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1 INTRODUCTION 

Mycotoxins are secondary metabolites produced by filamentous fungi (molds) 
that enter the food chain by contaminating agricultural crops intended for feed 
and food materials. The spread of various mycotoxins, the economic damage 
caused by them, and the human and animal health risks of their intake have 
been of concern to those working in the field of food safety for decades, both 
at European and international level. The risk assessments of the European 
Food Safety Authority (EFSA) and the German Federal Institute for Risk 
Assessment (BfR), in line with a number of other scientific publications, have 
highlighted that a portion of the population could be exposed to mycotoxins 
owing to the consumption of certain foods in excess of tolerable intakes. 

Particular attention was paid to the group of aflatoxins, for which no tolerable 
daily intake could be established due to their genotoxic and carcinogenic 
nature. In 2007, EFSA's Scientific Panel on Contaminants in the Food Chain 
(CONTAM Panel) recommended that intakes of aflatoxins from different 
food sources should be kept to a minimum. The Commission's guidelines 
recommended that Member States carry out further studies on the subject and 
monitor the aflatoxin content of foods as a matter of priority. The proposal 
was followed by several research and studies in the Member States. In 
Hungary, a food safety assessment of mycotoxin contamination of cereal-
based products has been completed and several exposure estimates for 
mycotoxins have been made in the recent years. 

Other European countries have also taken an active role in aflatoxin research. 
The results of researchers at the University of Piacenza in Italy predicted that 
the incidence of aflatoxin-contaminated maize will increase in Europe due to 
climate change. In this regard, both the critically high-risk but less cereal-
producing regions of southern Europe and the more northerly medium-risk 
but high-volume cereal-producing regions were highlighted, including the 
four main maize-producing countries: Romania, France, north-eastern Italy 
and Hungary, which in 2009 produced 73% of EU maize production in total. 

As part of an international project lasting several years, based on data from 
the Italian dairy industry, my colleagues and I developed a sampling plan for 
the detection of aflatoxin M1 in raw milk that optimizes sample numbers yet 
effectively predict changes in contamination. The practical applicability of the 
sampling plan was verified through a case study demonstrating the use of the 
early warning system, which was developed based on the sampling plan. 
Furthermore, we determined the aflatoxin exposure of Italian consumers using 
aflatoxin M1 concentration data of more than 25,000 milk samples from 
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2013–2016. The results of the study drew our attention to the fact that the level 
of aflatoxin M1 exposure of some consumers poses a health concern. As it has 
been proven in recent years that if the weather conditions support it, the 
contamination of grain with aflatoxin can reach very high values in Hungary 
as well, we considered it reasonable to estimate the aflatoxin M1 intake of the 
Hungarian population. 

EFSA has repeatedly assessed the aflatoxin exposure of European consumers 
and found the results to be worrying for both aflatoxin B1 and aflatoxin M1, 
especially in the younger age groups. Due to the extremely intensive 
international food trade, it can be assumed that the Hungarian population is 
exposed to a similar level of risk as the European population. Since the 
European estimates do not provide detailed information on the exposure of 
Hungarian consumers, it is important to have appropriate methods for accurate 
exposure estimation and to apply them to available domestic data. 

1.1 Objectives 

My aims were to estimate the average daily intake of aflatoxin M1 by 
Hungarian consumers using deterministic and probabilistic models and to 
examine the reality of the obtained results in the light of European data. 

To this end, I set the following analytical and practical tasks to be solved: 

- analysis of Hungarian monitoring results related to the occurrence of 
aflatoxins and concentration data measured in Hungarian dairy farms; 
- utilizing the above data, using them directly and taking into account 
the distributions generated by parametric function fitting, to determine 
the distributions best characterizing aflatoxin contaminations; 
- the establishment of a database of processing factors of dairy 
products included in the Hungarian consumption surveys, 
characterizing the change in the aflatoxin concentration during the 
production; 
- characterization of the consumption pattern of milk and dairy 
products of the Hungarian population, examining the changes in 
consumption habits in 10 years; 
- quantification of daily average consumption of milk and milk 
products by age group, expressed in milk equivalent, to characterize 
long-term exposure; 
- development of deterministic and probabilistic models suitable for 
estimating the long-term aflatoxin intake of Hungarian consumers in 
the KNIME framework; 
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- comparison and analysis of exposure results obtained by running 
different models; 
- characterization of the risk of aflatoxin intake in Hungarian consumer 
populations, based on the estimated exposures using the methods 
applied in international practice. 

2 MATERIALS AND METHODS 

2.1 Food consumption data 

The calculations were performed with the data of two national, representative 
food consumption surveys conducted 10 years apart, so that we can also get 
an idea of the changes in the consumption habits. 

The 2009 food consumption data originates from the national, representative, 
three-season food consumption survey of MÉBIH (Hungarian Food Safety 
Authority), which was prepared in cooperation with the CSO (Central 
Statistical Office). The survey, which was conducted with the participation of 
4,992 persons, recorded the age, height and weight of the participants. By 
completing a consumption frequency questionnaire, participants provided 
amounts of infrequently consumed and special foods (e.g., dietary 
supplements). Eating habits were assessed with a dietary diary recorded on 
two weekdays and one weekend, which was completed with guidelines and a 
picture book to support dose assessment. The three-day survey provides food 
consumption data for a total of 14,976 consumption days, processed by 
dieticians and broken down into raw materials, to characterize food 
consumption habits. 

Out of the 14,976 consumption days of the 2009 survey, a total of 11,267 milk 
consumption days (75.2%) were recorded, the frequency of sour cream and 
cream consumption was 52.8%, cheese consumption was recorded on 46.3% 
of the survey days, kefir or yoghurt consumption was recorded on 19.1% of 
consumption days. 

The latest national food consumption data are from the 2018-2020 survey of 
NEBIH. The survey is part of EFSA's Europe-wide EU MENU, or "What's on 
the table in Europe?" project and was conducted in accordance with the 
recommended, uniform methodology. The participating persons were selected 
from the households included in the CSO Household Budget and Living 
Conditions survey. 
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During the program, two consumption days of 2,657 individuals between the 
ages of 1 and 74 were recorded with the help of dietitians. Participants 
reported on food consumed the previous day in person or in the form of a 
telephone interview. A picture book helped to judge the amount of food 
consumed. The survey was supplemented by a questionnaire on body weight 
and height measurement, as well as food frequency and physical activity, 
covering a normal week in the 12 months prior to the interview. The recording 
of consumption habits for ages 1-9 was supported by an eating diary. 

Out of the 5,314 consumption days of the 2018-2020 survey, a total of 5,145 
milk consumption days (96.8%) were recorded, the frequency of sour cream 
and cream consumption was 54%, cheese consumption was recorded on 
60.6% of the survey days, kefir or yoghurt consumption was recorded on 24% 
of consumption days. 

I classified the food categories of both food consumption and contamination 
data according to the FoodEx food classification system developed by EFSA. 
The FoodEx classification system was created to link the data required for 
exposure estimation. 

2.1.1 Consumer age groups 

In the case of both food consumption surveys, the consumption data of the 
Hungarian population were classified into 5 age categories (toddlers, children, 
adolescents, adults and the elderly), following the EU MENU (EFSA) 
methodology. As the Hungarian EU MENU survey did not cover the age 
group of infants (0-1 years), and due to the low number of subjects (26 
people), this age group was not taken into account from the 2009 survey. 
There is a significant difference in the number of subjects in the age groups 
of the two food consumption surveys. In the 2009 survey, the age group of 
toddlers contains data of only 90 consumers, while in the age group of adults 
a large number of consumers can be observed compared to the other age 
groups. In the case of the 2018-2020 survey, the number of consumers is 
evenly distributed among the age groups. Almost all of the subjects in the 
survey (97-98%) consumed milk or some dairy product on the surveyed days 
of the consumption survey. 

2.1.2 Aflatoxin concentration data 

The AFM1 data are partly (1,288) from the 2011-2020 national monitoring 
survey of NÉBIH. 40% of the samples contained measurable amounts of 
AFM1. Most of the measurements were performed by ELISA and HPLC 
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methods on samples taken from milk from dairy farms, private producers and 
a small proportion of mixed milk available in shops. Analysis of mycotoxin 
data was preceded by data cleaning steps. From the whole dataset, I excluded 
the studies influencing the objective estimation e.g. the results of internal 
audits and proficiency tests. In addition to the large number of samples below 
LOQ (60%), there were also items with a very high level of contamination 
compared to the average. Values above 100 ng/kg were 110, 122, 141, 149, 
150, 190, 238, 240, 252, 260, 292, 376, 513, 740 and 860 ng/kg, respectively. 
I was not able to check the validity of the results, but I did not see any 
justification for omitting them, so I used the full data set for my further 
calculations. I grouped the data according to the relevant food categories, I 
filtered out the irrelevant substance types e.g., feeds and I performed the 
classification of samples into FoodEx categories. I consulted with the 
laboratory staff regarding the dubious measurement results. 

The other part of the AFM1 measurements were obtained from the studies of 
the joint project of the University of Debrecen and NÉBIH carried out until 
January 2021. Out of a total of 1,177 AFM1 results measured from milk, the 
number of samples above the LOQ was 672 (57.1%). These samples from 9 
dairy farms participating in the project in 2019, 2020 and 2021 were analyzed 
by ELISA, and then samples with a concentration above 20 ng/kg were 
subjected to confirmatory HPLC analysis in the NÉBIH laboratory. For these 
samples, the results of the HPLC analysis were used for the calculations. 

Comparing the relative frequency distributions of the NÉBIH and DE 
analytical results, I found that, with the exception of one outlier in the NÉBIH 
data (19 ng/kg), the frequency of AFM1 concentrations in the LOQ-70 ng/kg 
range was very similar in the two datasets, and this justifies the joint 
evaluation of the data. The relative frequency of samples containing AFM1 
above 70 ng/kg in the NÉBIH studies was <0.5%. 

A limiting factor in the risk assessment of aflatoxins was the lack of data. 
Following a recommendation from EFSA, food categories for which the 
number of positive samples does not exceed 25 or for which the proportion of 
samples below the limit of determination is greater than 80% should be 
excluded from the risk assessment. Regarding the AFM1 results, only milk 
tests met this criterion, while the number of tests for processed dairy products 
was very small. 

Therefore, for processed dairy products, I could not take actual analytical 
results into account for exposure estimation. Instead, I calculated values 
derived from AFM1 concentration data measured in milk, taking into account 



 8 

the processing factors of dairy products, for which I used the minimum, 
median and maximum values of the literature data for each food category. 

2.2 Deterministic method 

During the risk assessment, using the recommended tiered approach, I first 
determined the average exposure of the Hungarian population using a 
deterministic (semi-parametric) method. For this, I used the average aflatoxin 
M1 concentration data measured in milk. The values of the concentration data 
below the LOQ were taken into account with the value of the imputed 
(generated by distribution) data equal to the number of analytical results. The 
imputation was performed using parameters describing the lognormal 
distribution fitted to the values above the LOQ, taking into account the ratio 
of the values below the LOQ. For food consumption data, I used the OIM 
(Observed Individual Means) method recommended for long-term estimation. 

First, I converted all milk and dairy product consumption data to milk 
equivalent using the processing factors specific to the given food category 
(Equations 1 and 2). 

intake of e1, ..., ej foods expressed in g/kg bw (B) expressed in milk equivalent 
on a given (n) cunsumption day: 

𝐵!	 =	
∑ (%!	×'!	)
#
!$% 			

)*&
     (Equation 1), 

where 

me = mass (g) of the consumed e food on ni consumption day, 

F is the processing factor of e food, 

bw is the body weight of the person belonging to the given day of 
consumption, 

and 

𝐹+	 =
,'()%!

,'()%*+,-
      (Equation 2) 
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where 𝐶-'./*+,- 	is the concentration of AFM1 in the milk used to prepare the 
e food, 𝐶-'./! is the value calculated from the minimum, median or maximum 
results in processed foods obtained in different experiments. 

The obtained total intake values per consumption day were expressed in kg/kg 
bw. Multiplying the consumption amounts by the average AFM1 
concentration (ng/kg), I calculated the exposure values for each consumption 
day (ng/kg kg bw/day). I averaged the intake values of the consumers 
belonging to the consumption days - 2 in the case of the 2018-2020 survey 
and 3 in the case of the 2009 survey. I summarized the results by consumer 
age groups for both food consumption surveys. 

Based on the obtained exposure values, I used the margin of exposure (MoE) 
approach (Equation 3), the hazard index (HI) calculation (Equation 4) and the 
calculation of the increase in the probability of liver cancer attributable to 
AFM1 intake to assess the risk of the Hungarian population. For the MoE 
method, the BMDL10 value of 0.4 μg/kg/ day for AFB1 was taken into account 
by a multiplication factor of ten (4 μg/kg/day) because AFM1 is ten times less 
potent carcinogen than AFB1. 

𝑀𝑜𝐸 = 	0.12%.
314

     (Equation 3) 

To calculate the hazard index, I used the safe dose recommended by Kuiper-
Goodmann (0.2 ng/kg/day), which is the quotient of the tumor-causing dose 
in 50% of the animals and a safety factor of 50,000. Calculation of the 
aflatoxin hazard index proposed by Kuiper-Goodman: 

𝐻𝐼 = 	 314	(!5	65)*
/%789/%)

:,<	!5	65)*/%789/%
     (Equation 4) 

The incidence of hepatocellular carcinoma associated with aflatoxin exposure 
was estimated by applying Equation 5, assuming hepatitis B prevalence of 
0.7% in the Hungarian population: 

R
Hu

= [(P
HBV+ 

× HBV+) + (P
HBV−

× (1–HBV+))] x EDI  (Equation 5), 

where RHu is the risk of liver cancer incidence in the Hungarian population, 
HBV+ is the prevalence of chronic hepatitis B in the Hungarian population 
and PHBV+ is the probability of developing liver cancer in this part of the 
population, and PHBV- is the probability of developing liver cancer in the rest 
of the population. I also performed the calculations for both optimistic and 
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pessimistic scenarios, for the latter (CI95 RHu), in case of 1 ng/kg bw intake 
of AFB1 per day taking into account the upper limit of the 95% confidence 
interval for the probability of developing liver cancer. 

Average R
Hu

= [0.027 × 0.007) + (0.002× 0.993)] × EDI (Equation 6) 

CI95 R
Hu 

= [(0.056 × 0.007) + (0.005× 0.993)] × EDI  (Equation 7) 

2.3 Probabilistic methods 

For the probabilistic estimations, I fitted different distributions to the 
analytical results above the LOQ with the GAMLSS and GAMLSS.dist 
packages of the R statistical software using the maximum likelihood 
estimation. Then I selected the distribution that gives the optimal fit by the 
parameters describing the goodness of fit (AIC - Akaike's Information 
Criterion, BIC - Bayesian Information Criterion and Global Deviance). For 
AIC, BIC, and Global Deviance as well, the distribution with the smallest 
value should be considered the best fit. 

The goodness of the fits was also evaluated by visual comparison of the 
histograms made from the data and the obtained distribution, as well as by 
examining the normality of the differences and using the Q-Q plot. Both the 
residual statistics and the QQ plot examine the differences between the 
original and the fitted data, then compare the data set of the residuals to a 
standard normal distribution and use a correlation coefficient to examine data 
point by data point, how much they deviate from it. 

The two best-fit distributions were the two-parameter lognormal and the four-
parameter Box-Cox t (BCT), which are suitable for modeling aflatoxins-like 
positively or negatively skewed, slowly decaying data, with continuous 
distribution. 

The selected distributions were then fitted to the entire AFM1 data set. 

After that, I continued to work with two types of probabilistic methods: 

In the case of the first, Probabilistic Method I (Prob. I.), I generated 200,000 
- 200,000 values from both the average daily consumption data calculated per 
consumer and the AFM1 concentrations measured in milk samples by re-
sampling (20 x 10,000 iterations), from which I calculated 200,000 exposure 
values. The values of the concentration data below the LOQ were taken into 
account with the value of the imputed (generated) data equal to the number of 
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measurement results. Imputation was performed using the descriptive 
parameters of the lognormal distribution fitted to the concentration values and 
the selected most typical LOQ range (> 5 ng/kg). The relative and cumulative 
frequencies of the exposure data calculated for different consumer age groups 
characterize the expected exposure probability values. 

For the other - Probabilistic II. method (Prob. II.) - I used the two-dimensional 
Monte Carlo model. The Monte Carlo simulation generates samples from the 
probability distribution fitted to the data by random sampling. The advantage 
of the Monte Carlo method is that not only original values between the 
minimum and maximum of the analytical data are selected as in the simple 
random resampling procedure, but the full spectrum of values below the 
distribution curve is used for the calculations. Values at both edges of the 
distribution play a particularly important role, which may play an important 
role in modeling. 

The Monte Carlo model works with an external and an internal simulation 
loop. In the inner loop, the model performs the exposure calculation several 
times, randomly sampling consumption and concentration data, calculating 
different percentiles of exposure from each iteration (this is the variability of 
exposure). The sum of these exposure calculations constitutes an iteration of 
the outer loop and results in an estimate of the distribution of exposures. The 
outer loop also runs several times, and since repeated iterations will 
necessarily result in different percentile values due to random sampling, their 
distribution is characterized by uncertainty in the estimation.  

So, in summary, the inner loop simulates the expected variability in daily 
exposures and the outer loop simulates the estimation uncertainty. At the end 
of the calculation series, the model characterizes the expected exposure of the 
population using the cumulative frequency distribution graph as well as 
percentile values. The graph shows 50% and 95% uncertainty intervals of the 
2.5th, median and 97.5th percentile estimates, over the full spectrum of the 
estimated exposure.  

2.4 The KNIME software 

The calculations were performed using KNIME (Konstanz Information 
Miner) software. It is a free, open-source data analysis software. With 
KNIME, data analysis building blocks ("nodes") can be connected to create 
complete workflows, each node performing a computational operation or data 
function. 
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KNIME is suitable for storing, in a modular form, the steps to be performed 
with the data in a single file, as well as the data itself. Both the data entered 
and the steps to be performed with the data can be freely edited, nodes can be 
individually labeled, captions, additional information or even instructions can 
be added to workflows or certain parts of them. 

The program has R and Python (programming language) integrations, so R 
and Python codes can be run within KNIME to perform computational tasks 
for which there is no built-in KNIME module. The developed exposure 
estimation methodologies can be made available to anyone, freely modified, 
optimized, easily adapted to other contaminant-matrix combinations, or 
expanded with additional modules or data sources. 

3 RESULTS 

3.1 Database of AFM1 processing factors for dairy products 

AFM1 processing factors for dairy products as well as different cheeses (hard, 
semi-hard, soft and processed cheeses, fresh cheeses) were collected from the 
latest literature data. 

In the 2009 and 2018-2020 food consumption surveys, I classified the AFM1-
relevant food categories into the categories of processed dairy products and 
provided them with processing factors. The calculations were performed with 
the minimum, median and maximum values of the processing factors. 

The database currently covers 85% of the AFM1-relevant food categories of 
the food consumption surveys (excluding butter, buttercream, condensed 
milk, milk powder, cream and ice cream). The table is used as a source 
database by the exposure estimation model, so the results of the estimates can 
be automatically further refined by re-running the calculations if the initial 
database is supplemented with additional data. 

3.2 Changes in the frequency of milk and milk products consumption 
based on the 2009 and 2018-2020 surveys 

I compared the changes in the frequencies of consumption of milk and 
different dairy products using the milk and dairy product consumption days 
of the 2009 and 2018-2020 surveys. I compared the number of consumption 
days of different foods to the total consumption days of the given survey. The 
method therefore characterizes the frequency of consumption of different 
foods during the survey periods. Among the food categories, the consumption 
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frequency of milk and milk-based desserts increased by circa 20%. The 
frequency of cheese consumption shows an increase of 14%. The frequency 
of consumption of sour milk products (kefir, yogurt, sour cream), cream and 
flavored milks remained almost constant. The consumption frequency of 
condensed milk and milk powder has decreased significantly. Overall, the 
frequency of consumption of milk and milk products has increased slightly 
over the last 10 years. 

Based on the change in consumption frequencies over 10 years, an increase in 
aflatoxin exposure could be expected, however, this effect was 
counterweighed by the change in consumption volumes. The average 
consumption in milk equivalent, calculated with the median value of 
processing factors, was 310.7 g/day in 2009, this value decreased to 295.3 
g/day in the 2018-2020 period. 

3.3 Results of exposure assessments 

In the following, I compare the results of the exposure estimates from different 
aspects, which were calculated by different methods. Differences in results 
were analyzed by analysis of variance (ANOVA) at a significance level of 
0.05. 

3.3.1 Comparison of results calculated taking into account the 
minimum-median-maximum values of the processing factors 

To compare exposure values, I chose the average and 97.5th percentile results 
of the 2018-2020 (EU MENU) survey calculated by the deterministic method. 
Consideration of the minimum-median-maximum values of the processing 
factors did not significantly affect the results. There was a significant 
difference only in the mean values of the age group of the toddlers, in the case 
of the minimum and median factors, therefore hereinafter I use the values 
calculated with the median of the processing factors to present the different 
exposure estimation results. 

3.3.2 Comparison of exposure of consumer age groups 

The next evaluation criterion was to compare the exposure of different 
consumer age groups, based on the 2.5th percentile, mean, median, and 97.5th 
percentile estimated daily intake (EDI - ng/kg bw/day). The calculations were 
made based on data from the 2009 food consumption survey, using a 
deterministic method, taking into account the median of processing factors 
and the mean of AFM1 concentration data. 
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Taking into account the 95% range of estimation uncertainty, the exposure of 
toddlers is in the range of 0.03-0.55 ng/kg bw/day and it can be characterized 
by a mean value of 0.26 ng/kg bw/day (standard deviation 0.14 ng/kg bw/day) 
and a median value of 0.24 ng/kg bw/day. The exposure of children ranges 
from 0.04 to 0.34 ng/kg bw/day, with a mean value of 0.15 ng/kg bw/day 
(standard deviation 0.09 ng/kg bw/day) and a median value of 0.13 ng/kg 
bw/day. The exposure of adolescents, adults and the elderly is much lower, 
ranging from ≤ 0.01 to 0.17 ng/kg bw/day, with an average value of 0.04-0.06 
ng/kg bw/day and a median value of 0.03-0.06 ng/kg bw/day. The difference 
between the age groups can be considered significant (p-value = 0.003). 

Thus, the highest exposure values can be observed at the youngest and the 
lowest exposure values at the oldest age groups. However, the relationship is 
not directly between age and intake, but between the average body weight 
observed in different  age groups (typically increasing by age) and intake, as 
exposure values are given per kilogram of body weight. 

3.3.3 Comparison of exposure results for 2009 and 2018-2020 

To examine the differences between the 2009 and 2018-2020 exposure 
estimates, I chose the results of the deterministic and probabilistic I. (random 
return) methods. In both cases, I present the results calculated with the median 
of processing factors. For the deterministic estimation I calculated with the 
average of the AFM1 concentration data, in the case of the probabilistic 
method, I calculated with the data generated by the lognormal distribution 
fitted to the AFM1 concentrations. 

Both by comparing average or 97.5th percentile estimated daily intakes, the 
exposure in each age group has been found to be mostly constant over the past 
10 years. The only noticeable difference is in the average values of the age 
group of toddlers and the 97.5th percentile values of the age group of children, 
however, the difference was found to be statistically significant only for the 
latter (p value = 0.04). 

I obtained very similar results with the probabilistic method, although it 
resulted in higher results at the 97.5th percentile, the difference between the 
2009 and 2018-2020 exposure data for each age group – with the exception of 
the 97.5th percentile values for the toddler age group (p value = 0.04) – is not 
significant. Although consumption rates for milk and dairy products have 
increased slightly over the past 10 years, this has not resulted in an increase 
in aflatoxin exposure because the decline in average consumption has 
counterweighed this change. 
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3.3.4 Comparison of results calculated by deterministic and 
probabilistic methods 

In the following, I compare the results calculated by the deterministic, the 
probabilistic I. method, and the probabilistic II. method (2-dimensional Monte 
Carlo model) with Box-Cox t- (BCT) and lognormal (LogNorm) distributions. 
All calculations are based on the results of the 2018-2020 consumption 
survey. The median, mean and 97.5th percentile EDI values of the age group 
of toddlers and adults calculated with different exposure estimates were 
compared. 

In case of both age groups, the median, mean, and 97.5th percentile estimates, 
calculated by the deterministic and 2D Monte Carlo methods resulted in very 
close values. There was no significant difference between the mean values by 
either method. In the case of probabilistic method, the median values were 
lower, the 97.5th percentile values were found to be higher than the others. It 
is likely that this is due to the nature of the random resampling method, as this 
type of estimation “amplifies” the two ends of the distribution. 

Deterministic estimates usually result in a more conservative (pessimistic) 
estimate than probabilistic methods. In the present case, no higher 
deterministic exposure results can be observed, which is probably due to the 
fact that for AFM1 concentration data, not the mean AFM1 value was used 
(and results below LOQ not as LOQs), but the mean value of the generated 
dataset using lognormal distribution. This is thus in fact a semi-parametric 
estimate. 

3.3.5 Comparison of results calculated with the 2D Monte Carlo 
method, Box-Cox t and lognormal AFM1 distribution 

To compare the results calculated with the 2D Monte Carlo method with two 
different distributions (Box-Cox t and lognormal), I chose the data of the 
toddler and adult age groups of the 2018-2020 (EU MENU) survey. 

Exposures calculated using the two different fitted distributions fall in roughly 
the same range, however, the values calculated with the lognormal distribution 
cover a wider range of uncertainty. Differences may be due to the nature of 
the probability distributions used as well as differences in the goodness of fit. 

The mean and median values and associated 2.5th and 97.5th percentile values 
characterizing the exposure distribution of the age group of toddlers are 
summarized in numerical form in the tables below (Tables 1 and 2). They can 
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be used to compare the range of exposures calculated with the BCT and 
LogNorm distributions. Differences between mean and median values present 
the asymmetry of the estimate, indicating that the distribution is skewed 
toward small values. 

Table 1: The mean, median and corresponding 2.5th and 97.5th percentile estimates 
of the age group of the toddlers calculated by BCT distribution using the 2D Monte 
Carlo method. 

 

 

Table 2: The mean, median and corresponding 2.5th and 97.5th percentile estimates 
of the age group of the toddlers calculated by LogNorm distribution using the 2D 
Monte Carlo method. 

 

The median, mean, and 97.5th percentile exposures values of toddlers modeled 
with a lognormal distribution are slightly higher, on the other hand the 2.5th 
percentile values, are lower than the same values calculated with BCT 
distribution. 

As these two distributions characterized best the input data, overall it cannot 
be stated that one or the other results give more realistic estimate, but from 
the similarity of the results we can conclude that the real exposure values fall 
within the range covered by the two results. 

3.4 Risk characterization of AFM1 intake  

I used three evaluation methods for risk characterization. All methods are 
accepted in international practice, although the application of the hazard index 
and the margin of exposure (MoE) approach somewhat contradicts the fact 
that no safe tolerable daily intake can be established for genotoxic and 
carcinogenic compounds. Yet both methods establish a limit value compared 
to which some aflatoxin intakes are considered riskier and others less risky. 

BCT Toddlers mean sd min 1% 2.5% 25% 50% 75% 97.5% 99% max
median 0.134 0.076 0.002 0.007 0.011 0.068 0.129 0.200 0.260 0.263 0.265
mean 0.161 0.091 0.003 0.008 0.013 0.082 0.156 0.240 0.313 0.316 0.319
2.5% 0.093 0.053 0.002 0.005 0.007 0.047 0.090 0.139 0.181 0.183 0.185

97.5% 0.400 0.227 0.007 0.002 0.031 0.203 0.387 0.597 0.777 0.785 0.793

LogNorm Toddlers mean sd min 1% 2.5% 25% 50% 75% 97.5% 99% max
median 0.157 0.090 0.003 0.005 0.007 0.076 0.161 0.230 0.310 0.313 0.320
mean 0.187 0.107 0.003 0.006 0.009 0.090 0.191 0.274 0.369 0.372 0.381
2.5% 0.051 0.029 0.001 0.002 0.002 0.025 0.052 0.075 0.101 0.101 0.104

97.5% 0.488 0.281 0.008 0.016 0.023 0.235 0.500 0.715 0.965 0.972 0.996
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In any case, as the Estimated Daily Intake (EDI) alone does not provide 
sufficient information to judge whether the level of exposure can be 
considered low or high, these methods will help to assess the level of risk. 

3.4.1 Risk characterization based on hazard index (HI) values 

Dividing the result of the exposure estimates (EDI) by the safe dose, gives a 
dimensionless ratio. The extent of the risks is proportional to the results 
obtained and are considered to be of concern at values of 1 or higher. I used 
the results of deterministic estimates with consumption data from the 2018-
2020 food consumption survey to compare HI values for age groups (Table 
3). 

Table 3: The comparison of average and 97.5th of percentile HI values derived 
from the EDI values calculated by deterministic estimation by age group. 
High risk values are indicated by bold numbers. 

Note: DET: deterministic method, HI: Hazard Index 

HI values calculated from the mean daily intake values and 97.5th percentile 
values indicate that the risk from exposure in the groups of adolescents, adults 
and elderly is not considered to be a concern. However, in the case of toddlers 
and children, the 97.5th percentile values (large consumers), the exposure is 
significantly higher than the level considered safe. One of the most important 
of the above results is the HI value of 1, which characterizes the average intake 
of toddlers, as it suggests that a significant proportion of this age group is 
exposed to AFM1 at a level of health concern. 

The above evaluation was performed not only for the estimated daily intake 
values calculated with deterministic method, but also calculated by 
probabilistic methods. The comparison of HI values calculated from the 
results of different methods was performed on the example of toddlers and 
adults. 

The results obtained confirm the conclusions drawn above. The mean 
exposure values for the age group of toddlers were found to be worrying in 
two of the three exposure estimation methods, and all of the 97.5th percentile 

2018-2020 Toddlers Children Adolescents Adults Elderly

DET HI Average 1.0 0.7 0.3 0.2 0.2

DET HI P97.5 2.8 1.9 0.8 0.6 0.4
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exposure values resulted in a hazard index above 1. With the probabilistic I 
method, the 97.5th percentile calculation for adults also resulted in an HI value 
above 1, however, it is known that this method gives a very conservative 
estimate for the upper percentiles. 

Another option for characterizing the risk from AFM1 intake is the Margin of 
Exposure (MoE). For aflatoxins, the BMDL10 value derived from AFB1-
induced liver cancer studies in rats (400 ng/kg bw/day) may be used as a 
reference value, which can be used for AFM1 converted by a factor of ten. 
Results below 10,000 are of concern, MoEs of 10,000 or greater indicating 
little risk to public health.  

The average and 97.5. percentile margin of exposure estimates (MoE) of the 
intake values calculated by deterministic method from the consumption data 
of the 2018-2020 food consumption survey were compared by age groups. 

The results from the margin of exposure assessment provide us with a less 
worrying picture than the output values of the hazard index calculation. The 
limit of considerable risk (10,000) was reached only by the 97.5th percentile 
of the toddler age group and approached by ‘large consumers’ of children. For 
the other age groups, no significant risk can be identified with this risk 
characterization methodology. 

Comparison of MoE results obtained from deterministic and probabilistic 
methods from the consumption data of the 2018-2020 food consumption 
survey leads to similar conclusions. The average intake values of the age 
group of toddlers and adults are not considered risky, while the 97.5th 
percentile results fell into the critical range with all exposure estimation 
methods. 

A third method for risk characterization is to estimate the contribution of mean 
and high AFM1 intake in a given population to the incidence of hepatocellular 
carcinoma (HCCi), i.e., the incidence of new cases in a given population over 
a given period of time. 

Exposure to aflatoxin increases the risk of developing HCC in the presence of 
chronic hepatitis B. As the prevalence of hepatitis B is low in Hungary (and 
in Europe in general), the aflatoxin-induced increase in HCCi does not show 
high values either. Although the numerical value of the estimated incidence 
of liver cancer proved to be very low, the relative values of the results in this 
case also show higher risk for toddlers (0.00036-0.0023 cases/100,000 
persons/year) and children (0.00026-0.0017 cases /100,000 persons/year) 
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compared to other age groups (0.000074-0.00039 cases/100,000 
persons/year). 

3.5 An integrated risk assessment model developed in the KNIME 
framework 

To perform the calculation steps of the presented results, I created an 
integrated risk assessment KNIME workflow suitable for the processing of 
consumption data, deterministic and probabilistic exposure estimates, as well 
as for the characterization of exposure based on the obtained results. The 
model was developed in two versions, separately optimized for the data 
structure of the two consumption surveys used. The program is currently 
designed for milk and dairy product data as well as AFM1 concentration data 
processing, but can be run or expanded to any food-contaminant combination 
with minor modifications. 

The integrated risk assessment model includes four modules, the first for 
preparing food consumption data, the second for performing deterministic 
exposure assessment, the third for performing probabilistic exposure 
assessment I, and the fourth for probabilistic exposure assessment II. The 
output data of the food consumption data processing module (average daily 
consumption data) form the input to the exposure estimates. 

3.5.1 Food Consumption Data Processing Module 

The first step in the module containing the processing steps for food 
consumption data is to retrieve the required consumption data, the food 
categorization data (FoodEx) and the table containing the processing factors. 
The following are the steps for data cleansing and formatting, and linking the 
relevant data from the three input tables. EU MENU food consumption data 
is supplemented with FoodEx codes and translated into food names by the 
FoodEx coding table. The processing factors can be associated with the food 
consumption data using the food names, hereinafter the summary data table 
contains both of these data. 

In the following steps, the module summarizes the individual dairy intake 
values for each consumption day, taking into account the minimum, median 
and maximum values of the processing factors, converted into milk equivalent 
in three parallel calculation series. The aggregate average values of 
consumption days per consumer, expressed in kg/kg bw, are transmitted by 
the module to the exposure estimation modules. The processing of food 
consumption data ends with three identical metanodes. The metanode first 
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separates the data by age group, then calculates descriptive statistics from the 
average consumption data per consumer for each age group, and then prints 
the data and descriptive statistics on separate worksheets of an Excel 
spreadsheet. 

3.5.2 Deterministic exposure estimation module 

The output data of the first module is read by the deterministic exposure 
estimation module. In parallel, it also retrieves AFM1 data (CSV Reader), 
generates descriptive statistics on it, and then performs exposure estimation 
using the calculated AFM1 average value (according to the OIM 
methodology). It passes on the calculated values into a metanode. 

The last metanode of the deterministic exposure estimation module separates 
the exposure values by age group and calculates the risk characterization 
metrics (MoE, HI, HCCi values) for each age group. Finally, it exports both 
the exposure values and the risk characterization metrics by age group to 
separate worksheets of an Excel spreadsheet. 

3.5.3 Probabilistic I exposure estimation module 

The first step of the module reads the AFM1 data and the consumption data, 
the latter being separated by age group in the first sub-process. From the 
concentration values, the program then takes 200,000 random samples (or the 
amount specified for the sampling cycle and the number of sampling items) 
by random sampling, calculates descriptive statistics from the obtained 
database, relative and cumulative frequency values, and then plots the 
obtained frequencies.  

In parallel, the module acts similarly with the consumption data and then 
performs the exposure estimation by multiplying the sampled concentration 
and consumption data. The next sub-process calculates the descriptive 
statistics of the obtained exposure values and their relative and cumulative 
frequency values, and then plots the results on an interactive relative and 
cumulative frequency diagram. The last steps of the module are to calculate 
the risk characterization metrics and then export the obtained results to an 
Excel file. 

3.5.4 Probabilistic II. exposure estimation module 

The last, probabilistic II. exposure estimation module consists of four sub-
processes. The first sub-process reads the necessary data and separates the age 
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groups. The next step is to fit the examined distributions to the AFM1 data 
above the LOQ, as well as to check the goodness of the fit, the obtained 
histograms and Q-Q plots are exported by the module in image format. 

In the next sub-process, the distributions selected during the second sub-
process are fitted to the complete data set (including values below the LOQ), 
and the goodness of fit is re-examined. In the optimal case, a positive change 
can be observed in the parameters describing the goodness of fit. 

The last sub-process of the probabilistic II. exposure estimation is to run the 
Monte Carlo simulation with the selected distributions, for the data of each 
consumer age group. The result of the simulation is a cumulative frequency 
graph characterizing the expected exposure of the studied populations and a 
table containing the percentile values characterizing the variability. The 
calculation steps, used during the probabilistic II. exposure estimation, were 
performed by using the statistical packages written for the R statistical 
software, integrated into the KNIME framework. 

4 CONCLUSIONS AND RECOMMENDATIONS 

In its 2020 risk assessment, EFSA drew attention to the concerns about 
exposure results for both aflatoxin B1 and aflatoxin M1, especially in young 
age groups. As the report did not contain detailed information on the exposure 
of Hungarian consumers, I considered it important to estimate the domestic 
aflatoxin exposure as accurately as possible using the appropriate methods. 

Analysing the obtained results in the light of the European data and the results 
of the previous collaboration with Italy (Table 4), it can be concluded that the 
exposure pattern of Hungarian consumers, the relative exposure of age groups, 
follows the results calculated by EFSA and obtained from the Italian data. 
Based on the exposure data, the exposure of Hungarian consumers to AFM1 
is lower than the average and 95th percentile AFM1 exposure values calculated 
by EFSA and the results for Italian consumers. 
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Table 4: Mean and 95th percentile exposure values (ng/kg bw/day) calculated by the 
deterministic method for 2018-2020, compared to the results of EFSA 2020 and 
AFM1 exposure calculations in Italy 

Note: IT: Italian result, HU: Hungarian results, P95: 95th percentile exposure values 

It is important to note that for both benchmark surveys, the age group of 
infants was also included in the risk assessment (this age group was not 
examined in the 2018-2020 survey) and their exposure values approximate, in 
some cases exceed, those of the toddler age group. This leads to a conclusion 
that infants in Hungary also belong to the vulnerable population groups, 
however, we are not able to support this with data resulting in a reliable 
estimate. 

Based on current data for the age group of toddlers and those who consume 
large amounts of milk and dairy products among young children, it can be 
concluded with high certainty that they are at health risk in terms of AFM1 
intake. I present at Figure 1, using a combination of the previously presented 
exposure results calculated using the Monte Carlo method and the HI and 
MoE metrics used to characterize the risk, what proportion of these two age 
groups are considered at risk. 

 

Infants Toddlers Children Adolescents Adults Elderly
EFSA 2020 Average 0.69 0.86 0.43 0.19 0.1 0.1
IT 2018 Average 0.33 0.28 0.10 0,04 0.03 0.03
HU 2020 Average ? 0.19 0.14 0.06 0.04 0.03

EFSA 2020 P95 1.77 1.82 1.03 0.47 0.57 0.28
IT 2018 P95 0.88 0.63 0.19 0.07 0.07 0.05
HU 2020 P95 ? 0.44 0.33 0.13 0.10 0.07

A B 
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Figure 1: Cumulative frequency distributions of AFM1 exposure estimated by the 
2D Monte Carlo method based on two distributions (BCT on the left, LogNorm on 

the right) of the age groups of toddlers (A, B) and young children (C, D) in the 
2018-2020 consumption surveys indicating the HI (solid line) and MoE (dashed 

line) thresholds. 

In Figure 1, the cumulative frequency distributions of the age group of 
toddlers and young children calculated with the Box-Cox t- and lognormal 
AFM1 distribution are supplemented with the 0.2 ng/kg bw/day (left vertical 
line) used for the HI calculation and the 10,000 MoE values resulting in 0.4 
ng/kg bw/day (dashed line) risk thresholds. The two diagrams provide a good 
indication of the distribution of exposures in the toddler and young age groups 
and also provide an opportunity to assess the degree of risk. 

Given that the toxicity of aflatoxins poses primarily a health risk to the 
youngest population groups, special attention should be paid to reducing and 
minimizing their exposure. However, it is emphasized that the presence of 
carcinogens should be kept to a minimum in all age groups. 

As a sufficient number of test results were provided by aflatoxin M1 
concentrations measured in milk, I estimated the exposure from the intake of 
milk and dairy products using derived data. The partial results already show 
that certain age groups of the Hungarian population are exposed to a higher 
aflatoxin level than the safe dose and this can be considered as a kind of 
indicator. Therefore it is worthwhile to extend the exposure estimation in the 
future to AFB1, which is ten times more toxic, by analyzing concentration 
values and consumption data for foods relevant to AFB1, and cumulative risk 
assessment of different aflatoxins can also provide informative results.  

C D 
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However, this requires adequate quantity and quality of data on other foods 
relevant to aflatoxins (e.g. processed cereal-based products, dried fruits, 
spices, etc.). Data in the literature show that total diet studies provide more 
accurate information for estimating exposure than the use of monitoring 
results, therefore, if possible, I recommend cunducting a national, 
representative total diet study, which – using appropriate sensitivity (HPLC-
MS/MS) analytical methods – would allow the combined assessment of the 
levels of several contaminants of food safety concern, including all 
mycotoxins in food. 

According to the annual monitoring results, milks with a contamination 
exceeding 10-15 times the maximum tolerable level are also marketed. A 
particularly vulnerable group is those who regularly consume milk from the 
same source where the animals are fed aflatoxin-contaminated feed. 

Based on the results, I consider it justified to introduce measures to protect the 
youngest age groups and reduce the amount of aflatoxins entering the milk 
and milk products value chain. 

As there is no large-scale process that can perfectly eliminate aflatoxins from 
the food chain, prevention remains paramount. Great emphasis should be 
given on the overall control of Aspergillus infection, and the use of 
agricultural, storage and processing technologies that inhibit the growth of 
molds and reduce aflatoxin levels should be promoted. 

This is a complex task that requires the involvement of all actors in the food 
chain, starting with the application of good agricultural practices and the 
proper preparation and management of arable land. This is followed by a 
series of measures taken during the selection of hybrids resistant to mold, 
harvesting, transport and storage of crops, which can prevent the growth of 
molds (setting appropriate temperature and humidity levels, sorting, peeling, 
physical treatment of crops). Last but not least, the appropriate storage, 
handling and control of the aflatoxin content of cereals, silage or other 
processed feed preparations intended for animal feed and their physical, 
chemical or biological detoxification if necessary. 

The success of prevention and the adequacy of milk shipments can also be 
checked at the level of dairy farms and dairies. A sampling plan and early 
warning system for the detection of aflatoxin M1 in raw milk can be used to 
effectively predict an increase in the level of contamination, using the 20 
ng/kg action limit already proven in practice in Italy. According to the 
indication, the dairy farm can prevent the legally tolerable maximum (50 
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ng/kg) AFM1 concentration from being reached in a way that is appropriate 
to local conditions, for example through feed interventions. This would reduce 
the use of large quantities of aflatoxin-contaminated milk in primary and 
secondary milk processing and consequently reduce the exposure of 
consumers. 

It should also be noted that ELISA kits set to indicate a concentration of 50 
ng/kg AFM1 may still consider adequate a batch of milk contaminated with ≤ 
65-70 ng/kg AFM1 in 50% of cases due to detection uncertainty. 

For the group of infants and young children most exposed to AFM1 and at the 
same time most vulnerable, but also in order to protect the health of the whole 
population, I propose to amend the control of milk processing plants. I 
recommend that they are obliged to set the ELISA kit to indicate ≥ 20 ng/kg 
concentration, notify the dairy farm and NÉBIH if AFM1 contamination is ≥ 
20 ng/kg in the milk delivered from a given farm, and thereafter to monitor 
the effectiveness of the measure taken to reduce the contamination by daily 
monitoring the contamination of the milk delivered from the same dairy farm. 

It is also appropriate to regularly monitor consumer exposure according to the 
developed methodology using the latest aflatoxin analytical results. In 
addition to informing consumers and promoting a diverse diet of impeccable 
quality and the appropriate frequency of official controls, it is necessary to 
make business operators along the food chain economically interested in 
reducing the contamination of food and feed.  
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5 NEW SCIENTIFIC RESULTS 

1. I applied mathematical equation for the calculation of the intake of 
aflatoxin M1 from milk taking also into account the processing factors of 
relevant milk based foods. 
 

2. I developed an integrated model for the deterministic and probabilistic 
exposure assessment of the Hungarian population, including processing 
factors, as well as a food consumption database in KNIME framework. 
After the preparation of concentration data, the application can be used to 
fit distributions, for goodness of fit analysis, and by using the parameters 
characterizing the distribution, to perform a 2D Monte Carlo simulation 
and estimate the exposure from the intake of any chemical contaminant. 
 

3. I estimated the aflatoxin M1 exposure of the Hungarian population from 
the consumption of milk and dairy products by using probabilistic and 
deterministic methods. My results indicate that the chronic AFM1 intake 
of adolescents, adults and the elderly does not reach the level of health 
risk, but the AFM1 intake of the age group of toddlers consuming average 
or large amounts, as well as the large eater children, exceeds the level of 
health risk. 
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