-1 254 10 0.78 2.34 0.72 2.62
o b sgol-2-17-0,
SSC (% brix) sgol-2-13-2 228 19 0.96 0.60 0.92 0.89
TA (mg/ g) sgol-2-21-0 249 17 0.55 0.63 0.34 0.76
sgol-2-13-0,
TAC (mg/ L) sgol-2-13-2 244 16 0.88 18.88 0.78 26.22
- sgol-2-17-0,
average L 5g0l-2-17-2 214 8 0.83 4.76 0.78 5.44
- sgol-2-17-0,
average a sgol-2-21-1 210 16 0.71 4.63 0.58 5.62
- sgol-2-21-0,
average b sgol-2-21-1 214 15 0.86 1.63 0.76 2.10
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Table 27. PCA-LDA classification accuracies on the NIR spectra of KJ sour cherries when classification
was based on fruit ripeness.

KJ KJ L2 KJ L3 KJ L4 KJ L5 Classification accuracy
Both Calibration KJ L2 96.9 2.2 0.0 0.0 87.8%
sides KJ L3 3.1 93.8 16.9 0.1

* KJ L4 0.0 4.0 62.7 2.3
KJ_L5 0.0 0.0 20.4 97.6

Validation  KJ_L2 95.0 53 0.0 0.0 82.4%
KJ_L3 5.0 86.0 21.7 1.9
KJ L4 0.0 8.7 55.8 5.3
KJ L5 0.0 0.0 225 92.8

Green Calibration KJ L2 99.2 3.0 0.0 0.0 89.6%
side KJ_L3 0.8 92.7 15.0 0.0
*k KJ_L4 0.0 4.3 67.1 0.7
KJ_L5 0.0 0.0 17.9 99.3

Validation  KJ_L2 93.3 6.7 0.0 0.0 76.8%
KJ L3 6.7 80.0 28.3 1.0
KJ_L4 0.0 13.3 41.7 6.7
KJ_L5 0.0 0.0 30.0 924

Ripe  Calibration KJ L2 98.3 1.3 0.0 0.0 93.1%

side KJ_L3 1.7 93.3 6.7 0.0

Fkk KJ_L4 0.0 53 80.8 0.0
KJ_L5 0.0 0.0 12.5 100.0
Validation  KJ L2 95.0 2.7 0.0 0.0 80.7%
KJ L3 5.0 84.0 21.7 0.0
KJ_L4 0.0 13.3 51.7 7.8
KJ_L5 0.0 0.0 26.7 92.2
* sgol-2-21-0; Nr =597; NrPC = 20
*k sgol-2-21-0; Nr = 300; NrPC = 20
Fkk sgol-2-21-0; Nr =297; NrPC =19
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Table 28. PCA-LDA classification accuracies on the NIR spectra of UF sour cherries when classification
was based on fruit ripeness.

UF UF L2 UF L3 UF L4 UF L5 Classification accuracy
Both  Calibration UF_L2 90.8 1.9 0.0 0.0 87.0%
sides UF_L3 9.2 88.6 11.0 0.0

* UF_L4 0.0 8.5 76.3 7.7
UF_L5 0.0 1.0 12.7 92.3

Validation  UF_L2 85.0 5.0 0.0 0.0 78.3%
UF_L3 15.0 82.8 19.2 15
UF_L4 0.0 11.1 59.2 12.4
UF_L5 0.0 1.1 21.7 86.1

Green Calibration UF_L2 93.8 0.0 0.0 0.0 91.6%
side UF_L3 6.3 93.6 7.9 0.0
*k UF_L4 0.0 6.4 82.1 3.2
UF_L5 0.0 0.0 10.0 96.8

Validation  UF_L2 81.7 3.3 0.0 0.0 80.9%
UF_L3 18.3 83.3 16.7 0.0
UF L4 0.0 13.3 68.3 9.8
UF L5 0.0 0.0 15.0 90.2

Ripe  Calibration UF_L2 91.7 2.2 0.0 0.0 86.6%

side UF_L3 5.0 87.2 16.7 1.8

Fkk UF_L4 3.3 9.2 81.3 119
UF_L5 0.0 1.4 2.1 86.4
Validation  UF L2 90.0 4.4 0.0 0.0 78.4%
UF_L3 6.7 81.1 28.3 4.0
UF_L4 3.3 10.0 61.7 15.2
UF_L5 0.0 4.4 10.0 80.8
* sgol-2-21-0; Nr = 621; NrPC =19
*k sgol-2-21-0; Nr = 312; NrPC = 20
el sgol-2-21-0, sgol-2-17-2; Nr = 309; NrPC =11
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Table 29. PLSR prediction results for certain quality traits of KJ sour cherries of different ripeness.

KJ Quality trait Pre-treatment Nr NrLV Rc? RMSEc Rcv? RMSEcy
Both L~ sgol-2-21-0 410 18 0.81 2.59 0.74 3.03
sides a* sgol-2-21-0 416 6 0.73 4.42 0.72 4.52

b* sgol-2-21-0 437 0.90 1.62 0.88 1.73

sgol-2-21-0;
DMC (% m/m) s%ol-Z-l?-l 493 7 0.69 1.77 0.64 1.89
SSC (% brix) sgol-2-21-0; msc 499 12 0.50 1.34 0.44 1.42
sgol-2-21-0;

TA (mg/ g) s%ol-Z-Zl-l 510 12 0.57 2.08 0.52 2.22

TAC (mg/ L) sgol-2-21-0 483 18 0.89 16.57 0.86 18.77
average L* sgol-2-21-0 555 16 0.83 2.30 0.78 2.60
average a* sgol-2-21-0 587 7 0.80 3.41 0.78 3.59
average b* sgol-2-21-0 557 12 0.91 1.50 0.88 1.68

Green L* sgol-2-21-0 206 11 0.83 2.60 0.75 3.18
side a* sgol-2-21-0 202 5 0.58 4.85 0.56 4.98
b* sgol-2-21-0 204 12 0.93 1.42 0.90 1.69

DMC (% m/m) sgol-2-21-0 247 9 0.68 1.78 0.56 2.10

SSC (% brix) sgol-2-21-0; msc 229 10 0.51 1.36 0.42 1.47

TA (mg/ g) sgol-2-21-0 242 12 067 1.79 0.54 2.09

TAC (mg/ L) sgol-2-21-0 244 14 0.91 15.14 0.87 18.03
average L* sgol-2-21-0 200 17 0.89 1.88 0.81 2.44
average a* sgol-2-21-0 200 7 0.82 3.24 0.80 3.42
average b* sgol-2-21-0 204 12 0.93 1.26 0.91 151

Ripe L* sgol-2-21-0 200 14 0.86 1.92 0.80 2.31
side a* sgol-2-21-0 208 5 0.92 2.59 0.91 2.77
b* sgol-2-21-0 202 5 0.90 1.50 0.89 1.57

DMC (% m/m) sgol-2-21-0 232 9 0.79 1.47 0.72 1.67

SSC (% brix) sgol-2-21-0; deTr 256 5 0.59 1.23 0.55 1.28

TA (mg/ g) sgol-2-21-0 237 9 0.62 191 0.55 2.09

TAC (mg/ L) sgol-2-21-0 233 14 0.88 17.22 0.79 22.57
average L* sgol-2-21-0 198 13 0.87 2.01 0.82 2.42
average a* sgol-2-21-0 198 7 0.82 3.24 0.78 3.58
average b* sgol-2-21-0 204 13 0.93 1.28 0.89 1.62
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Table 30. PLSR prediction results of certain quality traits of UF sour cherries of different ripeness.

UF Quality trait Pre-treatment Nr  NrLV Rc® RMSEc Rcv? RMSEcy
Both L* sgol-2-21-0 444 14 0.81 2.70 0.77 2.93
sides a* sgol-2-21-0 429 6 0.57 5.14 0.55 5.26

b* sgol-2-21-0 439 20 0.89 1.78 0.84 2.18

DMC (% m/m) sgol-2-21-0 502 15 0.58 151 0.50 1.65

SSC (% brix) sgol-2-21-0 531 15 0.85 1.02 0.82 1.13
sgol-2-13-0,

TA (mg/ g) s%ol-2-13-2 523 9 0.48 1.45 0.39 1.57

TAC (mg/ L) sgol-2-21-0 540 16 0.86 21.59 0.83 23.75

average L* sgol-2-21-0 564 24 0.85 231 0.79 2.74

average a* sgol-2-21-0 547 27 0.80 3.12 0.69 3.90

average b* sgol-2-21-0 573 17 0.90 1.69 0.87 1.94

Green L* sgol-2-21-0 215 16 0.88 2.52 0.76 3.53

side a* sgol-2-21-0 212 6 0.48 5.12 0.40 5.50

b* sgol-2-21-0 214 13 0.90 1.93 0.86 2.29

DMC (% m/m) sgol-2-21-0 260 9 0.47 1.72 0.29 1.99

SSC (% brix) sgol-2-21-0 271 18 0.88 0.91 0.81 1.15
sgol-2-21-0,

TA (mg/ g) s%ol-2-13-2 264 9 0.49 1.43 0.35 1.60

TAC (mg/ L) sgol-2-21-0 242 10 0.89 18.67 0.87 20.98

average L* sgol-2-21-0 209 16 0.88 2.03 0.78 2.76

average a* sgol-2-21-0 211 6 0.71 3.79 0.67 4.09

average b* sgol-2-21-0 210 11 0.91 1.54 0.89 1.78

Ripe L* sgol-2-21-0 216 10 0.79 2.25 0.73 2.52

side a* sgol-2-21-0 210 15 0.88 2.95 0.81 3.71

b* sgol-2-21-0 218 15 0.91 1.42 0.86 1.77

Dry matter sgol-2-21-0 254 16 0.70 1.37 0.56 1.65

Soluble solids sgol-2-21-0, 240 9 087 098 08 110
sgol-2-13-2

Total acidity sgol-2-21-0, deTr 245 0.53 1.41 0.43 1.56

Anthocyanin content sgol-2-21-0 248 0.82 24.22 0.79 26.57

average L* sgol-2-21-0 208 12 0.83 244 0.74 3.01

average a* sgol-2-21-0 208 10 0.71 3.77 0.61 4.41

average b* sgol-2-21-0 208 20 0.91 1.59 0.82 2.25
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Table 31. PCA-LDA classification accuracies on the NIR spectra of EL plums when classification was
based on fruit ripeness.

Classification

EL EL L1 EL L2 EL L3 EL L4 EL_LS5
accuracy
Both  Calibration EL_L1 98.3 20.0 0.0 0.0 0.0 76.8%
sides EL L2 1.7 80.0 0.0 0.0 0.0
* EL L3 0.0 0.0 74.2 29.4 16.4
EL L4 0.0 0.0 18.1 63.9 15.8
EL L5 0.0 0.0 7.7 6.7 67.8
Validation EL_L1 97.0 33.3 0.0 0.0 0.0 66.5%
EL L2 3.0 66.7 0.0 0.0 0.0
EL L3 0.0 0.0 53.3 37.8 23.3
EL L4 0.0 0.0 325 55.6 16.7
EL L5 0.0 0.0 14.2 6.7 60.0
Green Calibration EL_L1 99.1 21.7 0.0 0.0 0.0 82.1%
side EL L2 0.2 78.3 0.0 0.0 0.0
** EL L3 0.7 0.0 79.6 28.9 8.3
EL L4 0.0 0.0 15.0 71.1 9.4
EL L5 0.0 0.0 5.4 0.0 82.2
Validation EL_L1 99.3 46.7 0.0 0.0 0.0 70.7%
EL L2 0.7 53.3 0.0 0.0 0.0
EL L3 0.0 0.0 63.3 31.1 20.0
EL L4 0.0 0.0 23.3 68.9 11.1
EL L5 0.0 0.0 13.3 0.0 68.9
Ripe  Calibration EL_L1 97.78 16.67 0 0 0 79.75%
side EL L2 2.2 83.3 0.0 0.0 0.0
falei EL L3 0.0 0.0 75.4 11.7 17.8
EL L4 0.0 0.0 13.8 78.9 18.9
EL_ L5 0.0 0.0 10.8 94 63.3
Validation EL_L1 96.3 53.3 0.0 0.0 0.0 60.1%
EL L2 3.7 46.7 0.0 0.0 0.0
EL L3 0.0 0.0 46.7 26.7 33.3
EL L4 0.0 0.0 31.7 60.0 15.6
EL_ L5 0.0 0.0 21.7 13.3 51.1
* sgol-2-21-0; Nr = 297; NrPC =19
*x sgol-2-13-0, sgol-2-17-1; Nr = 600; NrPC = 15
Fkx sgol-2-21-0, sgol-2-21-1; Nr = 300; NrPC = 12
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Table 32. PCA-LDA classification accuracies on the NIR spectra of ST plums when classification was
based on fruit ripeness.

ST ST L1 ST L2 ST L3 ST L4 Classification accuracy
Both  Calibration ST_L1 81.0 46.5 0.0 0.0 71.1%
sides ST L2 19.0 53.5 0.0 0.0

* ST L3 0.0 0.0 52.5 2.4
ST L4 0.0 0.0 47.5 97.6

Validation  ST_L1 80.0 61.7 0.0 0.0 59.5%
ST L2 19.4 38.3 0.0 0.0
ST L3 0.0 0.0 23.3 3.8
ST L4 0.6 0.0 76.7 96.3

Green Calibration ST L1 85.6 25.0 0.0 0.0 88.2%
side ST L2 14.4 75.0 0.0 0.0
*k ST L3 0.0 0.0 95.0 2.8
ST L4 0.0 0.0 5.0 97.2

Validation ST L1 73.3 48.3 0.0 0.0 58.7%
ST L2 26.7 51.7 0.0 0.0
ST L3 0.0 0.0 20.0 10.4
ST L4 0.0 0.0 80.0 89.6

Ripe  Calibration ST_L1 86.1 15.4 0.0 0.0 85.4%

side ST L2 13.9 84.6 0.0 0.0

falaied ST L3 0.0 0.0 71.7 0.6

ST L4 0.0 0.0 28.3 994

Validation ST L1 76.7 30.0 0.0 0.0 68.0%

ST L2 23.3 70.0 0.0 0.0

ST L3 0.0 0.0 26.7 15

ST L4 0.0 0.0 73.3 98.5
* sgol-2-21-0, deTr; Nr =597; NrPC = 13
el sgol-2-21-0, msc; Nr = 300; NrPC = 20
falaa sgol-2-21-0, deTr; Nr =297; NrPC = 13
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Table 33. PLSR prediction results of certain quality traits of EL plums of different ripeness.

EL Quality trait Pre-treatment Nr NrLV Rc? RMSEc Rcv? RMSEcy
Both L* sgol-2-21-0 412 18 0.83 4.10 0.76 4.82
sides  a* sgol2-21°0, 13 079 200 074 327

sgol-2-17-2
. sgol-2-17-0,
b sgol-2-13-1 410 16 0.82 3.94 0.75 4.60
sgol-2-21-0,
0,
DMC (% m/m) sgol-2-21-2 510 6 0.24 111 0.16 1.17
. sgol-2-13-0,
0,
SSC (% brix) sgol-2-13-2 492 12 0.96 0.35 0.95 0.40
TA (mg/ g) sgol-2-21-0 508 15 0.96 0.66 0.96 0.74
TAC (mg/ L) sgol-2-21-0 496 3 0.77 1.04 0.76 1.06
average L* sgol-2-21-0 545 18 0.91 2.67 0.87 3.17
. sgol-2-13-0,
average a sgol-2-13-2 525 9 0.89 1.94 0.86 2.17
average b* sgol-2-21-0 527 12 0.89 2.76 0.85 3.14
Green L* sgol-2-21-0 200 9 0.80 3.79 0.74 4.29
side  a* gol2-210. 505 50 08g 210 083 262
sgol-2-17-1
b* sgol-2-21-0 202 0.80 3.53 0.76 3.88
DMC (% m/m) sgol-2-21-0, deTr 264 7 0.45 1.02 0.35 111
. sgol-2-17-0,
0,
SSC (% brix) sgol-2-17-2 238 12 0.97 0.32 0.95 0.41
sgol-2-17-0,
TA (mg/ g) sgol-2-13-1 243 13 0.97 0.58 0.95 0.74
sgol-2-21-0,
TAC (mg/ L) sgol-2-21-1 236 6 0.82 0.90 0.75 1.04
average L* sgol-2-21-0 206 12 0.91 2.62 0.88 3.10
. sgol-2-17-0,
average a sgol-2-13-2 208 7 0.88 1.98 0.85 2.28
. sgol-2-17-0,
average b sgol-2-13-1 200 29 0.93 2.22 0.86 3.07
. * sgol-2-13-0,
Ripe L sgol-2-13-2 204 8 0.92 2.92 0.86 3.87

, x sgol-2-13-0,

side a sgol-2-21-2 211 6 0.76 2.99 0.70 3.36
* sgol-2-13-0,
b sgol-2-21-1 205 13 0.91 2.81 0.87 3.44
sgol-2-21-0,
Dry matter sgol-2-21-2 239 6 0.30 1.08 0.12 1.22
Soluble solids sgol2-13:0. o 95 097 034 093 049
sgol-2-13-2
Total acidity sgol-2-21-0 234 15 0.98 0.50 0.97 0.62
Anthocyanin content  sgol-2-21-0, msc 256 6 0.76 1.01 0.71 1.12
average L* sgol-2-21-0 206 11 0.91 2.65 0.85 3.38
. sgol-2-17-0,
average a sgol-2-17-2 208 12 0.91 1.72 0.85 2.27
. sgol-2-21-0,
average b sgol-2-21-1 200 13 0.92 240 0.88 2.84
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Table 34. PLSR prediction results of certain quality traits of ST plums of different ripeness.

ST Quality trait Pre-treatment Nr NrLV Rc2 RMSEc Rcv? RMSEcy
Both L* sQol-2-17-0, 403 39 g2 370 071 465
sgol-2-17-2
sides  a* sgol-2-13-0, o0 51 062 378 050 437
sgol-2-21-2
- sgol-2-17-0,
b ol213l 420 11 073 454 067 507
DMC (% m/m) sgol-221-0 515 4 023 099 018 102
SSC (% brix) Z%%II221271% 476 18 091 044 088 051
TA (mg/ g) i%%'lzzzlé% 492 19 093 059 090 069
average L* sgol-2-21-0 556 15 086 275 082 3.2
average a* Z%céllzzlzi(i 528 30 080 209 073 240
average b* Z%%I|2211%% 542 7 080 316 076 345
Green L* sgol-2-21-0, 551 57 092 224 081 342
sgol-2-21-2
. - sgol-2-17-0,
side a 5g0l-2-13-2 209 7 0.95 1.52 0.92 1.94
- sgol-2-21-0,
b wolo17s 0L 9 084 306 076 382
DMC (% m/m) sgol-2-21-0 247 3 020 101 043 106
SSC (% brix) sgol-2-21-0 240 16 093 040 086 055
TA (mg/ g) sgol-2-21-0 245 17 0.92 0.61 0.85 0.84
TAC (mg/ L) SS%C(;IIZZ]i??g 253 4 029 442 018 475
average L* i%%'lzzll%g 200 7 087 267 078 346
average a* sgol-2-21-0, deTr 204 19 0.82 1.94 0.67 2.61
average b* Z%%'Izzll%% 200 6 081 309 072 371
. sgol-2-17-0,
Ripe L* soloirz 21 6 072 404 065 458
. - sgol-2-13-0,
side  a sol213e 207 4 028 36 017 398
- sgol-2-13-0,
b i3l 203 8 072 399 065 451
DMC (% m/m) sgol-2-21-0 222 3 036 08 028 091
SSC (% brix) Sggogl'_zz' D% 23 7 0% 046 088 052
TA (mg/ g) z%%'lzzzlgol 231 18 094 052 090 066
TAC (mg/ L) sgol-2-21-0 228 2 0.26 4.95 0.22 5.06
- sgol-2-21-0,
average L sgol-2-13-2 199 7 0.86 2.71 0.81 3.20
* sgol-2-13-0,
average a sgol-2-21-2 205 10 0.80 2.02 0.73 2.35
* sgol-2-17-0,
average b 5g0l-2-13-2 198 7 0.83 2.87 0.79 3.22
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10.2.3. Annexes to the Monilinia detection results
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Figure 65. NIR spectra of sour cherries treated in different ways: raw spectra of EB cherries (a); raw spectra of UF
cherries (b); 2" derivative spectra of EB cherries (c); 2" derivative spectra of UF cherries (d).
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Figure 66. SIMCA on the NIR spectra of UF cherries when discrimination was based on fruit treatment on certain
storage days (sgol-2-21-0, msc): SIMCA interclass distances on the 1% day of storage (a); SIMCA discrimination
power plot on the 1% day of storage (b); SIMCA interclass distances on the 3™ day of storage (c); SIMCA
discrimination power plot on the 3 day of storage (d); SIMCA interclass distances on the 7™ day of storage (e);
SIMCA discrimination power plot on the 7" day of storage (f).
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Figure 67. PCA-LDA on the NIR spectra of EB cherries when classification was based on initial conidial
contamination: PCA-LDA score plot of “5 °C Injury” samples (a); LDA discriminating power plot of “5 °C Injury”
samples (b); PCA-LDA score plot of “5 °C Intact” samples (¢); LDA discriminating power plot of “5 °C Intact”
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Figure 68. NIR spectra of plums treated in different ways: raw spectra of TD plums (a); raw spectra of TP plums (b);
2" derivative spectra of TD plums (c); 2" derivative spectra of TP plums (d).
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Figure 69. SIMCA on NIR spectra of TD plums when discrimination was based on fruit treatment on certain storage
days (sgol-2-21-0, msc): SIMCA interclass distances on the 1% day of storage (a); SIMCA discrimination power plot
on the 1%t day of storage (b); SIMCA interclass distances on the 4™ day of storage (c); SIMCA discrimination power
plot on the 4™ day of storage (d); SIMCA interclass distances on the 7' day of storage (e); SIMCA discrimination
power plot on the 7 day of storage (f).
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Figure 70. PCA-LDA on the NIR spectra of TD plums when classification was based on initial conidial
contamination: PCA-LDA score plot of “5 °C Injury” samples (a); LDA discriminating power plot of 5 °C Injury”
samples (b); PCA-LDA score plot of “5 °C Intact” samples (c); LDA discriminating power plot of “5 °C Intact”
samples (d); PCA-LDA score plot of “22 °C Injury” samples (e); LDA discriminating power plot of “22 °C Injury”
samples (f); PCA-LDA score plot of “22 °C Intact” samples (g); LDA discriminating power plot of “22 °C Intact”
samples (h).
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Figure 71. HSI spectra of sour cherries treated in different ways: raw spectra of EB cherries (a); raw spectra of UF
cherries (b); 2" derivative spectra of EB cherries (c); 2" derivative spectra of UF cherries (d).

—Day 1

1.0

SIMCA interclass distance
=]

=

~Day3

SIMCA interclass distance
=

0 ‘I

C Infacty,

=3

20 —pay7

-

=

=3

5

SIMCA interclass distance

o

Lol ‘“ ol |“| i “llﬂ

S9C Infactyy

0 oCiutact,,  5°CTutaciy

-y
 UF - § °C_lntact_inf
 UF - § °C_Injury_inf
W UF-25 °C_fntact_con
TF - 25 5C_Tntact_inf
TF =25 °C_Iujury_inf

5 °C_lntact_con

||| || ‘ll[ﬂ ‘|||n |i||]

njuryye 25 OC TIACt,y 25 °C TJUIYVegy

Sample group
a)

B UF -5 °C Infact

BT -5 °C Intacty

B UF -5 °C Injuryy:

B UF —25°C Intact g,
UE =25 °C Infacti,r
UF —25°C Injuryay

S9CInjuryy,  25°CInncty, 25°CImtact,  25°C Injurvy

Sample group
o UF -5 °C Intactes,
UF - 25°C Intaetys
UF —25 °C Injury,,:

[
il W UF -5 °C tactac
5°CInjuryyy  25°CTatact,, 25°CTmtact, 25°C Injury

BUF -5 °C Injuryur
U -25°C Infacty
Sample group
€)

SIMCA discriminating power SIMCA discriminating power

SIMCA discriminating power

—Day 1
40
30
20
10
0.0
1000 1100 1200 1300 1400 1500 1600

‘Wavelength (nm)
b)

9

— Day3
8 i
7 |||
o ]

| ~
5 /
IR \\
4 5 / \ ~
s/ \ o\ A PUAN
/ \ \ / \ e
s v VRPN, N ay
1
0
1000 1100 1200 1300 1400 1500 1600
‘Wavelength (nm)
d)

10 Day 7
9 —
8
7
o
5
4
3
2
1
0
1000 1100 1200 1300 1400 1500 1600

Wavelength (nm)
D

Figure 72. SIMCA on the HSI spectra of UF cherries when discrimination was based on fruit treatment on certain
storage days (sgol-2-21-0, msc): SIMCA interclass distances on the 1% day of storage (a); SIMCA discrimination
power plot on the 1% day of storage (b); SIMCA interclass distances on the 3" day of storage (c); SIMCA
discrimination power plot on the 3" day of storage (d); SIMCA interclass distances on the 7™ day of storage (e);

SIMCA discrimination power plot on the 7™ day of storage (f).
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Figure 73. PCA-LDA on the HSI spectra of EB cherries when classification was based on initial conidial
contamination: PCA-LDA score plot of “5 °C Injury” samples (a); LDA discriminating power plot of “5 °C Injury”
samples (b); PCA-LDA score plot of “5 °C Intact” samples (c); LDA discriminating power plot of “5 °C Intact”
samples (d); PCA-LDA score plot of “25 °C Injury” samples (e); LDA discriminating power plot of “25 °C Injury”
samples (f); PCA-LDA score plot of “25 °C Intact” samples (g); LDA discriminating power plot of “25 °C Intact”

samples (h).
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score plots of plums treated in different ways (a); PCA loading plot of TD plums (b); PCA loading plot of TP plums
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Figure 75. SIMCA on the HSI spectra of TP plums when discrimination was based on fruit treatment on certain
storage days (sgol-2-21-0, msc): SIMCA interclass distances on the 2" day of storage (a); SIMCA discrimination
power plot on the 2™ day of storage (b); SIMCA interclass distances on the 4" day of storage (c); SIMCA
discrimination power plot on the 4" day of storage (d); SIMCA interclass distances on the 7™ day of storage (e);

SIMCA discrimination power plot on the 7" day of storage (f).
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Figure 76. PCA-LDA on the HSI spectra of TP plums when classification was based on initial conidial contamination:
PCA-LDA score plot of “5 °C Injury” samples (a); LDA discriminating power plot of “5 °C Injury” samples (b); PCA-
LDA score plot of ““5 °C Intact” samples (c); LDA discriminating power plot of “5 °C Intact” samples (d); PCA-LDA
score plot of “22 °C Injury” samples (e); LDA discriminating power plot of “22 °C Injury” samples (f); PCA-LDA
score plot of “22 °C Intact” samples (g); LDA discriminating power plot of “22 °C Intact” samples (h).
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Table 35. PCA-LDA classification accuracies on the NIR spectra of EB sour cherries when classification
was based on initial conidial contamination.

EB . Ir'1|t|al 0.15 con./pL. 1.5 con./pL. 15 con./pL. 150 con./pL CIaSSIflca.tlon
conidium conc. accuracies

5°C Calibration 0.15 con./pL 65.8 94 7.7 134 63.1%
Injury 1.5 con./pL 3.3 65.6 28.2 13.4
* 15 con./pL 13.2 17.8 54.5 6.7
150 con./pLL 17.8 7.2 9.6 66.5

Validation  0.15 con./pL 36.8 111 10.3 19.5 34.1%
1.5 con./pL 13.2 37.8 48.7 244
15 con./pLL 15.8 26.7 20.5 14.6
150 con./pL. 34.2 24.4 20.5 41.5

5°C Calibration 0.15 con./pL 84.3 12.2 6.3 0.6 77.6%
Intact 1.5 con./pL 5.8 65.9 11.9 4.6
*x 15 con./pL 6.4 9.2 775 11.9
150 con./uL 3.5 12.8 4.4 83.0

Validation  0.15 con./pL 37.2 39.0 125 9.1 30.5%
1.5 con./pL 18.6 7.3 25.0 20.5
15 con./pLL 27.9 14.6 27.5 20.5
150 con./pLL 16.3 39.0 35.0 50.0

25°C Calibration 0.15 con./uL 77.8 11.9 15.6 6.8 72.6%
Injury 1.5 con./pL 8.9 67.9 111 5.3
falele 15 con./pL 10.0 11.9 66.7 9.9
150 con./pL. 3.3 8.3 6.7 78.0

Validation  0.15 con./pL 311 31.0 40.0 12.1 23.5%
1.5 con./pLL 26.7 214 22.2 27.3
15 con./pL 244 28.6 111 30.3
150 con./pL 17.8 19.1 26.7 30.3

25°C Calibration 0.15 con./pL 76.7 8.9 17.1 3.6 75.4%
Intact 1.5 con./pL 6.1 72.8 6.7 8.9
faleial 15 con./pL 15.0 11.7 67.7 3.0
150 con./pLL 2.2 6.7 8.5 84.5

Validation  0.15 con./pL 37.8 35.6 31.7 23.8 31.0%
1.5 con./pL 24.4 31.1 36.6 19.1
15 con./pL 15.6 17.8 12.2 14.3
150 con./pL 22.2 15.6 195 42.9

**

*k*%

*kk*k

sgol-2-13-0, sgol-2-13-2; Nr = 163; NrPCs = 12
sgol-2-17-0, sgol-2-21-1; Nr = 168; NrPCs = 20
sgol-2-21-0, msc; Nr = 165; NrPCs = 19
sgol-2-13-0, sgol-2-21-1; Nr = 173; NrPCs = 19

164


mailto:sgol@2-13-0,
mailto:sgol@2-13-2
mailto:sgol@2-17-0,
mailto:sgol@2-21-1
mailto:sgol@2-21-0,
mailto:sgol@2-13-0,
mailto:sgol@2-21-1

Table 36. PCA-LDA classification accuracies on the NIR spectra of UF sour cherries when classification
was based on initial conidial contamination.

UF .'T"t'a' 0.17 con./uL. 1.7 con./pL. 17 con./uL. 170 con./pL CIaSSIflca.tlon
conidium conc. accuracies

5°C Calibration 0.17 con./pL 93.0 0.0 0.6 0.0 85.1%
Injury 1.7 con./pL 2.0 72.2 3.0 13.7
* 17 con./pL 4.0 10.0 91.1 24
170 con./pL. 1.0 17.8 54 83.9

Validation  0.17 con./pL 56.0 6.7 4.8 4.8 40.9%
1.7 con./pL 20.0 24.4 19.1 40.5
17 con./pL 20.0 311 50.0 214
170 con./pLL 4.0 37.8 26.2 33.3

5°C Calibration 0.17 con./pL 72.0 5.1 7.1 17.3 70.6%
Intact 1.7 con./pL 131 71.2 8.9 5.8
*x 17 con./pL 4.2 115 72.0 9.6
170 con./pLL 10.7 12.2 11.9 67.3

Validation  0.17 con./pL 45.2 10.3 16.7 30.8 42.0%
1.7 con./pL 26.2 51.3 214 7.7
17 con./pL 7.1 28.2 38.1 28.2
170 con./pL 214 10.3 23.8 333

25°C Calibration 0.17 con./pL 61.9 10.0 10.7 19.4 58.2%
Injury 1.7 con./pL 8.3 63.3 16.1 15.0
falele 17 con./pL 11.9 15.0 60.7 18.9
170 con./pL 17.9 11.7 12.5 46.7

Validation  0.17 con./pL 35.7 28.9 14.3 35.6 24.6%
1.7 con./pLL 11.9 17.8 21.4 26.7
17 con./pL 23.8 35.6 40.5 333
170 con./pL 28.6 17.8 23.8 4.4

25°C Calibration 0.17 con./pL 68.5 17.2 10.3 9.7 69.7%
Intact 1.7 con./pL 19.1 66.1 7.1 8.3
faleial 17 con./pL 4.2 12.2 76.3 13.9
170 con./pL 8.3 4.4 6.4 68.1

Validation  0.17 con./pL 42.9 44.4 18.0 33.3 31.5%
1.7 con./pL 14.3 8.9 23.1 13.9
17 con./pL 21.4 44.4 41.0 19.4
170 con./pL 21.4 2.2 18.0 33.3

**

*k*%

*kk*k

sgol-2-21-0; Nr = 154; NrPCs = 20
sgol-2-17-0, sgol-2-21-1; Nr = 162; NrPCs = 11
sgol-2-13-0, sgol-2-17-2; Nr = 174; NrPCs = 13
sgol-2-21-0, sgol-2-21-1; Nr = 162; NrPCs = 14
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Table 37. PCA-LDA classification accuracies on the NIR spectra of sour cherries showing monilial activity
when classification was based on the day of appearance of visible infection signs + 2 days.

Classification

-2 days -1 day 0 day +1day +2days

accuracies

EB Calibration -2 days 85.2 124 6.1 2.2 0.0 77.2%
* -1 days 111 64.8 20.7 0.0 0.0
0 days 3.7 22.2 65.7 2.2 0.0
+1 days 0.0 0.6 3.0 75.6 5.1
+2 days 0.0 0.0 4.6 20.0 94.9

Validation -2 days 52.4 37.0 18.2 13.3 0.0 48.2%
-1 days 30.2 25.9 16.7 0.0 0.0
0 days 14.3 31.5 51.5 26.7 3.9
+1 days 1.6 1.9 4.6 26.7 115
+2 days 1.6 3.7 9.1 33.3 84.6

UF Calibration -2 days 35.3 9.34 7.6 2.8 0.4 49.1%
*x -1 days 39.2 57.07 26.6 8.7 13.9
0 days 15.7 24.75 45.1 23.6 25.4
+1 days 7.4 5.05 9.5 50.7 3.2
+2 days 25 3.79 111 14.2 57.1

Validation -2 days 17.7 30.3 14.1 6.9 1.6 31.7%
-1 days 54.9 34.34 15.2 11.1 25.4
0 days 15.7 13.13 33.7 37.5 19.1
+1 days 7.8 13.13 13.0 25.0 6.4
+2 days 3.9 9.09 23.9 19.4 47.6

* sgol-2-13-0, sgol-2-21-1; Nr = 224; NrPCs = 19

el sgol-2-21-0; Nr = 377; NrPCs = 13
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Table 38. PCA-LDA classification accuracies on the NIR spectra of TD plums when classification was
based on initial conidial contamination.

Initial

Classification

TD - 1.05con./uL  10.5 con./uL 105 con./pL .
conidium conc. accuracies
5°C Calibration 1.05con./uL 80.4 9.3 21.4 76.5%
Injury 10.5 con./pL 3.6 80.0 9.5
* 105 con./pL 16.1 10.7 69.1
Validation  1.05 con./puL 47.6 45.7 38.1 34.0%
10.5 con./pL 214 25.7 33.3
105 con./pL 31.0 28.6 28.6
5°C Calibration 1.05con./uL 75.6 5.4 10.5 74.2%
Intact 10.5 con./pL 12.8 72.0 14.5
*k 105 con./pL. 115 22.6 75.0
Validation  1.05 con./uL 53.9 26.2 34.2 50.4%
10.5 con./pL 25.6 50.0 18.4
105 con./pL. 20.5 23.8 47.4
22°C Calibration 1.05con./uL 80.4 1.7 13.6 84.2%
Injury 10.5 con./pL 7.1 90.6 4.6
falale 105 con./pLL 125 7.8 81.8
Validation  1.05 con./uL 50.0 26.7 29.6 47.3%
10.5 con./pL 214 53.3 31.8
105 con./pL 28.6 20.0 38.6
22°C Calibration 1.05con./uL 68.2 5.8 16.7 77.8%
Intact 10.5 con./pL 114 89.1 7.1
falolale 105 con./pL 20.5 5.1 76.2
Validation  1.05 con./uL 18.2 5.1 33.3 39.2%
10.5 con./pL 24.2 59.0 26.2
105 con./pL 57.6 35.9 40.5

*kk

*kkk

sgol-2-17-0, sgol-2-21-1; Nr = 119; NrPCs = 15
sgol-2-21-0, msc; Nr = 119; NrPCs = 8

sgol-2-21-0; Nr = 131; NrPCs = 18

sgol-2-17-0, sgol-2-21-2; Nr = 114; NrPCs = 10
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Table 39. PCA-LDA classification accuracies on the NIR spectra of TP plums when classification was
based on initial conidial contamination.

Initial

Classification

TP - 2.31con/uL  23.1 con./pL 231 con./pL .
conidium conc. accuracies
5°C Calibration 2.31con./uL 82.0 1.9 0.0 92.9%
Injury 23.1 con./pL 15.0 98.1 14
* 231 con./pL. 3.0 0.0 98.6
Validation ~ 2.31 con./puL 20.0 51.3 8.3 47.2%
23.1 con./pL 64.0 41.0 111
231 con./pL. 16.0 7.7 80.6
5°C Calibration 2.31 con./uL 82.8 15.2 9.4 78.9%
Intact 23.1 con./pLL 15.6 76.2 12.8
*x 231 con./pLL 1.7 8.5 77.8
Validation  2.31 con./uL 48.9 56.1 26.7 35.1%
23.1 con./pLL 44.4 9.8 26.7
231 con./pL 6.7 34.2 46.7
22°C Calibration 2.31 con./uL 88.6 35 8.3 89.4%
Injury 23.1 con./pL 3.0 91.0 3.2
falale 231 con./pL. 8.3 5.6 88.5
Validation  2.31 con./puL 36.4 11.1 35.9 47.2%
23.1 con./pL 27.3 69.4 28.2
231 con./pL. 36.4 194 35.9
22°C Calibration 2.31 con./uL 83.9 6.6 5.4 87.9%
Intact 23.1 con./pL 7.8 89.9 4.8
falake 231 con./pL. 8.3 3.6 89.9
Validation  2.31 con./uL 33.3 45.2 23.8 51.6%
23.1 con./pL 33.3 54.8 9.5
231 con./pL 33.3 0.0 66.7
* sgol-2-21-0; Nr = 100; NrPCs = 18
*x sgol-2-21-0, sgol-2-17-2; Nr = 131; NrPCs = 12

*k*%

sgol-2-21-0, sgol-2-17-2; Nr = 108; NrPCs = 19
sgol-2-13-0, sgol-2-13-1; Nr = 129; NrPCs = 19

*kk*k
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Table 40. PCA-LDA classification accuracies on the NIR spectra of plums showing monilial activity when
classification was based on the day of appearance of visible infection signs + 2 days.

-2days  -1day Oday +lday +2days Classification

accuracies

TD Calibration -2 days 69.5 18.6 11.0 13.0 5.7 61.0%
* -1 days 16.4 55.5 18.8 12.0 6.1
0 days 8.9 17.3 60.4 12.7 10.2
+1 days 3.1 8.7 6.9 48.6 6.8
+2 days 2.2 0.0 3.0 13.8 71.2

Validation -2 days 56.7 21.8 10.7 145 3.0 49.6%
-1 days 22.1 49.5 22.6 20.3 7.6
0 days 9.6 18.8 39.3 7.3 15.2
+1 days 7.7 9.9 131 44.9 16.7
+2 days 3.9 0.0 14.3 13.0 57.6

TP Calibration -2 days 61.6 15.32 22.0 18.8 31.8 38.9%
** -1 days 185 49.73 28.0 27.9 37.9
0 days 13.4 27.42 41.6 15.4 9.1
+1 days 6.0 6.45 5.4 34.6 14.4
+2 days 0.6 1.08 3.0 3.3 6.8

Validation -2 days 50.0 32.26 31.3 25.0 42.4 25.3%
-1 days 21.4 29.03 36.1 25.0 21.2
0 days 20.2 31.18 24.1 23.3 27.3
+1 days 4.8 2.15 7.2 23.3 9.1
+2 days 3.6 5.38 1.2 3.3 0.0

* sgol-2-13-0, sgol-2-13-1; Nr = 424; NrPCs = 20

** sgol-2-21-0, sgol-2-17-2; Nr = 353; NrPCs = 11
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Table 41. PCA-LDA classification accuracies on the HSI spectra of EB sour cherries when classification
was based on initial conidial contamination.

EB .'T"t'a' 0.15con./uL 1.5 con./uL. 15 con./pL 150 con./pL CIaSSIflca.tlon
conidium conc. accuracies

5°C Calibration 0.15con./uL 85.3 8.6 5.3 2.1 85.5%
Injury 1.5 con./pL 9.6 85.0 7.6 0.0
* 15 con./pL 1.5 4.3 78.0 4.3
150 con./pL 3.7 2.1 9.1 93.6

Validation 0.15 con./puL 70.6 22.9 18.2 14.3 45.0%
1.5 con./pL 11.8 45.7 48.5 114
15 con./pL 5.9 28.6 121 22.9
150 con./pLL 11.8 2.9 21.2 51.4

5°C Calibration 0.15 con./puL 85.0 12.1 2.9 0.0 85.6%
Intact 1.5 con./pL 121 83.6 1.5 0.0
** 15 con./pL 2.9 3.6 82.4 8.3
150 con./pL 0.0 0.7 13.2 91.7

Validation 0.15 con./uL 37.1 54.3 5.9 3.0 33.1%
1.5 con./pL 42.9 14.3 29.4 0.0
15 con./pL 17.1 28.6 29.4 45.5
150 con./pL 2.9 2.9 35.3 51.5

25°C Calibration 0.15 con./uL 735 7.9 7.1 16.4 61.6%
Injury 1.5 con./pL 8.1 57.9 16.4 14.3
il 15 con./pL 0.7 17.1 55.7 10.0
150 con./pL 17.7 17.1 20.7 59.3

Validation 0.15 con./uL 47.1 114 14.3 20.0 39.6%
1.5 con./pL 38.2 42.9 31.4 22.9
15 con./pL 5.9 22.9 40.0 28.6
150 con./pL 8.8 22.9 14.3 28.6

25°C Calibration 0.15 con./uL 80.5 7.1 6.8 5.9 83.0%
Intact 1.5 con./pL 4.7 85.0 7.6 5.2
faleial 15 con./pL 6.3 2.1 81.1 3.7
150 con./pL 8.6 5.7 4.6 85.3

Validation 0.15 con./uL 31.3 22.9 21.2 20.6 36.6%
1.5 con./pLL 28.1 28.6 27.3 17.7
15 con./pL 25.0 22.9 394 14.7
150 con./pL 15.6 25.7 121 47.1

**

*k*

*kk*k

sgol-2-13-0, sgol-2-21-2; Nr = 137; NrPCs = 18

sgol-2-21-0, msc; Nr = 137; NrPCs = 20

sgol-2-21-0, sgol-2-17-2; Nr = 139; NrPCs = 6
sgol-2-13-0, sgol-2-13-2; Nr = 134; NrPCs = 20
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Table 42. PCA-LDA classification accuracies on the HSI spectra of UF sour cherries when classification
was based on initial conidial contamination.

Initial

Classification

UF - 0.17 con./uL. 1.7 con./uL. 17 con./pL. 170 con./pL .
conidium conc. accuracies

5°C Calibration 0.17 con./pL 100.0 0.0 0.0 0.0 92.6%
Injury 1.7 con./pL 0.0 92.9 8.9 4.7
* 17 con./pL. 0.0 3.6 82.1 0.0
170 con./pLL 0.0 3.6 8.9 95.3

Validation  0.17 con./pL 80.0 7.1 7.1 0.0 45.2%
1.7 con./pL 0.0 28.6 14.3 25.0
17 con./pL. 0.0 50.0 28.6 31.3
170 con./nL. 20.0 14.3 50.0 43.8

5°C Calibration 0.17 con./pnL 100.0 0.0 0.0 0.0 98.0%
Intact 1.7 con./pL 0.0 100.0 0.0 0.0
** 17 con./pL. 0.0 0.0 96.4 4.4
170 con./pLL 0.0 0.0 3.6 95.6

Validation  0.17 con./pL 41.7 10.5 7.1 0.0 53.3%
1.7 con./pL 50.0 84.2 214 11.8
17 con./pL. 8.3 5.3 28.6 294
170 con./pLL 0.0 0.0 42.9 58.8

25°C Calibration 0.17 con./pL 90.6 3.6 6.5 4.6 83.4%
Injury 1.7 con./pL 31 73.8 4.8 34
falele 17 con./pL. 0.8 14.3 83.9 6.8
170 con./nL. 55 8.3 4.8 85.2

Validation  0.17 con./pL 59.4 33.3 25.8 22.7 32.5%
1.7 con./pL 125 0.0 25.8 18.2
17 con./pL 94 47.6 38.7 27.3
170 con./pLL 18.8 19.1 9.7 31.8

25°C Calibration 0.17 con./pL 87.5 45 3.4 44 89.1%
Intact 1.7 con./pL 7.1 91.1 6.8 5.4
faleial 17 con./pL 2.7 0.9 88.6 11
170 con./pL 2.7 3.6 11 89.1

Validation  0.17 con./pL 50.0 21.4 13.6 39.1 46.3%
1.7 con./pL 21.4 50.0 27.3 21.7
17 con./pL 7.1 7.1 59.1 13.0
170 con./pL. 21.4 21.4 0.0 26.1

**

*k*%

*kk*k

sgol-2-21-0, sgol-2-13-1; Nr = 54; NrPCs = 18
sgol-2-21-0, sgol-2-21-1; Nr = 62; NrPCs = 20
sgol-2-17-0, sgol-2-21-2; Nr = 106; NrPCs = 18
sgol-2-13-0, sgol-2-13-2; Nr = 101; NrPCs = 20
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Table 43. PCA-LDA classification accuracies on the HSI spectra of sour cherries showing monilial activity
when classification was based on the day of appearance of visible infection signs + 2 days.

2days  -1day 0 day +lday  +2days Classification

accuracies

EB Calibration -2days 73.8 16.4 9.9 0.0 0.0 72.6%
* -1 days 7.1 77.9 7.8 0.0 0.0
0 days 12,5 5.7 58.3 21.0 14.4
+1 days 6.6 0.0 135 73.0 5.8
+2 days 0.0 0.0 10.4 6.0 79.8

Validation -2days 595 51.4 25.0 12.0 19.2 25.9%
-1 days 14.3 17.1 16.7 4.0 0.0
0 days 11.9 22.9 29.2 40.0 26.9
+1 days 9.5 2.9 14.6 12.0 42.3
+2 days 4.8 5.7 14.6 32.0 115

UF Calibration -2days 91.7 0 4.0 8.3 0.0 86.5%
*x -1 days 5.9 89.58 1.6 0.5 0.0
0 days 15 10.42 90.5 5.2 21.7
+1 days 1.0 0 2.4 84.9 2.2
+2 days 0.0 0 1.6 1.0 76.1

Validation -2days 78.4 41.67 15.9 14.6 0.0 57.4%
-1 days 7.8 25 15.9 0.0 0.0
0 days 11.8 33.33 54.0 2.1 26.1
+1 days 2.0 0 6.4 72.9 17.4
+2 days 0.0 0 7.9 10.4 56.5

* sgol-2-17-0, sgol-2-17-2; Nr = 176; NrPCs = 17

** sgol-2-13-0, sgol-2-13-2; Nr = 197; NrPCs = 20
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Table 44. PCA-LDA classification accuracies on the HSI spectra of TD plums when classification was
based on initial conidial contamination.

Initial conidium Classification

TD 1.05con./uL  10.5 con./pL 105 con./pL .
conc. accuracies
5°C Calibration 1.05con./puL 86.4 14.3 6.4 83.8%
Injury 10.5 con./pLL 8.6 77.1 5.7
* 105 con./pL 5.0 8.6 87.9
Validation  1.05 con./uL 54.3 37.1 17.1 55.2%
10.5 con./pL. 37.1 54.3 25.7
105 con./pL 8.6 8.6 57.1
5°C Calibration 1.05con./puL 94.1 1.4 0.0 92.9%
Intact 10.5 con./pL 2.9 94.3 9.9
** 105 con./pL. 2.9 4.3 90.2
Validation  1.05 con./uL 67.7 25.7 21.2 54.1%
10.5 con./pL 17.7 40.0 24.2
105 con./pL. 14.7 34.3 54.6
22°C Calibration 1.05 con./pL 95.7 4.3 0.0 97.1%
Injury 10.5 con./pL 4.3 95.7 0.0
falale 105 con./pLL 0.0 0.0 100.0
Validation  1.05 con./pL 65.7 28.6 2.9 75.2%
10.5 con./pL 25.7 68.6 5.9
105 con./pL 8.6 2.9 91.2
22°C Calibration 1.05con./puL 78.7 11.4 114 81.6%
Intact 10.5 con./pL 11.8 82.6 5.0
falake 105 con./pLL 9.6 6.1 83.6
Validation  1.05 con./uL 52.9 36.4 28.6 42.8%
10.5 con./pL 14.7 21.2 17.1
105 con./pL. 32.4 42.4 54.3
* sgol-2-17-0, sgol-2-17-2; Nr = 105; NrPCs = 15
*x sgol-2-13-0, sgol-2-17-2; Nr = 102; NrPCs = 20
Fkx sgol-2-17-0, sgol-2-21-1; Nr = 104; NrPCs = 19

*kk*k

sgol-2-13-0, sgol-2-13-2; Nr = 102; NrPCs = 12
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Table 45. PCA-LDA classification accuracies on the HSI spectra of TP plums when classification was
based on initial conidial contamination.

Initial conidium Classification

TP 2.31con./uL  23.1 con./pL 231 con./pL .
conc. accuracies
5°C Calibration 2.31 con./puL 92.9 0.7 7.6 92.0%
Injury 23.1 con./pL 2.9 92.9 2.3
* 231 con./pL 4.3 6.4 90.2
Validation  2.31 con./uL 74.3 17.1 36.4 50.0%
23.1 con./pL 14.3 48.6 36.4
231 con./pLL 114 34.3 27.3
5°C Calibration 2.31con./puL 96.4 5.7 0.0 96.9%
Intact 23.1 con./pLL 2.1 94.3 0.0
*k 231 con./pL 1.4 0.0 100.0
Validation  2.31 con./uL 65.7 25.7 17.1 69.5%
23.1 con./pLL 314 71.4 11.4
231 con./pL 2.9 2.9 71.4
22°C Calibration 2.31 con./pL 83.6 6.4 10.0 87.1%
Injury 23.1 con./pLL 6.4 90.0 21
falale 231 con./pL 10.0 3.6 87.9
Validation  2.31 con./puL 48.6 8.6 31.4 61.9%
23.1 con./pLL 8.6 82.9 14.3
231 con./pL 42.9 8.6 54.3
22°C Calibration 2.31 con./uL 100.0 0.0 0.0 100%
Intact 23.1 con./pL 0.0 100.0 0.0
faleiala 231 con./pL 0.0 0.0 100.0
Validation  2.31 con./uL 87.1 14.7 2.9 79.3%
23.1 con./pL 12.9 79.4 25.7
231 con./pL 0.0 5.9 71.4
* sgol-2-21-0, sgol-2-13-1; Nr = 103; NrPCs = 18
*x sgol-2-21-0, deTr; Nr = 105; NrPCs = 20
Fkx sgol-2-21-0, sgol-2-21-2; Nr = 105; NrPCs = 12

*kk*k

sgol-2-13-0, sgol-2-13-2; Nr = 100; NrPCs = 19
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Table 46. PCA-LDA classification accuracies on the HSI spectra of plums showing monilial activity when
classification was based on brown rot signs by day of appearance.

2days -lday Oday +lday +2days Classification

accuracies

TD Calibration -2days 68.9 111 10.0 0.4 0.4 65.3%
* -ldays 16.1 53.9 17.1 53 0.4
Odays 15.0 29.3 59.6 18.0 3.6
+1 days 0.0 5.7 11.1 60.2 12.1
+2 days 0.0 0.0 2.1 16.2 83.6

Validation -2days 48.6 37.1 18.6 2.8 4.3 46.5%
-1days 30.0 25.7 14.3 9.9 2.9
Odays 17.1 21.4 48.6 26.8 1.4
+1 days 0.0 15.7 114 38.0 20.0
+2 days 4.3 0.0 7.1 225 714

TP  Calibration -2days 64.2 12.14 13.6 3.8 0.0 57.3%
** -ldays 17.8 60.71 19.2 114 3.3
0 days 8.4 9.29 38.0 16.6 5.9
+1 days 8.7 13.81 12.8 59.2 26.3
+2 days 0.9 4.05 16.5 9.0 64.5

Validation -2days 43.4 20.95 16.0 9.8 0.0 33.5%
-ldays 28.9 34.29 24.5 21.7 5.3
0 days 9.6 16.19 9.6 19.6 7.9

+1 days 145 15.24 26.6 315 38.2
+2 days 3.6 13.33 23.4 174 48.7
* sgol-2-17-0, sgol-2-21-1; Nr = 351; NrPCs = 18
** sgol-2-13-0, sgol-2-13-2; Nr = 450; NrPCs = 15
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10.2.4. Annexes to the fruit juice fortification results
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Figure 77. NIR spectra of sour cherry juices when colouring was based on total extract content: raw spectra recorded
with the hand-held NIR device (a); raw spectra recorded with the benchtop NIR device (b); 2" derivative spectra
recorded with the hand-held NIR device (c); 2™ derivative spectra recorded with the benchtop NIR device (d).

o
-
@
N 3
(=]
(=9
< ¥
S o <
— =
o i
; . g
~ | e £7/0.0¢/ 100 mL =
a \ ; 0.5/ 100 mL g
- \‘ S 0.7/ 100 mL =
— ®1.0g/100mL <
® Calibration ¢ L4/ 1000l =
OValidation 23 00mt =
©259/100mL
5 3 5
LD 1-91.47%
a)

1
| @
3
=]
(=7
£ g
R £
S =
- 2 g
] ¢ . o =
~ 0.0g/ 100mL . ° =
A Llv05g100mL - ° H
| 0.7g/ 100 mL %
®10g/100mL «
{®14g/100mL ® Calibration a
©19¢/100mL OValidation ~

®259/100mL

=5 5 10

LD 1-96.77%
c)

70
— Hand-held spectrometer

0

1000 1100 1200 1300 1400 1500 1600

Wavelength (nm)
b)

3.0
— Benchtop spectrometer
25

VAVAN
1100

0.0

. 1000 1200 1300 1400 1500 1600

Wavelength (nm)
d)

Figure 78. PCA-LDA on the NIR spectra of sour cherry juices when classification was based on the dosed plant
extract content: PCA-LDA score plot on the data recorded with the hand-held NIR device (a); LDA discriminating
power plot on the data recorded with the hand-held NIR device (b); PCA-LDA score plot on the data recorded with
the benchtop NIR device (c); LDA discriminating power plot on the data recorded with the benchtop NIR device (d).
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Figure 79. NIR spectra of plum juices when colouring was based on total extract content: raw spectra recorded with
the hand-held NIR device (a); raw spectra recorded with the benchtop NIR device (b); 2" derivative spectra recorded
with the hand-held NIR device (c); 2" derivative spectra recorded with the benchtop NIR device (d).
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Figure 80. PCA-LDA on the NIR spectra of plum juices when classification was based on the type of dosed plant
extract: PCA-LDA score plot on the data recorded with the hand-held NIR device (a); LDA discriminating power plot
on the data recorded with the hand-held NIR device (b); PCA-LDA score plot on the data recorded with the benchtop
NIR device (c); LDA discriminating power plot on the data recorded with the benchtop NIR device (d).
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Table 47. PCA-LDA classification accuracies on the spectra of sour cherry juices recorded different NIR instruments when classification was based on total extract

content.
Classification
Total extract content 0.0 g/100 mL 0.5 g/100 mL 0.7 /100 mL 1.0 g/100 mL 1.4 g/100 mL 1.9 g/100 mL 2.5 g/100 mL accuracy
MicroNIR Calibration 0.0 /100 mL 83.89 6.35 4.76 0.00 0.00 0.00 0.00 71.73%
hand-held 0.5 g/100 mL 9.44 68.25 21.83 7.14 0.00 0.00 0.00
device 0.7 g/100 mL 6.67 18.25 61.11 23.02 1.59 0.00 0.00
* 1.0 g/100 mL 0.00 4.37 12.30 55.16 10.32 1.19 0.00
1.4 g/100 mL 0.00 2.78 0.00 12.70 73.02 18.25 0.00
1.9 ¢g/100 mL 0.00 0.00 0.00 1.98 15.08 69.84 9.13
2.59/100 mL 0.00 0.00 0.00 0.00 0.00 10.71 90.87
Validation 0.0 /100 mL 60.00 28.57 12.70 0.00 0.00 0.00 0.00 49.62%
0.5 g/100 mL 22.22 38.10 19.05 14.29 0.00 0.00 0.00
0.7 g/100 mL 13.33 11.11 36.51 22.22 6.35 1.59 0.00
1.0 g/100 mL 4.44 12.70 20.63 25.40 20.63 6.35 0.00
1.4 g/100 mL 0.00 9.52 11.11 26.98 52.38 14.29 0.00
1.9 /100 mL 0.00 0.00 0.00 6.35 20.63 57.14 22.22
2.59/100 mL 0.00 0.00 0.00 4.76 0.00 20.63 77.78
NIRflex  Calibration 0.0 /100 mL 85.00 4.76 1.59 0.00 0.00 0.00 0.00 76.02%
benchtop 0.5 g/100 mL 14.44 72.22 23.81 2.38 0.40 0.00 0.00
device 0.7 g/100 mL 0.56 19.44 59.13 12.30 1.98 0.00 0.00
** 1.0 g/100 mL 0.00 3.57 15.48 75.79 13.10 0.00 0.00
1.4 g/100 mL 0.00 0.00 0.00 9.52 71.03 16.53 0.00
1.9 /100 mL 0.00 0.00 0.00 0.00 13.49 75.00 6.05
2.59/100 mL 0.00 0.00 0.00 0.00 0.00 8.47 93.95
Validation 0.0 /100 mL 86.67 7.94 1.59 0.00 0.00 0.00 0.00 58.29%
0.5 g/100 mL 13.33 47.62 38.10 6.35 4.76 0.00 0.00
0.7 g/100 mL 0.00 28.57 33.33 20.63 0.00 0.00 0.00
1.0 g/100 mL 0.00 12.70 17.46 41.27 17.46 0.00 0.00
1.4 g/100 mL 0.00 0.00 9.52 31.75 55.56 27.42 0.00
1.9 ¢/100 mL 0.00 3.17 0.00 0.00 22.22 59.68 16.13
2.59/100 mL 0.00 0.00 0.00 0.00 0.00 12.90 83.87

**

sgol-2-21-0, sgol-2-21-1; Nr = 423; NrPCs = 14
sgol-2-43-0, sgol-2-43-2; Nr = 421; NrPCs = 20
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Table 48. PLSR prediction of plant extract concentration (g/ 100 mL) based on the spectra of sour cherry
juices recorded with the hand-held NIR device.

Sour cherry juice Extract Pretreatment Nr NrLV Rc? RMSEc Rcv® RMSEcv
All cBEconc, S9OFZI30. 440 4 050 040 046 042
sgol-2-21-2
blends GSEconc, 390122100 40 45 071 031 065 034
sgol-2-13-1
PGE conc.  sgol-2-21-0 346 17 090 017 085 021
Totalextacts  S9°2 1700 40s 2 090 025 087 029
sgol-2-21-1
Simple ~ +CBE CBEconc. 2130 a0 g 096 018 092 025
sgol-2-13-2
blends GSE conc. — — — — — —
PGE conc. - - - - - - -
Total extacts — — — — — — —
CBE conc. — — — — — — —
+GSE  GSE conc. Sgo'(;gfrl'o' 91 5 094 020 090 027
PGE conc. - - - - - - -
Total extacts — — — — — — —
CBE conc. — — — — — — —
GSE conc. - - - - - - -
+PGE  PGE conc. Sgo'(;gfrl'o' %5 5 095 019 087 031
Total extacts — — — — — — —
Binary +CBE CBEconc. sgol-221-0 8 5 096 009 091 013
blends +GSE  GSE conc. sgol-2-21-0 88 5 0.96 0.09 0.91 0.13
PGE conc. - - - - - - -
Total extacts  sgol-2-21-0 88 5 0.96 0.17 0.91 0.26
CBE conc. — — — — — —
+GSE  GSE conc. Sgo';ﬁgsl'o' 94 2 072 022 066 025
+PGE  PGE conc. Sgo';ﬁil'o' 94 2 072 022 066 025
Total extacts Sgo';ﬁéil'o' 94 2 072 045 066 049
+CBE CBEconc. S90k2130. o 5 493 011 085 016
sgol-2-13-1
GSE conc. — — — — — — —
+PGE PGEconc, S90M213-0. oo 403 011 085 016
sgol-2-13-1
Total extacts 90121300002 093 022 085 033
sgol-2-13-1
Ternary  +CBE CBEconc. 29002130, o7 2 097 005 093 007
sgol-2-13-1
blends +GSE  GSEconc. S90FZ130. o o 597 005 093 007
sgol-2-13-1
+PGE PGEconc. S90M2130. oo 097 005 093 007
sgol-2-13-1
Totalextacts 3992130 oo o 4097 015 093 022
sgol-2-13-1
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Table 49. PLSR prediction of plant extract concentration (g/ 100 mL) based on the spectra of sour cherry
juices recorded with the benchtop NIR device.

Sour cherry juice Extract Pre-treatment Nr NrLV Rc2 RMSEc Rcv® RMSEcv
sgol-2-35-0,
All CBEcCONC.  ggol207-1 346 17 093 016 087 021
blends GSE conc. Sg"tﬁf'o’ 360 12 091 0.17 090  0.17
PGEconc.  sgol-2-43-0 343 16 098  0.09 097  0.10
Totalextacts  58°2270: 345 7 096 016 095 0.8
sgol-2-27-1
Simple +CBE  CBE conc. Sg"tﬁf'o’ 8 2 097 013 097 013
blends GSE conc. — - — — - - -
PGE conc. - - - - - - -
Total extacts — - — — - - -
CBE conc. _ _ - - - - -
+GSE  GSE conc. Sg"lc'éf'o’ 73 6 095 018 092 023
PGE conc. - - - - - - -
Total extacts — — — — — - -
CBE conc. — - — — - — —
GSE conc. - - - - - - -
+PGE PGEconc, S20F235-0. ¢, 7 098 012 097  0.15
sgol-2-27-2
Total extacts - - - - - - -
Binary +CBE  CBE conc. Sgot‘éf'o’ 90 3 0968 008 095  0.09
blends +GSE  GSE conc. Sgotéf'o’ 90 30968 008 095  0.09
PGE conc. - - - - - - -
Total extacts  S8°12430. 3 097  0.15 095 0.19
deTr
CBE conc. — - — — - - -
+GSE GSEconc,  Sg0k-2-43-0. ., 7 098 007 097 008
sgol-2-43-2
+PGE PGEconc. S8ok2-43-0. 7 098 007 097 008
sgol-2-43-2
sgol-2-43-0,
Total extacts woloazs 7 098 013 097 016
+CBE CBEconc. S%0-2-43-0. ¢, 7 094  0.11 086  0.16
sgol-2-35-2
GSE conc. _ _ _ _ _ _ _
+PGE PGEconc. S2002-43-0. ¢, 7094 011 08  0.16
sgol-2-35-2
Total extacts 38012430, ¢ 7 094 021 086  0.32
sgol-2-35-2
Ternary ~ +CBE  CBE conc. Sg"l;rzl:f'o’ 8 7 099 003 098  0.04
blends +GSE  GSE conc. Sg°l;r21;33'0’ 82 7 099 003 098  0.04
+PGE  PGE conc. Sgo'l'ﬁf'o’ 82 7099 003 098 004
Total extacts Sgo'ﬁf'o’ 82 7099 009 098  0.12
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Table 50. PCA-LDA classification accuracies on the spectra of plum juices recorded different NIR instruments when classification was based on the type of plant
extract added.

Juice blends Juice + CBE + GSE +PGE +(CBE+GSE) +(GSE+PGE) +(PGE+CBE) +(CBE+GSE+PGE) Classification accuracy

MicroNIR Calibration  Juice 74.44 1.39 0.00 0.00 0.00 0.00 0.00 0.00 53.11%
hand-held Juice+CBE 18.33 79.63 1.85 10.65 10.65 1.85 18.98 6.02
device Juice+GSE 0.00 0.00 43.52 7.41 11.57 6.94 0.93 5.09
* Juice+PGE 0.00 0.00 6.48 48.15 5.56 8.80 9.72 4.17
Juice+(CBE+GSE) 0.00 7.87 12.50 2.31 51.39 2.78 10.65 10.65
Juice+(GSE+PGE) 0.00 0.00 18.52 11.11 3.70 43.98 18.98 16.67
Juice+(PGE+CBE) 7.22 5.56 14.35 12.50 4.63 16.67 36.11 9.72
Juice+(CBE+GSE+PGE) 0.00 5.56 2.78 7.87 12.50 18.98 4.63 47.69

Validation  Juice 64.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 27.04%
Juice+CBE 22.22 51.85 7.41 16.67 12.96 5.56 18.52 14.81
Juice+GSE 0.00 11.11 11.11 20.37 29.63 16.67 5.56 14.81
Juice+PGE 2.22 9.26 20.37 11.11 5.56 16.67 1481 7.41
Juice+(CBE+GSE) 0.00 18.52 33.33 9.26 16.67 5.56 11.11 12.96
Juice+(GSE+PGE) 0.00 0.00 9.26 18.52 12.96 22.22 22.22 12.96
Juice+(PGE+CBE) 11.11 7.41 7.41 7.41 9.26 1481 16.67 14.81
Juice+(CBE+GSE+PGE) 0.00 1.85 11.11 16.67 12.96 18.52 11.11 22.22

NIRflex Calibration  Juice 72.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 55.08%
benchtop Juice+CBE 15.56 66.20 0.93 0.47 10.65 0.00 5.09 2.78
device Juice+GSE 0.00 0.46 46.30 13.21 8.80 7.87 0.93 7.41
okl Juice+PGE 0.00 0.00 13.89 45.28 0.00 16.67 3.70 11.57
Juice+(CBE+GSE) 2.22 10.65 8.33 4.72 53.70 1.85 6.02 7.41
Juice+(GSE+PGE) 0.56 2.78 14.35 13.21 1.85 45.37 5.09 5.56
Juice+(PGE+CBE) 2.78 11.57 9.26 14.62 10.65 12.96 61.57 15.28
Juice+(CBE+GSE+PGE) 6.67 8.33 6.94 8.49 14.35 15.28 17.59 50.00

Validation  Juice 66.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 34.04%
Juice+CBE 17.78 35.19 0.00 0.00 1.85 0.00 5.56 9.26
Juice+GSE 0.00 0.00 25.93 37.74 7.41 14.81 0.00 11.11
Juice+PGE 0.00 1.85 22.22 3.77 0.00 12.96 9.26 3.70
Juice+(CBE+GSE) 8.89 29.63 14.81 5.66 35.19 9.26 3.70 12.96
Juice+(GSE+PGE) 2.22 5.56 16.67 28.30 3.70 29.63 14.81 12.96
Juice+(PGE+CBE) 2.22 12.96 9.26 16.98 12.96 18.52 44.44 18.52
Juice+(CBE+GSE+PGE) 2.22 14.81 11.11 7.55 38.89 14.81 22.22 31.48

* sgol-2-21-0, deTr; Nr = 423; NrPCs = 20
*x sgol-2-35-0, sgol-2-27-1; Nr = 422; NrPCs = 16
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Table 51. PLSR prediction of plant extract concentration (g/ 100 mL) based on the spectra of plum juices

recorded with the hand-held NIR device.

Plum juice Extract Pretreatment Nr NrLV Rc® RMSEc Rcv® RMSEcy
All CBEconc.  sgol-2210 348 8 015 054 000 058
blends GSE conc. 590';5;51'0’ 374 4 046 042 042 043
PGEconc, 3902130050 45 0s0 032 055 039
sgol-2-21-2
Total extacts Sgo';ﬁ;il'o’ 323 7 08 032 08 034
Simple +CBE CBE conc. sgol-2-21-0 91 7 0.73 0.44 0.53 0.59
blends GSE conc. — — — — — — —
PGE conc. - - - - - - -
Total extacts — — — — — — —
CBE conc. — — — — — — —
+GSE  GSEconc, S9OMZAT0. o9 o 089 020 076 042
sgol-2-21-2
PGE conc. - - - - - - -
Total extacts — — — — — — —
CBE conc. — — — — — — —
GSE conc. - - - - - - -
+PGE  PGEconc. S90M213-0 oo 491 025 047 062
sgol-2-13-1
Total extacts — — — — — — —
Binary +CBE  CBE conc. Sgo'&ifrl'o' 91 3 084 017 077 020
blends +GSE  GSE conc. Sgo'(;ifrl'o' 91 3 084 017 077 020
PGE conc. - - - - - - -
Total extacts S9°7221-0. 903 084 034 077 040
deTr
CBE conc. — — — — — — —
+GSE  GSE conc. Sgo';ﬁgsl'o' 87 6 096 009 093 012
+PGE  PGE conc. Sgo';ﬁil'o’ 87 6 09 009 093 012
Total extacts Sgo';ﬁéil'o' 87 6 096 017 093 023
+CBE  CBE conc. Sgo';ﬁéil'o' 81 7 092 012 084 017
GSE conc. — — — — — — —
+PGE  PGE conc. Sgo';ﬁgsl'o’ 81 7 092 012 084 017
Total extacts S9°7221-00 g7 090 025 084 034
mSC
Ternary  +CBE CBEconc. 59002130, gg 2 091 008 077 013
sgol-2-21-1
blends +GSE  GSEconc, S90FZ130. ge o 591 008 077 043
sgol-2-21-1
+PGE PGEconc. S90M213-0.ge o g91 008 077 043
sgol-2-21-1
Totalextacts 90021300 ge 2 091 025 077 039
sgol-2-21-1
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Table 52. PLSR prediction of plant extract concentration (g/ 100 mL) based on the spectra of plum juices

recorded with the benchtop NIR device.

Plum juice Extract Pre-treatment Nr NrLV Rc? RMSEc Rcev® RMSEcy
All CBE conc. Sg"lc'é'T‘?'O’ 342 17 076 028 066 033
blends GSEconc,  S€OV2350. 4 o 070 032 059 037
sgol-2-43-1
PGE conc. Sg"ﬁf'o’ 333 12 078 028 071 032
sgol-2-27-0,
Total extacts sgol-2-27-1 339 7 0.90 0.24 0.87 0.28
Simple ~ +CBE  CBE conc. Sg"lﬁf'o’ 88 6 067 050 061 054
blends GSE conc. - — — — — - —
PGE conc. - - - - - - -
Total extacts - — — — — - —
CBE conc. - — - — — - -
+GSE  GSE conc. Sgotﬁ'{?'o’ 80 8 095 020 090 027
PGE conc. - - - - - - -
Total extacts — — — — — - —
CBE conc. — — — — — — —
GSE conc. - - - - - - -
+PGE PGEconc, S20F2350. 4 6 096  0.16 095  0.18
sgol-2-35-2
Total extacts - — — — — - —
. sgol-2-43-0,
Binary +CBE CBE conc. sgol-2-35-2 75 7 0.95 0.10 0.94 0.10
blends +GSE  GSEconc,  S2okZ43-0. g 7 095 010 094  0.10
sgol-2-35-2
PGE conc. - - - - - - -
Total extacts 52012430 45 7 096 017 093 024
sgol-2-27-2
CBE conc. - — - — — - -
+GSE  GSEconc.  SZOFZ27:0. o5 506 008 094 0.09
sgol-2-27-2
+PGE PGEconc, S20k227:0. ¢ 7 096 008 094  0.09
sgol-2-27-2
sgol-2-27-0,
Total extacts sg0l-2-27-2 81 7 0.96 0.15 0.94 0.19
+CBE CBEconc. 8012350, ¢4 5 097 007 096 008
sgol-2-43-1
GSE conc. - - - - - - —
+PGE PGEconc, 2012350, ¢s 5 097 007 096 008
sgol-2-43-1
Total extacts 52012330 ¢4 5 097 015 096  0.17
sgol-2-43-1
Ternary +CBE CBEconc.  sgol-2-43-0 79 6 098 003 098  0.04
blends +GSE  GSEconc.  sgol-2-43-0 79 6 098 003 098  0.04
+PGE  PGEconc.  sgol-2-43-0 79 6 098 003 098  0.04
Total extacts  sgol-2-43-0 79 6 098 010 098 0.3
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