Sallangvirág (*Himantoglossum*) fajok szaporodási sikere - különböző tájhasználati módok mellett

DOKTORI (PhD) ÉRTEKEZÉS

DOI: 10.54598/000730

Készítette:
Biró Éva

Keszthely
2021
A doktori iskola megnevezése: Festetics Doktori Iskola

Iskolavezető:

Dr. habil. Anda Angéla
egyetemi tanár, az MTA doktora
MATE-Georgikon
Környezettudományi Intézet, Környezeti Fenntarthatóság Tanszék

Témavezető:

Dr. Bódis Judit
egyetemi docens, PhD
MATE-Georgikon
Vadgazdálkodási és Természetvédelmi Intézet

Az iskolavezető jóváhagyása A témavezető(k) jóváhagyása
Tartalomjegyzék

Kivonat .. 5
Abstract .. 7
Zusammenfassung ... 8
1. Bevezetés .. 10
2. Vizsgált taxonok bemutatása ... 14
3. Hazai adriai sallangvirág állományok virágzási jellemzői, reproduktív sikere és a tájhasználat összefüggései ... 19
 3.1. Bevezetés ... 19
 3.2. Anyag és módszer .. 20
 3.2.1. Vizsgálati terület ... 20
 3.2.2. Virágzási jellemzők, termésképzési siker ... 20
 3.2.3. Tájhasználati jellemzők ... 21
 3.3. Eredmények ... 21
 3.3.1. Állományadatok, állományváltozások ... 21
 3.3.2. Virágzási jellemzők ... 22
 3.3.3. Termésképzési siker .. 23
 3.3.4. Élőhelyi és tájhasználat jellemzők ... 27
 3.4. Értékelés .. 29
4. A háziméh szerepe az adriai sallangvirág termésképzésében 32
 4.1. Bevezetés ... 32
 4.2. Anyag és módszer .. 33
 4.2.1. A vizsgált faj és mintaterületei .. 33
 4.2.2. Termésképzési siker mérése ... 34
 4.2.3. Adatelemzés ... 34
 4.3. Eredmények ... 35
 4.4. Értékelés .. 37
5. Sallangvirág fajok szaporodási sikerét befolyásoló tényezők (növényméret és környező
növényzet) .. 41
 5.1. Bevezetés ... 41
 5.2. Anyag és módszer .. 44
 5.2.1. Vizsgált taxonok és helyszínek ... 44
5.2.2. Adatgyűjtés ... 46
5.2.3. Adatelemzés ... 48
5.2.3.1. Fajonkénti összehasonlítás ... 48
5.2.3.2. Himantoglossum taxonok összesített vizsgálata ... 49
5.3. Eredmények ... 50
5.3.1. Himantoglossum taxonok összesített vizsgálata .. 50
5.3.2. Fajonkénti összehasonlítás .. 52
5.4. Értékelés .. 58
6. Következtetések és javaslatok ... 63
7. Összefoglalás .. 65
8. Summary ... 67
9. Új tudományos eredmények .. 69
10. New scientific results ... 70
Mellékletek ... 71
 M1 Irodalomjegyzék .. 71
 M2 Ábrák, táblázatok ... 89
Köszönetnyilvánítás .. 101
Tudományos tevékenység adatai .. 102
Sallangvirág (Himantoglossum) fajok szaporodási sikere - különböző tájhasználati módok mellett

A kosborfajok jelentős része veszélyeztetett, megőrzésük egyre fokozódó kihívást jelent. Több fajuk is adaptálódott másodlagosan kialakult élőhelyekhez, kaszálókhoz, legelőkhöz, s most ezek fennmaradásához kötött az orchideák léte is.

A Himantoglossum adriaticum és H. calcaratum subsp. jankae hazánkban előforduló fokozottan védett, valamint közösségi jelentőségű ritka fajok, míg a H. calcaratum subsp. calcaratum egy szűk elterjedésű balkáni endemikus taxon. Mivel a reproduktív siker a növények fitneszének egyik legfontosabb mérőszáma, amely biztosítja az adott populáció túlélését, a disszertáció a termésképzést befolyásoló tényezők felülvizsgálatát tűzte ki célul.

2013 és 2017 között összesen 1903 virágzó adriai sallangvirág egyedet vizsgáltunk. Az egyes állományokban évenként 34 és 179 között változott a virágzó tövek száma. Az adriai sallangvirág esetében a magasság és a virágzathossz termőhelyenként és évenként is szignifikánsan eltérő, vagyis a környezeti tényezők jelentős befolyásoló hatással bírtak, azonban a virágszámmal, ami a legkevésbé változó jellemzőnek bizonyult.

A CORINE felszínborítási adatokat vizsgálva megállapítást nyertünk, hogy a keszthelyi és a sümegi állományok erdős, illetve erdős-cserjés területen fordulnak elő, míg a kőszegi és a nagyteveli állományok rét, illetve komplex művelésű területen (zártkert) nőnek, mely többek között befolyásolja a faj reprodukcióban megmutatkozó sikerességét.

A hazai populációk termésképzési sikere 9,2 és 61,7% között változott a vizsgálat öt éve során. A Nagytevelen tapasztalt 61,7%-os termésképzési arány a H. adriaticum legmagasabb publikált populációs szintű reprodukciós sikere, mely szignifikánsan magasabb volt, mint a többi vizsgált állományé. 2013-ban a háziméhek hozzájárultak a nagyteveli populáció magas reproductive sikereséhez.

A nemzetségen belül három taxon vizsgálata során megállapítást nyert, hogy a sallangvirágok termésképzési sikere szignifikáns pozitív kapcsolatban állt a virágzat hosszával, míg negatívan korrelált a fásszárú és a cserjeszint borításával. A legközelebbi Himantoglossum egyedek távolságának növekedése és a relatív késői virágzás negatívan befolyásolta a termésképzés sikerét. A vizsgálatok nem erősítettek meg, hogy egy-egy taxon, vagy a sallangvirágok színéhez hasonló nektártermelő fajok befolyásolták volna a sallangvirágok termésképzését.
termésképzési siker szignifikánsan pozitív összefüggést mutatott mind a korlátozó, mind a nem korlátozó morfológiájú nektártermelő virágok számával, vagyis a nektártermelő fajok sokféleségével. Ebből arra következtethetünk, hogy minél több virágos növény fordul elő a sallangvirágok körül, annál sikeresebb a termésképzés. A diverz élőhelyek megőrzése nemcsak a ritka és veszélyeztett orchideák megőrzését segíti, hanem megporzó rovarok fajgazdagságának fennmaradásához is hozzájárul.
Abstract

Reproductive success of lizard orchid (*Himantoglossum*) species under different land uses

Orchid species are threatened worldwide and their conservation is an increasing challenge. Several species have adapted to secondary habitats, meadows and pastures, and now the existence of orchids is tied to their survival. *Himantoglossum adriaticum* and *H. calcaratum* subsp. *jankae* are strictly protected in Hungary at national level and have a community importance in the EC, while *H. calcaratum* subsp. *calcaratum* is a Balkan endemic taxon. Reproductive success is one of the most important component of the plants fitness, which can ensure the survival of a given population. The aim of the dissertation was to test the impact of several factors on *Himantoglossum* fruit set. The plant height and inflorescence length of Adriatic Lizard Orchid also differed significantly between the locations and year to year, i.e. environmental factors had a significant influencing effect, as opposed to the number of flowers per inflorescence, which proved to be the least variable characteristic. Analysing the CORINE land cover data too, it was found that the Keszthely and Sümeg sites as well as Kőszeg and Nagytevel habitat were different. These are edges of thermophilous forest or abandoned vineyards with semi-dry grassland, which, among other things, affects the reproductive succes. During the five years of the study the reproductive succes varied between 9.2 and 61.7% in Hungary. The realised 61.7% fructification rate in Nagytevel is the highest ever published population-level average reproductive success of *H. adriaticum*. In 2013, honeybees contributed to the high reproductive success of the Nagytevel population. In the multivariate binomial GLMM controlling for the effect of other variables, fruit set was significantly related to the inflorescence length, tree cover and scrub cover, the number of unrestricted and restrictive flowers, median distance of 5 nearest *Himantoglossum* individuals and relative flowering. In conclusion, that the more flowering plants occur around the individuals of *Himantoglossum* species, the more successful the fruit set, which suggests the importance of diverse habitats.
Zusammenfassung

Reproduktionserfolg von Riemenzungenarten (*Himantoglossum*) bei verschiedenen Landschaftsnutzungsformen

Während des Untersuchungszeitraums (2013-2017) schwankte die Anzahl der blühenden Sprossen der Adriatischen Riemenzunge zwischen 34 und 179 pro Bestand und pro Jahr. Im Falle der Adriatischen Riemenzunge zeigten sich bei der Höhe der Pflanze und der Länge des Blütenstandes signifikante Abweichungen je nach Standort und auch je nach Jahr, das heißt, dass die Umweltfaktoren eine wesentliche beeinflussende Wirkung hatten, im Gegensatz zur Anzahl der Blüten, die sich als die am wenigsten variable Eigenschaft erwies.

Bei der Untersuchung der CORINE Oberflächenbedeckungsdaten wurde festgestellt, dass die Bestände in Keszthely und Sümeg in offenen Waldgebieten vorkommen, bis die Bestände in Köszeg und Nagytevel vor allem auf Wiesen wachsen, was unter anderem den Reproduktionserfolg der Art beeinflusst.

Der Erfolg der Fruchtbildung der heimischen Populationen änderte sich im Zuge der fünf Jahre der Untersuchungen zwischen 9,2% und 61,7%. Der in Nagytevel beobachtete Fruchtbildungsanteil von 61,7% ist im Falle der *H. adriaticum* der Reproduktionserfolg mit dem höchsten publizierten Populationsniveau. 2013 trugen die Honigbienen zum hohen Reproduktionserfolg der Population in Nagytevel viel bei.

Im Zuge der Untersuchung der drei Arten der Gattung wurde festgestellt, dass in der multivariaten binomialen GLMM, die die Wirkung anderer Variablen kontrollierte, der Reproduktionserfolg signifikant mit der Länge des Blütenstands, der Bedeckung von Sträuchern...
1. Bevezetés

Napjainkra a biodiverzitás csökkenése globális jelenséggé vált (Koh et al. 2004), melynek oka a mezőgazdaság intenzifikációja, a hagyományos gazdálkodási módok megváltozása, az élőhelyek szétarábolódása és degradációja, a vadon élő fajok fenntarthatatlanságának és idegenfajok behurcolásának, hidrológiai változások vagy a globális klimaváltozás (MacDonald et al. 2000, Donald et al. 2001, Sharrock és Jones 2009, Dengler et al. 2014) Az utóbbi néhány évtizedben fokozódó biodiverzitás krízis a kosborféléket is érzékenyen érintette (Kull és Hutchings 2006). Több fajuk is adaptálódott másodlagosan kialakult élőhelyekhez, megkülönböztető változásokra a tájhasználatban bekövetkező változások több szinten is kifejeződik hatásukat a kosborokra: egyrészt az élőhelyek megszűnésével elvesznek életterületük, másrészt a megporzó rovarok számának csökkenése miatt a még túlélő egyedek termékenysége is csökken (Molnár V. 2011).

A növényfajok diverzitása a földhasználat intenzitásának növekedésével csökken (Kleijn et al. 2009). A növényi fajgazdás gyakran szorosan kapcsolódik más fajcsoportok sokféleségéhez

A természetvédelmi szempontból legveszélyeztetetetebb fajok túlélése és a rovarmegporzású termesztett növények terméshozama a megporzó rovarok jelenlétéén keresztül kapcsolódik össze (Aguilar et al. 2006, Klein et al. 2007). Miközben a gazdasági növények megporzása érdékében mesterséges harályásszárnyú telepeket hoznak létre az ültetvényeken, ill. a szántók mellé telepítik a kaptárakat, egyre nyilvánvalóbb, hogy az igazi megoldást az jelentené, ha a megporzók (ismét)
megtalálnák életfeltételeiket a környező tájban, s mintegy „mellékesen” történne meg a haszonnövények beporzása (Kremen et al. 2004). A ritka növények sokkal jobban kiszolgáltatott helyzetben vannak, mert csak néhány egyedük jelenik meg, nagy évenkénti ingadozással, s ha a virágszerkezet is speciális, akkor különösen nehézkes lehet a megporzás.

A dolgozat a sallangvirág orchideanemzetségen belül három taxonnal foglalkozik. Mindkét hazánkban előforduló orchidea ritka, hazai és európai uniós védelem alatt áll. A taxonok részletes bemutatását a második fejezet tartalmazza. A vizsgálatok elsősorban az adriai sallangvirág (Himantoglossum adriaticum Baumann) populációira koncentrálódnak, azonban egyes esetekben a szélesebb k Bertinka és Sallaberry (2012) feltevetése szerint nem kialakult határon túli populációk, valamint rokontaxonok, a Janka-sallangvirág (Himantoglossum calcaratum (G. Beck) Schltr. subsp. jankae (Somlyay, Kreutz és Óvári) Bateman, Molnár és Srámkó) és a sarkantyús sallangvirág (Himantoglossum calcaratum (G. Beck) Schltr. subsp. calcaratum) egyes állományainak vizsgálatát is célul tüzte ki.

A dolgozat három részfeladatra koncentrál, melyet külön fejezetekben mutat be. A disszertáció harmadik fejezete fejezete a „Hazai adriai sallangvirág állományok virágzási jellemzői, reproduktív sikere és a tájhasználat összefüggése” címet viseli, mely a háttértényezőkra koncentrálódnak. E fejezet azt kívánja igazolni hazai vizsgálatok alapján, hogy pusztán a virágzó egyedek felmérésere koncentráló terepi vizsgálati módszerrel is fontos információkat kaphatunk a faj reproduktív stratégiájának megértéséhez és a fenmaradásához szükséges tényezők feltárásához. A természképzési sikert befolyásoló tényezők felderítése kulcsfontosságú feladat a populációk megőrzése érdekében. A dolgozat erre ad választ a negyedik és ötödik fejezetben „A háziméh szerepe az adriai sallangvirág termésképzésében”, valamint a „Sallangvirág fajok szaporodási sikerét befolyásoló tényezők (növényméret és környező növényzet)” címmel.

A vizsgálatok az alábbi célkitűzések mentén folytak 2013 és 2017 között:

- A kutatás az adriai sallangvirág hazai állományainak felmérést alapvetően tekintve a populációk olyan térbeli és időbeli összehasonlító vizsgálatát célozta, mely a virágzó egyedek felmérésére koncentráló terepi vizsgálati módszerrel is fontos információkat kaphatunk a faj reproduktív stratégiájának megértéséhez és a fenmaradásához szükséges tényezők feltárásához.
- Mivel a tájhasználat fontos információkkal szolgálhat az állományok alakulására, valamint az élőhely szerkezetét is meghatározza, a szerző célja volt a tájhasználati és élőhelyi vonatkozások, különbségek megállapítása.
- A disszertáció célja volt a házi méh jelentőségének értékelése az adriai sallangvirág szaporodási sikerére, továbbá arra is kereste a választ, hogy az egyedi reproduktív siker és a kaptáraktól való távolság között volt-e összefüggés?

- Számos irodalmi forrás igazolta, hogy a növénymagasság, vagy virágok száma befolyásolja a szaporodási sikert, így a kutatás célul tűzte ki a *Himantoglossum* fajok méretváltozóinak természképzési sikerre gyakorolt hatásának vizsgálatát.

- Sabat és Ackerman (1996) kutatásai szerint a virágzás ideje volt a legfontosabb tulajdonság, amely a természképzést befolyásolta, ezért a célkitűzések egyike volt a virágzás időzítésének vizsgálata.

- A legközelebbi szomszéd távolság (NND: Nearest Neighbour Distance) a legtöbb nemjutalmazó orchidea reprodukciós sikerére hatással van (Jacquemyn *et al.* 2002; Tremblay *et al.* 2005, Machaka-Houri *et al.* 2012), ezért a vizsgálatok célozták a *Himantoglossum* fajok sűrűségének hatását.

- A kutatás célozta a környező növényzet megporzás alakulásában játszott szerepét, mely igazolni kívánta azt az ismeretet, miszerint az árnyékban növő példányok természképzése alacsonyabb a fátlan, napos területen virágzókéval szemben (Bódis 2017, Jacquemyn *et al.* 2010).

Az egyes esettanulmányok pontos célkitűzéseit, részletes anyagait és módszereit maguk az esettanulmányok fejezetei tartalmazzák.
2. Vizsgált taxonok bemutatása

A sallangvirág nemzetség (*Himantoglossum* s.l.) jól körülhatárolható monofiletikus csoportot képez (Sramkó et al. 2014), melybe a legújabb, részletes filogenetikai és morfometriai elemzések alapján három alnemzetségen belül kilenc taxon tartozik (Sramkó et al. 2014; Bateman et al. 2017).

- *Himantoglossum calcaratum* (G. Beck) Schltr. subsp. *calcaratum* és

Romániában. Magyarországon a *H. adriaticum*-nak négy nagyobb és egy kisebb állománya ismert, de az utóbbi években több új élőhelyére is rábukkanak Zala és Veszprém megyében (Óvári 2017, Pacsai ex verb, Koloszár ex verb), a Keszthelyi-hegységből egy 1959-es adatot is megerősítettek (Bódis 2017).

A *H. adriaticum* tőlevelei (6,6–7,5–17,5 (–24,7) cm hosszúak és (1,5–)2,5–4,5 (–12,8) cm szélesek. A generatív hajtások (14–)40–80 (–120) cm magasak. A virágzat hosszúkás és laza (2.1. ábra), (4–)15–40 (–115) virágból áll, mely átlagosan 14–24 cm hosszú. Az alsó murvalevelek 19,2–71,5 mm hosszúak, míg a felsők rövidebbek, mint a virágok. A sisak zöldes-rózsaszín vagy fehér, kívül lila szegélyel, belül olykor széles lila erezettel. A külső lepel ovális, (6,8–)7,1–10 mm hosszú és 3,7–5,3 mm széles, míg a belső lepel lándzsa alakú, 4,4–7 mm × 1,2–1,8 mm. A labellum mélyen háromkaréjú, lila papillákkal foltos, a széleken élénk színű, általában vörösesbarna vagy sötétlila (ritkán olivazöld). A középső lebeny 28–61 mm × 1,3–2,3 mm, hegyén 2,4–12,4 (–18) mm mélyen bevágott. Az oldalsó lebenyek egyenesek, hegyesek, 2,9–10 (–25) mm hosszúak. A sarkantyús zsákszerű, ivelt (1,6–)2,1–3 (–3,7) mm hosszú (Delforge 2006, Molnár V. 2011, Bódis et al. 2019). A virágoknak enyhe, édeskés vagy aromás illata van (Vöth, 1999). A toktermések (10–)12–16 (–20,5) mm hosszúak és (2,3–)3–4 (–4,8) mm szélesek (2.2–2.3. ábra). Az ezermag tömege 0,0013 g (Sonkoly et al. 2016).

A *H. calaratum* subsp. *jankae* virágzó hajtásai (30–)50–72(–110) cm magasak; a tőlevelek mérete 66–135(–240) × 17–40 mm. A virágzat laza, 10–50 cm hosszú, ami (10–)20–40(–75) cm hosszú; a virágok tartalmaz. Az alsó murvalevelek (19–)30–44(–75) mm, a felsők (6–)9–20(–30) mm hosszúak; a legfelső murvalevelek általában hosszabbak, mint a virágok. A külső lepel (11–)13–16(–18) × (5–)6,2–7,8(–9) mm, míg a belső lepel (7–)9,5–11,5(–13) × (2–)2,5–3,5(–4,5) mm. A mézajak mélyen háromkaréjú, általában sötét, ritkán világos vörös-lilás foltos (2.4–2.5. ábra). A középső lebeny (25–)46–68(–85) × 1–3 mm; (2–)8–50 mm mélyen bevágott; az oldalsó lebenyek erősen rovatkázottak, (4–)11–19,5(–29) mm hosszúak. A sarkantyú széles, tompa, (5–)6,5–8(–9,5) mm. A toktermések mérete (10–)13,5–21,5(–25) × (3–)4–5(–6,5) mm (Molnár et al. 2012).

Magyarországon a *H. calaratum* subsp. *jankae* júniustól júliusig virágzik (ritkán augusztusig terjed a virágzási időszak). Molnár V. *et al.* (2012b) szerint az átlagos virágzási dátuma a Juliánus naptár 190. napja (azaz július 9.), (n=51). Saját vizsgálatok során herbáriumi adatokat, fényképes dokumentumokat és terepi megfigyeléseket figyelembe véve az átlagos Juliánus naptár szerinti virágzási dátum 181,6±17,4 (n=165) (július 1.) (Biró és Bódis 2015), míg a *H.*
calcaratum subsp. *calcaratum* valamivel később, átlagosan július 19-én virágzik (199,7± 20, 7; n=19) (nem publikált adat).

3. Hazai adriai sallangvirág állományok virágzási jellemzői, reproduktív sikere és a tájhasználat összefüggései

3.1. Bevezetés

A folyamatosan változó környezet állandó befolyással van a növényi közösségekre, az egyes populációk dinamikájának megértéséhez hosszú távú és részletes vizsgálatokra van szükség (Tamm 1991).

A generatív egyedek számlálásával a felnőtt populáció egy részét mérjük csak fel, a populáció valódi méretéről, teljes egyedszámáról nem kapunk képet. Sokkal inkább azt mérjük ezzel, hogy a környezeti körülmények kedvezőek voltak-e a reprodukció számára vagy sem (Carey et al. 2002). Mivel a reprodukcióban az ikergumós orchideák esetében szinte kizárólag az iveros szaporodásnak van szerepe, a virágzó egyedek száma figyelemre méltó demográfiai jellemző a populáció életképessége és túlélési esélye terén (Kindlmann és Jersaková 2006). Az állományok fitneszének jó jelzőszáma a termésképzési siker, különösen a nektárt nem termelő orchidea fajok esetében, melyek termésképzési sikere jóval alacsonyabb a jutalmazó fajokéhoz képest (Kindlmann és Jersaková 2006). Ráadásul a generatív tővek számlálása kedvelt, gyors és viszonylag kis hibával terhelt felmérési módszer a vegetatív tővek felméréséhez viszonyítva (Bódis 2010).

A fejezet célja az adriai sallangvirág hazai populációinak olyan térbeli és időbeli összehasonlító vizsgálata, mely a virágzó egyedek felmérésére koncentrál. Vizsgáltuk az állományváltozásokat, a faj virágzási jellemzőit, reproduktív sikerét, valamint a tájhasználati vonatkozásokat.
3.2. Anyag és módszer

3.2.1. Vizsgálati terület

A sümegi populációként megnevezett állomány Sümeg-Tapolcai-hát kistájban, Sümeg, Nyírád és Tapolca közigazgatási területén, út mentén található. Az állomány egy része érinti az Uzsai-erdő (HUBF20029) kiemelt jelentőségű természetmegőrzési területét.

A Kőszegi-hegységben Kőszeg egykori szőlőhegyén, a Szabó-hegyen (tszf. ~360 m) található az állomány. A terület közösségi jelentőségű, vagy egyedi védelem alatt nem áll.

3.2.2. Virágzási jellemzők, termésképzési siker

3.2.3. Tájhasználati jellemzők

Az előfordulási adatainkból shape fájlt készítettünk. Az egyes lelőhelyek összehasonlítását ArcGIS 10.2. programban a Corine felszínborítás (Copernicus program) alapján végeztük, valamint összevetettük művelési ágakat tartalmazó külterületi vetületi fedvényekkel (BfNPI).

3.3. Eredmények

3.3.1. Állományadatok, állományváltozások

![3.1. ábra: Az adriai sallangvirág virágzó egyedeinek száma](image)
3.3.2. Virágzási jellemzők

A vizsgált időszakban a virágzó egyedek magasságának átlaga 59,7±17,9 cm (min=14, max=120), a virágzathossz átlagosan 26,7±10,0 cm (min=3, max=67) volt. Az egyedek 76%-a 20–50 db virágot fejlesztett (3.2. ábra), a virágzatonkénti virágszám átlaga 34,7±12,9 db (min=4, max=95).

![Diagram](image)

1.2. ábra: Az adriai sallangvirág egyedek termés és virágszámának gyakorisági aránya az összesített adatok alapján (n=1903)

A magasság és a virágzathossz nem volt független egymástól (virágzathossz = -2,71+0,491 x magasság; R²=0,769), ennek megfelelően azonos módon változtak: termőhelyenként (magasság: F3=182,229; p=0,000; virágzathossz: F3=54,507; p=0,000) és évenként (magasság: F4=21,049; p=0,000; virágzathossz: F4=17,193; p=0,000) is szignifikánsan különbözték, s az évek és helyek kölcsönhatása is szignifikáns (magasság: F3,4=5,493; p=0,000; virágzathossz: F3,4=5,813; p=0,000) volt. A magasság és a virágszám közötti összefüggés gyengébb (virágszám = 6,79+0,467 x magasság; R²=0,423). A virágszám esetében csak a termőhely (F3=23,573; p=0,000) és az évhatás (F4=2,714; p=0,029) bizonyult szignifikánsnak, a kölcsönhatásuk nem (F3,4=1,415; p=0,152).

A virágzathosszban mind a négy állomány szignifikánsan eltért egymástól. Sümegek voltak a legrövidebbek a virágzatok, amit Nagytevel, aztán Keszthely követ, míg Köszegen voltak a leghosszabbak. A sümegi állomány egyedi bizonyultak a legalacsonyabbnak, a köszegiek a legmagasabbnak, a nagyteveli és a keszthelyi egyedek köztes helyzetet foglaltak el. A legkisebb változékonyságot a virágszám mutatta: csak a sümegi állomány tért el a többbitől, itt szignifikánsan kisebb volt a virágszám (3.1. táblázat).
3.1. táblázat: Az Adriai sallangvirág egyedek virágzási jellemzőinek átlagértékei populációként, és a Tukey teszt eredménye.

<table>
<thead>
<tr>
<th></th>
<th>Egyedszám (db)</th>
<th>Magasság (cm)</th>
<th>Virágzat hossza (cm)</th>
<th>Virágok száma (db)</th>
<th>Tokok száma (db)</th>
<th>Termésképzési siker (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sümeg</td>
<td>627</td>
<td>49,5<sup>a</sup></td>
<td>23,1<sup>a</sup></td>
<td>30,8<sup>a</sup></td>
<td>6,6<sup>a</sup></td>
<td>21<sup>a</sup></td>
</tr>
<tr>
<td>Nagytevel</td>
<td>309</td>
<td>57,7<sup>b</sup></td>
<td>25,1<sup>b</sup></td>
<td>35,3<sup>b</sup></td>
<td>19,3<sup>c</sup></td>
<td>51,0<sup>c</sup></td>
</tr>
<tr>
<td>Keszthely</td>
<td>329</td>
<td>58,3<sup>b</sup></td>
<td>26,8<sup>c</sup></td>
<td>37,1<sup>b</sup></td>
<td>7,1<sup>a</sup></td>
<td>18,5<sup>a</sup></td>
</tr>
<tr>
<td>Kőszeg</td>
<td>638</td>
<td>71,6<sup>c</sup></td>
<td>30,8<sup>d</sup></td>
<td>37,1<sup>b</sup></td>
<td>15,3<sup>b</sup></td>
<td>38,9<sup>b</sup></td>
</tr>
</tbody>
</table>

3.3.3. Termésképzési siker

A hazai populációk termésképzési sikere 9,2 és 61,7% között változott (átlag 33,5% N=20) a vizsgálat öt éve során (3.2. táblázat). Mind az évek, mind a populációk között kisebb-nagyobb ingadozások voltak megfigyelhetők. A termésképzési siker az éves átlagokat tekintve 27,7 (2016) és 36,4% (2015) között alakult, az állományok szintjére vetítve a készthelyi és a sümegi populációban alacsonyabb (jellemzően 20% körüli éves átlagok), míg a kőszegi és a nagyteveli populációkban magasabb (30–60% körüli éves átlagok) termésképzési arányt tapasztaltunk.

Az egyedek termésképzési sikere az összesített adatok alapján 0% és 100% között mozog (min=0%, az esetek 17,3%-ban, max=100% az esetek 0,3%-ban; n=1903), átlaga 31,4±27,9%. A képződtést termések száma a vizsgált tövek 57%-nál tíz vagy az alatti volt (átlag=11,7±12,2 db, min=0, max=68). A termésszám és a termésképzési siker az évek között (termésszám: χ²₄=22,484; p=0,000, termésképzési siker: χ²₄=28,959; p=0,000) és a helyek között (termésszám: χ²₃=294,073; p=0,000, termésképzési siker: χ²₃=301,218; p=0,000) is szignifikánsan eltérő. A legalacsonyabb értékeket a készthelyi és sümegi állomány esetében figyeltünk meg, a legmagasabb termésszámot és termésképzési sikert pedig a nagyteveli állománynál kaptuk. A készthelyi és sümegi állomány nem különböző egymástól szignifikánsan (3.1. táblázat).
3.2. táblázat: Az adriai sallangvirág vizsgált állományainak egyedszáma és termésképzési sikere 2013 és 2017 között.

<table>
<thead>
<tr>
<th>Település</th>
<th>Év</th>
<th>Egyedszám</th>
<th>Virágszám</th>
<th>Termésszám</th>
<th>Termésképzési siker (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keszthely</td>
<td>2017</td>
<td>76</td>
<td>2525</td>
<td>404</td>
<td>16</td>
</tr>
<tr>
<td>Keszthely</td>
<td>2016</td>
<td>90</td>
<td>3206</td>
<td>598</td>
<td>18,7</td>
</tr>
<tr>
<td>Keszthely</td>
<td>2015</td>
<td>76</td>
<td>2835</td>
<td>817</td>
<td>28,8</td>
</tr>
<tr>
<td>Keszthely</td>
<td>2014</td>
<td>53</td>
<td>1862</td>
<td>408</td>
<td>21,9</td>
</tr>
<tr>
<td>Keszthely</td>
<td>2013</td>
<td>34</td>
<td>1197</td>
<td>110</td>
<td>9,2</td>
</tr>
<tr>
<td>Sümege</td>
<td>2017</td>
<td>88</td>
<td>2799</td>
<td>578</td>
<td>20,7</td>
</tr>
<tr>
<td>Sümege</td>
<td>2016</td>
<td>135*</td>
<td>4063</td>
<td>873</td>
<td>21,5</td>
</tr>
<tr>
<td>Sümege</td>
<td>2015</td>
<td>170*</td>
<td>5400</td>
<td>1045</td>
<td>19,4</td>
</tr>
<tr>
<td>Sümege</td>
<td>2014</td>
<td>179</td>
<td>5278</td>
<td>1262</td>
<td>23,9</td>
</tr>
<tr>
<td>Sümege</td>
<td>2013</td>
<td>54</td>
<td>1721</td>
<td>403</td>
<td>23,4</td>
</tr>
<tr>
<td>Kőszeg</td>
<td>2017</td>
<td>147</td>
<td>5604</td>
<td>3129</td>
<td>55,8</td>
</tr>
<tr>
<td>Kőszeg</td>
<td>2016</td>
<td>142*</td>
<td>5545</td>
<td>1544</td>
<td>27,8</td>
</tr>
<tr>
<td>Kőszeg</td>
<td>2015</td>
<td>128*</td>
<td>4873</td>
<td>2141</td>
<td>43,9</td>
</tr>
<tr>
<td>Kőszeg</td>
<td>2014</td>
<td>171</td>
<td>5883</td>
<td>2211</td>
<td>37,6</td>
</tr>
<tr>
<td>Kőszeg</td>
<td>2013</td>
<td>50</td>
<td>1764</td>
<td>721</td>
<td>40,9</td>
</tr>
<tr>
<td>Nagytevel</td>
<td>2017</td>
<td>42</td>
<td>1576</td>
<td>692</td>
<td>43,9</td>
</tr>
<tr>
<td>Nagytevel</td>
<td>2016</td>
<td>68</td>
<td>2345</td>
<td>1005</td>
<td>42,9</td>
</tr>
<tr>
<td>Nagytevel</td>
<td>2015</td>
<td>77</td>
<td>3074</td>
<td>1649</td>
<td>53,6</td>
</tr>
<tr>
<td>Nagytevel</td>
<td>2014</td>
<td>81</td>
<td>2981</td>
<td>1712</td>
<td>57,4</td>
</tr>
<tr>
<td>Nagytevel</td>
<td>2013</td>
<td>41</td>
<td>1477</td>
<td>911</td>
<td>61,7</td>
</tr>
</tbody>
</table>

* A vizsgálatba bevont egyedszám.

Ha az egyes termésképzési sikerek relatív gyakoriságát vesszük Keszthelyen és Sümegen legnagyobb arányban (67 és 58%-ban) 0-20% közé estek az értékek, míg ugyanez Kőszegen és Nagytevelen 33 és 19% (3.3.–3.6. ábra, 1. melléklet).

Keszthelyen volt a legjellemzőbb (21,9%), hogy az egyes töveken egyetlen tok sem képződött, itt 100%-os termésképzés nem is volt, Sümege és Kőszegen is magas volt a tok nélküli tövek aránya, melyek többször sűrű cserjés területen nőttek. Ritkán (0,2%) fordult elő, 100%-os sikeresség. Nagytevelen sikertelen termésképzést az esetek 5,8%-ban, maximális termésképzés 1,3%-ban figyeltünk meg.
3.3. ábra: A termékészési siker arányainak megoszlása Keszthelyen (2013-2017) (min= 0%, az esetek 21,9%-ában, max=84,5% az esetek 0,3%-ában; n=329)

3.4. ábra: A termékészési siker arányainak megoszlása Sümegen (2013-2017) (min= 0%, az esetek 19,8%-ában, max=100% az esetek 0,2%-ában; n=627)
3.5. ábra: A termésképzési siker arányainak megoszlása Kőszegen (2013-2017) (min= 0%, az esetek 18,2%-ában, max=100% az esetek 0,2%-ában; n=638).

3.6. ábra: A termésképzési siker arányainak megoszlása Nagytevelen (2013-2017) (min= 0%, az esetek 5,8%-ában, max=100% az esetek 1,3%-ában; n=309)
3.3.4. Élőhelyi és tájhasználat jellemzők

Köszegeg a sallangvirág élőhelye szinte egyöntetűen zártkerti terület (99,4%), míg Nagytevelen rét/ legelő (98,7%-a), melynek közelében lomblevelű erdőket is jelez. Összességében a keszthelyi és a sümegi állományok erdős, illetve erdős-cserjés területen fordulnak elő, míg a kőszegi és a nagyteveli állományok rét, illetve komplex művelésű területen (zártkert) nőnek (2–5. melléklet). Előbbiek valójában kisebb-nagyobb bolygatásnak kitett útszéli állományok (küterületi vetületi fedvények alapján is), azonban a környező növényzet hatása nem elhanyagolható.

Keszthely
A terület üzemtervezett erdő, ahol a sallangvirágok közel 2 km hosszan az erdőszegélyben, illetve az út melletti gyepekben, tisztásokon nőnek, jellemzően kisebb (pár töves) csoportokban, ez alól a Pénzes-gödör elnevezésű terület jelent kivételt, amely egy egykori anyagnyerő. Itt a virágzó egyedek száma kiugróan magas a többi folthoz képest. A déli dolomitömbben a terület adottságaiból adódóan főleg karsztbokorerdők, helyenként félszáraz gyepek, molyhos tölgyesek jellemzőek, ugyanakkor a Keszthelyi-hegység képét „meghatározta” a kopárfásításra használt fekete fenyő. Nagy, összefüggő állományok alakultak ki, mely a 2011 után tapasztalt fenyőpusztulást követően 2013–2014 között letermelésre került. Az erdészeti munkák, rakodások, közelítések a sallangvirágok élőhelyét is érintették, ugyanakkor a letermelést követően a helyenként erőteljesen becsersjésedett terület ligetesebbé vált, az eredeti vegetáció regenerálódása megkezdődhetett, illetve helyenként a bolygatás kedvezhetett a sallangvirágok megjelenésének.

Sümeg
A sümegi és nyirádi út mellett több km hosszan, főleg útszéli helyzetben, valamint az erdőszélben fordulnak elő az adriaui sallangvirágok. Az utat jellemzően csers-tölgyesek, gyertyáros-tölgyesek zárt állományai szegélyezik, melybe fekete fenyő vegyül, de helyenként ligetes, cserjés állományok is megjelennek. A sallangvirágok az út mellett magányosan nőnek.
vagy kisebb csoportokat alkotnak, a tövek az esetek 57,5%-ban az úttól 1-3,5 m (min=1, max=25 m, n=320) távolságra virágoztak. Az utat szegélyező tisztásokra ritkán húzódnak be, egyedül az Úrbéri Vadászház előtti gyepekben, valamint udvarán jelennek meg gyakran magas egyedszámban.

A 7319-es út legutóbbi felújítása, szélesítése 2009-ben történt, ami feltehetően érintette az állományt, mégis nagy számban találunk itt sallangvirág töveket. Az útszél rendszeres kaszálása egyfajta élôhelyfenntartó szereppel bír, a növények nagy része is itt található, míg a távolabbi sűrű cserjés területen alig virágoznak és idővel eltűnhetnek. A Balaton-felvidéki Nemzeti Park Igazgatóság munkatársainak köszönhetően a közútkézelőkkel már évek óta bevált gyakorlat a kaszálás termésérés utáni időzítése, melyre a vadászház üzemeltetetői is kiemelt figyelmet fordítanak.

Kőszeg
Az adriai sallangvirágok vizsgált állományai magántelkeken nőnek (597/1, 603, 650/2, 653, 651, 652, 662 hrsz.). Az egykori tájhasználatról, szö lművelésről máig tanúsodnak a még művelt szőlők, gyümölcsösök, bár az elmúlt évtizedekben több parcellát magára hagytak. Ezek a szukcesszió különböző stádiumait mutatják, annak függvényében, hogy ott történt-e bármilyen emberi beavatkozás. Az egykor művelt telkeken másodlagos franciaperjés rét alakult ki, melyben helyenként megjelenik a szeder. A kaszálás elmaradásával sűrű magaskórós növényzet jellemző. A gyepekben, több parcellán gyümölcsfák közti területeken, nagy számban fordulnak elő a sallangvirágok. A becserjésedô parcellákon is megtalálhatóak, de itt a szaporodási sikerük elenyészô volt.

A telkek funkciói idôvel megváltoztak, a zártkerti gazdálkodást lakó, illetve üdülô (pl. Ciklámen Üdülô és Turistaszálló) funkció változza fel, így a terület használatára helyenként fünyírásra koncentrálódnak, máshol a gyümölcsfák jelenléte utal valamiféle használatra. A két legjelentôsebb állományt fenntartó telkek tulajdonosai tudnak a fokozottan védett növény előfordulásáról, így az udvar kaszálása során a tövekre figyelemmel vannak. 2016-17-ben az egyik cserjésedô parcellán cserjeirtást végeztek, mely a sallangvirág tövek nagy számú virágzását eredményezte (a pontos tulajdonosi szándék a telek használatát illetôen nem ismert).

Nagytevel
Nagytevel és Bakonyjákó területén az erdôk kisebb-nagyobb cserjésedô gyepefoltokkal változóznak, ahol domboldali és tetô pozícióban nônek a sallangvirágok. Az itt előforduló erdôk jórésze akácos, helyenként óshonos lombos fajokkal elegendve, a gyepek jellemzően franciaperjés rétek, de néhol megjelenik a veres csenkesz is. A fennsík kifejezetten száraz,
gyenge termőképessége miatt az adriai sallangvirágok a domboldal cserjés szegélyeiben jelennek meg nagyobb számban, a sűrű növényzet alá ritkán húzódnak (amit megkölözelíteni is nehéz). A közelmúltban a területet legeltették, azonban a gyenge termőhelyi adottságok, valamint a gazdálkodás átalakulása miatt ma már a gyepterületek hasznosítás nem lehetséges. Időnként a cserjék szárzúzását lehet megfigyelni, mely az addig árnyékban növő sallangvirág tövek virágzásának kedvezéséhez, ha az időjárási tényezők is megfelelőek.

3.4. Értékelés

Régóta meglévő ismeret, hogy az orchideák virágzó példányainak száma szélsőségesen ingadozik, ez alapján virágzási szempontból beszélünk „jó” és „rossz” évekről, mely az összes hazai állománynak egyformán vonatkozik. Akkor beszélünk „jó” orchideás évről, amikor a virágzó egyedek száma magas és akkor „rossz” orchideás évről, amikor a virágzó egyedek száma alacsony (Németh és Seregélyes 1981). Ez azzal függ össze, hogy a növények számára kedvező vagy kedvezőtlenek a körülmények. Magyarországon a négy állomány virágzási erénye nem feltétlenül mozog együtt. Legszembetűnőbben 2017-ben figyelhetettük ezt meg, amikor Keszthelyen és Köszegen „jó” év volt, azaz magas volt a virágzó tövek száma, míg Sümegen „rossz”, azaz kevés volt a virágzó tő. Bár itt található a faj legnagyobb hazai állománya (Bódis 2017), ez nem feltétlenül jelent arányaiiban több fejlődő virágzatot, ugyanis a virágzási erélyt több tényező is befolyásolja, jelentősen függ pl. az egyes növények kondiciójától (vagyis, hogy hány leveles tövek alkotják az állományt) (Bódis et al. 2014). A különböző termőhelyi adottságok (Tamm 1991), valamint többek között az időjárási tényezők is hatással lehetnek (Götsch 2019, Djordjević és Tsiftsis 2020). Pfeifer et al. (2006a, 2006b) eredményei alapján a virágzó egyedek számát alakító legfőbb tényezőnek a virágzást megelőző és az adott év időjárási körülményei bizonyultak. A csapadék éves mennyisége minden évben Köszegen volt a legmagasabb (3.3. táblázat; [1]), ez biztosan befolyásolta a virágzó egyedek számát, s ennek hatása a hajtás magasságában is megnyilvánult. Az orchideák nemcsak kedvező időjárás esetén hoznak magas virágzatokat, hanem akkor is, ha árnyékban, cserjék, fák alatt virágzók (Jacquemyn és Brys 2010). Ez utóbbi esetben azonban a felnyurgult hajtások megdőlnek, termés alig vagy egyáltalán nem képződik rajtuk (Sándor 2013, Zadravec et al. 2014).

A sallangvirág területén tapasztaltunk magas termésképzési sikert a vizsgált időszak során.

<table>
<thead>
<tr>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Készthely</td>
<td>450-500</td>
<td>700-750</td>
<td>900-1000</td>
<td>550-600</td>
<td>750-800</td>
</tr>
<tr>
<td>Sümeg</td>
<td>500-550</td>
<td>750-800</td>
<td>900-1000</td>
<td>600-650</td>
<td>800-850</td>
</tr>
<tr>
<td>Kőszeg</td>
<td>750 fölött</td>
<td>850</td>
<td>1000-1100</td>
<td>700 fölött</td>
<td>850 fölött</td>
</tr>
<tr>
<td>Nagytevel</td>
<td>550-600</td>
<td>750-800</td>
<td>900-1000</td>
<td>600-700</td>
<td>800-850</td>
</tr>
</tbody>
</table>

Kőszegen és Nagytevelen tapasztaltunk magas termésképzési sikert a vizsgált időszak során. Kőszegen az egykori szőlők helyén kialakult fajgazdag kaszálóráteken, gyümölcsfákkel beültetett és becserjésedett parcellákon fordulnak elő az egyedek. E komplex művelésű (zárktéri) élőhely jó feltételeket teremt az orchideák számára, ám kezelési szempontból nehézséget jelent, hogy magántelkeken nőnek a sallangvirágok (Király és Mesterházy 2005), illetve, hogy a terület funkciója jelentősen átalakult. A kaszálás elmaradása ugyancsak veszélyeztetheti az állományt, mint a túlzott fűnyírózás. A köszegi állomány sorsa jórészt azon múlik, hogy a területek tulajdonosaival hosszú távon is fenn tudja-e tartani a természetvédelem a mostani jó viszonyt.

Nagytevelen szárazabb termőhelyen nőnek a növények, ahol félárnyékban érzik jól magukat a virágzó tövek, a nyílt gyep mellett cserjések szegélyén is megjelennek, ahogy azt mások is tapasztalták (Slaviero et al. 2016). Az egykori kisparcellás gazdálkodást a legeltetés váltotta fel, melyet a XX. század végén felhagyta (Bódis 2017), de a kialakult fajgazdag vegetáció
fenntartja az állományt. Időszakosan elvégzett cserjeírtás (túlzott becserjésedés megakadályozása) fontos a szaporodási siker szempontjából, mert a cserjeborítás növekedése csökkenti a termésszámot (Jacquemyn et al. 2002, Fekete et al. 2017), de száraz években negatív hatású is lehet. Ilyenkor a fennsík cserjeírtott részein besültek a virágzatok, míg árnyékban a termésképzés sikeresebb (Jacquemyn és Brys 2010). Csapadékos években a nyílt területeken is sok virágzatot találtunk, s ezeken sok termés képződött. A 2013-ban Nagytevelen tapasztalt rendkívül magas termésképzési sikert (61,7%) a közelbe telepített háziméh kaptárok is befolyásolták (Biró et al. 2015).

Keszthelyen és Sümegen hasonló élőhelyen, több kilométer hosszan, jellemzően magányosan vagy kis csoportokban nőnek a sallangvirágok, amely összfüggésben lehet az alacsony reproduktív sikerrel (Duffy és Stout, 2011, Henneresse et al. 2017). Bár Keszthelyen is nagy számban figyeltünk meg magas növényeket, de ezt sok esetben az árnyékolás miatti megnyúlás okozta. A sümegi növények bizonyultak a legalacsonyabbaknak, s a virágszámuk is alacsonyabb volt, mint a többi állományé.

A virágszám stabilitása mellett a termésszám és a termésképzési siker helyenként és évenként is jelentős mértékben változott vizsgálataink idején. Ez arra utalhat, hogy az adriai sallangvirág reproduktív egyedi megállapítóan azonos virágszámmal virágzónak, ám a termésképzés sikerét az adott hely és az adott év környezeti tényezői befolyásolják. A termésképzési sikert befolyásoló tényezőket a következő fejezetek részletezik.
4. A háziméh szerepe az adriai sallangvirág terméképzésében

4.1. Bevezetés

A rovarmegporzású orchideák szaporodási sikere a megporzás hatékonyságától függ, vagyis a megporzók vonzásától, a pollencsomag eltávolításától és lerakásától. Az ilyen kölcsönhatások azonnali hatást gyakorolnak a veszélyeztetett növényekre. A *Spiranthes* fajok esetében kimutattatták, hogy mind a kosbor fajok, mind a velük együtt virágzó növényközösség sürűségének növekedése javította a megporzók ritkaságából fakadó negatív hatásokat, vagyis a virágos növények gazdagsága kedvezően hatott a megporzó rovarok csalогatására, így a reproduktív sikerre (Duffy és Stout, 2011). A beporzására alkalmas rovarok megfogyatkozása a 19. század kezdetén hatott a megporzó rovarok csalogatására, így a 19. század kezdete óta gyűjtött herbáriumi adatok alapján megfigyelhető az *Orchis militaris* angliai populációiban (Farrell 1985), melyre az alacsony termésszámok alapján következtettek. Hasonló alacsony terméképzést tapasztaltak a 20. század elején Németországban (Sprengel, Godfrey 1933-as beszámolója).

A mérsékelt éghajlati régiókban a legfontosabb megporzók a rovarok, amelyek közül is a méhek szerepe kiemelkedő. Az elmúlt évtizedek megállapításai szerint a virágos növények állományaival párhuzamosan csökken a méhközösségek száma mind Nyugat-Európában (Biesmeijer et al. 2006), mind globális szinten (Allen-Wardell et al. 1998; Kearns et al. 1998, Potts et al. 2010). A méhközösségek sokféleségének legfőbb veszélyeztetője az élőhelyek elvesztése, de az invazív fajok megjelenése, az újonnan megjelenő betegségek, a peszticidek egyre szélesebb körű felhasználása és az éghajlatváltozás szintén negatívan befolyásolhatja a méhek populációinak méretét (Brown és Paxton, 2009, Brittain és Potts 2011). A méheknek az egész vegetációs időszakban folyamatos táplálékforrást biztosító méhlegelőkre van szükségük, hogy elegendő mennyiségű nektárt és pollen gyűjthessenek a kaptár ellátására, ehhez más-más időben virágzó fajgazdag növényközösségeket igényelnek (Kearns és Inoyue, 1997). Azonban a gazdálkodási gyakorlatok közelmúltban bekövetkezett változásainak következtében a méhek nektárforrásai, melyek a fragmentált tájakra jellemzőek, jelentősen csökkentek az utóbbi években (Feon et al. 2013).

Annak ellenére, hogy a háziméh egyedszáma legmeghatározóbb a méhközösségekben, valamint a megporzásban betöltött szerepe is külcsfontosságú, az európai orchideák reproduktív sikerében való potenciális szerepvállalása még mindig nagyrészt tisztázatlan.

A *Himantoglossum adriaticum* szaporodási sikere általában alacsony. Korábbi, publikált adatok alapján Ausztriában ennek értéke 4,5 és 44% között mozgott (Vöth, 1990), míg Magyarországon 5,4 és 23,3% között változott (Bódis és Molnár 2009). Vizsgálataink során a nagyterület
populáció közelébe a virágzási idő alatt (2013 május 25 és július 5 között) négy konténerben 174 méhecskéket telepítettek. A kaptárok egy helyen, a virágzó tövektől 196–1455 méter távolságra voltak. A legtávolabb vizsgált től is gyűjtési távolságon belül (1,5–3 km) helyezkedett el (Frisch, 1965; Bagella et al. 2013) Tudomásunk szerint a többi populáció környékén sem a vizsgálat évében, sem más években (beleértve a nagytelei állományt), nem volt jelen telepített méhközösség.

Jelen fejezet célja a háziméh szerepénak értékelése a ritka és veszélyeztetett adriai sallangvirág (Himantoglossum adriaticum Baumann) reproduktív sikerének növelésében.

A vizsgálat során a következő kérdésekre kerestük a választ: (i) Különbözik-e a házi méhek közelségében élő populáció szaporodási sikere a többi állományétől? (ii) Korrelál-e az egyedi reproduktív siker mértéke a kaptáraktól való távolsággal?

4.2. Anyag és módszer

4.2.1. A vizsgált faj és mintaterületei

Vizsgáltuk a H. adriaticum szaporodási sikerét mind a négy legnagyobb hazai állományban, valamint Horvátországban az Isztriai-félszigeten kerestünk fel további előfordulásokat 2013-ban (4.1. táblázat).

<table>
<thead>
<tr>
<th>Sorszám</th>
<th>Ország</th>
<th>Lelőhely</th>
<th>Egyedszám</th>
<th>Megfigyelés dátuma</th>
<th>Geokoordináták</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Magyarország</td>
<td>Nagytelev</td>
<td>39</td>
<td>06.20.; 07.31.</td>
<td>N 47,264°; E 17,598°</td>
</tr>
<tr>
<td>3.</td>
<td>Magyarország</td>
<td>Keszthely</td>
<td>33</td>
<td>06.15.; 07.14.</td>
<td>N 46,794°; E 17,277°</td>
</tr>
<tr>
<td>4.</td>
<td>Magyarország</td>
<td>Sümeg</td>
<td>47</td>
<td>06.17.; 07.13.</td>
<td>N 46,957°; E 17,351°</td>
</tr>
<tr>
<td>5.</td>
<td>Horvátország</td>
<td>Učka</td>
<td>88</td>
<td>06.02-03.; 07.08-09.</td>
<td>N 45,317°; E 14,175°</td>
</tr>
<tr>
<td>6.</td>
<td>Horvátország</td>
<td>Paz</td>
<td>7</td>
<td>06.04.; 07.09.</td>
<td>N 45,277°; E 14,104°</td>
</tr>
<tr>
<td>7.</td>
<td>Horvátország</td>
<td>Letaj I.</td>
<td>14</td>
<td>06.04.; 07.09.</td>
<td>N 45,255°; E 14,121°</td>
</tr>
<tr>
<td>8.</td>
<td>Horvátország</td>
<td>Letaj II.</td>
<td>12</td>
<td>06.04.; 07.09.</td>
<td>N 45,255°; E 14,132°</td>
</tr>
</tbody>
</table>

4.1. táblázat: Az adriai sallangvirág vizsgált állományai 2013-ban. (A megfigyelés dátuma virágzó és termés állapot mintavételének idejét jelöli.)
4.2.2. Termésképzési siker mérése

Minden példányt egyedi azonosítóval láttunk el. Valamennyi helyszínt évente kétszer látogattunk meg, virágzási időszakban az állományokban feljegyeztük az összes virágzó egyedet, majd 3–5 héttel később számoltuk a fejlődött terméseket. A sérült töveket kizártuk az elemzésből. A nyert adatokból reproduktív sikert számoltunk, vagyis termésképzési arányt: egy-egy populációban elosztottuk az összes termés számát az összes virágszámmal. Az adriai sallangvirág nagyteveli populációjához közel méhkaptárok kerültek kihelyezésre, e populáció termésképzési sikerét hasonlítottuk össze a rendelkezésünkre álló más élőhelyekről (4.1. táblázat) és korábbi évekből is származó termésképzési adatokkal (4.2. táblázat).

A populációk összehasonlításhoz Dr. Bódis Judit 1992 és 2011 között populációdinamikai vizsgálatai során gyűjtött, közel 20 évet felölelő adatsorát, összesen 905 példány adatait használtam fel. Az adriai sallangvirág vegetatív és generatív jellemzőinek mérése mellett, vizsgálati kiterjedtek az állományok egyedeinek termésképzési sikerének mérésére is.

4.2. táblázat: Az adriai sallangvirág vizsgált állományai 1992 és 2011 között

<table>
<thead>
<tr>
<th>Sor-szám</th>
<th>Ország</th>
<th>Lelőhely</th>
<th>Egyedszám</th>
<th>Vizsgálati időszak</th>
</tr>
</thead>
</table>

4.2.3. Adatelemzés

A különböző populációk reprodukciós sikereinek összehasonlításához kvázibinomiális általánosított lineáris modellt (GLM) alkalmaztunk. Erre a megközelítésre azért volt szükség, mert a reproduktív siker mértéke egy binomiális változó, 0 és 1 közötti értéket vesz fel, és a minták nem oszlanak meg egyenletesen ezen intervallumon belül (több populációban a legtöbb növény 0-ás termésképzési aránya volt). A kvázibinomiális modellek figyelembe veszik az adatok túlzott szórtságát. A kaptárok és a termésképzési siker közötti összefüggést is kvázibinomiális GLM alkalmazásával értékeltük. A GLM elemzéseket az R statisztikai környezetben hajtottuk végre (R Core Team 2013).
4.3. Eredmények

A reproduktív siker jelentősen változott mind a helyek, mind pedig az évek között (4.3. táblázat).

4.3. táblázat: A vizsgált állományok reproduktív sikere 2013-ban, valamint az összehasonlításhoz használt időszakban (1992-2011)

<table>
<thead>
<tr>
<th>Lelőhely</th>
<th>Év</th>
<th>Egyed-szám</th>
<th>Összes virágszám</th>
<th>Összes tokszám</th>
<th>Termésképzési arány (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nagytevel</td>
<td>2013</td>
<td>41</td>
<td>1477</td>
<td>911</td>
<td>61,7</td>
</tr>
<tr>
<td>Köszeg</td>
<td>2013</td>
<td>36</td>
<td>1256</td>
<td>396</td>
<td>31,5</td>
</tr>
<tr>
<td>Sümeg</td>
<td>2013</td>
<td>54</td>
<td>1657</td>
<td>356</td>
<td>21,5</td>
</tr>
<tr>
<td>Keszthely</td>
<td>2013</td>
<td>32</td>
<td>1105</td>
<td>105</td>
<td>9,5</td>
</tr>
<tr>
<td>Učka</td>
<td>2013</td>
<td>100</td>
<td>2965</td>
<td>259</td>
<td>8,7</td>
</tr>
<tr>
<td>Letaj I.</td>
<td>2013</td>
<td>16</td>
<td>462</td>
<td>64</td>
<td>13,9</td>
</tr>
<tr>
<td>Letaj II.</td>
<td>2013</td>
<td>12</td>
<td>422</td>
<td>77</td>
<td>18,2</td>
</tr>
<tr>
<td>Paz</td>
<td>2013</td>
<td>7</td>
<td>210</td>
<td>44</td>
<td>21</td>
</tr>
<tr>
<td>Nagytevel</td>
<td>2010</td>
<td>11</td>
<td>227</td>
<td>118</td>
<td>52</td>
</tr>
<tr>
<td>Köszeg</td>
<td>2010</td>
<td>33</td>
<td>1300</td>
<td>549</td>
<td>42,2</td>
</tr>
<tr>
<td>Köszeg</td>
<td>2011</td>
<td>18</td>
<td>406</td>
<td>92</td>
<td>22,7</td>
</tr>
<tr>
<td>Keszthely</td>
<td>1992</td>
<td>25</td>
<td>909</td>
<td>171</td>
<td>18,8</td>
</tr>
<tr>
<td>Keszthely</td>
<td>1993</td>
<td>17</td>
<td>544</td>
<td>51</td>
<td>9,4</td>
</tr>
<tr>
<td>Keszthely</td>
<td>1994</td>
<td>19</td>
<td>671</td>
<td>36</td>
<td>5,4</td>
</tr>
<tr>
<td>Keszthely</td>
<td>1995</td>
<td>73</td>
<td>2758</td>
<td>219</td>
<td>7,9</td>
</tr>
<tr>
<td>Keszthely</td>
<td>1996</td>
<td>67</td>
<td>2130</td>
<td>342</td>
<td>16,1</td>
</tr>
<tr>
<td>Keszthely</td>
<td>1997</td>
<td>23</td>
<td>686</td>
<td>58</td>
<td>8,5</td>
</tr>
<tr>
<td>Keszthely</td>
<td>1998</td>
<td>30</td>
<td>975</td>
<td>197</td>
<td>20,2</td>
</tr>
<tr>
<td>Keszthely</td>
<td>1999</td>
<td>31</td>
<td>971</td>
<td>96</td>
<td>9,9</td>
</tr>
<tr>
<td>Keszthely</td>
<td>2000</td>
<td>12</td>
<td>333</td>
<td>19</td>
<td>5,7</td>
</tr>
<tr>
<td>Keszthely</td>
<td>2001</td>
<td>10</td>
<td>315</td>
<td>21</td>
<td>6,7</td>
</tr>
<tr>
<td>Keszthely</td>
<td>2002</td>
<td>32</td>
<td>912</td>
<td>156</td>
<td>17,1</td>
</tr>
<tr>
<td>Keszthely</td>
<td>2003</td>
<td>19</td>
<td>642</td>
<td>161</td>
<td>25,1</td>
</tr>
<tr>
<td>Keszthely</td>
<td>2004</td>
<td>20</td>
<td>524</td>
<td>286</td>
<td>54,6</td>
</tr>
<tr>
<td>Keszthely</td>
<td>2005</td>
<td>55</td>
<td>1736</td>
<td>297</td>
<td>17,1</td>
</tr>
<tr>
<td>Keszthely</td>
<td>2006</td>
<td>21</td>
<td>601</td>
<td>207</td>
<td>34,4</td>
</tr>
<tr>
<td>Keszthely</td>
<td>2007</td>
<td>21</td>
<td>530</td>
<td>187</td>
<td>35,3</td>
</tr>
<tr>
<td>Keszthely</td>
<td>2008</td>
<td>33</td>
<td>1040</td>
<td>128</td>
<td>12,3</td>
</tr>
<tr>
<td>Keszthely</td>
<td>2009</td>
<td>23</td>
<td>579</td>
<td>61</td>
<td>10,5</td>
</tr>
<tr>
<td>Keszthely</td>
<td>2010</td>
<td>12</td>
<td>267</td>
<td>10</td>
<td>3,7</td>
</tr>
<tr>
<td>Keszthely</td>
<td>2011</td>
<td>29</td>
<td>738</td>
<td>61</td>
<td>8,3</td>
</tr>
</tbody>
</table>

2013-ban az átlagos termésképzési arány Učka és Keszthely esetében 10% alatt, a Letaji állományoknál 10-20% volt, Sümegnél és Paznál kevésbé 20% fölötti, Köszegen 30% fölötti,
míg Nagytevel esetében kiemelkedően magas (61,7%) értéket figyeltünk meg. A legnagyobb állomány (Učka) mutatta a legalacsonyabb termésképzést, azonban a virágzó egyedek száma nem állt kapcsolatban a mért reproduktív sikerrel.

4.4. táblázat

<table>
<thead>
<tr>
<th>Lelőhely/Év</th>
<th>Becsült érték</th>
<th>Standard hiba (SE)</th>
<th>t érték</th>
<th>p érték</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letaj II.-2013</td>
<td>-1,976</td>
<td>0,353</td>
<td>-5,603</td>
<td>0,000</td>
</tr>
<tr>
<td>Paz-2013</td>
<td>-1,804</td>
<td>0,458</td>
<td>-3,940</td>
<td>0,000</td>
</tr>
<tr>
<td>Letaj I.-2013</td>
<td>-2,304</td>
<td>0,373</td>
<td>-6,173</td>
<td>0,000</td>
</tr>
<tr>
<td>Učka-2013</td>
<td>-2,303</td>
<td>0,194</td>
<td>-11,857</td>
<td>0,000</td>
</tr>
<tr>
<td>Keszthely-2013</td>
<td>-2,730</td>
<td>0,298</td>
<td>-9,162</td>
<td>0,000</td>
</tr>
<tr>
<td>Sümeg-2013</td>
<td>-1,779</td>
<td>0,198</td>
<td>-9,008</td>
<td>0,000</td>
</tr>
<tr>
<td>Köszeg-2013</td>
<td>-0,429</td>
<td>0,215</td>
<td>-2,000</td>
<td>0,046</td>
</tr>
<tr>
<td>Keszthely-1992</td>
<td>-1,938</td>
<td>0,258</td>
<td>-7,502</td>
<td>0,000</td>
</tr>
<tr>
<td>Keszthely-1993</td>
<td>-2,745</td>
<td>0,403</td>
<td>-6,810</td>
<td>0,000</td>
</tr>
<tr>
<td>Keszthely-1994</td>
<td>-3,346</td>
<td>0,462</td>
<td>-7,240</td>
<td>0,000</td>
</tr>
<tr>
<td>Keszthely-1995</td>
<td>-2,685</td>
<td>0,214</td>
<td>-12,524</td>
<td>0,000</td>
</tr>
<tr>
<td>Keszthely-1996</td>
<td>-1,931</td>
<td>0,198</td>
<td>-9,743</td>
<td>0,000</td>
</tr>
<tr>
<td>Keszthely-1997</td>
<td>-2,858</td>
<td>0,379</td>
<td>-7,535</td>
<td>0,000</td>
</tr>
<tr>
<td>Keszthely-1998</td>
<td>-1,849</td>
<td>0,247</td>
<td>-7,478</td>
<td>0,000</td>
</tr>
<tr>
<td>Keszthely-1999</td>
<td>-2,686</td>
<td>0,309</td>
<td>-8,685</td>
<td>0,000</td>
</tr>
<tr>
<td>Keszthely-2000</td>
<td>-3,281</td>
<td>0,624</td>
<td>-5,260</td>
<td>0,000</td>
</tr>
<tr>
<td>Keszthely-2001</td>
<td>-3,115</td>
<td>0,598</td>
<td>-5,212</td>
<td>0,000</td>
</tr>
<tr>
<td>Keszthely-2002</td>
<td>-2,054</td>
<td>0,265</td>
<td>-7,749</td>
<td>0,000</td>
</tr>
<tr>
<td>Keszthely-2003</td>
<td>-1,570</td>
<td>0,272</td>
<td>-5,775</td>
<td>0,000</td>
</tr>
<tr>
<td>Keszthely-2004</td>
<td>-0,292</td>
<td>0,265</td>
<td>-1,104</td>
<td>0,270</td>
</tr>
<tr>
<td>Keszthely-2005</td>
<td>-2,054</td>
<td>0,214</td>
<td>-9,584</td>
<td>0,000</td>
</tr>
<tr>
<td>Keszthely-2006</td>
<td>-1,120</td>
<td>0,260</td>
<td>-4,298</td>
<td>0,000</td>
</tr>
<tr>
<td>Keszthely-2007</td>
<td>-1,083</td>
<td>0,272</td>
<td>-3,986</td>
<td>0,000</td>
</tr>
<tr>
<td>Keszthely-2008</td>
<td>-2,440</td>
<td>0,279</td>
<td>-8,732</td>
<td>0,000</td>
</tr>
<tr>
<td>Keszthely-2009</td>
<td>-2,615</td>
<td>0,375</td>
<td>-6,977</td>
<td>0,000</td>
</tr>
<tr>
<td>Keszthely-2010</td>
<td>-3,722</td>
<td>0,841</td>
<td>-4,425</td>
<td>0,000</td>
</tr>
<tr>
<td>Keszthely-2011</td>
<td>-2,883</td>
<td>0,371</td>
<td>-7,775</td>
<td>0,000</td>
</tr>
<tr>
<td>Köszeg-2010</td>
<td>-0,789</td>
<td>0,200</td>
<td>-3,951</td>
<td>0,000</td>
</tr>
<tr>
<td>Köszeg-2011</td>
<td>-1,704</td>
<td>0,335</td>
<td>-5,086</td>
<td>0,000</td>
</tr>
<tr>
<td>Nagytevel-2010</td>
<td>-0,397</td>
<td>0,369</td>
<td>-1,075</td>
<td>0,282</td>
</tr>
<tr>
<td>Nagytevel-2011</td>
<td>-2,205</td>
<td>0,257</td>
<td>-8,579</td>
<td>0,000</td>
</tr>
<tr>
<td>Sümeg-2002</td>
<td>-1,024</td>
<td>0,177</td>
<td>-5,791</td>
<td>0,000</td>
</tr>
<tr>
<td>Sümeg-2003</td>
<td>-0,369</td>
<td>0,272</td>
<td>-1,359</td>
<td>0,175</td>
</tr>
<tr>
<td>Sümeg-2008</td>
<td>-1,629</td>
<td>0,235</td>
<td>-6,946</td>
<td>0,000</td>
</tr>
<tr>
<td>Sümeg-2009</td>
<td>-0,792</td>
<td>0,226</td>
<td>-3,506</td>
<td>0,000</td>
</tr>
<tr>
<td>Sümeg-2010</td>
<td>-1,422</td>
<td>0,265</td>
<td>-5,359</td>
<td>0,000</td>
</tr>
<tr>
<td>Sümeg-2011</td>
<td>-1,800</td>
<td>0,221</td>
<td>-8,142</td>
<td>0,000</td>
</tr>
</tbody>
</table>
A nagyteveli populációban az egyedek reproduktív sikere szignifikánsan csökkent a kaptároktól való távolság növekedésével (kvázibinomial GLM $F_{1,39}=18,52; p<0,001$; 4.1. ábra), ami igazolja a telepített méhkaptárok jelentőségét a sallangvirágok megporzásában.

![4.1. ábra: Az adriai sallangvirág egyedek kaptártól való távolsága és termésképzési sikere közötti kapcsolat Nagytevelen (2013)](image)

4.4. Értékelés

A Nagytevelen tapasztalt 61,7%-os termésképzési arány a *H. adriaticum* legmagasabb publikált populációs szintű átlagos reprodukciós sikere, bár ez három másik magyarországi populáció korábbi években mért (52–54,6%) reprodukciós sikerétől nem különbözőt szignifikánsan. A megtévesztő és a nektártermelő európai orchideák átlagos termésképzése 28%, illetve 63% (Neiland és Wilcock 1999), ami azt jelenti, hogy a Nagytevelen található *Himantoglossum* állomány elére a nektárral jutalmazó orchideák átlagos termésképzési szintjét.

Eredményeink azt is mutatják, hogy ebben a populációban az egyes virágok reprodukciós sikere negatív kapcsolatban állt a méhkaptártól való távolságukkal. Ezek az eredmények együttesen azt sugallják, hogy 2013-ban a populáció magas reproduktív sikeréhez a háziméhek hozzájárultak. A virágglátogató háziméhek száma fugg a legközelebbi kaptárok távolságtól a mezőgazdasági tájban (Steffan-Dewenter és Tscharntke 1999). Mivel a pollinátorok sokfélesége gyorsan csökken, a méhek szerepe a beporzásban erőteljesen nő (Brown és Paxton, 2009; Potts et al. 2010).

Egy három országot összehasonlító vizsgálatban Magyarországon volt a legmagasabb a méhek és a rovarporozta növényfajok gazdagsága Svájchoz és Hollandiához képest. A rovarporozta növények gazdagsága jó előrejelzi a méhfajok sokféleségét nagyobb térléptékben (Batáry et al. 2010).

Hazai viszonylatban a méhek és virágjó növények viszonylag magas fajgazdagsága ellenére is jelentős volt a háziméhek beporzó hatása Nagytevelen. Nem zárhatjuk ki, hogy a Magyarországon korábban megfigyelt magas termésképzési arányokat is a háziméhek okozták. Egyrészt az átlagos méhsűrűség folyamatosan növekszik Magyarországon: 1992-ben 7,78 méhcsalád/km²-t rögzítettek, ez az érték 2012-ben 12,18 volt. Azonban figyelembe kell venni, hogy a méhcsaládok átlagos sűrűsége regionálisan erősen változhat (Tóth 2013).

A közzétett adatok szerint a háziméh 21 táplálékkal-megtévesztő és 12 nektárral jutalmazó európai szárazföldi orchidea ismert megporzója (4.5. táblázat), ezek főleg az *Anacamptis* és *Orchis* (6-6 faj), valamint *Dactylorhiza* (5 faj), *Epipactis*, *Gymnadenia* és *Himantoglossum* (3-3 faj) nemzetség fái közül kerülnek ki.
Eredményeink alapján a méhészetek az orchideák megőrzésében játszott gyakorlati jelentősége (a reproduktív siker növelése érdekében) igéretesnek tűnik, különösen a megtévesztő orchideák esetében, amelyeket a pollinátorok alacsony viráglátogatási aránya jellemzi, és ezért alacsony a termésképzésük (lásd. Bevezetés és célkitűzések fejezetben).

Egyrészt a háziméh a magányos méhek versenytársának tekinthető, mivel nagyméretű áttelelő családai magas nektár- és pollenszükségletet igényelnek. Ráadásul úgy vélik, hogy a fajgazdag virágzó növényközösségek pontos helyét egymással való kommunikációjuk révén gyorsan kiaknázók, szemben más táplálékforrásokkal (Frisch 1965, Visscher és Seeley 1982, Beekman és Ratnieks 2000). Másrészről a méhészetek nem gyakorolnak feltétlenül negatív hatást a vad méhekre: sem a fajok száma, sem a vad méhek gyakorisága nem korrelál negatívan a háziméh kaptárok sűrűségével (2 km sugarú körön belül) vagy a viráglátogatás sűrűségével helyenként, a fajok közti versengés ellenére (Steffan-Dewenter és Tscharntke 2000). Fontos azt is
megjegyezni, hogy a háziméhek növekvő egyedszámának pozitív hatását a vadon élő növények reproduktív sikerében az empirikus adatok nem mindig támasztják alá (Klein et al. 2007). A megtévesztő megporzású orchideák reproduktív sikerére alapozott eredményeink megerősítik azokat a véleményeket, amelyek szerint túl azon, hogy a háziméhek a termesztett növények legfontosabb megporzói közé tartoznak, fontos szerepet töltenek be a vadon élő növények megporzásában.
5. Sallangvirág fajok szaporodási sikerét befolyásoló tényezők
(növényméret és környező növényzet)

5.1. Bevezetés

A táplálékkal megtévesztő megporzású fajoknál a jutalmazó fajokhoz hasonló szín is növelheti a megporzók vonzását, ugyan ez nem jelenti minden esetben a megtévesztő virág sikerét. Gumbert

Az orchideák megporzásában a rovarok, különösen a méhek kiemelt szerepet játszanak (lásd. 4. fejezetben). A megporzók mind egyed-, mind fajszámában egyes területek között eltérések mutathatók ki (Pálfy et al. 2009), mely nehezíti a ritka orchideák megporzását. A pollinátor csoportoknak a pollenszállításban való hatékonysága nagymértékben befolyásolja a növényfajok reproduktív sikerét, a leghatékonyabb pollinátorok több pollen hordoznak, mint a kevésbé hatékonyak (Barrios et al. 2016), de más viráglátogató rovarcsoportok is hozzájárulhatnak az orchideák termésképzéséhez (Fantinato et al. 2017).

Kevés információ áll rendelkezésre a táplálékkal megtévesztő kosborfajok esetében, hogy a környező növények hogyan befolyásolják az orchideák szaporodási sikerét, valamint a megszerzett ismeretek is sokszor ellentmondásosak. A *Himantoglossum* nemzetségen belül három taxonon keresztül vizsgáltuk a nektártermelő növények reproduktív sikerre gyakorolt hatását. Arra kerestük a választ, mely tényleg befolyásolják a sallangvirágok termésképzését az alábbi kér désfeltevésekkel:
• Hogyan befolyásolják a termésképzési sikert a *Himantoglossum* fajok méretváltozói?
• A sallangvirágok virágzásának időzítése (korán/ későn virágzó példányok) milyen hatással van a szaporodási sikerre?
• Hogyan befolyásolja a *Himantoglossum* fajok sűrűsége a szaporodási sikert?
• Milyen szerepe van a környező növényzetnek a termésképzési sikerre?
• A nektártermelő növények színbeli vagy morfológiai hasonlósága hatással van a sallangvirágok megporzásra?

5.2. Anyag és módszer

5.2.1. Vizsgált taxonok és helyszínek

5.1. táblázat: A vizsgálat helyszínei és állományadatok

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Ország</th>
<th>Lelőhely</th>
<th>n 2013</th>
<th>n 2014</th>
<th>Geokoordináták</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. adriaticum</td>
<td>Magyarország</td>
<td>Keszthely</td>
<td>34</td>
<td>53</td>
<td>N 46.794°, E 17.277°</td>
</tr>
<tr>
<td>H. adriaticum</td>
<td>Magyarország</td>
<td>Kőszeg</td>
<td>37</td>
<td>171</td>
<td>N 47.375°, E 16.526°</td>
</tr>
<tr>
<td>H. adriaticum</td>
<td>Magyarország</td>
<td>Nagytevel</td>
<td>41</td>
<td>81</td>
<td>N 47.264°, E 17.598°</td>
</tr>
<tr>
<td>H. adriaticum</td>
<td>Magyarország</td>
<td>Sümeg</td>
<td>47</td>
<td>179</td>
<td>N 46.945°, E 17.373°</td>
</tr>
<tr>
<td>H. adriaticum</td>
<td>Horvátország</td>
<td>Letaj I.</td>
<td>14</td>
<td>64</td>
<td>N 45.255°, E 14.121°</td>
</tr>
<tr>
<td>H. adriaticum</td>
<td>Horvátország</td>
<td>Letaj II.</td>
<td>12</td>
<td>20</td>
<td>N 45.255°, E 14.132°</td>
</tr>
<tr>
<td>H. adriaticum</td>
<td>Horvátország</td>
<td>Paz</td>
<td>7</td>
<td>19</td>
<td>N 45.277°, E 14.104°</td>
</tr>
<tr>
<td>H. adriaticum</td>
<td>Horvátország</td>
<td>Učka</td>
<td>100</td>
<td>84</td>
<td>N 45.317°, E 14.175°</td>
</tr>
<tr>
<td>H. calc. subsp. jankae</td>
<td>Magyarország</td>
<td>Érd</td>
<td>9</td>
<td>15</td>
<td>N 47.349°, E 18.940°</td>
</tr>
<tr>
<td>H. calc. subsp. jankae</td>
<td>Magyarország</td>
<td>Gyulafirátót</td>
<td>34</td>
<td>42</td>
<td>N 47.175°, E 17.934°</td>
</tr>
<tr>
<td>H. calc. subsp. jankae</td>
<td>Magyarország</td>
<td>Szava</td>
<td>101</td>
<td>130</td>
<td>N 45.882°, E 18.194°</td>
</tr>
<tr>
<td>H. calc. subsp. calcaratatum</td>
<td>Bosznia-Hercegovina</td>
<td>Sutjeska</td>
<td>67</td>
<td>142</td>
<td>from N 43.496°, E 18.736° to N 43.308°, E 18.656°</td>
</tr>
</tbody>
</table>
5.2. táblázat: A vizsgált területek élőhelyi jellemzői

<table>
<thead>
<tr>
<th>Ország</th>
<th>Lelőhely</th>
<th>Tszf. (m)</th>
<th>Élőhelytípus (Á-NÉR kód)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magyarország</td>
<td>Keszthely</td>
<td>153-265</td>
<td>Fenyilő, mészkedvelő lejtő- és törmelékgyepek (H2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Erdőssztyeprétek, felszázraz írtásrétek, száraz magaskórósok (H4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mész- és melegkedvelő tölgyesek (L1)</td>
</tr>
<tr>
<td>Magyarország</td>
<td>Kőszeg</td>
<td>326-382</td>
<td>Franciaperjés rétek (E1) (hagyományosan művelt/ kezeletlen gyümölcsös)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Erdőssztyeprétek, felszázraz írtásrétek, száraz magaskórósok (H4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fenyilő, mészkedvelő lejtő- és törmelékgyepek (H2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Galagonyás-kökényes-borókás száraz cserjések (P2b)</td>
</tr>
<tr>
<td>Magyarország</td>
<td>Nagytevel</td>
<td>247-327</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magyarország</td>
<td>Sümeg</td>
<td>187-240</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horvátország</td>
<td>Letaj I.</td>
<td>77-88</td>
<td>Fenyilő, mészkedvelő lejtő- és törmelékgyepek (H2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Erdőssztyeprétek, felszázraz írtásrétek, száraz magaskórósok (H4)</td>
</tr>
<tr>
<td>Horvátország</td>
<td>Letaj II.</td>
<td>77-79</td>
<td>Mészkedvelő nyílt sziklayepek (G2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>234</td>
<td></td>
</tr>
<tr>
<td>Horvátország</td>
<td>Paz</td>
<td>518-522</td>
<td></td>
</tr>
<tr>
<td>Magyarország</td>
<td>Érd</td>
<td>301-305</td>
<td></td>
</tr>
<tr>
<td>Magyarország</td>
<td>Gyulafirátót</td>
<td>128-198</td>
<td></td>
</tr>
<tr>
<td>Magyarország</td>
<td>Szava</td>
<td>415-1155</td>
<td></td>
</tr>
</tbody>
</table>

5.2.2. Adatgyűjtés

A vizsgált populációkban a virágzási időszak során valamennyi megtalált Himantoglossum egyedet jelöltük 2013-ban és 2014-ben (5.1. táblázat). Mértük a különböző méretváltozókat (cm): hajtás magasságát, virágzat hosszát, valamint számoltuk a virágzatonkénti virágszámot. Rögzítettük azt is, hogy az egyes virágzatokban az összes virághoz képest mennyi volt már nyilásban. Ezt használtuk annak megállapítására, hogy az egyes egyedek a populáció többi tagjához viszonyítva, hol tartottak a virágzásban. Feljegyeztük, hogy az egyes sallangvirágoktól mekkora távolságra (m) helyezkedik el az öt legközelebb eső egyed. Mivel a sallangvirágok
néhol sűrűn, máshol pedig nagyon szétszórtan fordultak elő (akár egymástól több 100 m-re), az öt távolság mediánját vettük (Jacquemyn és Brys 2010 „NND: nearest-neighbour distance”), ezzel jellemezve a populáció sűrűségét, szétszórtaságát. Mértük, hogy az egyes tövek virágzatai milyen mértékben emelkednek ki (cm) a környező növényzetből, vagyis mennyire láthatóak, valamint becsültük a gyep, cserje és fásszártú szintek borítását (%) az adott tő körül 1*1 m-es négyzetben. Jacquemyn és Brys (2010) munkájához hasonlóan minden tő körüli 2,5 m-es sugarú körben (valamint a tövektől számított fél méteres bontásban) (5.2. ábra) meghatároztuk a nektártermelő nemzeteket, ahol tudtuk a fajokat is, valamint azok virágzó hajtásainak számát. A későbbi elemzésekben csak a 2,5 m-es távolságban összesített adatokkal számoltunk, kiküszöbölve az egyes távolságok egyedsűrűségének különbözőségéből adódó elsőfajú hiba lehetőségét. Nevezéktan tekintetében Király (2009) munkáját tekintettük irányadónak, figyelembe véve a Magyarország orchideáinak atlaszát (Molnár V. 2011), valamint a „The Plant List” online elérhető felületet [2].

5.2. ábra: H. calcaratum subsp. jankae felmérése Gyulafirátóton (2013)

Az adatfeldolgozás során az orchideák körül előforduló virágos növényfajokat publikált források alapján növénycsaládok, nemzetségek (Király 2009), virágszín (Arnold et al. 2010) és virág alak (Vamosi et al. 2014) szerint csoportosítottuk. Az elemzésekhez az egy-egy nemzetséghez tartozó, hasonló megjelenésű és színű fajok adatait összevontuk fajcsoportokba. Mivel a megporzók eltérően érzékelik a színeket, különböző vizuális rendszert alkalmaznak, Arnold et al. (2010) alapján meghatároztuk a nektártermelő növényfajok virágszíneit a méhek
által érzékelt színekre, tartományra, öt kategóriába sorolva a színeket: kék-zöld, kék, zöld, UV-kék, UV-zöld (6. melléklet). A forrás elérése és a virágok alakja szerint Vamosi et al. (2014) módszeréhez hasonlóan korlátozó (zászlós, szűk és mély töltcséres, fejecskés, sarkantyús, csöves) és nem korlátozó (harang, tányér, nyitott tölsér) morfológiájú (azaz specialista, vagy generalista megporzókat fogadó) csoportba soroltuk a sallangvirágok körül virágzó növényfajokat.

Körülbelül egy hónappal a virágzási időszak végét követően minden egyes populációt újra felkerestünk, és minden megjelölt egyed esetében megszámoltuk a képződött termések számát. Meghatároztuk a termésképzési sikert: a termést fejlesztő virágok arányát százalékában meghatároztuk. A vizsgálatban csak az ép, sérülésmentes töveket vontuk be, ez alapján a két év alatt összesen 1502 növény felmérési adatával számoltunk.

5.2.3. Adatelemzés

Elemeztük a sallangvirág taxonok reproduktív sikerét befolyásoló tényezőket kevert általánosított lineáris modell (binomiális GLMM) alkalmazásával. Binomiális eloszlást használtunk, mivel a termésképzési arány 0 és 1 közötti értékeket vehet fel. A termések számát és a nem megporzott virágok számát bináris változóként (bivariate response) használtuk fel. A fejezetben a módszertan leírása az elemzések időrendiségét követi, mely során a módszertani szempontok finomítása is megtörtént, de a közben született eredmények fontos megállapításként szolgáltak, valamint hozzájárultak a végső modellkben lefutattott változók megtalálásáig. Először fajonkénti összehasonlítást végeztünk, de a megbízható eredmények érdekében az összesített adatok, azaz nagy mintaszámú elemzést is elvégeztük. Az eredmények közlése a legerősebb magyarázó erejű eredménytől haladva (az alább bemutatott módszertanhöz viszonyítva fordított sorrendben) történik.

5.2.3.1. Fajonkénti összehasonlítás

Az előzetes vizsgálatok során megállapítottuk, hogy mindhárom méret-változó (hajtás magassága, virágzat hossza, virágok száma) szignifikáns összefüggésben van a termésképzési aránnyal, melyek egymással erősen korrelálnak. Legnagyobb magyarázó ereje a virágzat hosszának van (residual deviance = 6027,6), így később csak ezt a változót használtuk.

Lépésenkénti kihagyással végeztük a modellszelekcióni, hogy a nektártermelő fajok virágszíneinek hatását megállapítsuk. Paraméterbecsléseinkkel vizsgáltuk, hogy a sallangvirágok körül előforduló nektártermelő növények család szintű csoportosításban (az adott csoporthoz tartozó növények egyedszáma), milyen hatással van a vizsgált virágzatok termésképzési sikereire.
A környező fajokról gyűjtött adatokból csak azon fajok adatait használtuk fel, amelyek a sallangvirág tövek több mint 10%-a körül előfordultak. Nemzetség szintjén ezt elvetettük, mivel kevés olyan nemzetség volt, amelyik előfordulási gyakorisága lehetővé tette volna a statisztikai elemzést.

Kiszámoltuk a tövek körüli nectartermelő diverzitást (nemzetség-szintű Shannon index), valamint a színbeli diverzitást is, de ez erősen korrelált a nemzetség-szintű diverzitással, ezért kihagytuk az elemzésekből.

A nectartermelő fajok diverzitásának hatását vizsgálva a virágmorfológia alapú csoportosítást vettük figyelembe, korlátozó vagy nem korlátozó morfológiájú, vagyis, hogy specialista vagy generalista megporzókat vonzhat az adott nectartermelő faj. Az elemzések során változtattunk a modellszelektíós eljáráson, egy Akaike Információs Kritérium (AIC) alapú modellszelektíciót alkalmaztunk, aminek a lényege, hogy nagyon sokféle modell kombinációt vizsgálunk és ezeket sorba rakjuk az alapján, hogy mennyire jól illeszkednek az adatainkhoz.

A fajonkénti vizsgálat során az alábbi változókat vettük figyelembe: (1) a felvétel éve (2) a virágzat hossza, (3) a fásszárú-, (4) a cserje- és (5) a gyepszint borítása, (6) van-e egy m-en belül másik Himantoglossum egyed (7) korlátozó virágmorfológiájú nectartermelő fajok száma a *Himantoglossum* egyedek körüli 2,5 m sugarú körön belül, (8) nem korlátozó virágmorfológiájú nectartermelő fajok száma a *Himantoglossum* egyedek körüli 2,5 m sugarú körön belül, (9) virágzási sorrend (RANK.ABS): virágzatának hány százalékával van elmaradva egy adott növény a populáció legelőrehaladottabb stádiumban levő növény virágzatához képest (ez utóbbi is százalékban van kifejezve) és (10) sokféleség (nemzetség-szintű Shannon index).

5.2.3.2. *Himantoglossum* taxonok összesített vizsgálata

Az összesített adatok elemzése során fix hatásként az alábbi magyarázó változókat vettük figyelembe: (1) a felvétel éve (2) a virágzat hossza, (3) a fásszárú-, (4) a cserje- és (5) a gyepszint borítása, (6) az 5 legközelebbi *Himantoglossum* egyed távolságának mediánja (NND), (7) korlátozó virágmorfológiájú nectartermelő fajok száma a *Himantoglossum* egyedek körüli 2,5 m sugarú körön belül, (8) nem korlátozó virágmorfológiájú nectartermelő fajok száma a *Himantoglossum* egyedek körüli 2,5 m sugarú körön belül és (9) a relatív virágzás. Ez utóbbi változót minusz1 *-nek határoztuk (a teljes virágzásban lévő virágok aránya minusz az első látogatás során a populáció teljes virágzásban lévő virágok átlagos aránya), ami azt mutatja, hogy az egyedek hol tartottak a virágzás időzítésében az állomány többi tagjához viszonyítva. A negatív értékek a korai virágzást jelzik (nagyobb a teljes virágzásban lévő virágok aránya a populáció átlagához viszonyítva), míg a pozitív értékek későbbi virágzást jeleznek. A
legközelebbi *Himantoglossum* egyedek távolságának mediánját (NND), valamint a korlátozó és nem korlátozó morfológiájú nektártermelő virágok számát Box-Cox transzformációval átalakítottuk, mely a variancia stabilizálására szolgál. Valamennyi változót standardizáltunk, 0 átlaggal és 1 szórással; így a modell paraméterbecslései standardizált hatásnagyságként értelmezhetők.

A modellben a lelőhely és a faj mellett a másik random faktor egyedi szintű (az egyed sorszáma), amivel kontrollálni tudtunk az adatok diszpergáltságára, azaz arra, hogy nagyon sok a 0 érték (termész nélküli virágzat) (Maindonald és Braun 2010). A binomiális GLMM-t a lme4 csomag lmer függvényével számoltuk R statisztikai környezetben (Bates et al. 2015, R Core Team 2017).

5.3. Eredmények

5.3.1. *Himantoglossum* taxonok összesített vizsgálata

A változók hatásait sokváltozós binomiális GLMM-ben kontrollálva azt találtuk, hogy három változó volt a legnagyobb hatásméretű befolyásoló tényező. A termésképzési siker szignifikáns pozitív kapcsolatban áll a virágzat hosszával (0,426), míg negatívan korrelált a fásszárú (-0,508) és a cserjeszint borításával (-0,367).

A legközelebbi *Himantoglossum* egyedek távolságának növekedése és a relatív virágzás, azaz késői virágzás negatívan befolyásolta a termésképzés sikerét, bár ezek esetében kisebb hatásméretek mutathatók ki (-0,137 és -0,170). A gyepszint borítása és az év, mint magyarázó tényező nem volt jelentős hatással a termésképzésre. E nem szignifikáns „előrejelzők” egyikének vagy mindegyikének eltávolítása semmilyen minőségi változást nem okozott a többi változó hatására.

A termésképzési siker szignifikánsan pozitív összefüggést mutatott mind a korlátozó, mind a nem korlátozó morfológiájú nektártermelő virágok számával (0,291 és 0,184 hatásméretek), vagyis a nektártermelő fajok sokféleségével (5.3. táblázat).
5.3. táblázat: Binomiális GLMM az *Himantoglossum* egyedek reproduktív sikerét befolyásoló tényezőkről.

<table>
<thead>
<tr>
<th></th>
<th>Becsült érték</th>
<th>Standard hiba</th>
<th>t-érték</th>
<th>p-érték</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virágzathossz</td>
<td>0,426</td>
<td>0,045</td>
<td>9,398</td>
<td><0,001</td>
</tr>
<tr>
<td>5 legközelebbi Himantoglossum egyed távolságának mediánja</td>
<td>-0,137</td>
<td>0,047</td>
<td>-2,928</td>
<td>0,003</td>
</tr>
<tr>
<td>Relatív virágzás</td>
<td>-0,170</td>
<td>0,041</td>
<td>-4,116</td>
<td><0,001</td>
</tr>
<tr>
<td>Fásszárú szint borítása</td>
<td>-0,508</td>
<td>0,049</td>
<td>-10,335</td>
<td><0,001</td>
</tr>
<tr>
<td>Cserjeszint borítása</td>
<td>-0,367</td>
<td>0,050</td>
<td>-7,417</td>
<td><0,001</td>
</tr>
<tr>
<td>Gyepszint borítása</td>
<td>-0,034</td>
<td>0,047</td>
<td>-0,718</td>
<td>0,473</td>
</tr>
<tr>
<td>Év</td>
<td>-0,148</td>
<td>0,088</td>
<td>-1,675</td>
<td>0,094</td>
</tr>
<tr>
<td>Nem korlátozó virágmorfológiájú nektártermelő fajok száma a Himantoglossum egyedek körüli 2,5 m sugarú körön belül</td>
<td>0,291</td>
<td>0,046</td>
<td>6,390</td>
<td><0,001</td>
</tr>
<tr>
<td>Korlátozó virágmorfológiájú nektártermelő fajok száma a Himantoglossum egyedek körüli 2,5 m sugarú körön belül</td>
<td>0,184</td>
<td>0,051</td>
<td>3,590</td>
<td><0,001</td>
</tr>
</tbody>
</table>
5.3.2. Fajonkénti összehasonlítás

Az egyes lelőhelyeken a három taxon termésképzési sikere, valamint egyéb jellemzők is eltértek (5.4. táblázat).

5.4. táblázat: A vizsgált jellemzők taxonokként összehasonlítása (félkövér formázással a statisztikai elemzésbe bevont változók)

<table>
<thead>
<tr>
<th></th>
<th>H. adriaticum n=962</th>
<th>H. jankae n=331</th>
<th>H. calcaratum subsp. jankae n=209</th>
<th>Total n=1502</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean ± SD</td>
<td>Min–Max</td>
<td>Mean ± SD</td>
<td>Min–Max</td>
</tr>
<tr>
<td>Magasság</td>
<td>57.8 ± 17.76</td>
<td>2–115</td>
<td>56.6 ± 13.66</td>
<td>26–111</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>63.2 ± 18.80</td>
<td>15–106</td>
</tr>
<tr>
<td>Virágzathossz</td>
<td>25.9 ± 10.29</td>
<td>4–63</td>
<td>19.9 ± 8.06</td>
<td>5–56</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>27.2 ± 11.55</td>
<td>5–60</td>
</tr>
<tr>
<td>Termések száma</td>
<td>9.1 ± 10.31</td>
<td>0–54</td>
<td>6.3 ± 7.67</td>
<td>0–38</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7.7 ± 7.90</td>
<td>0–34</td>
</tr>
<tr>
<td>Virágok száma</td>
<td>32.5 ± 12.37</td>
<td>6–92</td>
<td>30.5 ± 12.16</td>
<td>6–96</td>
</tr>
<tr>
<td>Termésképzési siker</td>
<td>0.26 ± 0.26</td>
<td>0–1</td>
<td>0.19 ± 0.21</td>
<td>0–0.97</td>
</tr>
<tr>
<td>5 legközelebbi szomszéd táv–medianja</td>
<td>41.8 ± 354,55</td>
<td>0.05–5600</td>
<td>2.7 ± 8.10</td>
<td>0.1–71</td>
</tr>
<tr>
<td>Gyepszint borítása (%)</td>
<td>48.5 ± 28,23</td>
<td>0–100</td>
<td>34.8 ± 25.22</td>
<td>0–100</td>
</tr>
<tr>
<td>Cserjeszint borítás (%)</td>
<td>24.4 ± 34,48</td>
<td>0–100</td>
<td>30.6 ± 32.65</td>
<td>0–100</td>
</tr>
<tr>
<td>Fásszárúsint borítás (%)</td>
<td>25.9 ± 37,33</td>
<td>0–100</td>
<td>9.9 ± 24.47</td>
<td>0–100</td>
</tr>
<tr>
<td>Nektártermelő fajok egyed-/hajtásszáma</td>
<td>119.6 ± 157.81</td>
<td>0–1262</td>
<td>160.8 ± 103.09</td>
<td>0–444</td>
</tr>
<tr>
<td>Faigazdagság (nektártermelő fajok száma)</td>
<td>5.8 ± 3,52</td>
<td>0–17</td>
<td>8.0 ± 2.52</td>
<td>0–13</td>
</tr>
</tbody>
</table>

Az Akaike Információs Kritérium (AIC) alapú modellszelekción alapján megállapítottuk, hogy H. adriaticum esetében az év, a cserje- és fásszárú borításnak negatív, a virágzathossznak valamint a generalista megporzókat fogadó nektártermelő fajok számának pozitív hatása volt a termésképzés alakulására (5.5. táblázat). H. calcaratum subsp. jankae tekintetében az év, cserje- és fásszárú borítás, virágzathossz, valamint a specialista megporzókat fogadó nektártermelők száma és a nektártermelő fajok diverzitása mutatott kapcsolatot a szaporodási sikerrel (5.6. táblázat). H. calcaratum subsp. calcaratum-nál a fásszárú borításnak negatív, a virágzathossznak és a specialista megporzókat fogadó nektártermelő fajok számának pozitív hatását tapasztaltuk (5.7. táblázat).
5.5. táblázat: AIC alapú modellszelektció eredményei *H. adriaticum* esetében (Amennyiben a konfidenciaintervallum 0-val átfed, nincs szignifikáns kapcsolat.)

<table>
<thead>
<tr>
<th>Konfidenciaintervallum</th>
<th>2.5%</th>
<th>97.5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>-2.66099795</td>
<td>-0.95310285</td>
</tr>
<tr>
<td>Felvétel éve (2014)</td>
<td>-0.48461740</td>
<td>-0.03840958</td>
</tr>
<tr>
<td>Cserjeszint borítása</td>
<td>-0.56710720</td>
<td>-0.31232261</td>
</tr>
<tr>
<td>Fásszárú szint borítása</td>
<td>-0.68326833</td>
<td>-0.44121232</td>
</tr>
<tr>
<td>Nem korlátozó vírágmorfológiajú nektártermelő fajok száma*</td>
<td>0.25650294</td>
<td>0.52541504</td>
</tr>
<tr>
<td>Sokféleség</td>
<td>-0.16257900</td>
<td>0.11343332</td>
</tr>
<tr>
<td>Gyepszint borítása</td>
<td>-0.18332902</td>
<td>0.04625110</td>
</tr>
<tr>
<td>Korlátozó vírágmorfológiajú nektártermelő fajok száma*</td>
<td>-0.04768092</td>
<td>0.21600427</td>
</tr>
<tr>
<td>Virágzat hossza</td>
<td>0.19409469</td>
<td>0.40377517</td>
</tr>
<tr>
<td>Másik Himantoglossum egyed</td>
<td>-0.10536269</td>
<td>0.30644589</td>
</tr>
<tr>
<td>Virágzási sorrend</td>
<td>-0.20791121</td>
<td>0.07213146</td>
</tr>
</tbody>
</table>

a Himantoglossum egyedek körüli 2,5 m sugarú körön belül

5.6. táblázat: AIC alapú modellszelektció eredményei *H. calcaratum* subsp. *jankae* esetében (Amennyiben a konfidenciaintervallum 0-val átfed, nincs szignifikáns kapcsolat.)

<table>
<thead>
<tr>
<th>Konfidenciaintervallum</th>
<th>2.5%</th>
<th>97.5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>-3.39886059</td>
<td>-1.941342059</td>
</tr>
<tr>
<td>Felvétel éve (2014)</td>
<td>0.03429225</td>
<td>0.914801222</td>
</tr>
<tr>
<td>Cserjeszint borítása</td>
<td>-0.45807194</td>
<td>-0.043834077</td>
</tr>
<tr>
<td>Fásszárú szint borítása</td>
<td>-0.50024713</td>
<td>-0.04192057</td>
</tr>
<tr>
<td>Nem korlátozó vírágmorfológiajú nektártermelő fajok száma*</td>
<td>-0.32843813</td>
<td>0.180305035</td>
</tr>
<tr>
<td>Sokféleség</td>
<td>0.29885614</td>
<td>0.814575051</td>
</tr>
<tr>
<td>Gyepszint borítása</td>
<td>-0.14898197</td>
<td>0.275120808</td>
</tr>
<tr>
<td>Korlátozó vírágmorfológiajú nektártermelő fajok száma*</td>
<td>0.08490880</td>
<td>0.605068063</td>
</tr>
<tr>
<td>Virágzat hossza</td>
<td>0.29430154</td>
<td>0.692301501</td>
</tr>
<tr>
<td>Másik Himantoglossum egyed</td>
<td>-0.53253498</td>
<td>0.590662183</td>
</tr>
<tr>
<td>Virágzási sorrend</td>
<td>-0.51675931</td>
<td>-0.006550925</td>
</tr>
</tbody>
</table>

a Himantoglossum egyedek körüli 2,5 m sugarú körön belül
5.7. táblázat: AIC alapú modellszelekción eredményei H. calcaratum subsp. calcaratum esetében (Amennyiben a konfidenciaintervallum 0-val átfed, nincs szignifikáns kapcsolat.)

<table>
<thead>
<tr>
<th></th>
<th>Konfidenciaintervallum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.5%</td>
</tr>
<tr>
<td></td>
<td>97.5%</td>
</tr>
<tr>
<td>(Intercept)</td>
<td>-1.3558043</td>
</tr>
<tr>
<td>-0.491924862</td>
<td></td>
</tr>
<tr>
<td>Felvétel éve (2014)</td>
<td>-0.994183</td>
</tr>
<tr>
<td>0.002934702</td>
<td></td>
</tr>
<tr>
<td>Cserjeszint borítása</td>
<td>-0.2758505</td>
</tr>
<tr>
<td>0.132424725</td>
<td></td>
</tr>
<tr>
<td>Fásszárú szint borítása</td>
<td>-0.6356885</td>
</tr>
<tr>
<td>-0.176669607</td>
<td></td>
</tr>
<tr>
<td>Nem korlátozó virágmorfológiajú nektátermelő fajok száma*</td>
<td>-0.2389031</td>
</tr>
<tr>
<td>Sókféleség</td>
<td>-0.2493375</td>
</tr>
<tr>
<td>0.268810417</td>
<td></td>
</tr>
<tr>
<td>Gyepszint borítása</td>
<td>-0.1719275</td>
</tr>
<tr>
<td>0.22983211</td>
<td></td>
</tr>
<tr>
<td>Korlátozó virágmorfológiajú nektátermelő fajok száma*</td>
<td>0.2527439</td>
</tr>
<tr>
<td>Virágzat hossza</td>
<td>0.2448199</td>
</tr>
<tr>
<td>0.620849061</td>
<td></td>
</tr>
<tr>
<td>Másik Himantoglossum egyed</td>
<td>-0.2935026</td>
</tr>
<tr>
<td>Virágzási sorrend</td>
<td>-0.3421937</td>
</tr>
<tr>
<td>0.142239732</td>
<td></td>
</tr>
</tbody>
</table>

*a Himantoglossum egyedek körüli 2,5 m sugarú körön belül

Összesen 170 nektátermelő növényfajt (137 fajcsoportba rendezve) figyeltünk meg a sallangvirág tövek körül, mely taxonok között változott, de a tövek körül átlagosan 6,7±3,6 faj fordult elő (6. melléklet). A H. adriaticum esetében 18 fajcsoport fordult elő a tövek 10%-a körül (de nem emelkedett 40% fölé). Legjellemzőbb nektátermelő faj a Galium mollugo (37%) volt (5.3. ábra), de jelentős gyakoriságot ért el a Lotus corniculatus (30%), valamint Medicago fajok (27%). A H. calcaratum subsp. jankae és H. calcaratum subsp. calcaratum esetében a fajgazdagság helyenként igen magas volt, nagyobb számban 23, illetve 26 fajcsoport került elő. A H. calcaratum subsp. jankae tövek körül gyakori volt a Teucrium chamaedrys (71%), Veronica sp. (49%), Stachys sp. (47%), Allium sphaerocephalon (42%), valamint a Dorycnium herbaceum (68%), Thymus sp. (55%), Trifolium campestre (44%) és a Hypericum perforatum (39%) a H. calcaratum subsp. calcaratum esetében. Mindhárom sallangvirág taxon környezetében jellemzően előfordultak az alábbi fajok: Medicago fajok (M. minima, M. lupulina) (27%), Geranium columbinum (24%), Lotus corniculatus (22%), Hypericum perforatum (19%), Trifolium campestre (17%), Helianthemum ovatum (15%).
Az előzetes vizsgálatok során azt találtuk, hogy egy eset kivételével valamennyi a méhek által érzékelt színtartomány pozitív hatással volt a termésképzés alakulására (5.4. ábra). Az is megállapítható, hogy több nektártermelő család jelenléte is pozitív befolyásolta a termésképzési sikert, és hogy az egyes családok hatása a sallangvirág taxonoknál eltérő (5.5.-5.7. ábra). Ahol a konfidenciaintervallum nem fed át 0-val (szaggatott szürke vonal), ott szignifikáns összefüggés van az adott család jelenléte és a termésképzési siker között. Mivel a fajösszetétel jelentősen befolyásolhatja a szaporodási sikert, ezért használtuk változóként az orchideákat körülvevő nektártermelő fajok hatásának vizsgálatához a virágmorfológia alapú csoportosítást.
5.4. ábra: A méhek által érzékelt virágszínek, valamint a termésképzési siker közötti kapcsolat fajonkénti bontásban
5.5. ábra: A növénycsaládok és a *H. adriaticum* termésképzési sikere közötti összefüggések AIC alapú modellszelekción alapján

5.6. ábra: A növénycsaládok és a *H. calcaratum* subsp. *jankae* termésképzési sikere közötti összefüggések AIC alapú modellszelekción alapján
5.4. Értékelés

szignifikánsan változott év és hely között, vagyis a környezet hatása nem elhanyagolható. Ez lehet az oka, hogy az adriai és a Janka sallangvirágánál az adott év is befolyásolta a termésképzést, míg az összesített eredményeknél ennek már nem volt kimutatható hatása. Feltehetően ezt az okozta, hogy a fajok areáját viszonylag jól lefedő, széleskörű mintavétel történt. Mivel a földrajzi szélesség és a magasság egy terület éghajlati viszonyait, vagyis a csapadékot és a hőmérsékletet jelentősen befolyásolják, ezzel hatással vannak a növények morfológiai tulajdonságaira (Blinova 2012, Hulshof et al. 2013, Tsiftsis 2016).

Kiemelt jelentősége volt mind fajonkénti, mind összesített vizsgálat során a cserje- és fásszárú borításnak, mely negatív hatással volt a termésképzés alakulására (sarkantyús sallangvirágánál csak a fásszárú borítás mutatott szignifikáns kapcsolatot), melyet más tanulmányok is megerősítetik (Willems és Boessenkool 1999, Jacquemyn et al. 2002, 2008).

Eredményeink abból a szempontból összhangban vannak más kutatásokkal, hogy a korábban virágzó egyedek általában több termést fejlesztettek, mint a későn virágzók (Vallius 2000, Gumbert és Kunze 2001). Ez következhet a rovarok tanulási folyamatából (Anderson és Johnson 2006), azaz arra a tanulási képességre öszpontosítanak, hogy „megtanulják” a táplálékot adó jutalmazó növényeket, közben rugalmas táplálkozási magatartást tanúsíthatnak a megtévesztő virágok erőteljes elkerülése helyett (Juillet et al. 2011) vagy akár egy korábban virágzó jutalmazó faj pozitívan befolyásolhatja a később virágzó fajok megporzását (megporzók helyhűsége) (Ogilowie és Thomson 2016).

Sok növényfajban az együttvirágzó egyedek lokális sűrűsége hatással van a termésképzési sikerre (Moeller 2004, Ghazoul 2006, Wagenius 2007, Ye et al. 2014). Eredményeink alapján a sallangvirágok sűrűbb állományaiban több termés képződött, vagyis a „nagyobb” sűrűségű

fásszárú növényzetben, vagy utak mentén (Bódis 2017), így a megporzók helyhez vonzása kiemelt fontosságú (Tuomi et al. 2015).

Eredményeink igazolják, hogy a fajgazdag, gyakran másodlagos élőhelyek kiemelt jelentőségűek a veszélyeztetett fajok megőrzésében mind közvetlen, mind közvetett módon.
6. Következtetések és javaslatok

A disszertáció eredményei alapján a hazai adriai sallangvirág populációiban a virágzási és természképzési sikert nagymértékben befolyásolta a területek termőhelyi és élőhelyi körülményei.

A *Himantoglossum* fajok reprodukciós sikerére vonatkozó vizsgálatainkat összegezve a legerősebb befolyásoló tényező a disszertáció eredményei alapján a virágzathossz, valamint a cserje- és fatermetű növényzet. Ezek korlátozó hatását a sallangvirágok hátrányba kerültek. Más kutatások szerint az orchideák a lágyszárú növényzet magasságára, szerkezetére is érzékenyen reagálnak (Kindlmann és Jersáková 2006, Slaviero *et al.* 2016), mivel a megporzók nehezen találják meg az orchideákat. Azaz a láthatóság növelése együtt jár a megporzólátogatások mellett, mely élőhelyfenntartással: kaszálással, cserjeírásokkal támogatható. Így például az úszegélyek szeszülése a legkedvezőbb módszer az orchideák megőrzése szempontjából (Fekete *et al.* 2017), ahol aztán magas sajámban virágzó orchideák (Bódis *et al.* 2019). A kaszálás növeli az újkultúrázást (bár csökkenti a természképzést) (Sletvold *et al.* 2010), ezért hosszútávon a terület természetvédelmi értéke (termésérést) figyelembevevő, extenzív gazdálkodási módok alkalmazása célra vezető (a hazai állományokban ez részben megvalósul).

Az eredmények tükrében a fajgazdag élőhelyeken a nektártermelő fajok mellett a ritka, megtévesztő orchideák is – a fajok között fennálló versengés ellenére – magasabb szaporodási sikert érhetnek el. A természképzés biztosított megfelelő megporzó közösség jelenlétében, ökológiai szempontból a megporzók széles spektrumú virágválasztása, valamint hogy a *Himantoglossum* fajok sem specializálódnak egy-egy fajhoz, fajcsoportokhoz, hozzájárul a megporzás esélyének növeléséhez, különösen akkor, ha a megporzók térben és időben nem egyenletesen oszlanak el (Fantinato *et al.* 2017). A disszertáció részleredménye is erre világított rá, miszerint a háziméhközpont (Apis mellifera), mely számos természet növény fontos megporzója, veszélyeztetett fajok megporzásában fontos szerepet játszhat (Biró *et al.* 2015). Bár az utóbbi időben Európában a méhészek a méhcsaládok 30%-át veszítik el évente, mely csökkenés legvalószínűbb magyarázata a parasztikus, kórokozók, toxikus és más stresszfaktorok kölcsönhatásából eredő együtt hatása (Sánchez-Bayo és Wyckhuys 2019).

Az a méhközösségek fennmaradásához elengedhetetlennek a jó minőségű, fajgazdag, feltermészetes élőhelyek (Brown és Paxton 2009), vagyis az extenzív művelés fenntartása az élőhelyek megőrzésével nemcsak a ritka és veszélyeztet orchideák fennmaradását segíti, hanem táplálkozóhelyet biztosít a háziméheknek és más méhközösség tagjainak, amikor extrém időjárási körülmények következtében más forrás nem áll rendelkezésre. Továbbá a természetes
élőhelyek területének növekedésével nő a termesztett növények beporzásának stabilitása és kiszámíthatósága (Kremen et al. 2004).

Az Orchidaceae a legfajgazdagabb növénycsaládnak számít. Világméretű diszperziójuk és extrém plaszticitásuk ellenére a fajok jelentős része veszélyeztetett, megőrzésük egyre fokozódó kihívást jelent. Több fajuk is adaptálódott másodlagosan kialakult élőhelyekhez, kaszálókhoz, legelőkhöz, s most ezek fennmaradásához kötött az orchideák léte is. Sok esetben a növényi diverzitás csökkenése együtt jár a megszorító közösség csökkenésével. A természetvédelmi szempontból legveszélyeztetetsebb fajok túlélése és a rovarmegporzású termesztett növények terméshozama a megszorító rovarok jelenlétilen keresztül kapcsolódik össze.

A szerző három sallangvirág taxon vizsgálatával foglalkozik. A Himantoglossum adriaticum és H. calcaratum subsp. jankae hazánkban előforduló fokozottan védett, valamint közösségi jelentőséggel, ritka taxonok, a míg H. calcaratum subsp. calcaratum egy szűk elterjedésű balkáni endemizmus. Mivel a reproduktív siker a növények fitneszének egyik legfontosabb mérőszáma, az adott populáció túlélését, a disszertáció a termésképzést befolyásoló tényezők felderítését tűzte ki célul. A szerző három sallangvirág hazai állományaiban a virágzó egyedek felmérésére koncentráló térbeli és időbeli összehasonlító vizsgálat során a szerző az állományváltozásokat, a faj virágzási jellemzőit, reproduktív sikerét, valamint a tájhasználati vonatkozásokat rögzítette a faj reproduktív stratégiájának megértéséhez és a fennmaradásához szükséges tényezők feltárásához.

Mivel a reproduktív siker a növények fitneszének egyik legfontosabb mérőszáma, az adott populáció túlélését, a disszertáció a termésképzést befolyásoló tényezők felderítését tűzte ki célul. A szerző három sallangvirág hazai állományaiban a virágzó egyedek felmérésére koncentráló térbeli és időbeli összehasonlító vizsgálat során a szerző az állományváltozásokat, a faj virágzási jellemzőit, reproduktív sikerét, valamint a tájhasználati vonatkozásokat rögzítette a faj reproduktív stratégiájának megértéséhez és a fennmaradásához szükséges tényezők feltárásához. Majd hazai és külföldi populációk vizsgálatával a befolyásoló tényezők meghatározása zajlott, kiterve a háziméh megporzásban játszott szerepére, a virágzási jellemzők, valamint a környező növényzet hatására. A befolyásoló tényezőket kevert általánosított lineáris modell (binomiális GLMM) alkalmazásával állapítottuk meg R statisztikai környezetben.

A vizsgált időszakban (2013–2017) összesen 1903 virágzó adriai sallangvirág egyedet mértünk fel, az egyes állományokban évenként 34 (Keszthely, 2013) és 179 (Sümeg, 2014) között változott a virágzó tövek száma. Az adriai sallangvirág esetében a magasság és a virágzathossz termőhelyenként és évenként is szignifikánsan eltér, vagyis a környezeti tényezők jelentős befolyásoló hatással bírtak, szemben a virágzásszámmal, ami a legkevésbé változó jellemzőnek bizonyult.

A CORINE felszínborítási adatokat vizsgálva megállapítást nyert, hogy a készthelyi és a sümegi állományok erdős, illetve erdős-cserjés területen fordulnak elő, míg a köszegi és a nagytevéli állományok rét, illetve komplex művelésű területen (zártkert) nőnek, mely - többek között - befolyásolja a faj reprodukcióban megmutatkozó sikereségét.
A hazai populációk termésképzési sikere 9,2 és 61,7% között változott a vizsgálat öt éve során. A Nagytevelen tapasztalt 61,7%-os termésképzési arány a *H. adriaticum* legmagasabb publikált populációs szintű reprodukciós sikere, mely szignifikánsan magasabb volt, mint a többi vizsgált állományé. A nagyteveli populációban az egyedek reproduktív sikere szignifikánsan csökkent a kaptároktól való távolság növekedésével, ami igazolja a telepített méhkaptárok jelentőségét a sallangvirágok megszaporításában.

A sallangvirágok termésképzési sikere szignifikáns pozitív kapcsolatban állt a virágzat hosszával, míg negatívan korrelált a fásszárú és a cserjeszín panorámájával. A legközelebbi *Himantoglossum* egyedek távolságának növekedése és a relatív késői virágzás negatívan befolyásolta a termésképzés sikerét. Összesen 170 nektártermelő növényfajt (138 fajcsoportba rendezve) figyeltünk meg a sallangvirág tövek körül, mely fajonként váltott. A vizsgálatok azonban nem erősítették meg, hogy egy-egy taxon, vagy a sallangvirágok színéhez hasonló nektártermelő fajok befolyásolták volna a sallangvirágok termésképzését. A vizsgált sallangvirágok esetében nem találtunk mágnes fajt. Vannak olyan deceptív fajok, amelyek nem meghatározott növényeket utánoznak, hanem az általános virág bélyegeket hangsúlyozzák, eredményeink is erre utalnak.

A termésképzési sikere szignifikánsan pozitív összefüggést mutatott mind a korlátozó, mind a nem korlátozó morfológiájú nektártermelő virágok számával, vagyis a nektártermelő fajok sokféleségével. Ebből arra következtethetünk, hogy minél több virágos növény fordult elő a sallangvirágok körül, annál sikeresebb volt a termésképzés. Eredményeink szerint tehát a fajgazdag élőhelyeken a ritka, megtévesztő orchideák – a fajok között fennálló versengés ellenére – magasabb szaporodási sikert érhetnek el, ahol aztán a méhközösségek fennmaradása is biztosított. Ez alátámasztja a jól természetességű, magas diverzitású életközösségek megőrzésének fontosságát.
8. Summary

The family Orchidaceae is one of the largest in the plant kingdom. Despite their world-wide dispersion and extreme plasticity, the majority of these species are of key conservation importance. Several species have adapted to secondary habitats, meadows and pastures, and now the existence of orchids is tied to their survival. In many cases, a decrease in plant diversity is accompanied by a decrease in the pollinating community. From a conservation point of view, the survival of the most endangered species and the yield of insect-pollinated cultivated plants are linked through the presence of pollinating insects.

Himantoglossum adriaticum and *H. calcaratum* subsp. *jankae* are strictly protected in Hungary at national level and have a community importance in the EC, while *H. calcaratum* subsp. *calcaratum* is a Balkan endemic taxon. Reproductive success is one of the most important component of the plants fitness, which can ensure the survival of a given population. The aim of the dissertation was to test the impact of several factors on *Himantoglossum* fruit set.

Each flowering individual was recorded in Hungarian population of Adriatic Lizard Orchid. The author examined population changes, flowering characteristics, reproductive success and land use implications between years and sites. Then, the factors influencing reproductive success of *Himantoglossum* orchids were determined, including the role of honeybee in pollination, the effect of flowering characteristics, and the surrounding vegetation. Influencing factors were analyzed using Generalized Linear Mixed Model with binomial errors (binomial GLMM) in R Statistical Environment.

In the study period (2013–2017) it was determined a total of 1903 *Himantoglossum* flowering individual. The number of flowering stems varied between 34 (Keszthely, 2013) and 179 (Sümeg, 2014) per year per sites. The plant height and inflorescence length of Adriatic Lizard Orchid also differed significantly between the locations and year to year, i.e. environmental factors had a significant influencing effect, as opposed to the number of flowers per inflorescence, which proved to be the least variable characteristic.

Analysing the CORINE land cover data too, it was found that the Keszthely and Sümeg sites as well as Köszeg and Nagytevel habitat were different. These are edges of thermophilous forest or abandoned vineyards with semi-dry grassland, which among other things, can affect the reproductive succes.

During the five years of the study the reproductive succes varied between 9.2 and 61.7% in Hungary. The realised 61.7% fructification rate in Nagytevel is the highest ever published
population-level average reproductive success of *H. adriaticum*. The reproductive success of individual flowers in this population was negatively related to their distance from the beehives. Together, these results strongly suggest that honeybees were causally implicated in the high reproductive success of this population in 2013.

In the multivariate binomial GLMM controlling for the effect of other variables, fruit set was significantly positively related to the height of flowering stem and negatively to tree cover and scrub cover; these three predictors had the largest effect sizes. Median distance of 5 nearest *Himantoglossum* individuals and relative flowering were both negatively related to fruit set. A total of 170 rewarding plant species (arranged into 138 species groups) were observed around the flowering stems, which varied by species. Other factors like colour similarity between deceptive plants and neighbouring rewarding species could also play a role in indirect interactions for pollination, which has not been confirmed by study.

Fruit set was significantly positively related to the number of unrestrictive and restrictive flowers, i.e., the diversity of rewarding co-flowering insect-pollinated species. In conclusion, that the more flowering plants occur around the individuals of *Himantoglossum* species, the more successful the fruit set, which suggests the importance of diverse habitats.
9. Új tudományos eredmények

2. A hazai populációk termésképzési sikere 9,2 és 61,7% között változott a vizsgálat öt éve során. A Nagytevelen tapasztalt 61,7%-os termésképzési arány, mely elért a nektárral jutalmazó orchideák átlagos termésképzési szintjét, a H. adriaticum legmagasabb publikált populációs szintű reprodukciós sikere.

3. 2013-ban a háziméhek hozzájárultak a nagyteveli populáció magas reproduktív sikeréhez: az egyes virágok reprodukciós sikere negatív kapcsolatban állt a méhkaptártól való távolságukkal.

4. A vizsgált adriai sallangvirág populációk átlagos reprodukciós sikere független volt a populáció méretétől.

5. A virágzás és kapcsolatba hozható morfometria jellemzők (magasság, virágzathossz, virágszám) szignifikáns kapcsolatban állnak egymással, mely közül a virágzathossz mutatta a legnagyobb változékonyságot, a legkisebbet pedig a virágszám.

6. A sallangvirágok termésképzési sikerét befolyásoló tényezők:
 a. szignifikáns pozitív kapcsolat mutatható ki a virágzat hosszával mind a fajonkénti, mind az összesített adatok alapján;
 b. a termésképzési siker szignifikáns negatív kapcsolatban áll a fásszárra és a cserjeszint borításával, mind a fajonkénti, mind az összesített adatok alapján;
 c. A legközelebbi Himantoglossum egyedek távolságának növekedése negatívan befolyásolta a szaporodási sikert;
 d. a relatív késői virágzás hátrányosan hatott az egyedek termésképzésre;
 e. a termésképzési siker szignifikánsan pozitív összefüggést mutatott mind a korlátozó, mind a nem korlátozó morfológiájú nektártermelő virágok számával, azaz a nektártermelő fajok sokféleségével

7. A szerző a vizsgált sallangvirágok esetében nem talált „mágnes fajt”. Minél több virágos növény fordult elő a sallangvirágok körül, annál sikeresebb volt a termésképzés.
10. New scientific results

1. During the study period (2013–2017) of the four Hungarian populations of *Himantoglossum adriaticum*, the number of flowering individuals was determined, which differed between years and locations. The number of inflorescences did not increase above 100 stems even under ideal weather conditions, in Keszthely and Nagytevel while the number of flowering individuals in Kőszeg and Sümeg approached to 200 flowering stems.

2. During the five years of the study the reproductive success varied between 9.2 and 61.7% in Hungary. The realised 61.7% fructification rate in Nagytevel is the highest ever published population-level average reproductive success of *H. adriaticum* showing that a *Himantoglossum* population could reach the average fructification level of rewarding orchids.

3. In 2013, honeybees contributed to the high reproductive success of the Nagytevel population: the reproductive success of individual flowers in this population was negatively related to their distance from the beehives.

4. The average reproductive success of the studied Lizard orchid populations was independent from the size of the population.

5. Plant height, inflorescence length, number of flowers are significantly related to each other, of which inflorescence length showed the greatest variability and the number of flowers the smallest.

6. The author of the dissertation identified the factors influencing the reproductive success. Fruit set was significantly related to:
 a. the inflorescence length (positively, based on overall records and per species study as well)
 b. tree cover and scrub cover (negatively, based on overall records and per species study as well)
 c. median distance of 5 nearest *Himantoglossum* individuals (negatively, based on overall records)
 d. relative flowering (negatively, based on overall records) and
 e. the number of unrestrictive and restrictive flowers (positively, based on overall records).

7. The author did not find any species acting as a „magnetic species”. Heterospecific density and richness increased reproductive success.
Mellékletek

M1 Irodalomjegyzék

144. Pierce, S., Belotti, J. (2011): The conservation of terrestrial orchids from the Alps to the Po plain of Lombardy, Albino (BG) and Galbiate (LC), Italy. Parco Orobie Bergamasche, CFA Regione Lombardia

[1]: Országos Meteorológiai Szolgálat
 https://met.hu/eghajlat/magyarorszag_eghajlata/eghajlati_visszatekinto(elmult_evek_idojar.asa/main.php?no=0ésful=csapadek

M2 Ábrák, táblázatok

1. **melléklet:** Az adriai sallangvirág állományok termésképzési sikerének évenkénti megoszlása

<table>
<thead>
<tr>
<th></th>
<th>Egyedszám</th>
<th>Átlag</th>
<th>Medián</th>
<th>Szórás</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUM</td>
<td>1903</td>
<td>31,400</td>
<td>25,000</td>
<td>27,9</td>
<td>0,000</td>
<td>100,000</td>
</tr>
<tr>
<td>Keszthely</td>
<td>329</td>
<td>18,500</td>
<td>11,765</td>
<td>20,2</td>
<td>0,000</td>
<td>84,483</td>
</tr>
<tr>
<td>2013</td>
<td>34</td>
<td>9,300</td>
<td>5,887</td>
<td>10,4</td>
<td>0,000</td>
<td>39,394</td>
</tr>
<tr>
<td>2014</td>
<td>53</td>
<td>18,100</td>
<td>13,725</td>
<td>19,2</td>
<td>0,000</td>
<td>68,333</td>
</tr>
<tr>
<td>2015</td>
<td>76</td>
<td>27,400</td>
<td>18,184</td>
<td>25</td>
<td>0,000</td>
<td>84,483</td>
</tr>
<tr>
<td>2016</td>
<td>90</td>
<td>19,100</td>
<td>10,000</td>
<td>20,7</td>
<td>0,000</td>
<td>77,778</td>
</tr>
<tr>
<td>2017</td>
<td>76</td>
<td>13,400</td>
<td>10,714</td>
<td>14,4</td>
<td>0,000</td>
<td>51,807</td>
</tr>
<tr>
<td>Sümeg</td>
<td>627</td>
<td>21,000</td>
<td>15,385</td>
<td>20,6</td>
<td>0,000</td>
<td>100,000</td>
</tr>
<tr>
<td>2013</td>
<td>55</td>
<td>25,200</td>
<td>19,355</td>
<td>25,3</td>
<td>0,000</td>
<td>87,500</td>
</tr>
<tr>
<td>2014</td>
<td>179</td>
<td>24,300</td>
<td>22,581</td>
<td>19,7</td>
<td>0,000</td>
<td>84,444</td>
</tr>
<tr>
<td>2015</td>
<td>170</td>
<td>17,200</td>
<td>10,526</td>
<td>20,1</td>
<td>0,000</td>
<td>86,486</td>
</tr>
<tr>
<td>2016</td>
<td>135</td>
<td>20,200</td>
<td>12,000</td>
<td>21,8</td>
<td>0,000</td>
<td>100,000</td>
</tr>
<tr>
<td>2017</td>
<td>88</td>
<td>19,900</td>
<td>15,673</td>
<td>17,1</td>
<td>0,000</td>
<td>76,190</td>
</tr>
<tr>
<td>Kőszeg</td>
<td>638</td>
<td>38,900</td>
<td>40,192</td>
<td>29,3</td>
<td>0,000</td>
<td>100,000</td>
</tr>
<tr>
<td>2013</td>
<td>50</td>
<td>40,700</td>
<td>41,801</td>
<td>32,7</td>
<td>0,000</td>
<td>95,349</td>
</tr>
<tr>
<td>2014</td>
<td>171</td>
<td>36,300</td>
<td>38,462</td>
<td>29,1</td>
<td>0,000</td>
<td>93,333</td>
</tr>
<tr>
<td>2015</td>
<td>128</td>
<td>41,400</td>
<td>44,156</td>
<td>30,1</td>
<td>0,000</td>
<td>100,000</td>
</tr>
<tr>
<td>2016</td>
<td>142</td>
<td>25,300</td>
<td>19,097</td>
<td>23,5</td>
<td>0,000</td>
<td>72,500</td>
</tr>
<tr>
<td>2017</td>
<td>147</td>
<td>52,100</td>
<td>56,667</td>
<td>26,6</td>
<td>0,000</td>
<td>97,619</td>
</tr>
<tr>
<td>Nagytevel</td>
<td>309</td>
<td>51,000</td>
<td>54,167</td>
<td>28,7</td>
<td>0,000</td>
<td>100,000</td>
</tr>
<tr>
<td>2013</td>
<td>41</td>
<td>60,100</td>
<td>65,385</td>
<td>29,2</td>
<td>0,000</td>
<td>100,000</td>
</tr>
<tr>
<td>2014</td>
<td>81</td>
<td>57,800</td>
<td>65,625</td>
<td>27,2</td>
<td>0,000</td>
<td>100,000</td>
</tr>
<tr>
<td>2015</td>
<td>77</td>
<td>52,200</td>
<td>56,364</td>
<td>31,5</td>
<td>0,000</td>
<td>100,000</td>
</tr>
<tr>
<td>2016</td>
<td>68</td>
<td>42,200</td>
<td>42,262</td>
<td>27</td>
<td>0,000</td>
<td>95,000</td>
</tr>
<tr>
<td>2017</td>
<td>42</td>
<td>41,100</td>
<td>41,588</td>
<td>21,9</td>
<td>4,878</td>
<td>92,308</td>
</tr>
</tbody>
</table>
2-5. melléklet: Az adriai sallangvirág állományok CORINE felszínborítási adatai szerint.
A Corine felszínborítási térképek forrása: Copernicus Land Monitoring Service (https://land.copernicus.eu/)

Keszthely (M=1:60 000)

Sümeg (M=1:30 000)
Kőszeg (M=1:15 000)

Nagytevel (M=1:15 000)
6. melléklet: A sallangvirág taxonok körül előforduló nektártermelő növényfajok család és szín szerinti csoportosítása Arnold et al. (2010) alapján, valamint a megjelenő hajtások száma és relatív gyakorisága az egyes taxonok tekintetében

<table>
<thead>
<tr>
<th>Faj</th>
<th>Család</th>
<th>Méhek</th>
<th>Emberíszem</th>
<th>adr.</th>
<th>a_%</th>
<th>jan.</th>
<th>j_%</th>
<th>calc.</th>
<th>c_%</th>
<th>össz</th>
<th>össz_%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Acanthus of spinosus</td>
<td>Acanthaceae</td>
<td>kék-zöld</td>
<td>fehér-sárga</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>2,9</td>
<td>6</td>
<td>0,4</td>
</tr>
<tr>
<td>2 Achillea millefolium agg.</td>
<td>Asteraceae</td>
<td>kék-zöld</td>
<td>fehér</td>
<td>29</td>
<td>3</td>
<td>70</td>
<td>21,1</td>
<td>16</td>
<td>7,7</td>
<td>115</td>
<td>7,66</td>
</tr>
<tr>
<td>3 Acinos arvensis</td>
<td>Lamiaceae</td>
<td>kék</td>
<td>világos lila</td>
<td>46</td>
<td>4,8</td>
<td>74</td>
<td>22,4</td>
<td>25</td>
<td>12</td>
<td>145</td>
<td>9,65</td>
</tr>
<tr>
<td>4 Agrimonia eupatoria</td>
<td>Rosaceae</td>
<td>UV-zöld</td>
<td>sárga</td>
<td>37</td>
<td>3,8</td>
<td>4</td>
<td>1,2</td>
<td>18</td>
<td>8,6</td>
<td>59</td>
<td>3,93</td>
</tr>
<tr>
<td>5 Ajuga reptans</td>
<td>Lamiaceae</td>
<td>kék-zöld</td>
<td>fehér</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0,13</td>
</tr>
<tr>
<td>6 Ajuga genevensis</td>
<td>Lamiaceae</td>
<td>UV-kék</td>
<td>világos lila</td>
<td>5</td>
<td>0,5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0,33</td>
</tr>
<tr>
<td>7 Allium sp. (A. scorodoprasum, A. sphaerocephalon)</td>
<td>Alliaceae</td>
<td>kék</td>
<td>világos lila</td>
<td>21</td>
<td>2,2</td>
<td>141</td>
<td>42,6</td>
<td>38</td>
<td>18,2</td>
<td>200</td>
<td>13,32</td>
</tr>
<tr>
<td>8 Alyssum sp. (A. saxatile, A. monsanum)</td>
<td>Brassicaceae</td>
<td>zöld</td>
<td>sárga</td>
<td>3</td>
<td>0,3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0,5</td>
<td>4</td>
<td>0,27</td>
</tr>
<tr>
<td>9 Anagallis arvensis</td>
<td>Primulaceae</td>
<td>kék</td>
<td>kék</td>
<td>3</td>
<td>0,3</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>0,33</td>
</tr>
<tr>
<td>10 Anchusa officinalis</td>
<td>Boraginaceae</td>
<td>UV-kék</td>
<td>kék</td>
<td>1</td>
<td>0,1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0,07</td>
</tr>
<tr>
<td>11 Anthemis tinctoria</td>
<td>Asteraceae</td>
<td>zöld</td>
<td>sárga</td>
<td>49</td>
<td>5,1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0,5</td>
<td>50</td>
<td>3,33</td>
</tr>
<tr>
<td>12 Anthericum ramosum</td>
<td>Anthericaceae</td>
<td>kék-zöld</td>
<td>fehér</td>
<td>0</td>
<td>0</td>
<td>23</td>
<td>6,9</td>
<td>0</td>
<td>0</td>
<td>23</td>
<td>1,53</td>
</tr>
<tr>
<td>13 Anthyllis vulneraria</td>
<td>Fabaceae</td>
<td>zöld</td>
<td>sárga</td>
<td>54</td>
<td>5,6</td>
<td>23</td>
<td>6,9</td>
<td>3</td>
<td>1,4</td>
<td>80</td>
<td>5,33</td>
</tr>
<tr>
<td>14 Asperula cynanchica</td>
<td>Rubiaceae</td>
<td>kék-zöld</td>
<td>fehér</td>
<td>14</td>
<td>1,5</td>
<td>120</td>
<td>36,3</td>
<td>6</td>
<td>2,9</td>
<td>140</td>
<td>9,32</td>
</tr>
<tr>
<td>15</td>
<td>Astragalus onobrychis</td>
<td>Fabaceae</td>
<td>kék</td>
<td>világos lila</td>
<td>10</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>16</td>
<td>Bellis perennis</td>
<td>Asteraceae</td>
<td>kék-zöld</td>
<td>fehér</td>
<td>3</td>
<td>0,3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1,4</td>
<td>6</td>
</tr>
<tr>
<td>17</td>
<td>Berteroa incana</td>
<td>Brassicaceae</td>
<td>kék-zöld</td>
<td>fehér</td>
<td>5</td>
<td>0,5</td>
<td>2</td>
<td>0,6</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>18</td>
<td>Betonica officinalis</td>
<td>Lamiaceae</td>
<td>kék</td>
<td>világos lila</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0,3</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>Blackstonia perfoliata</td>
<td>Gentianaceae</td>
<td>zöld</td>
<td>sárga</td>
<td>18</td>
<td>1,9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>20</td>
<td>Buphthalmum salicifolium</td>
<td>Asteraceae</td>
<td>UV-zöld</td>
<td>sárga</td>
<td>11</td>
<td>1,1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>21</td>
<td>Bupleurum sp. (B. affine, B. falcatum)</td>
<td>Apiaceae</td>
<td>zöld</td>
<td>sárga</td>
<td>1</td>
<td>0,1</td>
<td>2</td>
<td>0,6</td>
<td>6</td>
<td>2,9</td>
<td>9</td>
</tr>
<tr>
<td>22</td>
<td>Calaminta</td>
<td>Lamiaceae</td>
<td>kék</td>
<td>világos lila</td>
<td>6</td>
<td>0,6</td>
<td>26</td>
<td>7,9</td>
<td>8</td>
<td>3,8</td>
<td>40</td>
</tr>
<tr>
<td>23</td>
<td>Calystegia sepium</td>
<td>Convolvulaceae</td>
<td>kék-zöld</td>
<td>fehér</td>
<td>2</td>
<td>0,2</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>1,9</td>
<td>6</td>
</tr>
<tr>
<td>24</td>
<td>Camelina sp.</td>
<td>Brassicaceae</td>
<td>kék-zöld</td>
<td>fehér</td>
<td>6</td>
<td>0,6</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>4,8</td>
<td>16</td>
</tr>
<tr>
<td>25</td>
<td>Campanula sp. (C. rapunculus, C. patula, C. trachelium)</td>
<td>Campanulaceae</td>
<td>UV-kék</td>
<td>kék</td>
<td>136</td>
<td>14,1</td>
<td>16</td>
<td>4,8</td>
<td>71</td>
<td>34</td>
<td>223</td>
</tr>
<tr>
<td>26</td>
<td>Carduus acanthoides</td>
<td>Asteraceae</td>
<td>UV-kék</td>
<td>világos lila</td>
<td>69</td>
<td>7,2</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>2,4</td>
<td>74</td>
</tr>
<tr>
<td>27</td>
<td>Centaurea sp. (C. scabiosa, C. stoebe s.lat.)</td>
<td>Asteraceae</td>
<td>kék</td>
<td>világos lila</td>
<td>32</td>
<td>3,3</td>
<td>35</td>
<td>10,6</td>
<td>9</td>
<td>4,3</td>
<td>76</td>
</tr>
<tr>
<td>28</td>
<td>Cerinthe minor</td>
<td>Boraginaceae</td>
<td>UV-zöld</td>
<td>sárga</td>
<td>30</td>
<td>3,1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>29</td>
<td>Chamecytisus sp. (C. cf. supinus, C. austriacus)/ Lembotropis nigricans</td>
<td>Lamiaceae</td>
<td>zöld</td>
<td>sárga</td>
<td>21</td>
<td>2,2</td>
<td>81</td>
<td>24,5</td>
<td>41</td>
<td>19,6</td>
<td>143</td>
</tr>
<tr>
<td>30</td>
<td>Chenopodium sp.</td>
<td>Chenopodiaceae</td>
<td>zöld</td>
<td>zöld</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>1,9</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Név</td>
<td>Tanióra</td>
<td>Kék szín</td>
<td>Zöld szín</td>
<td>Kék szín</td>
<td>Zöld szín</td>
<td>Kék szín</td>
<td>Zöld szín</td>
<td>Kék szín</td>
<td>Zöld szín</td>
<td>Kék szín</td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td>---------</td>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>31</td>
<td>Cichorium intybus</td>
<td>Asteraceae</td>
<td>kék</td>
<td>kék</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>21</td>
<td>10</td>
<td>21</td>
</tr>
<tr>
<td>32</td>
<td>Clematis vitalba</td>
<td>Ranunculaceae</td>
<td>kék-zöld</td>
<td>fehér</td>
<td>7</td>
<td>0,7</td>
<td>17</td>
<td>5,1</td>
<td>33</td>
<td>15,8</td>
<td>57</td>
</tr>
<tr>
<td>33</td>
<td>Clinopodium vulgare</td>
<td>Lamiaceae</td>
<td>kék</td>
<td>világos lila</td>
<td>2</td>
<td>0,2</td>
<td>8</td>
<td>2,4</td>
<td>62</td>
<td>29,7</td>
<td>72</td>
</tr>
<tr>
<td>34</td>
<td>Colutea arborescens</td>
<td>Fabaceae</td>
<td>UV-zöld</td>
<td>sárga</td>
<td>18</td>
<td>1,9</td>
<td>3</td>
<td>0,9</td>
<td>7</td>
<td>3,3</td>
<td>28</td>
</tr>
<tr>
<td>35</td>
<td>Convolvulus arvensis</td>
<td>Convolvulaceae</td>
<td>kék-zöld</td>
<td>rózsaszín</td>
<td>32</td>
<td>3,3</td>
<td>0</td>
<td>0</td>
<td>13</td>
<td>6,2</td>
<td>45</td>
</tr>
<tr>
<td>36</td>
<td>Coronilla varia</td>
<td>Fabaceae</td>
<td>kék-zöld</td>
<td>rózsaszín</td>
<td>105</td>
<td>10,9</td>
<td>22</td>
<td>6,6</td>
<td>31</td>
<td>14,8</td>
<td>158</td>
</tr>
<tr>
<td>37</td>
<td>Crepis biennis</td>
<td>Asteraceae</td>
<td>UV-zöld</td>
<td>sárga</td>
<td>34</td>
<td>3,5</td>
<td>27</td>
<td>8,2</td>
<td>12</td>
<td>5,7</td>
<td>73</td>
</tr>
<tr>
<td>38</td>
<td>Crucia sp. (C. laevipes, C. glabra)</td>
<td>Rubiaceae</td>
<td>zöld</td>
<td>sárga</td>
<td>3</td>
<td>0,3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>39</td>
<td>Daucus carota</td>
<td>Apiaceae</td>
<td>kék-zöld</td>
<td>fehér</td>
<td>3</td>
<td>0,3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0,5</td>
<td>4</td>
</tr>
<tr>
<td>40</td>
<td>Dianthus sp. (D. pontederae, D. carthusianorum)</td>
<td>Caryophyllaceae</td>
<td>kék</td>
<td>rózsaszín</td>
<td>122</td>
<td>12,7</td>
<td>98</td>
<td>29,6</td>
<td>37</td>
<td>17,7</td>
<td>257</td>
</tr>
<tr>
<td>41</td>
<td>Dorycnium cf. herbaceum</td>
<td>Fabaceae</td>
<td>kék-zöld</td>
<td>fehér</td>
<td>88</td>
<td>9,1</td>
<td>27</td>
<td>8,2</td>
<td>142</td>
<td>67,9</td>
<td>257</td>
</tr>
<tr>
<td>42</td>
<td>Echium italicum</td>
<td>Boraginaceae</td>
<td>UV-kék</td>
<td>fehér</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>2,9</td>
<td>6</td>
</tr>
<tr>
<td>43</td>
<td>Echium vulgare</td>
<td>Boraginaceae</td>
<td>UV-kék</td>
<td>kék</td>
<td>14</td>
<td>1,5</td>
<td>78</td>
<td>23,6</td>
<td>3</td>
<td>1,4</td>
<td>95</td>
</tr>
<tr>
<td>44</td>
<td>Erigeron annus</td>
<td>Asteraceae</td>
<td>kék-zöld</td>
<td>fehér</td>
<td>113</td>
<td>11,7</td>
<td>46</td>
<td>13,9</td>
<td>7</td>
<td>3,3</td>
<td>166</td>
</tr>
<tr>
<td>45</td>
<td>Erysimum sp. (E. diffusum agg., E. odoratum)</td>
<td>Brassicaceae</td>
<td>UV-zöld</td>
<td>sárga</td>
<td>70</td>
<td>7,3</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>2,4</td>
<td>75</td>
</tr>
<tr>
<td>46</td>
<td>Euonymus europaeus</td>
<td>Celastraceae</td>
<td>UV</td>
<td>fehér</td>
<td>2</td>
<td>0,2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>47</td>
<td>Euphorbia sp. (E. cyparissias, E. Euphorbiaceae</td>
<td>zöld</td>
<td>sárga</td>
<td>6</td>
<td>0,6</td>
<td>7</td>
<td>2,1</td>
<td>27</td>
<td>12,9</td>
<td>40</td>
<td>2,66</td>
</tr>
<tr>
<td>48</td>
<td>Falcaria vulgaris</td>
<td>Apiaceae</td>
<td>kék-zöld</td>
<td>fehér</td>
<td>0</td>
<td>0</td>
<td>22</td>
<td>6,6</td>
<td>0</td>
<td>0</td>
<td>22</td>
</tr>
<tr>
<td>49</td>
<td>Filipendula vulgaris</td>
<td>Rosaceae</td>
<td>kék-zöld</td>
<td>fehér</td>
<td>60</td>
<td>6,2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>50</td>
<td>Fragaria sp. (F. vesca, F. viridis)</td>
<td>Rosaceae</td>
<td>kék-zöld</td>
<td>fehér</td>
<td>5</td>
<td>0,5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>51</td>
<td>Fumana procumbens</td>
<td>Cistaceae</td>
<td>UV-zöld</td>
<td>sárga</td>
<td>35</td>
<td>3,6</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>3,8</td>
<td>43</td>
</tr>
<tr>
<td>52</td>
<td>Galium sp.</td>
<td>Rubiaceae</td>
<td>kék</td>
<td>lila</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>23</td>
<td>11</td>
<td>23</td>
</tr>
<tr>
<td>53</td>
<td>Galium mollugo</td>
<td>Rubiaceae</td>
<td>kék-zöld</td>
<td>fehér</td>
<td>360</td>
<td>37,4</td>
<td>5</td>
<td>1,5</td>
<td>16</td>
<td>7,7</td>
<td>381</td>
</tr>
<tr>
<td>54</td>
<td>Galium verum</td>
<td>Rubiaceae</td>
<td>zöld</td>
<td>sárga</td>
<td>14</td>
<td>1,5</td>
<td>46</td>
<td>13,9</td>
<td>2</td>
<td>1</td>
<td>62</td>
</tr>
<tr>
<td>55</td>
<td>Genista tinctoria/Genistella sagittalis</td>
<td>Fabaceae</td>
<td>zöld</td>
<td>sárga</td>
<td>12</td>
<td>1,2</td>
<td>26</td>
<td>7,9</td>
<td>14</td>
<td>6,7</td>
<td>52</td>
</tr>
<tr>
<td>56</td>
<td>Geranium columbinum</td>
<td>Geraniaceae</td>
<td>UV-kék</td>
<td>rózsaszín</td>
<td>244</td>
<td>25,4</td>
<td>94</td>
<td>28,4</td>
<td>23</td>
<td>11</td>
<td>361</td>
</tr>
<tr>
<td>57</td>
<td>Geum urbanum</td>
<td>Rosaceae</td>
<td>UV-zöld</td>
<td>sárga</td>
<td>12</td>
<td>1,2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>58</td>
<td>Helianthemum ovatum</td>
<td>Cistaceae</td>
<td>UV-zöld</td>
<td>sárga</td>
<td>123</td>
<td>12,8</td>
<td>88</td>
<td>26,6</td>
<td>28</td>
<td>13,4</td>
<td>239</td>
</tr>
<tr>
<td>59</td>
<td>Hieracium sp.</td>
<td>Asteraceae</td>
<td>zöld</td>
<td>sárga</td>
<td>50</td>
<td>5,2</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>4,8</td>
<td>60</td>
</tr>
<tr>
<td>60</td>
<td>Hippocrepis comosa</td>
<td>Fabaceae</td>
<td>zöld</td>
<td>sárga</td>
<td>95</td>
<td>9,9</td>
<td>1</td>
<td>0,3</td>
<td>14</td>
<td>6,7</td>
<td>110</td>
</tr>
<tr>
<td>61</td>
<td>Hypericum perforatum</td>
<td>Hypericaceae</td>
<td>UV-zöld</td>
<td>sárga</td>
<td>81</td>
<td>8,4</td>
<td>125</td>
<td>37,8</td>
<td>81</td>
<td>38,8</td>
<td>287</td>
</tr>
<tr>
<td>62</td>
<td>Inula sp. (I. ensifolia, I. hirta)</td>
<td>Asteraceae</td>
<td>UV-zöld</td>
<td>sárga</td>
<td>5</td>
<td>0,5</td>
<td>24</td>
<td>7,3</td>
<td>2</td>
<td>1</td>
<td>31</td>
</tr>
<tr>
<td>#</td>
<td>Species</td>
<td>Family</td>
<td>Color</td>
<td>Flower Color</td>
<td>Height 1</td>
<td>Width 1</td>
<td>Height 2</td>
<td>Width 2</td>
<td>Height 3</td>
<td>Width 3</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>---</td>
<td>-----------</td>
<td>-------------</td>
<td>-------------</td>
<td>----------</td>
<td>---------</td>
<td>----------</td>
<td>---------</td>
<td>----------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>63</td>
<td>Knautia sp. (K. arvesis, K. integrifolia)</td>
<td>Dipsacaceae</td>
<td>kék-zöld</td>
<td>világos lila</td>
<td>63</td>
<td>6,5</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>4,3</td>
<td>72</td>
</tr>
<tr>
<td>64</td>
<td>Lamium purpureum</td>
<td>Lamiaceae</td>
<td>kék</td>
<td>rózsaszín</td>
<td>2</td>
<td>0,2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>65</td>
<td>Lapsana communis</td>
<td>Asteraceae</td>
<td>zöld</td>
<td>sárga</td>
<td>6</td>
<td>0,6</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>1,9</td>
<td>10</td>
</tr>
<tr>
<td>66</td>
<td>Lathyrus pratensis</td>
<td>Fabaceae</td>
<td>zöld</td>
<td>sárga</td>
<td>6</td>
<td>0,6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>67</td>
<td>Lathyrus tuberosus</td>
<td>Fabaceae</td>
<td>UV-kék</td>
<td>rózsaszín</td>
<td>40</td>
<td>4,2</td>
<td>3</td>
<td>0,9</td>
<td>19</td>
<td>9,1</td>
<td>62</td>
</tr>
<tr>
<td>68</td>
<td>Leontodon hispidus</td>
<td>Asteraceae</td>
<td>zöld</td>
<td>sárga</td>
<td>112</td>
<td>11,6</td>
<td>1</td>
<td>0,3</td>
<td>6</td>
<td>2,9</td>
<td>119</td>
</tr>
<tr>
<td>69</td>
<td>Leucanthemum vulgare</td>
<td>Asteraceae</td>
<td>kék-zöld</td>
<td>fehér</td>
<td>45</td>
<td>4,7</td>
<td>3</td>
<td>0,9</td>
<td>7</td>
<td>3,3</td>
<td>55</td>
</tr>
<tr>
<td>70</td>
<td>Ligustrum vulgare</td>
<td>Oleaceae</td>
<td>kék-zöld</td>
<td>fehér</td>
<td>133</td>
<td>13,8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>133</td>
</tr>
<tr>
<td>71</td>
<td>Lilium martagon</td>
<td>Liliaceae</td>
<td>kék</td>
<td>rózsaszín</td>
<td>1</td>
<td>0,1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>72</td>
<td>Linaria genistifolia</td>
<td>Scrophulariaceae</td>
<td>kék-zöld</td>
<td>sárga</td>
<td>0</td>
<td>0</td>
<td>59</td>
<td>17,8</td>
<td>0</td>
<td>0</td>
<td>59</td>
</tr>
<tr>
<td>73</td>
<td>Linum flavum</td>
<td>Linaceae</td>
<td>UV-zöld</td>
<td>sárga</td>
<td>13</td>
<td>1,4</td>
<td>12</td>
<td>3,6</td>
<td>1</td>
<td>0,5</td>
<td>26</td>
</tr>
<tr>
<td>74</td>
<td>Linum tenuifolium</td>
<td>Linaceae</td>
<td>kék-zöld</td>
<td>fehér</td>
<td>41</td>
<td>4,3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>41</td>
</tr>
<tr>
<td>75</td>
<td>Lithospermum arvense</td>
<td>Boraginaceae</td>
<td>kék-zöld</td>
<td>sárga</td>
<td>8</td>
<td>0,8</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0,5</td>
<td>9</td>
</tr>
<tr>
<td>76</td>
<td>Lotus corniculatus</td>
<td>Fabaceae</td>
<td>zöld</td>
<td>sárga</td>
<td>291</td>
<td>30,2</td>
<td>5</td>
<td>1,5</td>
<td>49</td>
<td>23,4</td>
<td>345</td>
</tr>
<tr>
<td>77</td>
<td>Lychnis coronaria</td>
<td>Caryophyllaceae</td>
<td>kék</td>
<td>rózsaszín</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>5,7</td>
<td>12</td>
</tr>
<tr>
<td>78</td>
<td>Lysimachia nummularia</td>
<td>Primulaceae</td>
<td>zöld</td>
<td>sárga</td>
<td>2</td>
<td>0,2</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>2,9</td>
<td>8</td>
</tr>
<tr>
<td>79</td>
<td>Malva sylvestris</td>
<td>Malvaceae</td>
<td>kék</td>
<td>rózsaszín</td>
<td>2</td>
<td>0,2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>80</td>
<td>Matricaria recutita</td>
<td>Asteraceae</td>
<td>kék-zöld</td>
<td>fehér</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Név</td>
<td>Aztartozás</td>
<td>Szín</td>
<td>256</td>
<td>26,6</td>
<td>110</td>
<td>33,2</td>
<td>45</td>
<td>21,5</td>
<td>411</td>
<td>27,36</td>
</tr>
<tr>
<td>---</td>
<td>--------------------------------------</td>
<td>-----------------</td>
<td>------------------</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>81</td>
<td>Medicago sp. (M. minima, M. lupulina)</td>
<td>Fabaceae</td>
<td>zöld</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>Medicago falcata</td>
<td>Fabaceae</td>
<td>zöld</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>Medicago sativa</td>
<td>Fabaceae</td>
<td>kék rózsaszín</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>Melamphyrum sp. (M. arvense, M. nemorosum)</td>
<td>Scrophulariaceae</td>
<td>zöld</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>Melandrium album</td>
<td>Caryophyllaceae</td>
<td>kék-zöld fehér</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>Melilotus albus</td>
<td>Fabaceae</td>
<td>kék-zöld fehér</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>Melilotus officinalis</td>
<td>Fabaceae</td>
<td>zöld</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>Muscari comosum</td>
<td>Hyacinthaceae</td>
<td>kék kék</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>Mycelis muralis</td>
<td>Asteraceae</td>
<td>zöld</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>Myosotis ramosissima</td>
<td>Boraginaceae</td>
<td>kék kék</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>Onobrychis arenaria</td>
<td>Fabaceae</td>
<td>kék rózsaszín</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>Origanum vulgare</td>
<td>Lamiaceae</td>
<td>kék világos lila</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>Orlaya grandiflora</td>
<td>Apiaceae</td>
<td>kék-zöld fehér</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>Ornithogalum umbellatum</td>
<td>Hyacinthaceae</td>
<td>UV-kék fehér</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>Orobanche sp.</td>
<td>Orobanchaceae</td>
<td>kék-zöld fehér</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>Papaver rhoesas</td>
<td>Papaveraceae</td>
<td>UV piros</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>Petrohragia saxifraga</td>
<td>Caryophyllaceae</td>
<td>kék-zöld rózsaszín</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>Peucedanum sp. (P.)</td>
<td>Apiaceae</td>
<td>kék-zöld fehér</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>98 oreoselinum, P. cervaria)</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---------------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>Picris hieracioides (Asteraceae)</td>
<td>zöld</td>
<td>sárga</td>
<td>10</td>
<td>1</td>
<td>3</td>
<td>0,9</td>
<td>56</td>
<td>26,8</td>
<td>69</td>
<td>4,59</td>
</tr>
<tr>
<td>100</td>
<td>Polygala sp. (P. comosa, P. nicaeensis, P. vulgaris) (Polygalaceae)</td>
<td>kék</td>
<td>kék</td>
<td>210</td>
<td>21,8</td>
<td>9</td>
<td>2,7</td>
<td>14</td>
<td>6,7</td>
<td>233</td>
<td>15,51</td>
</tr>
<tr>
<td>101</td>
<td>Potentilla sp. (P. reptans, P. arenaria) (Rosaceae)</td>
<td>UV-zöld</td>
<td>sárga</td>
<td>64</td>
<td>6,7</td>
<td>105</td>
<td>31,7</td>
<td>1</td>
<td>0,5</td>
<td>170</td>
<td>11,32</td>
</tr>
<tr>
<td>102</td>
<td>Prunella laciniata (Lamiaceae)</td>
<td>kék-zöld</td>
<td>fehér</td>
<td>4</td>
<td>0,4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>1,9</td>
<td>8</td>
<td>0,53</td>
</tr>
<tr>
<td>103</td>
<td>Prunella vulgaris (Lamiaceae)</td>
<td>kék</td>
<td>kék</td>
<td>3</td>
<td>0,3</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>2,4</td>
<td>8</td>
<td>0,53</td>
</tr>
<tr>
<td>104</td>
<td>Ranunculus sp. (R. acris, R. bulbosus) (Ranunculaceae)</td>
<td>UV-zöld</td>
<td>sárga</td>
<td>24</td>
<td>2,5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>1,6</td>
</tr>
<tr>
<td>105</td>
<td>Reseda lutea (Resedaceae)</td>
<td>kék-zöld</td>
<td>sárga</td>
<td>1</td>
<td>0,1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0,5</td>
<td>2</td>
<td>0,13</td>
</tr>
<tr>
<td>106</td>
<td>Rhinanthus minor (Scrophulariaceae)</td>
<td>zöld</td>
<td>sárga</td>
<td>8</td>
<td>0,8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>0,53</td>
</tr>
<tr>
<td>107</td>
<td>Rosa canina (Rosaceae)</td>
<td>kék</td>
<td>rózsaszín</td>
<td>18</td>
<td>1,9</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0,5</td>
<td>19</td>
<td>1,26</td>
</tr>
<tr>
<td>108</td>
<td>Rubus caesius/ R. fruticosus agg. (Rosaceae)</td>
<td>kék-zöld</td>
<td>fehér</td>
<td>43</td>
<td>4,5</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>4,8</td>
<td>53</td>
<td>3,53</td>
</tr>
<tr>
<td>109</td>
<td>Salvia sp. (S. pratensis, S. nemorosa, S. verticillata) (Lamiaceae)</td>
<td>kék</td>
<td>kék</td>
<td>252</td>
<td>26,2</td>
<td>29</td>
<td>8,8</td>
<td>3</td>
<td>1,4</td>
<td>284</td>
<td>18,91</td>
</tr>
<tr>
<td>110</td>
<td>Sambucus ebulus (Caprifoliaceae)</td>
<td>kék-zöld</td>
<td>fehér</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1,4</td>
<td>3</td>
<td>0,2</td>
</tr>
<tr>
<td>111</td>
<td>Scabiosa ochroleuca (Dipsacaceae)</td>
<td>kék-zöld</td>
<td>sárga</td>
<td>32</td>
<td>3,3</td>
<td>20</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>54</td>
<td>3,6</td>
</tr>
<tr>
<td>112</td>
<td>Scorzonera purpurea (Asteraceae)</td>
<td>UV-kék</td>
<td>világos lila</td>
<td>58</td>
<td>6</td>
<td>3</td>
<td>0,9</td>
<td>6</td>
<td>2,9</td>
<td>67</td>
<td>4,46</td>
</tr>
<tr>
<td>113</td>
<td>Sedum sp. (Crassulaceae)</td>
<td>kék-zöld</td>
<td>fehér</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>5,7</td>
<td>12</td>
<td>0,8</td>
</tr>
<tr>
<td></td>
<td>Specimen</td>
<td>Family</td>
<td>Color</td>
<td>Color</td>
<td>Color</td>
<td>100</td>
<td>50</td>
<td>26,6</td>
<td>22</td>
<td>10,5</td>
<td>160</td>
</tr>
<tr>
<td>----</td>
<td>---------------------------</td>
<td>-----------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>114</td>
<td>Sedum sexangulare</td>
<td>Crassulaceae</td>
<td>zöld</td>
<td>sárga</td>
<td>50</td>
<td>5,2</td>
<td>88</td>
<td>26,6</td>
<td>22</td>
<td>10,5</td>
<td>160</td>
</tr>
<tr>
<td>115</td>
<td>Seseli sp.</td>
<td>Apiaceae</td>
<td>kék-zöld</td>
<td>fehér</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0,3</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>116</td>
<td>Silene sp. (S. vulgaris, S. nemoralis)</td>
<td>Caryophyllaceae</td>
<td>kék-zöld</td>
<td>fehér</td>
<td>105</td>
<td>10,9</td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>5,7</td>
</tr>
<tr>
<td>117</td>
<td>Sonchus oleraceus</td>
<td>Asteraceae</td>
<td>UV-zöld</td>
<td>sárga</td>
<td>69</td>
<td>7,2</td>
<td></td>
<td>3</td>
<td>0,9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>118</td>
<td>Stachys recta</td>
<td>Lamiaceae</td>
<td>kék-zöld</td>
<td>fehér</td>
<td>32</td>
<td>3,3</td>
<td>155</td>
<td>46,8</td>
<td>19</td>
<td>9,1</td>
<td>206</td>
</tr>
<tr>
<td>119</td>
<td>Stellaria holostea</td>
<td>Caryophyllaceae</td>
<td>kék-zöld</td>
<td>fehér</td>
<td>2</td>
<td>0,2</td>
<td></td>
<td></td>
<td>10</td>
<td>8,1</td>
<td>55</td>
</tr>
<tr>
<td>120</td>
<td>Teucrium chamaedrys</td>
<td>Lamiaceae</td>
<td>kék</td>
<td>rózsaszín</td>
<td>77</td>
<td>8</td>
<td>236</td>
<td>71,3</td>
<td>76</td>
<td>36,4</td>
<td>389</td>
</tr>
<tr>
<td>121</td>
<td>Thesium linophyllum</td>
<td>Santalaceae</td>
<td>kék-zöld</td>
<td>fehér</td>
<td>34</td>
<td>3,5</td>
<td></td>
<td>4</td>
<td>1,2</td>
<td>17</td>
<td>8,1</td>
</tr>
<tr>
<td>122</td>
<td>Thlaspi perfoliatum</td>
<td>Brassicaceae</td>
<td>kék-zöld</td>
<td>fehér</td>
<td>6</td>
<td>0,6</td>
<td></td>
<td></td>
<td>12</td>
<td>0,8</td>
<td>6</td>
</tr>
<tr>
<td>123</td>
<td>Thymus sp. (T. glabrescens, T. pulegoideis)</td>
<td>Lamiaceae</td>
<td>kék</td>
<td>világos lila</td>
<td>210</td>
<td>21,8</td>
<td></td>
<td>3</td>
<td>0,9</td>
<td>115</td>
<td>55</td>
</tr>
<tr>
<td>124</td>
<td>Torilis arvensis</td>
<td>Apiaceae</td>
<td>kék-zöld</td>
<td>fehér</td>
<td>1</td>
<td>0,1</td>
<td>97</td>
<td>29,3</td>
<td>19</td>
<td>9,1</td>
<td>117</td>
</tr>
<tr>
<td>125</td>
<td>Tragopogon dubius</td>
<td>Asteraceae</td>
<td>zöld</td>
<td>sárga</td>
<td>92</td>
<td>9,6</td>
<td></td>
<td></td>
<td>24</td>
<td>11,5</td>
<td>116</td>
</tr>
<tr>
<td>126</td>
<td>Trifolium campestre</td>
<td>Fabaceae</td>
<td>zöld</td>
<td>sárga</td>
<td>169</td>
<td>17,6</td>
<td></td>
<td>3</td>
<td>0,9</td>
<td>93</td>
<td>44,5</td>
</tr>
<tr>
<td>127</td>
<td>Trifolium pratense</td>
<td>Fabaceae</td>
<td>kék</td>
<td>rózsaszín</td>
<td>94</td>
<td>9,8</td>
<td></td>
<td>3</td>
<td>0,9</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>Trifolium repens</td>
<td>Fabaceae</td>
<td>kék-zöld</td>
<td>fehér</td>
<td>9</td>
<td>0,9</td>
<td></td>
<td></td>
<td>11</td>
<td>5,3</td>
<td>20</td>
</tr>
<tr>
<td>129</td>
<td>Turritis glabra</td>
<td>Brassicaceae</td>
<td>kék-zöld</td>
<td>fehér</td>
<td>6</td>
<td>0,6</td>
<td></td>
<td></td>
<td>1</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>Verbascum sp. (V. chaixii subsp. austriacum, V. Scrophulariaceae</td>
<td>UV-zöld</td>
<td>sárga</td>
<td>11</td>
<td>1,1</td>
<td>9</td>
<td>2,7</td>
<td>12</td>
<td>5,7</td>
<td>32</td>
<td>2,13</td>
</tr>
<tr>
<td>ID</td>
<td>Taxon</td>
<td>Family</td>
<td>Color1</td>
<td>Color2</td>
<td>Density1</td>
<td>Density2</td>
<td>Density3</td>
<td>Density4</td>
<td>Density5</td>
<td>Density6</td>
<td>Density7</td>
</tr>
<tr>
<td>----</td>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>131</td>
<td>Verbena sp.</td>
<td>Verbenaceae</td>
<td>kék-zöld</td>
<td>fehér</td>
<td>1</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.5</td>
<td>2</td>
</tr>
<tr>
<td>132</td>
<td>Pseudolysimachion spicatum s.l./ Veronica sp.</td>
<td>Scrophulariaceae</td>
<td>kék</td>
<td>kék</td>
<td>6</td>
<td>0.6</td>
<td>162</td>
<td>48.9</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>133</td>
<td>Vicia sp. (V. sativa, V. tenuifolia)</td>
<td>Fabaceae</td>
<td>kék</td>
<td>rózsaszín</td>
<td>123</td>
<td>12.8</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>1.9</td>
<td>127</td>
</tr>
<tr>
<td>134</td>
<td>Vicia grandiflora</td>
<td>Fabaceae</td>
<td>kék-zöld</td>
<td>sárga</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>14</td>
<td>6.7</td>
<td>14</td>
</tr>
<tr>
<td>135</td>
<td>Vincetoxicum hirundinaria</td>
<td>Asclepiadaceae</td>
<td>kék-zöld</td>
<td>fehér</td>
<td>46</td>
<td>4.8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>46</td>
</tr>
<tr>
<td>136</td>
<td>Viola hirta</td>
<td>Violaceae</td>
<td>kék</td>
<td>világos lila</td>
<td>14</td>
<td>1.5</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>3.8</td>
<td>22</td>
</tr>
<tr>
<td>137</td>
<td>Viola arvensis</td>
<td>Violaceae</td>
<td>zöld</td>
<td>sárga</td>
<td>3</td>
<td>0.3</td>
<td>1</td>
<td>0.3</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>
Köszönetnyilvánítás

Hálás köszönettel tartozom témavezetőmnek, Dr. Bódis Juditnak, akinek folyamatos támogatása nélkülözőhetetlen volt a doktori dolgozat elkészítéséhez. A terepi munkában való aktív közreműködése, szakmai tanácsai nagyban segítették a dolgozat megalapozását jelentő adatgyűjtést, valamint szakmai publikációs tevékenységemet elejétől a végéig gondos odafigyeléssel egyengette, szakmai fejlődésemben döntő szerepet játszott. Nemcsak szakmai támogatását, hanem az élet bármely területén mutatott figyelmességét, tanácsait külön köszönöm.

Továbbá köszönöm korábbi táristémavezetőmnek, Dr. Molnár V. Attilának (DE, Növénytani Tanszék) iránymutatásait, tanácsait és pártfogását.

Köszönettel tartozom Tökölly Jácintnak és Vince Orsolyának (DE, Állattani Tanszék), akik a statisztikai elemzésekben segítették munkámat kivételes szakmai hozzáértéssel és szívveljes segítséggel.

Köszönöm a terepi adatgyűjtésben résztvevő hallgató társaim segítségét, akik a sokszor emberpróbáló terepi viszonyok és időjárási körülmények között is helytálltak:

Köszönettel tartozom a Pannon Egyetem Georgikon Kar, Növénytudományi és Biotechnológiai Tanszék munkatársainak: Lukács Szilvánnak, Hársvölgyiné Szőnyi Évának és Kiss Máriónak, akik valamilyen formában segítették munkámat.

És nem utolsó sorban köszönöm családomnak, elsősorban férjemnek, Magyari Máténak végzeten türelmét és támogatását.

A kutatás a TÁMOP-4.2.4.A/2-11/1-2012-0001 Nemzeti Kiválóság Program című kiemelt projekt keretében zajlott. A projekt az Európai Unió támogatásával, az Európai Szociális Alap társfinanszírozásával valósul meg.
Tudományos tevékenység adatai

A disszertáció témájában született szakcikk idegen nyelvű, impakt faktoros folyóiratban

<table>
<thead>
<tr>
<th>Szerzők</th>
<th>Cím</th>
<th>Folyóirat szakterülete/helyzete</th>
<th>IF</th>
</tr>
</thead>
</table>

Egyéb a disszertáció témájához szorosan nem kapcsolódó szakcikk idegen nyelvű, impakt faktoros folyóiratban

<table>
<thead>
<tr>
<th>Szerzők</th>
<th>Cím</th>
<th>Folyóirat szakterülete/helyzete</th>
<th>IF</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Szerzők</th>
<th>Cím</th>
<th>Folyóirat szakterülete/helyzete</th>
<th>IF</th>
</tr>
</thead>
</table>
A disszertáció témájában született szakcikk anyanyelven, lektorált folyóiratban

Konferencia kiadvány összefoglaló kötetében megjelent előadás/poszter

További előadások

Könyvrészlet

Ismeretterjesztő közlemény

A disszertáció témájához nem kapcsolódó publikációk anyanyelven, lektorált folyóiratban

A disszertáció témájához nem kapcsolódó publikációk idegen nyelven konferenciakiadványban/ lektorált folyóiratban

A disszertáció témájához nem kapcsolódó szakcikk idegen nyelvű, impakt faktoros folyóiratban

Folyóirat szakterülete/ helyzete
Ecology és Nature and Landscape Conservation
Q2
IF 1,53

A disszertáció témájához nem kapcsolódó konferenciaelőadások/ poszterek

Fontosabb tudománymetriai mutatók

Nemzetközi, referált folyóiratokban megjelent cikkek száma: 6
Kumulativ IF: 11,136
Angol nyelvű, lektorált folyóiratban megjelent cikkek száma: 1
Magyar nyelvű, lektorált folyóiratban megjelent cikkek száma: 6
ResearchGate Score: 9,29 (is higher than 45% of all ResearchGate members’ scores)
Idézetek száma:
– ResearchGate: 71
– Google Scholar: 93
– MTMT: 84
H-index:
– ResearchGate: 4
– Google Scholar: 5
– MTMT: 4