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INTRODUCTION AND OBJECTIVES 

The current trends in crop production (on a national, European, and global scale) focus on 
understanding the organic carbon conditions of our soils and managing them in harmony with our 
long-term environmental goals. This research takes a practical approach, aiming partly to make 
the methodology used in the research more applicable to crop production. To make cultivation a 
conscious decision-making process, it is necessary to develop methods that allow for the 
monitoring of the soil's organic matter conditions, as well as the direction and extent of its changes, 
while considering time, financial and equipment needs of examination. 

Animal-derived manure and slurry play a key role in managing organic matter through cultivation. 
By examining the utilization of precision manuring, the accurate use of available organic fertilizers 
for the greatest potential benefit could become a reality in the future. 

The research thesis concerning the development, refinement, and reduction of resource and time 
requirements in the methodology used for surveying organic carbon in cultivated areas includes 
the following: 

- Among the sample strategies studied (Random, Grid, Latin Hypercube Sampling), which 
is the most efficient for assessing organic carbon conditions in a cultivated area with 
heterogeneous soil properties, at multiple depths? How does the 
representativeness/performance of these methods change with the density of sample 
points? 

- What estimation performance can be expected from an organic carbon prediction model 
based on mid-infrared spectral data, depending on the sample selection method used 
(Kennard-Stone sampling, k-means sampling, Latin Hypercube sampling), and varying 
calibration/validation sample ratios? 

Focusing on improving the organic carbon condition of cultivated soils, also develop a method for 
monitoring the soil carbon processes, which can be integrated into crop production practices: 

- With what estimation accuracy can the methodology tested in the previous section be 
applied to predict the organic carbon conditions of the area with a larger number of 
samples? 

- What is the short-term (2-year) impact of pelletized poultry manure applied in different 
doses on the organic carbon content of the soil, and to what extent does it pay off in areas 
with different soil properties? 

- Is the mid-infrared (MIR) spectral range suitable for monitoring the persistence of organic 
fertilizers in the soil, and can this organic carbon monitoring methodology be integrated 
into the soil survey system used in crop production? 

Testing the organic carbon survey methodology of this research for solving complex problems: 

- Can the methodology used in the research be applied to map the organic carbon stock of a 
large (~1500 km²) cultivated area with highly heterogeneous soil down to a depth of 1 m? 
To what extent can the reliability of the map in question be improved by adding additional 
dependent covariates (topography and proximal sensing data)? 

MATERIALS AND METHODS 

The experiments and surveys were conducted at three locations. The methodology used at the 
locations, which can also be interpreted as phases of the research, builds on one another, and the 
division of materials and methods follows this logic. 

1. Érsekcsanád – Kanális 
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The first survey area is located near Érsekcsanád, a cultivated land covering 4.62 hectares. One of 
the key factors in shaping its soil conditions was the former floodings of the Danube, which led to 
the formation of floodplain marks (frequent vertical and horizontal texture changes). The elevation 
ranges from 85 meters above sea level on the eastern side to 87 meters on the western side. The 
soil conditions within the area are characterized by strong heterogeneity, particularly in terms of 
the frequent changes in the soil's physical properties. On the western side, at a lower elevation and 
closer to the Danube Valley Main Canal, the groundwater is relatively close to the surface (1-2 
meters, depending on water levels and weather conditions), making the developed reductive 
conditions around 1 meter depth another defining factor (Figure 1). 

 

Figure 1. The soil profile at the eastern end of the sample area clearly shows the reductive 
conditions in the depth and the groundwater level within 1 meter of the surface. 

Figure 2. Illustration of the overall sampling strategy, distinguishing between different sampling 
approaches. 

During the development of the sampling strategy, the goal was to investigate the influence of 
different sampling patterns on the results of organic carbon mapping. For the survey, we selected 
three sampling methods, each with 24 sample points (Figure 2): 
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- Random Sampling (RANDOM or RND) 
- Grid Sampling (GRID) 
- Latin Hypercube Sampling (LHS). 

For each sampling point, a 100 cm³ undisturbed sample (Eijkelkamp 07.53.SC) was collected from 
three depths: 0-20 cm, 20-50 cm, and 50-100 cm. The undisturbed samples were taken from the 
center of the respective sampling depth range. 

The sample preparation following the sampling was carried out in the same manner for all 
experiments. During preparation, visible plant and animal residues were removed, then the 
samples were dried and subjected to gravimetric volume measurement before being sieved through 
a 0.2 mm mesh. 

First, I measured the organic carbon content of the samples using the Walkley-Black method and 
the CaCO₃ content using a calcimeter. This was followed by capturing the mid-infrared (MIR) 
reflectance spectra. 

In selecting calibration samples necessary for the estimation models, the aim was to use a sampling 
algorithm that would select samples best representing the heterogeneity of the given sample 
population. The most commonly used sampling algorithms are KSS (Kennard-Stone Sampling), 
KMS (K-means Sampling), and LHS (Latin Hypercube Sampling), and their performance was 
compared with different calibration/validation ratios. 

The mid-infrared (MIR) spectra were recorded using a Bruker Alpha II Fourier-transform 
infrared spectrometer manufactured by Bruker Optics. the DRIFT module attached to the 
instrument is specifically designed for analyzing solid, powdered samples. The protocol followed 
during the examination was based on the Standard Operation Procedures document developed by 
the World Agroforestry Center Soil-Plant Spectral Diagnostics Lab. During the measurements, the 
diffuse spectral reflectance of the samples was recorded in the spectral range of 400 to 4000 1/cm. 
For background radiation measurements, I used a gold standard with known spectral 
characteristics, which was measured before each analyzed sample. Each sample was measured in 
3 repetitions, with the software used for the measurement creating an average from 48 irradiations 
for each repetition. 

In the preprocessing of the spectral measurement results, the first step was to average the results 
from the repeated measurements, and subsequent steps used only the average spectrum for further 
processing. Next, to reduce the sawtooth effect caused by local spectral range variability, I applied 
a smoothing procedure based on moving average calculations. Following spectral preprocessing, 
outlier values due to reasons such as measurement errors or sample mix-ups were filtered out, 
using Mahalanobis and H distance values. 

For the establishment of the prediction model, Partial Least Squares Regression (PLSR) was 
employed, a commonly applied model for quantitative determinations. To validate the estimates 
made by the model, we created a composite statistical indicator specifically for this study. This 
indicator utilizes the statistical parameters of the estimates, combining RMSE (Root Mean Squared 
Error) and R2 (Coefficient of Determination). The indicator summarizes R2 and RMSE values in 
one variable, on a normalized scale, based on the formula used for calculating NDVI (Normalized 
Difference Vegetation Index): 

(R2-RMSE) / (R2+RMSE) 

According to this formula, an increase in R2 and a decrease in RMSE will increase the value of the 
indicator. Therefore, the composite statistical indicator is directly proportional to the accuracy of 
the tested model. 
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Érsekcsanád – Érréve 

Figure 3. Soil profiles drilled in sampling area Érréve and their locations. 

The precision fertilization experiment is located on a 24.3 ha arable field outside of Érsekcsanád. 
The soil conditions are also significantly influenced by the former flooding of the Danube River, 
resulting in alternating coarse and fine-textured soil layers both horizontally and vertically (Figure 
3). 

The field features floodplain soil strips running perpendicular to the cultivation, oriented northeast-
east-west, characterized by higher elevations and soil materials with lower clay and silt fractions. 
These less-favoured soil patches (in agronomic terms) and the fine-textured alluvial soil strips 
between them served as the foundation and main focus of the experiment. 

The organic manure used in the experiment contained the following nutrients per 100 kg of dry 
matter: 4:4:4 kg NPK and 7 kg Ca. 

In the experimental area, soybeans were grown in the year preceding the experiment, and maize 
was grown in the first year of the experiment. Apart from the treatments, there were no differences 
in the growing technology of the plots (soil cultivation, sowing, plant care), the technology applied 
in the experiment was an additional component to the basic crop production technology. 

The experiment included two types of treatments: Partial Treatment (FK) and Full Treatment (TK). 
In partial treatment, only certain targeted, less-favoured soil strips within the plot were treated, 
while for Full Treatment, the pelletized manure was uniformly applied across the entire 
experimental plot. Two doses were applied: 250 kg/ha and 500 kg/ha. The plots created (FK250, 
FK500, TK250, TK500, Control) are illustrated in Figure 4. 
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Figure 4. Plots for organic fertilization with indicated treatments (Source: Google Earth, 2022). 

The sequence of treatment and sampling was as follows: 

Preliminary Survey – October 2018; 

Treatment – October 2018; 

First Sampling – May 2019; 

Second Sampling – September 2019; 

Third Sampling – August 2020. 

Soil sampling points were positioned along the soil strips, as shown in Figure 5. The goal was to 
monitor changes in the organic carbon conditions of these variable soil strips, so the sample rows 
marked with letters were placed within these strips. 

Figure 5. Placement of sampling rows and points within the experimental plots (Source: Google 
Earth, 2022). 

Each plot contained three sampling points. During sampling, I marked the sampling location 
within a 2-meter radius of the pre-designated point according to GPS to ensure representativeness. 
Samples were taken from depths of 0-10 cm, 10-20 cm, and 20-30 cm, resulting in a total of 270 
samples from the 90 sampling points. In addition to soil sampling, yield measurements were 
conducted in the year following the organic fertilization. 
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After preparation, the MIR spectra of the samples were recorded. Using the LHS algorithm, 10% 
of the samples best representing the spectral variance of the sample population were selected. The 
carbon content of the selected samples was measured with an elemental analyzer, and the CaCO₃ 
content was measured with a calcimeter. Based on these measurements, a PLSR model was 
developed using the MIR spectra to estimate the carbon and calcium content of the remaining 
samples. 

The elemental analysis was conducted using the Elementar VarioMAX Cube CNS automatic 
analyzer. The samples analyzed ranged between 800 and 1000 mg in weight. The analyzer was 
operated in CNS mode, utilizing a TCD (Thermal Conductivity Detector) to measure the relative 
concentration of carbon in the gas mixture. 

Data Processing and Topographic Analysis: 

The preparation and handling of the elevation points were performed using the “fields” R package, 
specifically the TPS (Thin Plate Spline) regression function. After interpolating the elevation data, 
slope and aspect variables were extracted from the resulting DTM (Digital Terrain Model) using 
the SAGA GIS software. The covariates used for the optimization of the model included: 
Elevation, Slope aspect, Slope gradient. 

3. Kenya – Eastern Slope of Mount Kenya 

Mount Kenya is Africa's second-highest mountain, an inactive stratovolcano, with its highest point 
reaching 5199 meters. Its slopes are deeply carved by glaciers, and its base primarily consists of 
volcanic rock and ash, with some metamorphic rock present. 

 

Figure 6. Eastern slope of Mount Kenya, with the study area and sampling points marked. Green 
markers: 2015, Blue markers: 2019 (Source: Google Earth, 2024). 

The sampling covered approximately 1500 km² (Figure 6). The climatic conditions of the area are 
significantly influenced by the proximity to the Equator. However, Mount Kenya acts as a distinct 
climatic unit within the East African arid and semi-arid region. The eastern slope receives more 
precipitation than the western slope and serves as a crucial watershed. Consequently, the natural 
vegetation is rich and complex. The small area of the eastern slope allows for the observation of 
changes in vegetation and soil development associated with variations in altitude and precipitation. 
This varied landscape is ideal for modeling the effects of precipitation and climatic conditions on 
soil organic carbon content. The soil conditions include Nitisols and Regosols in the dry areas 
(with annual precipitation of 600 mm), Nitisols and Phaeozems in the intensively cultivated areas, 
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and Histosols in the more humid regions (with annual precipitation of 1800-2000 mm) found in 
the highland moss-covered areas. 

The aggregated organic matter map uses data from two different surveys. The sampling points 
from the 2015 and 2019 surveys are illustrated in Figure 6. 

The first survey took place between December 2015 and January 2016, focusing on cultivated soils 
on the eastern slope of Mount Kenya. The sampling points were designated using CLHS 
(Conditioned Latin Hypercube Sampling), with input variables including precipitation, 
temperature, vegetation index, topographic moisture index, slope gradient, and calculated 
sampling cost (from a "resistance" map derived from slope data and road networks). 

The designated sampling points included 77 points, of which 28 were open soil profiles and 49 
were drilled profiles. Soil sampling was performed based on genetic horizons, with samples taken 
from depths of 0-20 cm, 20-50 cm, and 50-100 cm in the drilled profiles, totaling 269 samples. 
After sample preparation, a portion of the sample population's organic carbon content was 
determined using dry combustion. The remaining samples' organic carbon content was estimated 
using the MIR spectra and a predictive model. 

In January 2019, a second, supplementary soil survey of organic matter on the eastern slope of 
Mount Kenya was conducted. Similar to the 2015 survey, sampling followed the CLHS strategy, 
using the same input data. The designated points numbered 100, with 69 points sampled (Figure 
6). Samples were collected from depths of 0-20 cm, 20-50 cm, and 50-100 cm at each sampling 
point, resulting in a total of 207 samples. These samples were prepared and analyzed for organic 
carbon content using the Walkley-Black method. 

To create the 0-100 cm organic carbon concentration map, we adapted R code based on previous 
work by the research team, with specific modifications for this task. The exact methodology and 
command sequences are part of a forthcoming publication. 

Key Covariates for the Model: 

- DEM (Digital Elevation Model), 
- SR-B6: Landsat 8-9 SWIR (Short-wave Infrared) reflectance value, 
- SAVI (Soil Adjusted Vegetation Index): A modified NDVI that corrects for soil brightness 

in low vegetation areas using a correction factor, 
- Annual precipitation, 
- Topographic diversity derived from SRTM (Shuttle Radar Topography Mission) data, 
- Slope gradient and aspect, 
- Landcover, 
- TPI (Topographic Position Index). 

RESULTS AND EVALUATION 

Evaluation of Sample Selection Methods (Kanális) 

To assess the performance of sample selection algorithms, a sufficiently heterogeneous sample 
population is required. The variability in organic carbon values at different depths is reflected in 
the different means and medians. The standard deviations for the 0-20 cm and 20-50 cm sample 
groups are nearly the same, whereas the standard deviation for the 50-100 cm samples differs, with 
a 1% significance interval. 

The get information about the tested algorithms, first we calculated the representativity (Figure 7). 
The LHS (Latin Hypercube Sampling) method is characterized by the flattest saturation curve, 
meaning that the representativity stabilizes faster with increasing sample size. The KSS algorithm 
requies the most samples for the saturation of the representativity. 
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Figure 7. Performance of different sample selection algorithms in terms of representativeness 
(msd) for varying numbers of samples.  

The three sample selection methods (LHS, KSS, KMS) were involved in a calibration/validation 
series, each step consists of 10% of the samples (10%/90% to 90%/10%). After cross-validating 
the models, we analyzed the R² and RMSE values and also created a combined, normalized 
statistical indicator based on the NDVI (Normalized Difference Vegetation Index) calculation 
formula: 

(R2 – RMSE) / (R2 + RMSE) 

This indicator ranges between -1 and 1, where higher values signify better model reliability. 

The validation results indicate (Table 1 and Figure 8): 

- The models’ R² values were below 0.9 only for the KMS 10% and 20% sample sizes and 
the KSS 10% sample size, indicating generally high prediction accuracy despite significant 
heterogeneity, 

- RMSE values decrease with increasing ratio for calibration, showing a negative 
correlation, 

- The highest R² values were achieved with 80% sample size for KSS and LHS, and 90% 
for KMS, 

- The combined R² and RMSE values suggest that while the highest prediction accuracy is 
obtained with 80% and 90% sample usage, both 10-20% and 80-90% calibration result in 
prediction inconsistencies. The former is due to calibration inaccuracies, while the latter 
may result from validation inaccuracies, 

- The lowest (0.46) and highest (0.72) combined statistical indicators were observed for 
KMS sample selection, 

- The performance of models shows the greatest similarity when using 40-60% of the 
samples, 

- The models’ performance changes the least when using 40% and 60% of the samples, 
- The KSS-calibrated model’s statistical indicator curve saturates at a 30% sample size, LHS 

at 50%, and KMS at 70%, 
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- For LHS and KMS algorithms, there is fluctuation in prediction accuracy at 10-30% and 
70-80% sample sizes, while for KSS, significant fluctuation is only noted at the 90% 
sample size. 

Table 1: Statistical indicators of models calibrated/validated with different sample sizes. 

 The ratio of samples used for calibration 

 10% 20% 30% 40% 50% 60% 70% 80% 90% 
KSS R2 0,885 0,924 0,934 0,938 0,939 0,936 0,944 0,952 0,93 
KSS RMSE 0,258 0,209 0,193 0,188 0,186 0,187 0,18 0,174 0,186 
KMS R2 0,895 0,835 0,907 0,92 0,927 0,906 0,957 0,944 0,969 
KMS RMSE 0,246 0,308 0,231 0,211 0,215 0,21 0,165 0,17 0,157 
LHS R2 0,914 0,904 0,901 0,922 0,937 0,939 0,93 0,951 0,948 
LHS RMSE 0,225 0,235 0,23 0,213 0,187 0,187 0,202 0,169 0,167 

 

 

Figure 8. The combined statistical indicator for models calibrated using different sample selection 
methods. 

Soil organic sarbon survey (Kanális) 

In comparing different sample point selection methods, C density values were calculated from the 
organic carbon results, which represent the amount of organic carbon present in 1 m² of area to a 
depth of 1 meter. "krieg" interpolation was applied to create C density maps. The formula for C 
density and its dimensions is as follows: 

CDENS = ρb * Corg% * hSOIL = [t/m3 * kg/t * m] = [kg/m2] 

ρb = Bulk density [t/m³] 

Corg% = Soil organic carbon content [%] 

hSOIL = Depth of the soil column being calculated [m] 

The most information-dense and thus the most accurate interpolation maps are the "SUM" maps 
created from all 72 points of the three sample collections, which serve as a reference for 
comparison. The color coding of the TOC [kg/m²] scale is consistent across different depth 
representations for better comparability. 
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In the interpolations for the 0-20 cm depth (Figure 9), most of the soil patches visible on the SUM 
map are recognizable across different maps; however, their extent and the interpolation values 
show significant variations. 

 

Figure 9. C density map for the 0-20 cm depth using aggregated and various sample point selection 
methods. The color scale of the maps ranges from 0 to 20 kg/m². 

The most significant differences between the maps from individual sample collections and the 
SUM map are observed at the 50-100 cm depth (Figure 10). The GRID map most accurately 
reflects the placement of soil patches and general soil conditions. 

 

Figure 10. C density map for the 50-100 cm depth using aggregated and various sample point 
selection methods. The color scale of the maps ranges from 0 to 20 kg/m². 

To better illustrate the differences between various interpolations, difference maps were created 
by subtracting the results of interpolations from individual sample collections from the 
interpolation of the map containing all 72 points (Figures 11 and 12). 
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Figure 11. Difference between interpolations created from aggregated points and those from 
different point selection methods, shown as a map. 

The deficit map shows negative values where the subtracted interpolation has higher values 
(marked in red) and positive values where the subtracted interpolation has lower values (marked 
in green). This visual representation helps to better demonstrate the characteristics of the sample 
point selection methods beyond the general assessment of the resulting interpolation. The color 
scale values for the deficit maps of each depth are consistent. 

In the deficit maps for the 0-20 cm depth (Figure 11), negative values are predominantly observed 
on the SUM-GRID and SUM-RND maps, indicating higher values on the GRID and RANDOM 
maps. The difference maps for the 20-50 cm depth show lower deviations between GRID and LHS 
compared to the SUM-RANDOM map, which has the highest deficit values among the three 
difference maps. For the 50-100 cm depth, the RANDOM map shows deviations both positively 
and negatively compared to the SUM map (Figure 14). For GRID and LHS, deviations are 
generally positive, though negative deviations are more dominant when considering the entire area. 
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Figure 12. Difference between interpolations created from aggregated points and those from 
different point selection methods, shown as a map. 

The 0-100 cm difference map summarizes the overall interpolation error for the full depth of 
sampling (Figure 12). The largest negative deviation was seen with the SUM-RND method, while 
the largest positive deviation was with the SUM-GRID method. The greatest difference between 
the maximum negative and positive deficit values (the sum of the absolute values of the 
differences) was with the SUM-RND method, indicating the largest distortion of the interpolation 
for given points. Conversely, the smallest value was for the SUM-GRID method, suggesting the 
GRID map has the lowest chance of high-value errors in sampling. 

Examination of the effect of sample density on interpolation volume 

To investigate the applicability of sample collections for assessing organic carbon conditions, the 
interpolations were tested with the aim of quantifying differences between sample collections. A 
series was created where the number of points used for interpolation was gradually reduced (24-
20-16-12-8-4 sample points), and then the volume of interpolation was calculated for each given 
number of points. This volume represents the amount of carbon stock found over the entire area at 
the examined depth. These calculated volumes were compared to the volume of the interpolation 
using all 72 points (highest information density). 

To make the differences at various depths comparable, I calculated the percentage deviation 
relative to the 72-point interpolation (Figure 13). The GRID method resulted in the smallest change 
(highest reliability) as the number of sample points was reduced. For 20 and 16-point 
interpolations, LHS showed the smallest error percentages and the lowest variability. 
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Figure 13. Summary figure of volume calculations deviations from interpolations with different 
sample sizes. 

In the next step, I calculated the standard deviation, mean, and variance of interpolation volumes 
for each group created by reducing sample points (by sampling method, number of sample points, 
and depth, e.g., GRID 12 points, 0-20 cm). To understand the variability within groups, I computed 
the modified relative variance, defined as follows:  

D = (2 / VSZUM) * 100 

σ and σ² are the standard deviation and variance, respectively, 

VSZUM is the volume value of the 72-point interpolation for the respective depth group. 

The modified relative variance is a dimensionless indicator, expressed as a percentage after 
multiplying by 100. For better interpretability of the variability of interpolation results calculated 
with reduced sample sizes, the modified relative variance values are also depicted (Figure 14). 
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Figure 14. Modified relative variance of interpolations for the 4 different depths (0-20, 20-50, 50-
100, 0-100 cm) within each sample point reduction. 

Summarizing the results, it can be said that for GRID and LHS methods, the uncertainty of 
interpolation—presumed for assessing the organic carbon stock in the area—increases 
significantly when reducing from 8 to 4 sample points. In contrast, for RANDOM points, 
variability is significant even for 16, 12, and 8-point maps. 

Figure 15 shows a comparison of interpolations from reduced sample sizes on the same scale. 

 

Figure 15. Representation of percentage deviations of interpolations with different sample sizes 
on a unified scale. 

Based on this figure, LHS exhibits the lowest variability, except for the 4-point interpolation, 
which is lowest for GRID. The means (median and average) of the interpolations are closest to 
zero for GRID. For LHS, the mean of every sample size group is below zero, while for RANDOM, 
values fluctuate around zero after the 20-point interpolation, both above and below zero. For 
GRID, the variability of 20, 16, 12, and 8-point interpolations is high but changes little with 
reduced sample points, indicating high and constant information loss. For RANDOM and LHS, 
variability increases with each reduction in sample points. For RANDOM, even 20-point 
interpolation shows high variability, which does not change or increases in subsequent steps. For 
LHS, variability increases slightly with each reduction starting from 24 points. It is important to 
note that low variability does not always mean low deviation from zero. For example, while LHS20 
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has low variability, RANDOM20 values cluster around zero despite higher variability, resulting 
in similar absolute deviations (Figure 14). 

Monitoring the impact of precision organic fertilization under different soil conditions (Érréve) 

In presenting the effects of pelletized organic fertilization, I considered only the top 0-10 cm depth 
of organic carbon data due to the incorporation depth, as the effects of fertilization are expected to 
be most measurable at this depth. 

First, I examined quantitative changes in the soil organic carbon. I divided the data into three 
groups: (1) Control and two dosage treatments, (2) 500 kg/hectare, and (3) 250 kg/hectare. I 
considered any plot that did not receive treatment as a control, as well as all plots from the 
preliminary survey. The reverse order of dosages results from the physical arrangement of the 
plots. Results shown in Figure 16 exclude both patch and full-area treatments, thus qualifying all 
of the shown data as controls. 

 

Figure 16. Organic carbon content in untreated (Control) areas. 

The average values of each plot come from three sample points. The change in organic carbon 
content in the soil of each plot varies, showing natural dispersion in the data. This variability 
suggests that there is no consistent trend in organic carbon changes among the untreated plots. 

 

Figure 17. Comparison of carbon content of soils from treated plots with control plots. 
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When examining the results of fertilized plots, considering data dispersion, there is no visible or 
statistically significant quantitative difference due to the treatments (Figure 17). The results from 
organic carbon mapping based on different depths are presented in the appendix of the thesis, with 
the coefficients of determination listed in Table 2. 

Table 2. Coefficients of determination for the produced maps (Érréve). 

R2 values – Érréve 0-10 cm 10-20 cm 20-30 cm 
Crossvalidation 0,838 0,825 0,834 

External validation(20%) 0,90 0,90 0,91 
The collected spectra were subjected to principal component analysis, including the organic 
fertilization applied (Figure 18). 

 

Figure 18. Principal Component Analysis of Collected Spectra 

The primary goal was to determine how many principal components explain the variance in the 
data. Due to the low differences between data points and the high inherent dimensionality, the 
number of principal components was chosen based on the point at which the magnitude difference 
between spectra of organic fertilizer and soil samples ceased to be significant. Consequently, 11 
principal components were used for further analysis. The objective was to compare principal 
components to assess similarities between soil samples and the applied organic fertilizer. 
Similarity indices appropriate for spectral data, such as Cosine and Pearson coefficients, were used 
for comparing principal components (Figure 19). 

 

Figure 19. Similarity analysis of soil samples and applied organic fertilizer spectra 

The Cosine similarity analysis did not provide significant results, but the Pearson coefficient 
showed significant (p < 0.05) differences between untreated and treated soils. Using the Pearson 
coefficient, I aimed to further analyze differences on a sampling time basis. A difference 
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calculation was performed to measure the variability between the Pearson coefficients of control 
and treated plots, and the confidence intervals for these differences were compared (Figure 20). 

 

Figure 20. Difference values of Pearson coefficients for treatments compared to control 

The figures show that the spectral similarity of soil samples to organic fertilizer was highest in 
treated plots during the initial sampling, with significant differences (p < 0.05). This difference 
gradually decreased with each sampling, with the initial significant difference no longer evident 
after six months, though the confidence interval remained not too high (p ~ 0.2). After one and a 
half years, the confidence interval exceeded 0.6, indicating a further reduction in differences. 

Table 3. Return on investment calculations for application of organic fertilization. 
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Considering the results of precision organic fertilization, it is crucial to eliminate edge effects from 
the data. Consequently, specific subareas within the plots were defined for accurate examination 
without distortion. Both patch and full-area treatments were found to increase returns effectively, 
with the most significant return on investment observed in areas with generally favorable 
agronomic soil properties. 

Organic carbon orediction map for heterogeneous terrain (Kenya) 

The organic carbon concentration data from the two surveys (2015 and 2019) conducted on the 
eastern side of Mount Kenya were treated as a dataset for basic descriptive statistical calculations. 
No statistically significant differences were found between depths. The spatial distribution of 
sample points is significant within the elevation range of 1400 m (2100 m a.s.l. – 700 m a.s.l.). 
The highest sample density is between 1400 m and 1100 m a.s.l. Statistically significant 
differences (p < 0.001) were found between 0-20 cm and 50-100 cm samples. For 0-20 cm and 
20-50 cm samples, the p-value was 0.09362, close to the 5% confidence interval. The smallest p-
value (0.1764) was found for samples from 20-50 cm and 50-100 cm, indicating the lowest 
probability of a significant difference. 

The organic carbon prediction map created from the prediction data is shown in Figure 21. The 
statistical reliability of the map increased significantly due to the adddition of topographic an 
sensimal sensing covariables. The average R² value for maps not optimized with additional 
covariates was 0.59, improving to 0.82 after incorporating further parameters. 

 

Figure 21. Soil organic carbon map for the study area in Kenya. 

CONCLUSIONS AND RECOMMENDATIONS 

Evaluation of sample selection algorithms (Kanális) 

Based on the performance statistics (R² and RMSE) of models built from MIR spectral data with 
varying calibration/validation ratios, the following recommendations can be made: 
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- For 10% Calibration Sample Ratio, LHS (Latin Hypercube Sampling) provides the highest 
representativeness, 

- All three sampling methods (LHS, KSS, KMS) yield models with good predictive 
reliability (R² ≥ 0.9), 

- For a 30% calibration sample size, the KSS approach is recommended due to its efficient 
performance with at this relatively low sample size, 

- Highest predictive accuracy achieved with the KMS sampling approach. 

If cost reduction is a priority while maintaining accuracy, the KSS approach with a 30% calibration 
ratio is advisable. For situations where only 10% of the samples can be analyzed, LHS is 
recommended. For scenarios where predictive accuracy is paramount regardless of cost, KMS with 
a 70% calibration sample size is recommended. 

Soil organic sarbon survey (Kanális) 

The spatial and vertical distribution of organic carbon values from the sampled area ensures 
significant heterogeneity for the study. Results show a significant difference in organic carbon 
concentrations between the 50-100 cm depth and surface layers, validating the effectiveness of 
methods in assessing depth-specific organic carbon conditions. 

The biggest advantage of Grid sampling is constant point density, resulting in uniform 
interpolation effects across the area. The consistent point density minimizes the impact of outliers 
or measurement errors, ensuring that the interpolation accurately reflects the overall area. Grid 
sampling provides the best representation of depth-specific soil conditions and has the lowest 
deviation in difference maps. 

Varying point density leads to unequal effects on interpolation in Random sampling. Points that 
are isolated from others have a larger impact, potentially causing errors in interpolation, especially 
with large, extended outlier values. 

The uniformity of the sampling point density in Latin Hypercube Sampling (LHS) is determined 
by the input data used for calibration. Significant local changes in this data will result in higher 
density of sampling points. A limitation of the method is that smaller soil patches, which have 
developed independently of the input data (elevation), may not appear or may not appear in their 
true extent in LHS interpolations. The method can be applied with good performance in organic 
carbon inventory under the following conditions: 

- The input data available for the algorithm is presumed to be closely related to the soil 
organic carbon value, and 

- The pedometric relationships of the characteristic soil type in the sampling area align 
with the vertical profile of soil horizons according to soil genetics, and 

- The likelihood or frequency of deep soil patches with extreme values within the area is 
low. 

Subsequently, we examined the effect of the number of sampling points on the quality of the 
interpolation information. The goal was to perform a relative analysis of the performance of 
sampling methods, both compared to themselves and to other methods. 

- For grid network and LHS-based sampling, a minimum of 8 points/4.62 ha sampling 
density was required to eliminate estimation inaccuracies. 

- The highest accuracy for 0-100 cm organic carbon inventory is expected from LHS-based 
sampling. 
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- An exception is at the 50-100 cm sampling depth, where grid-based sampling demonstrably 
provided the smallest interpolation error. At an 8-point sampling density, the interpolation 
error was half that of LHS and RANDOM interpolations at similar sampling densities. 

It can be stated that the second phase of results also confirmed the previous conclusion. For 1-
meter organic carbon inventory, LHS-based sampling is recommended in the following cases: 

- Shallow or underdeveloped soils, 
- Situations where the topography or other remotely sensed variables are closely related to 

the developed soil. 

Grid-based sampling is recommended: 

- For soils where the connection between the soil surface and the underlying soil 
horizons/layers is interrupted by some soil genetic process: alluvial and slope debris soils, 
and anthropogenic soils, 

- Where depth conditions are crucial for organic carbon inventory: organic soils. 

Tracking the effects of precision organic fertilization under different soil conditions (Érréve) 

Based on the results, organic fertilization did not cause quantifiable changes in the soil's organic 
carbon content. In the principal component analysis scatterplot of MIR spectral data, organic 
fertilizer is clearly separated from soil samples, achieving sufficient differentiation for 
comparison. Subsequently, Pearson's coefficient proved to be the most suitable for examining the 
differences in principal component data. A significant difference was found in the similarity to 
organic fertilizer between the control and treated soil sample principal component values. This 
difference remains significantly different from the control during sampling after fertilization, but 
the confidence interval's gradual decrease over 2 years indicates the disappearance of organic 
forms introduced with organic matter, presumably through transformation and oxidation. 

The cost-benefit analysis reveals that both patch treatment and full area treatment are cost-
effective, leading to the following technological recommendations for precision organic 
fertilization: 

- Precision soil improvement (treatment of less favorable soil patches) is less cost-effective 
but still recommended, 

- The highest return is achieved with full area treatment, 
- As an optimized technology, the treatment of more favorable (in terms of agronomic 

properties) soil patches is recommended for cost and risk-effective returns. 

Mapping organic carbon conditions on heterogeneous topography (Kenya) 

Soil samples from the northeastern side of Mount Kenya show significant heterogeneity in organic 
carbon values within relatively small areas. Numerous topographical and climatic factors influence 
soil organic carbon content, making accurate mapping of soil conditions in the area particularly 
complex. The R2 value of the initially prepared organic carbon maps could be significantly 
increased (from 0.59 to 0.82) by optimizing the estimation model with additional variables. Based 
on the high coefficient of determination of the interpolated points on the prepared organic carbon 
map, it can be stated that the established interpolation estimation model can serve as a starting 
point for other areas with similarly heterogeneous topography and climatic conditions. 
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NEW SCIENTIFIC RESULTS 

Based on the research findings, the following new scientific results have been established: 

7.1. For carbon stock survey, Latin Hypercube Sampling (LHS) based soil sampling conditioned 
with topological data and surface properties may lead to incorrect results for alluvial and 
anthropogenic soils (due to soil layers) and organic soils (due to significant depth conditions). For 
these soils, a grid-based sampling strategy is recommended. 

7.2. Reducing the sampling density by 66% (1900 m²/sample point to 5800 m²/sample point) for 
each of the three sampling point selection methods examined resulted in a maximum 7% decrease 
in representativeness during the organic carbon survey. Additionally, both LHS and grid-based 
sampling show at most a 15% deviation from the original information content even with an 84% 
reduction in the original sample size (1900 m²/sample point to 11600 m²/sample point). 

7.3. Using the mid-infrared spectral data-based organic carbon estimation models presented in the 
thesis, an estimation accuracy of over 90% (Cross-validation R² = 0.9 and 0.97) is expected, even 
with a 10% calibration sample fraction, regardless of the number and heterogeneity of the samples, 
when employing the sample selection methods used in the thesis (Kennard-Stone sampling, k-
means sampling, Latin Hypercube sampling). 

7.4. Pelletized poultry manure was detectable among soil-bound organic compounds for up to one 
year (p < 0.01). By the second year, only statistical traces of the manure could be detected (p ≤ 0.2 
and p ≤ 0.6), irrespective of the applied dose. 

7.5. The methodology presented in the thesis can be integrated into agricultural practice. With 
annual soil sampling, it is possible to track the persistence of plant organic residues and organic 
fertilizers. 

7.6. All organic fertilization procedures examined in the research were cost-effective in terms of 
crop yield. However, under the given conditions, fertilizing better-quality soil patches may be 
more favorable both economically and for atmospheric carbon sequestration compared to treating 
the entire area. Therefore, I recommend the implementation of precision manuring ont he better-
quiality sol patches. 

7.7. The methodology used (optimized interpolation with additional variables) enabled the creation 
of a high-precision (R² = 0.82) soil organic carbon concentration map for a large (~1500 km²) area 
characterized by high topographical and climatic heterogeneity. 
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