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INTRODUCTION AND OBJECTIVES

The current trends in crop production (on a national, European, and global scale) focus on
understanding the organic carbon conditions of our soils and managing them in harmony with our
long-term environmental goals. This research takes a practical approach, aiming partly to make
the methodology used in the research more applicable to crop production. To make cultivation a
conscious decision-making process, it is necessary to develop methods that allow for the
monitoring of the soil's organic matter conditions, as well as the direction and extent of its changes,
while considering time, financial and equipment needs of examination.

Animal-derived manure and slurry play a key role in managing organic matter through cultivation.
By examining the utilization of precision manuring, the accurate use of available organic fertilizers
for the greatest potential benefit could become a reality in the future.

The research thesis concerning the development, refinement, and reduction of resource and time
requirements in the methodology used for surveying organic carbon in cultivated areas includes
the following:

- Among the sample strategies studied (Random, Grid, Latin Hypercube Sampling), which
is the most efficient for assessing organic carbon conditions in a cultivated area with
heterogeneous  soil  properties, at multiple depths? How  does the
representativeness/performance of these methods change with the density of sample
points?

- What estimation performance can be expected from an organic carbon prediction model
based on mid-infrared spectral data, depending on the sample selection method used
(Kennard-Stone sampling, k-means sampling, Latin Hypercube sampling), and varying
calibration/validation sample ratios?

Focusing on improving the organic carbon condition of cultivated soils, also develop a method for
monitoring the soil carbon processes, which can be integrated into crop production practices:

- With what estimation accuracy can the methodology tested in the previous section be
applied to predict the organic carbon conditions of the area with a larger number of
samples?

- What is the short-term (2-year) impact of pelletized poultry manure applied in different
doses on the organic carbon content of the soil, and to what extent does it pay off in areas
with different soil properties?

- Is the mid-infrared (MIR) spectral range suitable for monitoring the persistence of organic
fertilizers in the soil, and can this organic carbon monitoring methodology be integrated
into the soil survey system used in crop production?

Testing the organic carbon survey methodology of this research for solving complex problems:

- Can the methodology used in the research be applied to map the organic carbon stock of a
large (~1500 km?) cultivated area with highly heterogeneous soil down to a depth of 1 m?
To what extent can the reliability of the map in question be improved by adding additional
dependent covariates (topography and proximal sensing data)?

MATERIALS AND METHODS

The experiments and surveys were conducted at three locations. The methodology used at the
locations, which can also be interpreted as phases of the research, builds on one another, and the
division of materials and methods follows this logic.

1. Ersekcsanad — Kanalis




The first survey area is located near Ersekcsanad, a cultivated land covering 4.62 hectares. One of
the key factors in shaping its soil conditions was the former floodings of the Danube, which led to
the formation of floodplain marks (frequent vertical and horizontal texture changes). The elevation
ranges from 85 meters above sea level on the eastern side to 87 meters on the western side. The
soil conditions within the area are characterized by strong heterogeneity, particularly in terms of
the frequent changes in the soil's physical properties. On the western side, at a lower elevation and
closer to the Danube Valley Main Canal, the groundwater is relatively close to the surface (1-2
meters, depending on water levels and weather conditions), making the developed reductive
conditions around 1 meter depth another defining factor (Figure 1).

Figure 1. The soil profile at the eastern end of the sample area clearly shows the reductive
conditions in the depth and the groundwater level within 1 meter of the surface.
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Figure 2. Illustration of the overall sampling strategy, distinguishing between different sampling
approaches.

During the development of the sampling strategy, the goal was to investigate the influence of
different sampling patterns on the results of organic carbon mapping. For the survey, we selected
three sampling methods, each with 24 sample points (Figure 2):



- Random Sampling (RANDOM or RND)
- Grid Sampling (GRID)
- Latin Hypercube Sampling (LHS).

For each sampling point, a 100 cm? undisturbed sample (Eijkelkamp 07.53.SC) was collected from
three depths: 0-20 cm, 20-50 cm, and 50-100 cm. The undisturbed samples were taken from the
center of the respective sampling depth range.

The sample preparation following the sampling was carried out in the same manner for all
experiments. During preparation, visible plant and animal residues were removed, then the
samples were dried and subjected to gravimetric volume measurement before being sieved through
a 0.2 mm mesh.

First, I measured the organic carbon content of the samples using the Walkley-Black method and
the CaCOs content using a calcimeter. This was followed by capturing the mid-infrared (MIR)
reflectance spectra.

In selecting calibration samples necessary for the estimation models, the aim was to use a sampling
algorithm that would select samples best representing the heterogeneity of the given sample
population. The most commonly used sampling algorithms are KSS (Kennard-Stone Sampling),
KMS (K-means Sampling), and LHS (Latin Hypercube Sampling), and their performance was
compared with different calibration/validation ratios.

The mid-infrared (MIR) spectra were recorded using a Bruker Alpha II Fourier-transform
infrared spectrometer manufactured by Bruker Optics. the DRIFT module attached to the
instrument is specifically designed for analyzing solid, powdered samples. The protocol followed
during the examination was based on the Standard Operation Procedures document developed by
the World Agroforestry Center Soil-Plant Spectral Diagnostics Lab. During the measurements, the
diffuse spectral reflectance of the samples was recorded in the spectral range of 400 to 4000 1/cm.
For background radiation measurements, I used a gold standard with known spectral
characteristics, which was measured before each analyzed sample. Each sample was measured in
3 repetitions, with the software used for the measurement creating an average from 48 irradiations
for each repetition.

In the preprocessing of the spectral measurement results, the first step was to average the results
from the repeated measurements, and subsequent steps used only the average spectrum for further
processing. Next, to reduce the sawtooth effect caused by local spectral range variability, I applied
a smoothing procedure based on moving average calculations. Following spectral preprocessing,
outlier values due to reasons such as measurement errors or sample mix-ups were filtered out,
using Mahalanobis and H distance values.

For the establishment of the prediction model, Partial Least Squares Regression (PLSR) was
employed, a commonly applied model for quantitative determinations. To validate the estimates
made by the model, we created a composite statistical indicator specifically for this study. This
indicator utilizes the statistical parameters of the estimates, combining RMSE (Root Mean Squared
Error) and R? (Coefficient of Determination). The indicator summarizes R> and RMSE values in
one variable, on a normalized scale, based on the formula used for calculating NDVI (Normalized
Difference Vegetation Index):

(R2-RMSE) / (R2+RMSE)

According to this formula, an increase in R? and a decrease in RMSE will increase the value of the
indicator. Therefore, the composite statistical indicator is directly proportional to the accuracy of
the tested model.



Ersekcsanad — Erréve

L =N g Bk

Figure 3. Soil profiles drilled in sampli area Erréve and their locations.

The precision fertilization experiment is located on a 24.3 ha arable field outside of Ersekcsanad.
The soil conditions are also significantly influenced by the former flooding of the Danube River,
resulting in alternating coarse and fine-textured soil layers both horizontally and vertically (Figure
3).

The field features floodplain soil strips running perpendicular to the cultivation, oriented northeast-
east-west, characterized by higher elevations and soil materials with lower clay and silt fractions.
These less-favoured soil patches (in agronomic terms) and the fine-textured alluvial soil strips
between them served as the foundation and main focus of the experiment.

The organic manure used in the experiment contained the following nutrients per 100 kg of dry
matter: 4:4:4 kg NPK and 7 kg Ca.

In the experimental area, soybeans were grown in the year preceding the experiment, and maize
was grown in the first year of the experiment. Apart from the treatments, there were no differences
in the growing technology of the plots (soil cultivation, sowing, plant care), the technology applied
in the experiment was an additional component to the basic crop production technology.

The experiment included two types of treatments: Partial Treatment (FK) and Full Treatment (TK).
In partial treatment, only certain targeted, less-favoured soil strips within the plot were treated,
while for Full Treatment, the pelletized manure was uniformly applied across the entire
experimental plot. Two doses were applied: 250 kg/ha and 500 kg/ha. The plots created (FK250,
FK500, TK250, TK500, Control) are illustrated in Figure 4.
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Figure 4. Plots for organic fertilization with indicated treatments (Source: Google Earth, 2022).
The sequence of treatment and sampling was as follows:

Preliminary Survey — October 2018;

Treatment — October 2018;

First Sampling — May 2019;

Second Sampling — September 2019;

Third Sampling — August 2020.

Soil sampling points were positioned along the soil strips, as shown in Figure 5. The goal was to
monitor changes in the organic carbon conditions of these variable soil strips, so the sample rows
marked with letters were placed within these strips.

o
JDE’- =] ; d

dc7 do7 JET '

Fgure 5. Placement of sampling rows a;kpints within the experimental plots (Source: Google
Earth, 2022).

Each plot contained three sampling points. During sampling, I marked the sampling location
within a 2-meter radius of the pre-designated point according to GPS to ensure representativeness.
Samples were taken from depths of 0-10 cm, 10-20 cm, and 20-30 cm, resulting in a total of 270
samples from the 90 sampling points. In addition to soil sampling, yield measurements were
conducted in the year following the organic fertilization.



After preparation, the MIR spectra of the samples were recorded. Using the LHS algorithm, 10%
of the samples best representing the spectral variance of the sample population were selected. The
carbon content of the selected samples was measured with an elemental analyzer, and the CaCOs
content was measured with a calcimeter. Based on these measurements, a PLSR model was
developed using the MIR spectra to estimate the carbon and calcium content of the remaining
samples.

The elemental analysis was conducted using the Elementar VarioMAX Cube CNS automatic
analyzer. The samples analyzed ranged between 800 and 1000 mg in weight. The analyzer was
operated in CNS mode, utilizing a TCD (Thermal Conductivity Detector) to measure the relative
concentration of carbon in the gas mixture.

Data Processing and Topographic Analysis:

The preparation and handling of the elevation points were performed using the “fields” R package,
specifically the TPS (Thin Plate Spline) regression function. After interpolating the elevation data,
slope and aspect variables were extracted from the resulting DTM (Digital Terrain Model) using
the SAGA GIS software. The covariates used for the optimization of the model included:
Elevation, Slope aspect, Slope gradient.

3. Kenya — Eastern Slope of Mount Kenya

Mount Kenya is Africa's second-highest mountain, an inactive stratovolcano, with its highest point
reaching 5199 meters. Its slopes are deeply carved by glaciers, and its base primarily consists of
volcanic rock and ash, with some metamorphic rock present.

Figure 6. Eastern slope of Mount Kenya, with the study area and sampling points marked. Green
markers: 2015, Blue markers: 2019 (Source: Google Earth, 2024).

The sampling covered approximately 1500 km? (Figure 6). The climatic conditions of the area are
significantly influenced by the proximity to the Equator. However, Mount Kenya acts as a distinct
climatic unit within the East African arid and semi-arid region. The eastern slope receives more
precipitation than the western slope and serves as a crucial watershed. Consequently, the natural
vegetation is rich and complex. The small area of the eastern slope allows for the observation of
changes in vegetation and soil development associated with variations in altitude and precipitation.
This varied landscape is ideal for modeling the effects of precipitation and climatic conditions on
soil organic carbon content. The soil conditions include Nitisols and Regosols in the dry areas
(with annual precipitation of 600 mm), Nitisols and Phaeozems in the intensively cultivated areas,
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and Histosols in the more humid regions (with annual precipitation of 1800-2000 mm) found in
the highland moss-covered areas.

The aggregated organic matter map uses data from two different surveys. The sampling points
from the 2015 and 2019 surveys are illustrated in Figure 6.

The first survey took place between December 2015 and January 2016, focusing on cultivated soils
on the eastern slope of Mount Kenya. The sampling points were designated using CLHS
(Conditioned Latin Hypercube Sampling), with input variables including precipitation,
temperature, vegetation index, topographic moisture index, slope gradient, and calculated
sampling cost (from a "resistance" map derived from slope data and road networks).

The designated sampling points included 77 points, of which 28 were open soil profiles and 49
were drilled profiles. Soil sampling was performed based on genetic horizons, with samples taken
from depths of 0-20 cm, 20-50 cm, and 50-100 cm in the drilled profiles, totaling 269 samples.
After sample preparation, a portion of the sample population's organic carbon content was
determined using dry combustion. The remaining samples' organic carbon content was estimated
using the MIR spectra and a predictive model.

In January 2019, a second, supplementary soil survey of organic matter on the eastern slope of
Mount Kenya was conducted. Similar to the 2015 survey, sampling followed the CLHS strategy,
using the same input data. The designated points numbered 100, with 69 points sampled (Figure
6). Samples were collected from depths of 0-20 cm, 20-50 cm, and 50-100 cm at each sampling
point, resulting in a total of 207 samples. These samples were prepared and analyzed for organic
carbon content using the Walkley-Black method.

To create the 0-100 cm organic carbon concentration map, we adapted R code based on previous
work by the research team, with specific modifications for this task. The exact methodology and
command sequences are part of a forthcoming publication.

Key Covariates for the Model:

- DEM (Digital Elevation Model),

- SR-B6: Landsat 8-9 SWIR (Short-wave Infrared) reflectance value,

- SAVI(Soil Adjusted Vegetation Index): A modified NDVI that corrects for soil brightness
in low vegetation areas using a correction factor,

- Annual precipitation,

- Topographic diversity derived from SRTM (Shuttle Radar Topography Mission) data,

- Slope gradient and aspect,

- Landcover,

- TPI (Topographic Position Index).

RESULTS AND EVALUATION

Evaluation of Sample Selection Methods (Kanélis)

To assess the performance of sample selection algorithms, a sufficiently heterogeneous sample
population is required. The variability in organic carbon values at different depths is reflected in
the different means and medians. The standard deviations for the 0-20 cm and 20-50 cm sample
groups are nearly the same, whereas the standard deviation for the 50-100 cm samples differs, with
a 1% significance interval.

The get information about the tested algorithms, first we calculated the representativity (Figure 7).
The LHS (Latin Hypercube Sampling) method is characterized by the flattest saturation curve,
meaning that the representativity stabilizes faster with increasing sample size. The KSS algorithm
requies the most samples for the saturation of the representativity.
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3 T
S |
o | ]
| —— Kennard-Stone sampling
|
| k-means sampling
| . '
~ © | — Latin hypercube sampling
N’
.; = o
£ 5
S ©
-
=
)
@
5]
2 3
S
o 2 .
a4 o
\\
\
o O-O-O'O'o o TR Beon o E
S 70:0.5:0°0:6:0-8:0:8:0:8:8°09:0:8:8:0.6:0:6:-0.8:8:8:0:8:6:0.0
S T T T T
0 50 100 150 200

Number of samples

Figure 7. Performance of different sample selection algorithms in terms of representativeness
(msd) for varying numbers of samples.

The three sample selection methods (LHS, KSS, KMS) were involved in a calibration/validation
series, each step consists of 10% of the samples (10%/90% to 90%/10%). After cross-validating
the models, we analyzed the R*> and RMSE values and also created a combined, normalized

statistical indicator based on the NDVI (Normalized Difference Vegetation Index) calculation
formula:

(R? -~ RMSE) / (R? + RMSE)
This indicator ranges between -1 and 1, where higher values signify better model reliability.

The validation results indicate (Table 1 and Figure 8):

- The models’ R? values were below 0.9 only for the KMS 10% and 20% sample sizes and
the KSS 10% sample size, indicating generally high prediction accuracy despite significant
heterogeneity,

- RMSE values decrease with increasing ratio for calibration, showing a negative
correlation,

- The highest R? values were achieved with 80% sample size for KSS and LHS, and 90%
for KMS,

- The combined R? and RMSE values suggest that while the highest prediction accuracy is
obtained with 80% and 90% sample usage, both 10-20% and 80-90% calibration result in
prediction inconsistencies. The former is due to calibration inaccuracies, while the latter
may result from validation inaccuracies,

- The lowest (0.46) and highest (0.72) combined statistical indicators were observed for
KMS sample selection,

- The performance of models shows the greatest similarity when using 40-60% of the
samples,

- The models’ performance changes the least when using 40% and 60% of the samples,

- The KSS-calibrated model’s statistical indicator curve saturates at a 30% sample size, LHS
at 50%, and KMS at 70%,
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- For LHS and KMS algorithms, there is fluctuation in prediction accuracy at 10-30% and
70-80% sample sizes, while for KSS, significant fluctuation is only noted at the 90%
sample size.

Table 1: Statistical indicators of models calibrated/validated with different sample sizes.

The ratio of samples used for calibration

10% | 20% | 30% | 40% | 50% | 60% | 70% 80% 90%
KSS R? 0,885 10,924 10,934 10,938 10,939 10,936 10,944 0,952 0,93
KSS RMSE 0,258 10,209 0,193 |0,188 /0,186 0,187 |0,18 10,174 0,186
KMS R? 0,895 10,835 10,907 10,92 10,927 10,906 0,957 |0,944 0,969
KMS RMSE 0,246 0,308 |0,231 |0,211 /0,215 /0,21 [0,165 |0,17 0,157
LHS R? 0,914 10,904 0,901 |0,922 10,937 |0,939 10,93 10,951 0,948
LHS RMSE 0,225 10,235 0,23 0,213 ]0,187 0,187 10,202 0,169 0,167

Change in the statistical indicators of models created based on sampling methods
as the number of samples included in the calibration increases

0,75

0,7
0,65 -3 B
v i 14
0,55
0,5
0,45 I
0,4

10% 20% 30% 40% 50% 60% 70% 80% 90%
Ratio of samples used for calibration
mKSS = KMS LHS

-

-

Combined satistival indicator
(R? - RMSE)/(R2+RMSE)

Figure 8. The combined statistical indicator for models calibrated using different sample selection
methods.

Soil organic sarbon survey (Kanalis)

In comparing different sample point selection methods, C density values were calculated from the
organic carbon results, which represent the amount of organic carbon present in 1 m? of area to a
depth of 1 meter. "krieg" interpolation was applied to create C density maps. The formula for C
density and its dimensions is as follows:

Cpens = pb * Corg% * hsoiL= [t/m3 * kg/t * m] = [kg/m?]
pb = Bulk density [t/m?]
Corg% = Soil organic carbon content [%]
hsoiL = Depth of the soil column being calculated [m]

The most information-dense and thus the most accurate interpolation maps are the "SUM" maps
created from all 72 points of the three sample collections, which serve as a reference for
comparison. The color coding of the TOC [kg/m?] scale is consistent across different depth
representations for better comparability.
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In the interpolations for the 0-20 cm depth (Figure 9), most of the soil patches visible on the SUM
map are recognizable across different maps; however, their extent and the interpolation values

show significant variations.
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Figure 9. C density map for the 0-20 cm depth using aggregated and various sample point selection

methods. The color scale of the maps ranges from 0 to 20 kg/m?.

The most significant differences between the maps from individual sample collections and the
SUM map are observed at the 50-100 cm depth (Figure 10). The GRID map most accurately

reflects the placement of soil patches and general soil conditions.
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Figure 10. C density map for the 50-100 cm depth using aggregated and various sample point

selection methods. The color scale of the maps ranges from 0 to 20 kg/m?.

To better illustrate the differences between various interpolations, difference maps were created
by subtracting the results of interpolations from individual sample collections from the

interpolation of the map containing all 72 points (Figures 11 and 12).
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Figure 11. Difference between interpolations created from aggregated points and those from
different point selection methods, shown as a map.

The deficit map shows negative values where the subtracted interpolation has higher values
(marked in red) and positive values where the subtracted interpolation has lower values (marked
in green). This visual representation helps to better demonstrate the characteristics of the sample
point selection methods beyond the general assessment of the resulting interpolation. The color
scale values for the deficit maps of each depth are consistent.

In the deficit maps for the 0-20 cm depth (Figure 11), negative values are predominantly observed
on the SUM-GRID and SUM-RND maps, indicating higher values on the GRID and RANDOM
maps. The difference maps for the 20-50 cm depth show lower deviations between GRID and LHS
compared to the SUM-RANDOM map, which has the highest deficit values among the three
difference maps. For the 50-100 cm depth, the RANDOM map shows deviations both positively
and negatively compared to the SUM map (Figure 14). For GRID and LHS, deviations are
generally positive, though negative deviations are more dominant when considering the entire area.
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Figure 12. Difference between interpolations created from aggregated points and those from
different point selection methods, shown as a map.

The 0-100 cm difference map summarizes the overall interpolation error for the full depth of
sampling (Figure 12). The largest negative deviation was seen with the SUM-RND method, while
the largest positive deviation was with the SUM-GRID method. The greatest difference between
the maximum negative and positive deficit values (the sum of the absolute values of the
differences) was with the SUM-RND method, indicating the largest distortion of the interpolation
for given points. Conversely, the smallest value was for the SUM-GRID method, suggesting the
GRID map has the lowest chance of high-value errors in sampling.

Examination of the effect of sample density on interpolation volume

To investigate the applicability of sample collections for assessing organic carbon conditions, the
interpolations were tested with the aim of quantifying differences between sample collections. A
series was created where the number of points used for interpolation was gradually reduced (24-
20-16-12-8-4 sample points), and then the volume of interpolation was calculated for each given
number of points. This volume represents the amount of carbon stock found over the entire area at
the examined depth. These calculated volumes were compared to the volume of the interpolation
using all 72 points (highest information density).

To make the differences at various depths comparable, I calculated the percentage deviation
relative to the 72-point interpolation (Figure 13). The GRID method resulted in the smallest change
(highest reliability) as the number of sample points was reduced. For 20 and 16-point
interpolations, LHS showed the smallest error percentages and the lowest variability.
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Figure 13. Summary figure of volume calculations deviations from interpolations with different
sample sizes.

In the next step, I calculated the standard deviation, mean, and variance of interpolation volumes
for each group created by reducing sample points (by sampling method, number of sample points,
and depth, e.g., GRID 12 points, 0-20 cm). To understand the variability within groups, I computed
the modified relative variance, defined as follows:

D = (c?/ Vszum) * 100
o and o2 are the standard deviation and variance, respectively,
Vszum is the volume value of the 72-point interpolation for the respective depth group.

The modified relative variance is a dimensionless indicator, expressed as a percentage after
multiplying by 100. For better interpretability of the variability of interpolation results calculated
with reduced sample sizes, the modified relative variance values are also depicted (Figure 14).
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100, 0-100 cm) within each sample point reduction.

Summarizing the results, it can be said that for GRID and LHS methods, the uncertainty of
interpolation—presumed for assessing the organic carbon stock in the area—increases
significantly when reducing from 8 to 4 sample points. In contrast, for RANDOM points,
variability is significant even for 16, 12, and 8-point maps.

Figure 15 shows a comparison of interpolations from reduced sample sizes on the same scale.
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Figure 15. Representation of percentage deviations of interpolations with different sample sizes
on a unified scale.

Based on this figure, LHS exhibits the lowest variability, except for the 4-point interpolation,
which is lowest for GRID. The means (median and average) of the interpolations are closest to
zero for GRID. For LHS, the mean of every sample size group is below zero, while for RANDOM,
values fluctuate around zero after the 20-point interpolation, both above and below zero. For
GRID, the variability of 20, 16, 12, and 8-point interpolations is high but changes little with
reduced sample points, indicating high and constant information loss. For RANDOM and LHS,
variability increases with each reduction in sample points. For RANDOM, even 20-point
interpolation shows high variability, which does not change or increases in subsequent steps. For
LHS, variability increases slightly with each reduction starting from 24 points. It is important to
note that low variability does not always mean low deviation from zero. For example, while LHS20
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has low variability, RANDOM?20 values cluster around zero despite higher variability, resulting
in similar absolute deviations (Figure 14).

Monitoring the impact of precision organic fertilization under different soil conditions (Erréve)

In presenting the effects of pelletized organic fertilization, I considered only the top 0-10 cm depth

of organic carbon data due to the incorporation depth, as the effects of fertilization are expected to
be most measurable at this depth.

First, I examined quantitative changes in the soil organic carbon. I divided the data into three
groups: (1) Control and two dosage treatments, (2) 500 kg/hectare, and (3) 250 kg/hectare. |
considered any plot that did not receive treatment as a control, as well as all plots from the
preliminary survey. The reverse order of dosages results from the physical arrangement of the

plots. Results shown in Figure 16 exclude both patch and full-area treatments, thus qualifying all
of the shown data as controls.

C concentration values [%] of untreated plots from depth 0-10 cm
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Figure 16. Organic carbon content in untreated (Control) areas.

The average values of each plot come from three sample points. The change in organic carbon
content in the soil of each plot varies, showing natural dispersion in the data. This variability
suggests that there is no consistent trend in organic carbon changes among the untreated plots.
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Figure 17. Comparison of carbon content of soils from treated plots with control plots.
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When examining the results of fertilized plots, considering data dispersion, there is no visible or
statistically significant quantitative difference due to the treatments (Figure 17). The results from
organic carbon mapping based on different depths are presented in the appendix of the thesis, with
the coefficients of determination listed in Table 2.

Table 2. Coefficients of determination for the produced maps (Erréve).

R2 values — Erréve 0-10 cm 10-20 cm 20-30 cm
Crossvalidation 0,838 0,825 0,834
External validation(20%) 0,90 0,90 0,91

The collected spectra were subjected to principal component analysis, including the organic
fertilization applied (Figure 18).

Scatter plot of the principal components of soil samples and manure sample
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Figure 18. Principal Component Analysis of Collected Spectra

The primary goal was to determine how many principal components explain the variance in the
data. Due to the low differences between data points and the high inherent dimensionality, the
number of principal components was chosen based on the point at which the magnitude difference
between spectra of organic fertilizer and soil samples ceased to be significant. Consequently, 11
principal components were used for further analysis. The objective was to compare principal
components to assess similarities between soil samples and the applied organic fertilizer.
Similarity indices appropriate for spectral data, such as Cosine and Pearson coefficients, were used
for comparing principal components (Figure 19).

Cosine coefficient Pearson coefficient
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Figure 19. Similarity analysis of soil samples and applied organic fertilizer spectra

The Cosine similarity analysis did not provide significant results, but the Pearson coefficient
showed significant (p < 0.05) differences between untreated and treated soils. Using the Pearson
coefficient, I aimed to further analyze differences on a sampling time basis. A difference
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calculation was performed to measure the variability between the Pearson coefficients of control
and treated plots, and the confidence intervals for these differences were compared (Figure 20).

Chemical similarities between organic fertilizer and soil samples

Difference values of Pearson coefficients for treated plots compared to control
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Figure 20. Difference values of Pearson coefficients for treatments compared to control

The figures show that the spectral similarity of soil samples to organic fertilizer was highest in
treated plots during the initial sampling, with significant differences (p < 0.05). This difference
gradually decreased with each sampling, with the initial significant difference no longer evident
after six months, though the confidence interval remained not too high (p ~ 0.2). After one and a
half years, the confidence interval exceeded 0.6, indicating a further reduction in differences.

Table 3. Return on investment calculations for application of organic fertilization.

Patch treatment Control 500 kg/ha 250 ka/ha

Weight [t] 146/ 1.03| 1.45| 138 168 1.54| 166] 148 1.51| 143 1.55| 1.64

Avrea [ha] 0.176) 0.179| 0.185| 0.185| 0.203| 0.204| 0.206| 0.206| 0.203| 0.198| 0.192| 0.192

Yield [t/ha] 8.32| 576| 7.83 7.42] 823 7.52| 8.03] 7.16] 740 7.19| 8.08] 8,53

Treated area [ha] 0 0 0 0] 0.077| 0.078| 0.077| 0.077| 0.076| 0.075| 0.073| 0.073

Ratio of treated area .

%] 38 38 37 37 38 38 38 38

Treatment cost [HUF] 3582|3634 3556|3556 (1772|1729|1686|1 686

Avg. yield [t'ha] 7.33 7.74 7.80

Average cost

[HUF/ha] 0 17 615 8 807

Income - Treatment

[HUF] 476 629 502 845 506 926

Full area treatment Control 500 kg/ha 250 kg/ha

Weight [t] 1.25| 1.12| 1.29| 132 1.75| 1.68| 1,73 1.67| 1.69| 1,70) 1.84| 1.68

Area [ha] 021 0.21] 022 022 022 022 022 022] 023| 023| 024] 0.24

Yield [t/ha] 5.88| 5.20| 587 6,01 811 7.62| 7.76| 7.51| 747| 7.32| 7.78| 7.12
0

Treated area [ha] 0 0 0] 0.216| 0.220( 0.222| 0.222] 0.226| 0.231| 0.236| 0,236

Ratio of treated area

10 003 |10 214 |10 30510 305) 5243 | 5 363 | 5 469 | 5 469

[%]

Treatment cost [HUF] 5,74 7.75 7.42
Average cost

[HUF/ha] 0 10 207 5386
o 372 992 493 637 477133
[HUF]
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Considering the results of precision organic fertilization, it is crucial to eliminate edge effects from
the data. Consequently, specific subareas within the plots were defined for accurate examination
without distortion. Both patch and full-area treatments were found to increase returns effectively,
with the most significant return on investment observed in areas with generally favorable
agronomic soil properties.

Organic carbon orediction map for heterogeneous terrain (Kenya)

The organic carbon concentration data from the two surveys (2015 and 2019) conducted on the
eastern side of Mount Kenya were treated as a dataset for basic descriptive statistical calculations.
No statistically significant differences were found between depths. The spatial distribution of
sample points is significant within the elevation range of 1400 m (2100 m a.s.l. — 700 m a.s.l.).
The highest sample density is between 1400 m and 1100 m a.s.l. Statistically significant
differences (p < 0.001) were found between 0-20 cm and 50-100 cm samples. For 0-20 cm and
20-50 cm samples, the p-value was 0.09362, close to the 5% confidence interval. The smallest p-
value (0.1764) was found for samples from 20-50 cm and 50-100 cm, indicating the lowest
probability of a significant difference.

The organic carbon prediction map created from the prediction data is shown in Figure 21. The
statistical reliability of the map increased significantly due to the adddition of topographic an
sensimal sensing covariables. The average R? value for maps not optimized with additional
covariates was 0.59, improving to 0.82 after incorporating further parameters.
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Figure 21. Soil organic carbon map for the study area in Kenya.
CONCLUSIONS AND RECOMMENDATIONS

Evaluation of sample selection algorithms (Kanalis)

Based on the performance statistics (R> and RMSE) of models built from MIR spectral data with
varying calibration/validation ratios, the following recommendations can be made:
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- For 10% Calibration Sample Ratio, LHS (Latin Hypercube Sampling) provides the highest
representativeness,

- All three sampling methods (LHS, KSS, KMS) yield models with good predictive
reliability (R? > 0.9),

- For a 30% calibration sample size, the KSS approach is recommended due to its efficient
performance with at this relatively low sample size,

- Highest predictive accuracy achieved with the KMS sampling approach.

If cost reduction is a priority while maintaining accuracy, the KSS approach with a 30% calibration
ratio is advisable. For situations where only 10% of the samples can be analyzed, LHS is
recommended. For scenarios where predictive accuracy is paramount regardless of cost, KMS with
a 70% calibration sample size is recommended.

Soil organic sarbon survey (Kanélis)

The spatial and vertical distribution of organic carbon values from the sampled area ensures
significant heterogeneity for the study. Results show a significant difference in organic carbon
concentrations between the 50-100 cm depth and surface layers, validating the effectiveness of
methods in assessing depth-specific organic carbon conditions.

The biggest advantage of Grid sampling is constant point density, resulting in uniform
interpolation effects across the area. The consistent point density minimizes the impact of outliers
or measurement errors, ensuring that the interpolation accurately reflects the overall area. Grid
sampling provides the best representation of depth-specific soil conditions and has the lowest
deviation in difference maps.

Varying point density leads to unequal effects on interpolation in Random sampling. Points that
are isolated from others have a larger impact, potentially causing errors in interpolation, especially
with large, extended outlier values.

The uniformity of the sampling point density in Latin Hypercube Sampling (LHS) is determined
by the input data used for calibration. Significant local changes in this data will result in higher
density of sampling points. A limitation of the method is that smaller soil patches, which have
developed independently of the input data (elevation), may not appear or may not appear in their
true extent in LHS interpolations. The method can be applied with good performance in organic
carbon inventory under the following conditions:

- The input data available for the algorithm is presumed to be closely related to the soil
organic carbon value, and

- The pedometric relationships of the characteristic soil type in the sampling area align
with the vertical profile of soil horizons according to soil genetics, and

- The likelihood or frequency of deep soil patches with extreme values within the area is
low.

Subsequently, we examined the effect of the number of sampling points on the quality of the
interpolation information. The goal was to perform a relative analysis of the performance of
sampling methods, both compared to themselves and to other methods.

- For grid network and LHS-based sampling, a minimum of 8 points/4.62 ha sampling
density was required to eliminate estimation inaccuracies.

- The highest accuracy for 0-100 cm organic carbon inventory is expected from LHS-based
sampling.
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- Anexception is at the 50-100 cm sampling depth, where grid-based sampling demonstrably
provided the smallest interpolation error. At an 8-point sampling density, the interpolation
error was half that of LHS and RANDOM interpolations at similar sampling densities.

It can be stated that the second phase of results also confirmed the previous conclusion. For 1-
meter organic carbon inventory, LHS-based sampling is recommended in the following cases:

- Shallow or underdeveloped soils,
- Situations where the topography or other remotely sensed variables are closely related to
the developed soil.

Grid-based sampling is recommended:
- For soils where the connection between the soil surface and the underlying soil
horizons/layers is interrupted by some soil genetic process: alluvial and slope debris soils,
and anthropogenic soils,

- Where depth conditions are crucial for organic carbon inventory: organic soils.

Tracking the effects of precision organic fertilization under different soil conditions (Erréve)

Based on the results, organic fertilization did not cause quantifiable changes in the soil's organic
carbon content. In the principal component analysis scatterplot of MIR spectral data, organic
fertilizer is clearly separated from soil samples, achieving sufficient differentiation for
comparison. Subsequently, Pearson's coefficient proved to be the most suitable for examining the
differences in principal component data. A significant difference was found in the similarity to
organic fertilizer between the control and treated soil sample principal component values. This
difference remains significantly different from the control during sampling after fertilization, but
the confidence interval's gradual decrease over 2 years indicates the disappearance of organic
forms introduced with organic matter, presumably through transformation and oxidation.

The cost-benefit analysis reveals that both patch treatment and full area treatment are cost-
effective, leading to the following technological recommendations for precision organic
fertilization:

- Precision soil improvement (treatment of less favorable soil patches) is less cost-effective
but still recommended,

- The highest return is achieved with full area treatment,

- As an optimized technology, the treatment of more favorable (in terms of agronomic
properties) soil patches is recommended for cost and risk-effective returns.

Mapping organic carbon conditions on heterogeneous topography (Kenya)

Soil samples from the northeastern side of Mount Kenya show significant heterogeneity in organic
carbon values within relatively small areas. Numerous topographical and climatic factors influence
soil organic carbon content, making accurate mapping of soil conditions in the area particularly
complex. The R? value of the initially prepared organic carbon maps could be significantly
increased (from 0.59 to 0.82) by optimizing the estimation model with additional variables. Based
on the high coefficient of determination of the interpolated points on the prepared organic carbon
map, it can be stated that the established interpolation estimation model can serve as a starting
point for other areas with similarly heterogeneous topography and climatic conditions.
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NEW SCIENTIFIC RESULTS

Based on the research findings, the following new scientific results have been established:

7.1. For carbon stock survey, Latin Hypercube Sampling (LHS) based soil sampling conditioned
with topological data and surface properties may lead to incorrect results for alluvial and
anthropogenic soils (due to soil layers) and organic soils (due to significant depth conditions). For
these soils, a grid-based sampling strategy is recommended.

7.2. Reducing the sampling density by 66% (1900 m?*/sample point to 5800 m*/'sample point) for
each of the three sampling point selection methods examined resulted in a maximum 7% decrease
in representativeness during the organic carbon survey. Additionally, both LHS and grid-based
sampling show at most a 15% deviation from the original information content even with an 84%
reduction in the original sample size (1900 m?/sample point to 11600 m?/sample point).

7.3. Using the mid-infrared spectral data-based organic carbon estimation models presented in the
thesis, an estimation accuracy of over 90% (Cross-validation R? = 0.9 and 0.97) is expected, even
with a 10% calibration sample fraction, regardless of the number and heterogeneity of the samples,
when employing the sample selection methods used in the thesis (Kennard-Stone sampling, k-
means sampling, Latin Hypercube sampling).

7.4. Pelletized poultry manure was detectable among soil-bound organic compounds for up to one
year (p <0.01). By the second year, only statistical traces of the manure could be detected (p < 0.2
and p <0.6), irrespective of the applied dose.

7.5. The methodology presented in the thesis can be integrated into agricultural practice. With
annual soil sampling, it is possible to track the persistence of plant organic residues and organic
fertilizers.

7.6. All organic fertilization procedures examined in the research were cost-effective in terms of
crop yield. However, under the given conditions, fertilizing better-quality soil patches may be
more favorable both economically and for atmospheric carbon sequestration compared to treating
the entire area. Therefore, I recommend the implementation of precision manuring ont he better-
quiality sol patches.

7.7. The methodology used (optimized interpolation with additional variables) enabled the creation
of a high-precision (R? = 0.82) soil organic carbon concentration map for a large (~1500 km?) area
characterized by high topographical and climatic heterogeneity.
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